MyArxiv
Computation and Language 133
☆ DFlash: Block Diffusion for Flash Speculative Decoding
Autoregressive large language models (LLMs) deliver strong performance but require inherently sequential decoding, leading to high inference latency and poor GPU utilization. Speculative decoding mitigates this bottleneck by using a fast draft model whose outputs are verified in parallel by the target LLM; however, existing methods still rely on autoregressive drafting, which remains sequential and limits practical speedups. Diffusion LLMs offer a promising alternative by enabling parallel generation, but current diffusion models typically underperform compared with autoregressive models. In this paper, we introduce DFlash, a speculative decoding framework that employs a lightweight block diffusion model for parallel drafting. By generating draft tokens in a single forward pass and conditioning the draft model on context features extracted from the target model, DFlash enables efficient drafting with high-quality outputs and higher acceptance rates. Experiments show that DFlash achieves over 6x lossless acceleration across a range of models and tasks, delivering up to 2.5x higher speedup than the state-of-the-art speculative decoding method EAGLE-3.
☆ Learning Query-Aware Budget-Tier Routing for Runtime Agent Memory
Memory is increasingly central to Large Language Model (LLM) agents operating beyond a single context window, yet most existing systems rely on offline, query-agnostic memory construction that can be inefficient and may discard query-critical information. Although runtime memory utilization is a natural alternative, prior work often incurs substantial overhead and offers limited explicit control over the performance-cost trade-off. In this work, we present \textbf{BudgetMem}, a runtime agent memory framework for explicit, query-aware performance-cost control. BudgetMem structures memory processing as a set of memory modules, each offered in three budget tiers (i.e., \textsc{Low}/\textsc{Mid}/\textsc{High}). A lightweight router performs budget-tier routing across modules to balance task performance and memory construction cost, which is implemented as a compact neural policy trained with reinforcement learning. Using BudgetMem as a unified testbed, we study three complementary strategies for realizing budget tiers: implementation (method complexity), reasoning (inference behavior), and capacity (module model size). Across LoCoMo, LongMemEval, and HotpotQA, BudgetMem surpasses strong baselines when performance is prioritized (i.e., high-budget setting), and delivers better accuracy-cost frontiers under tighter budgets. Moreover, our analysis disentangles the strengths and weaknesses of different tiering strategies, clarifying when each axis delivers the most favorable trade-offs under varying budget regimes.
comment: Code is available at https://github.com/ViktorAxelsen/BudgetMem
☆ Multi-Token Prediction via Self-Distillation
Existing techniques for accelerating language model inference, such as speculative decoding, require training auxiliary speculator models and building and deploying complex inference pipelines. We consider a new approach for converting a pretrained autoregressive language model from a slow single next token prediction model into a fast standalone multi-token prediction model using a simple online distillation objective. The final model retains the exact same implementation as the pretrained initial checkpoint and is deployable without the addition of any auxiliary verifier or other specialized inference code. On GSM8K, our method produces models that can decode more than $3\times$ faster on average at $<5\%$ drop in accuracy relative to single token decoding performance.
comment: 8 pages and 5 figures in the main body
☆ A Systematic Evaluation of Large Language Models for PTSD Severity Estimation: The Role of Contextual Knowledge and Modeling Strategies
Large language models (LLMs) are increasingly being used in a zero-shot fashion to assess mental health conditions, yet we have limited knowledge on what factors affect their accuracy. In this study, we utilize a clinical dataset of natural language narratives and self-reported PTSD severity scores from 1,437 individuals to comprehensively evaluate the performance of 11 state-of-the-art LLMs. To understand the factors affecting accuracy, we systematically varied (i) contextual knowledge like subscale definitions, distribution summary, and interview questions, and (ii) modeling strategies including zero-shot vs few shot, amount of reasoning effort, model sizes, structured subscales vs direct scalar prediction, output rescaling and nine ensemble methods. Our findings indicate that (a) LLMs are most accurate when provided with detailed construct definitions and context of the narrative; (b) increased reasoning effort leads to better estimation accuracy; (c) performance of open-weight models (Llama, Deepseek), plateau beyond 70B parameters while closed-weight (o3-mini, gpt-5) models improve with newer generations; and (d) best performance is achieved when ensembling a supervised model with the zero-shot LLMs. Taken together, the results suggest choice of contextual knowledge and modeling strategies is important for deploying LLMs to accurately assess mental health.
comment: 18 pages, 3 figures, 5 tables
☆ Speech Emotion Recognition Leveraging OpenAI's Whisper Representations and Attentive Pooling Methods
Speech Emotion Recognition (SER) research has faced limitations due to the lack of standard and sufficiently large datasets. Recent studies have leveraged pre-trained models to extract features for downstream tasks such as SER. This work explores the capabilities of Whisper, a pre-trained ASR system, in speech emotion recognition by proposing two attention-based pooling methods, Multi-head Attentive Average Pooling and QKV Pooling, designed to efficiently reduce the dimensionality of Whisper representations while preserving emotional features. We experiment on English and Persian, using the IEMOCAP and ShEMO datasets respectively, with Whisper Tiny and Small. Our multi-head QKV architecture achieves state-of-the-art results on the ShEMO dataset, with a 2.47% improvement in unweighted accuracy. We further compare the performance of different Whisper encoder layers and find that intermediate layers often perform better for SER on the Persian dataset, providing a lightweight and efficient alternative to much larger models such as HuBERT X-Large. Our findings highlight the potential of Whisper as a representation extractor for SER and demonstrate the effectiveness of attention-based pooling for dimension reduction.
☆ DSB: Dynamic Sliding Block Scheduling for Diffusion LLMs
Diffusion large language models (dLLMs) have emerged as a promising alternative for text generation, distinguished by their native support for parallel decoding. In practice, block inference is crucial for avoiding order misalignment in global bidirectional decoding and improving output quality. However, the widely-used fixed, predefined block (naive) schedule is agnostic to semantic difficulty, making it a suboptimal strategy for both quality and efficiency: it can force premature commitments to uncertain positions while delaying easy positions near block boundaries. In this work, we analyze the limitations of naive block scheduling and disclose the importance of dynamically adapting the schedule to semantic difficulty for reliable and efficient inference. Motivated by this, we propose Dynamic Sliding Block (DSB), a training-free block scheduling method that uses a sliding block with a dynamic size to overcome the rigidity of the naive block. To further improve efficiency, we introduce DSB Cache, a training-free KV-cache mechanism tailored to DSB. Extensive experiments across multiple models and benchmarks demonstrate that DSB, together with DSB Cache, consistently improves both generation quality and inference efficiency for dLLMs. Code is released at https://github.com/lizhuo-luo/DSB.
☆ SAGE: Benchmarking and Improving Retrieval for Deep Research Agents ACL
Deep research agents have emerged as powerful systems for addressing complex queries. Meanwhile, LLM-based retrievers have demonstrated strong capability in following instructions or reasoning. This raises a critical question: can LLM-based retrievers effectively contribute to deep research agent workflows? To investigate this, we introduce SAGE, a benchmark for scientific literature retrieval comprising 1,200 queries across four scientific domains, with a 200,000 paper retrieval corpus.We evaluate six deep research agents and find that all systems struggle with reasoning-intensive retrieval. Using DR Tulu as backbone, we further compare BM25 and LLM-based retrievers (i.e., ReasonIR and gte-Qwen2-7B-instruct) as alternative search tools. Surprisingly, BM25 significantly outperforms LLM-based retrievers by approximately 30%, as existing agents generate keyword-oriented sub-queries. To improve performance, we propose a corpus-level test-time scaling framework that uses LLMs to augment documents with metadata and keywords, making retrieval easier for off-the-shelf retrievers. This yields 8% and 2% gains on short-form and open-ended questions, respectively.
comment: Submission to ACL ARR 2026 January
☆ Characterizing Human Semantic Navigation in Concept Production as Trajectories in Embedding Space ICLR 2026
Semantic representations can be framed as a structured, dynamic knowledge space through which humans navigate to retrieve and manipulate meaning. To investigate how humans traverse this geometry, we introduce a framework that represents concept production as navigation through embedding space. Using different transformer text embedding models, we construct participant-specific semantic trajectories based on cumulative embeddings and extract geometric and dynamical metrics, including distance to next, distance to centroid, entropy, velocity, and acceleration. These measures capture both scalar and directional aspects of semantic navigation, providing a computationally grounded view of semantic representation search as movement in a geometric space. We evaluate the framework on four datasets across different languages, spanning different property generation tasks: Neurodegenerative, Swear verbal fluency, Property listing task in Italian, and in German. Across these contexts, our approach distinguishes between clinical groups and concept types, offering a mathematical framework that requires minimal human intervention compared to typical labor-intensive linguistic pre-processing methods. Comparison with a non-cumulative approach reveals that cumulative embeddings work best for longer trajectories, whereas shorter ones may provide too little context, favoring the non-cumulative alternative. Critically, different embedding models yielded similar results, highlighting similarities between different learned representations despite different training pipelines. By framing semantic navigation as a structured trajectory through embedding space, bridging cognitive modeling with learned representation, thereby establishing a pipeline for quantifying semantic representation dynamics with applications in clinical research, cross-linguistic analysis, and the assessment of artificial cognition.
comment: 10 pages, 6 figures (excluding refs/appendix). Accepted to ICLR 2026
☆ Self-Improving Multilingual Long Reasoning via Translation-Reasoning Integrated Training
Long reasoning models often struggle in multilingual settings: they tend to reason in English for non-English questions; when constrained to reasoning in the question language, accuracies drop substantially. The struggle is caused by the limited abilities for both multilingual question understanding and multilingual reasoning. To address both problems, we propose TRIT (Translation-Reasoning Integrated Training), a self-improving framework that integrates the training of translation into multilingual reasoning. Without external feedback or additional multilingual data, our method jointly enhances multilingual question understanding and response generation. On MMATH, our method outperforms multiple baselines by an average of 7 percentage points, improving both answer correctness and language consistency. Further analysis reveals that integrating translation training improves cross-lingual question alignment by over 10 percentage points and enhances translation quality for both mathematical questions and general-domain text, with gains up to 8.4 COMET points on FLORES-200.
comment: 16 pages, 11 figures
☆ Polyglots or Multitudes? Multilingual LLM Answers to Value-laden Multiple-Choice Questions
Multiple-Choice Questions (MCQs) are often used to assess knowledge, reasoning abilities, and even values encoded in large language models (LLMs). While the effect of multilingualism has been studied on LLM factual recall, this paper seeks to investigate the less explored question of language-induced variation in value-laden MCQ responses. Are multilingual LLMs consistent in their responses across languages, i.e. behave like theoretical polyglots, or do they answer value-laden MCQs depending on the language of the question, like a multitude of monolingual models expressing different values through a single model? We release a new corpus, the Multilingual European Value Survey (MEVS), which, unlike prior work relying on machine translation or ad hoc prompts, solely comprises human-translated survey questions aligned in 8 European languages. We administer a subset of those questions to over thirty multilingual LLMs of various sizes, manufacturers and alignment-fine-tuning status under comprehensive, controlled prompt variations including answer order, symbol type, and tail character. Our results show that while larger, instruction-tuned models display higher overall consistency, the robustness of their responses varies greatly across questions, with certain MCQs eliciting total agreement within and across models while others leave LLM answers split. Language-specific behavior seems to arise in all consistent, instruction-fine-tuned models, but only on certain questions, warranting a further study of the selective effect of preference fine-tuning.
comment: 17 pages, 5 figures (8 pages of references and appendices)
☆ KV-CoRE: Benchmarking Data-Dependent Low-Rank Compressibility of KV-Caches in LLMs
Large language models rely on kv-caches to avoid redundant computation during autoregressive decoding, but as context length grows, reading and writing the cache can quickly saturate GPU memory bandwidth. Recent work has explored KV-cache compression, yet most approaches neglect the data-dependent nature of kv-caches and their variation across layers. We introduce KV-CoRE KV-cache Compressibility by Rank Evaluation), an SVD-based method for quantifying the data-dependent low-rank compressibility of kv-caches. KV-CoRE computes the optimal low-rank approximation under the Frobenius norm and, being gradient-free and incremental, enables efficient dataset-level, layer-wise evaluation. Using this method, we analyze multiple models and datasets spanning five English domains and sixteen languages, uncovering systematic patterns that link compressibility to model architecture, training data, and language coverage. As part of this analysis, we employ the Normalized Effective Rank as a metric of compressibility and show that it correlates strongly with performance degradation under compression. Our study establishes a principled evaluation framework and the first large-scale benchmark of kv-cache compressibility in LLMs, offering insights for dynamic, data-aware compression and data-centric model development.
☆ Codified Finite-state Machines for Role-playing
Modeling latent character states is crucial for consistent and engaging role-playing (RP) with large language models (LLMs). Yet, existing prompting-based approaches mainly capture surface actions, often failing to track the latent states that drive interaction. We revisit finite-state machines (FSMs), long used in game design to model state transitions. While effective in small, well-specified state spaces, traditional hand-crafted, rule-based FSMs struggle to adapt to the open-ended semantic space of RP. To address this, we introduce Codified Finite-State Machines (CFSMs), a framework that automatically codifies textual character profiles into FSMs using LLM-based coding. CFSMs extract key states and transitions directly from the profile, producing interpretable structures that enforce character consistency. To further capture uncertainty and variability, we extend CFSMs into Codified Probabilistic Finite-State Machines (CPFSMs), where transitions are modeled as probability distributions over states. Through both synthetic evaluations and real-world RP scenarios in established artifacts, we demonstrate that CFSM and CPFSM outperform generally applied baselines, verifying effectiveness not only in structured tasks but also in open-ended stochastic state exploration.
☆ Stop Rewarding Hallucinated Steps: Faithfulness-Aware Step-Level Reinforcement Learning for Small Reasoning Models
As large language models become smaller and more efficient, small reasoning models (SRMs) are crucial for enabling chain-of-thought (CoT) reasoning in resource-constrained settings. However, they are prone to faithfulness hallucinations, especially in intermediate reasoning steps. Existing mitigation methods based on online reinforcement learning rely on outcome-based rewards or coarse-grained CoT evaluation, which can inadvertently reinforce unfaithful reasoning when the final answer is correct. To address these limitations, we propose Faithfulness-Aware Step-Level Reinforcement Learning (FaithRL), introducing step-level supervision via explicit faithfulness rewards from a process reward model, together with an implicit truncated resampling strategy that generates contrastive signals from faithful prefixes. Experiments across multiple SRMs and Open-Book QA benchmarks demonstrate that FaithRL consistently reduces hallucinations in both the CoT and final answers, leading to more faithful and reliable reasoning. Code is available at https://github.com/Easy195/FaithRL.
☆ DFPO: Scaling Value Modeling via Distributional Flow towards Robust and Generalizable LLM Post-Training
Training reinforcement learning (RL) systems in real-world environments remains challenging due to noisy supervision and poor out-of-domain (OOD) generalization, especially in LLM post-training. Recent distributional RL methods improve robustness by modeling values with multiple quantile points, but they still learn each quantile independently as a scalar. This results in rough-grained value representations that lack fine-grained conditioning on state information, struggling under complex and OOD conditions. We propose DFPO (Distributional Value Flow Policy Optimization with Conditional Risk and Consistency Control), a robust distributional RL framework that models values as continuous flows across time steps. By scaling value modeling through learning of a value flow field instead of isolated quantile predictions, DFPO captures richer state information for more accurate advantage estimation. To stabilize training under noisy feedback, DFPO further integrates conditional risk control and consistency constraints along value flow trajectories. Experiments on dialogue, math reasoning, and scientific tasks show that DFPO outperforms PPO, FlowRL, and other robust baselines under noisy supervision, achieving improved training stability and generalization.
☆ Dr. Kernel: Reinforcement Learning Done Right for Triton Kernel Generations
High-quality kernel is critical for scalable AI systems, and enabling LLMs to generate such code would advance AI development. However, training LLMs for this task requires sufficient data, a robust environment, and the process is often vulnerable to reward hacking and lazy optimization. In these cases, models may hack training rewards and prioritize trivial correctness over meaningful speedup. In this paper, we systematically study reinforcement learning (RL) for kernel generation. We first design KernelGYM, a robust distributed GPU environment that supports reward hacking check, data collection from multi-turn interactions and long-term RL training. Building on KernelGYM, we investigate effective multi-turn RL methods and identify a biased policy gradient issue caused by self-inclusion in GRPO. To solve this, we propose Turn-level Reinforce-Leave-One-Out (TRLOO) to provide unbiased advantage estimation for multi-turn RL. To alleviate lazy optimization, we incorporate mismatch correction for training stability and introduce Profiling-based Rewards (PR) and Profiling-based Rejection Sampling (PRS) to overcome the issue. The trained model, Dr.Kernel-14B, reaches performance competitive with Claude-4.5-Sonnet in Kernelbench. Finally, we study sequential test-time scaling for Dr.Kernel-14B. On the KernelBench Level-2 subset, 31.6% of the generated kernels achieve at least a 1.2x speedup over the Torch reference, surpassing Claude-4.5-Sonnet (26.7%) and GPT-5 (28.6%). When selecting the best candidate across all turns, this 1.2x speedup rate further increases to 47.8%. All resources, including environment, training code, models, and dataset, are included in https://www.github.com/hkust-nlp/KernelGYM.
☆ EuroLLM-22B: Technical Report
This report presents EuroLLM-22B, a large language model trained from scratch to support the needs of European citizens by covering all 24 official European Union languages and 11 additional languages. EuroLLM addresses the issue of European languages being underrepresented and underserved in existing open large language models. We provide a comprehensive overview of EuroLLM-22B's development, including tokenizer design, architectural specifications, data filtering, and training procedures. Across a broad set of multilingual benchmarks, EuroLLM-22B demonstrates strong performance in reasoning, instruction following, and translation, achieving results competitive with models of comparable size. To support future research, we release our base and instruction-tuned models, our multilingual web pretraining data and updated EuroBlocks instruction datasets, as well as our pre-training and evaluation codebases.
☆ xList-Hate: A Checklist-Based Framework for Interpretable and Generalizable Hate Speech Detection
Hate speech detection is commonly framed as a direct binary classification problem despite being a composite concept defined through multiple interacting factors that vary across legal frameworks, platform policies, and annotation guidelines. As a result, supervised models often overfit dataset-specific definitions and exhibit limited robustness under domain shift and annotation noise. We introduce xList-Hate, a diagnostic framework that decomposes hate speech detection into a checklist of explicit, concept-level questions grounded in widely shared normative criteria. Each question is independently answered by a large language model (LLM), producing a binary diagnostic representation that captures hateful content features without directly predicting the final label. These diagnostic signals are then aggregated by a lightweight, fully interpretable decision tree, yielding transparent and auditable predictions. We evaluate it across multiple hate speech benchmarks and model families, comparing it against zero-shot LLM classification and in-domain supervised fine-tuning. While supervised methods typically maximize in-domain performance, we consistently improves cross-dataset robustness and relative performance under domain shift. In addition, qualitative analysis of disagreement cases provides evidence that the framework can be less sensitive to certain forms of annotation inconsistency and contextual ambiguity. Crucially, the approach enables fine-grained interpretability through explicit decision paths and factor-level analysis. Our results suggest that reframing hate speech detection as a diagnostic reasoning task, rather than a monolithic classification problem, provides a robust, explainable, and extensible alternative for content moderation.
☆ Constrained Group Relative Policy Optimization
While Group Relative Policy Optimization (GRPO) has emerged as a scalable framework for critic-free policy learning, extending it to settings with explicit behavioral constraints remains underexplored. We introduce Constrained GRPO, a Lagrangian-based extension of GRPO for constrained policy optimization. Constraints are specified via indicator cost functions, enabling direct optimization of violation rates through a Lagrangian relaxation. We show that a naive multi-component treatment in advantage estimation can break constrained learning: mismatched component-wise standard deviations distort the relative importance of the different objective terms, which in turn corrupts the Lagrangian signal and prevents meaningful constraint enforcement. We formally derive this effect to motivate our scalarized advantage construction that preserves the intended trade-off between reward and constraint terms. Experiments in a toy gridworld confirm the predicted optimization pathology and demonstrate that scalarizing advantages restores stable constraint control. In addition, we evaluate Constrained GRPO on robotics tasks, where it improves constraint satisfaction while increasing task success, establishing a simple and effective recipe for constrained policy optimization in embodied AI domains that increasingly rely on large multimodal foundation models.
comment: 16 pages, 6 figures
☆ DLM-Scope: Mechanistic Interpretability of Diffusion Language Models via Sparse Autoencoders
Sparse autoencoders (SAEs) have become a standard tool for mechanistic interpretability in autoregressive large language models (LLMs), enabling researchers to extract sparse, human-interpretable features and intervene on model behavior. Recently, as diffusion language models (DLMs) have become an increasingly promising alternative to the autoregressive LLMs, it is essential to develop tailored mechanistic interpretability tools for this emerging class of models. In this work, we present DLM-Scope, the first SAE-based interpretability framework for DLMs, and demonstrate that trained Top-K SAEs can faithfully extract interpretable features. Notably, we find that inserting SAEs affects DLMs differently than autoregressive LLMs: while SAE insertion in LLMs typically incurs a loss penalty, in DLMs it can reduce cross-entropy loss when applied to early layers, a phenomenon absent or markedly weaker in LLMs. Additionally, SAE features in DLMs enable more effective diffusion-time interventions, often outperforming LLM steering. Moreover, we pioneer certain new SAE-based research directions for DLMs: we show that SAEs can provide useful signals for DLM decoding order; and the SAE features are stable during the post-training phase of DLMs. Our work establishes a foundation for mechanistic interpretability in DLMs and shows a great potential of applying SAEs to DLM-related tasks and algorithms.
comment: 23 pages
☆ RRAttention: Dynamic Block Sparse Attention via Per-Head Round-Robin Shifts for Long-Context Inference
The quadratic complexity of attention mechanisms poses a critical bottleneck for large language models processing long contexts. While dynamic sparse attention methods offer input-adaptive efficiency, they face fundamental trade-offs: requiring preprocessing, lacking global evaluation, violating query independence, or incurring high computational overhead. We present RRAttention, a novel dynamic sparse attention method that simultaneously achieves all desirable properties through a head \underline{r}ound-\underline{r}obin (RR) sampling strategy. By rotating query sampling positions across attention heads within each stride, RRAttention maintains query independence while enabling efficient global pattern discovery with stride-level aggregation. Our method reduces complexity from $O(L^2)$ to $O(L^2/S^2)$ and employs adaptive Top-$τ$ selection for optimal sparsity. Extensive experiments on natural language understanding (HELMET) and multimodal video comprehension (Video-MME) demonstrate that RRAttention recovers over 99\% of full attention performance while computing only half of the attention blocks, achieving 2.4$\times$ speedup at 128K context length and outperforming existing dynamic sparse attention methods.
☆ DARWIN: Dynamic Agentically Rewriting Self-Improving Network
DARWIN is an evolutionary GPT model, utilizing a genetic-algorithm like optimization structure with several independent GPT agents being trained individually using unique training code. Each iteration, the GPT models are prompted to modify the training code of one another in an attempt to improve their performance in a mutation-like manner, and the best GPT agents are then benchmarked and selected for the next iteration by genetic algorithm. For demonstration purposes and due to budget and time constraints, OpenAI API is used to prompt training code improvements and the nanoGPT framework is used as the training code. DARWIN also utilizes persistent JSON-based memory files to track previous reasoning and changes to code to correlate with improvement to model performance. and a bidirectional interface for HITL intervention allowing the model to request upgrades such as additional datasets, training scripts, and restructuring of file hierarchies. In experiments, DARWIN achieved a 1.26 percent improvement in model FLOPS utilization (MFU) and a 2.07 percent improvement to perplexity in 5 iterations of training over baseline configurations, demonstrating promising capabilities as a foundation for scaling evolutionary GPT training.
comment: 6 pages, 3 figures, 2 tables
☆ OdysseyArena: Benchmarking Large Language Models For Long-Horizon, Active and Inductive Interactions
The rapid advancement of Large Language Models (LLMs) has catalyzed the development of autonomous agents capable of navigating complex environments. However, existing evaluations primarily adopt a deductive paradigm, where agents execute tasks based on explicitly provided rules and static goals, often within limited planning horizons. Crucially, this neglects the inductive necessity for agents to discover latent transition laws from experience autonomously, which is the cornerstone for enabling agentic foresight and sustaining strategic coherence. To bridge this gap, we introduce OdysseyArena, which re-centers agent evaluation on long-horizon, active, and inductive interactions. We formalize and instantiate four primitives, translating abstract transition dynamics into concrete interactive environments. Building upon this, we establish OdysseyArena-Lite for standardized benchmarking, providing a set of 120 tasks to measure an agent's inductive efficiency and long-horizon discovery. Pushing further, we introduce OdysseyArena-Challenge to stress-test agent stability across extreme interaction horizons (e.g., > 200 steps). Extensive experiments on 15+ leading LLMs reveal that even frontier models exhibit a deficiency in inductive scenarios, identifying a critical bottleneck in the pursuit of autonomous discovery in complex environments. Our code and data are available at https://github.com/xufangzhi/Odyssey-Arena
comment: 34 pages
☆ Reinforcement World Model Learning for LLM-based Agents
Large language models (LLMs) have achieved strong performance in language-centric tasks. However, in agentic settings, LLMs often struggle to anticipate action consequences and adapt to environment dynamics, highlighting the need for world-modeling capabilities in LLM-based agents. We propose Reinforcement World Model Learning (RWML), a self-supervised method that learns action-conditioned world models for LLM-based agents on textual states using sim-to-real gap rewards. Our method aligns simulated next states produced by the model with realized next states observed from the environment, encouraging consistency between internal world simulations and actual environment dynamics in a pre-trained embedding space. Unlike next-state token prediction, which prioritizes token-level fidelity (i.e., reproducing exact wording) over semantic equivalence and can lead to model collapse, our method provides a more robust training signal and is empirically less susceptible to reward hacking than LLM-as-a-judge. We evaluate our method on ALFWorld and $τ^2$ Bench and observe significant gains over the base model, despite being entirely self-supervised. When combined with task-success rewards, our method outperforms direct task-success reward RL by 6.9 and 5.7 points on ALFWorld and $τ^2$ Bench respectively, while matching the performance of expert-data training.
☆ FiMI: A Domain-Specific Language Model for Indian Finance Ecosystem
We present FiMI (Finance Model for India), a domain-specialized financial language model developed for Indian digital payment systems. We develop two model variants: FiMI Base and FiMI Instruct. FiMI adapts the Mistral Small 24B architecture through a multi-stage training pipeline, beginning with continuous pre-training on 68 Billion tokens of curated financial, multilingual (English, Hindi, Hinglish), and synthetic data. This is followed by instruction fine-tuning and domain-specific supervised fine-tuning focused on multi-turn, tool-driven conversations that model real-world workflows, such as transaction disputes and mandate lifecycle management. Evaluations reveal that FiMI Base achieves a 20% improvement over the Mistral Small 24B Base model on finance reasoning benchmark, while FiMI Instruct outperforms the Mistral Small 24B Instruct model by 87% on domain-specific tool-calling. Moreover, FiMI achieves these significant domain gains while maintaining comparable performance to models of similar size on general benchmarks.
☆ Bagging-Based Model Merging for Robust General Text Embeddings
General-purpose text embedding models underpin a wide range of NLP and information retrieval applications, and are typically trained on large-scale multi-task corpora to encourage broad generalization. However, it remains unclear how different multi-task training strategies compare in practice, and how to efficiently adapt embedding models as new domains and data types continually emerge. In this work, we present a systematic study of multi-task training for text embeddings from two perspectives: data scheduling and model merging. We compare batch-level shuffling, sequential training variants, two-stage training, and multiple merging granularities, and find that simple batch-level shuffling consistently yields the strongest overall performance, suggesting that task conflicts are limited and training datasets are largely complementary. Despite its effectiveness, batch-level shuffling exhibits two practical limitations: suboptimal out-of-domain (OOD) generalization and poor suitability for incremental learning due to expensive full retraining. To address these issues, we propose Bagging-based rObust mOdel Merging (\modelname), which trains multiple embedding models on sampled subsets and merges them into a single model, improving robustness while retaining single-model inference efficiency. Moreover, \modelname naturally supports efficient incremental updates by training lightweight update models on new data with a small historical subset and merging them into the existing model. Experiments across diverse embedding benchmarks demonstrate that \modelname consistently improves both in-domain and OOD performance over full-corpus batch-level shuffling, while substantially reducing training cost in incremental learning settings.
comment: 12 pages, 4 figures
☆ Different Time, Different Language: Revisiting the Bias Against Non-Native Speakers in GPT Detectors EACL 2026
LLM-based assistants have been widely popularised after the release of ChatGPT. Concerns have been raised about their misuse in academia, given the difficulty of distinguishing between human-written and generated text. To combat this, automated techniques have been developed and shown to be effective, to some extent. However, prior work suggests that these methods often falsely flag essays from non-native speakers as generated, due to their low perplexity extracted from an LLM, which is supposedly a key feature of the detectors. We revisit these statements two years later, specifically in the Czech language setting. We show that the perplexity of texts from non-native speakers of Czech is not lower than that of native speakers. We further examine detectors from three separate families and find no systematic bias against non-native speakers. Finally, we demonstrate that contemporary detectors operate effectively without relying on perplexity.
comment: This paper was accepted to EACL 2026 Student Research Workshop
☆ LongR: Unleashing Long-Context Reasoning via Reinforcement Learning with Dense Utility Rewards
Reinforcement Learning has emerged as a key driver for LLM reasoning. This capability is equally pivotal in long-context scenarios--such as long-dialogue understanding and structured data analysis, where the challenge extends beyond consuming tokens to performing rigorous deduction. While existing efforts focus on data synthesis or architectural changes, recent work points out that relying solely on sparse, outcome-only rewards yields limited gains, as such coarse signals are often insufficient to effectively guide the complex long-context reasoning. To address this, we propose LongR, a unified framework that enhances long-context performance by integrating a dynamic "Think-and-Read" mechanism, which interleaves reasoning with document consultation, with a contextual density reward based on relative information gain to quantify the utility of the relevant documents. Empirically, LongR achieves a 9% gain on LongBench v2 and consistent improvements on RULER and InfiniteBench, demonstrating robust efficiency in navigating extensive contexts. Furthermore, LongR consistently enhances performance across diverse RL algorithms (e.g., DAPO, GSPO). Finally, we conduct in-depth analyses to investigate the impact of reasoning chain length on efficiency and the model's robustness against distractors.
☆ CompactRAG: Reducing LLM Calls and Token Overhead in Multi-Hop Question Answering
Retrieval-augmented generation (RAG) has become a key paradigm for knowledge-intensive question answering. However, existing multi-hop RAG systems remain inefficient, as they alternate between retrieval and reasoning at each step, resulting in repeated LLM calls, high token consumption, and unstable entity grounding across hops. We propose CompactRAG, a simple yet effective framework that decouples offline corpus restructuring from online reasoning. In the offline stage, an LLM reads the corpus once and converts it into an atomic QA knowledge base, which represents knowledge as minimal, fine-grained question-answer pairs. In the online stage, complex queries are decomposed and carefully rewritten to preserve entity consistency, and are resolved through dense retrieval followed by RoBERTa-based answer extraction. Notably, during inference, the LLM is invoked only twice in total - once for sub-question decomposition and once for final answer synthesis - regardless of the number of reasoning hops. Experiments on HotpotQA, 2WikiMultiHopQA, and MuSiQue demonstrate that CompactRAG achieves competitive accuracy while substantially reducing token consumption compared to iterative RAG baselines, highlighting a cost-efficient and practical approach to multi-hop reasoning over large knowledge corpora. The implementation is available at GitHub.
☆ OmniMoE: An Efficient MoE by Orchestrating Atomic Experts at Scale
Mixture-of-Experts (MoE) architectures are evolving towards finer granularity to improve parameter efficiency. However, existing MoE designs face an inherent trade-off between the granularity of expert specialization and hardware execution efficiency. We propose OmniMoE, a system-algorithm co-designed framework that pushes expert granularity to its logical extreme. OmniMoE introduces vector-level Atomic Experts, enabling scalable routing and execution within a single MoE layer, while retaining a shared dense MLP branch for general-purpose processing. Although this atomic design maximizes capacity, it poses severe challenges for routing complexity and memory access. To address these, OmniMoE adopts a system-algorithm co-design: (i) a Cartesian Product Router that decomposes the massive index space to reduce routing complexity from O(N) to O(sqrt(N)); and (ii) Expert-Centric Scheduling that inverts the execution order to turn scattered, memory-bound lookups into efficient dense matrix operations. Validated on seven benchmarks, OmniMoE (with 1.7B active parameters) achieves 50.9% zero-shot accuracy across seven benchmarks, outperforming coarse-grained (e.g., DeepSeekMoE) and fine-grained (e.g., PEER) baselines. Crucially, OmniMoE reduces inference latency from 73ms to 6.7ms (a 10.9-fold speedup) compared to PEER, demonstrating that massive-scale fine-grained MoE can be fast and accurate. Our code is open-sourced at https://github.com/flash-algo/omni-moe.
☆ Ethology of Latent Spaces
This study challenges the presumed neutrality of latent spaces in vision language models (VLMs) by adopting an ethological perspective on their algorithmic behaviors. Rather than constituting spaces of homogeneous indeterminacy, latent spaces exhibit model-specific algorithmic sensitivities, understood as differential regimes of perceptual salience shaped by training data and architectural choices. Through a comparative analysis of three models (OpenAI CLIP, OpenCLIP LAION, SigLIP) applied to a corpus of 301 artworks (15th to 20th), we reveal substantial divergences in the attribution of political and cultural categories. Using bipolar semantic axes derived from vector analogies (Mikolov et al., 2013), we show that SigLIP classifies 59.4% of the artworks as politically engaged, compared to only 4% for OpenCLIP. African masks receive the highest political scores in SigLIP while remaining apolitical in OpenAI CLIP. On an aesthetic colonial axis, inter-model discrepancies reach 72.6 percentage points. We introduce three operational concepts: computational latent politicization, describing the emergence of political categories without intentional encoding; emergent bias, irreducible to statistical or normative bias and detectable only through contrastive analysis; and three algorithmic scopic regimes: entropic (LAION), institutional (OpenAI), and semiotic (SigLIP), which structure distinct modes of visibility. Drawing on Foucault's notion of the archive, Jameson's ideologeme, and Simondon's theory of individuation, we argue that training datasets function as quasi-archives whose discursive formations crystallize within latent space. This work contributes to a critical reassessment of the conditions under which VLMs are applied to digital art history and calls for methodologies that integrate learning architectures into any delegation of cultural interpretation to algorithmic agents.
comment: 23. pages, 14 figures, presented Hyperheritage International Symposium 9 ( https://paragraphe.univ-paris8.fr/IMG/pdf/programme_colloque_his9_campuscondorcet_v3.pdf ) and accepted for publication in double-blind peer review in French in 2026-2027
☆ Cost-Efficient RAG for Entity Matching with LLMs: A Blocking-based Exploration
Retrieval-augmented generation (RAG) enhances LLM reasoning in knowledge-intensive tasks, but existing RAG pipelines incur substantial retrieval and generation overhead when applied to large-scale entity matching. To address this limitation, we introduce CE-RAG4EM, a cost-efficient RAG architecture that reduces computation through blocking-based batch retrieval and generation. We also present a unified framework for analyzing and evaluating RAG systems for entity matching, focusing on blocking-aware optimizations and retrieval granularity. Extensive experiments suggest that CE-RAG4EM can achieve comparable or improved matching quality while substantially reducing end-to-end runtime relative to strong baselines. Our analysis further reveals that key configuration parameters introduce an inherent trade-off between performance and overhead, offering practical guidance for designing efficient and scalable RAG systems for entity matching and data integration.
☆ Consensus-Aligned Neuron Efficient Fine-Tuning Large Language Models for Multi-Domain Machine Translation AAAI 2026
Multi-domain machine translation (MDMT) aims to build a unified model capable of translating content across diverse domains. Despite the impressive machine translation capabilities demonstrated by large language models (LLMs), domain adaptation still remains a challenge for LLMs. Existing MDMT methods such as in-context learning and parameter-efficient fine-tuning often suffer from domain shift, parameter interference and limited generalization. In this work, we propose a neuron-efficient fine-tuning framework for MDMT that identifies and updates consensus-aligned neurons within LLMs. These neurons are selected by maximizing the mutual information between neuron behavior and domain features, enabling LLMs to capture both generalizable translation patterns and domain-specific nuances. Our method then fine-tunes LLMs guided by these neurons, effectively mitigating parameter interference and domain-specific overfitting. Comprehensive experiments on three LLMs across ten German-English and Chinese-English translation domains evidence that our method consistently outperforms strong PEFT baselines on both seen and unseen domains, achieving state-of-the-art performance.
comment: Accepted by AAAI 2026
☆ MedErrBench: A Fine-Grained Multilingual Benchmark for Medical Error Detection and Correction with Clinical Expert Annotations
Inaccuracies in existing or generated clinical text may lead to serious adverse consequences, especially if it is a misdiagnosis or incorrect treatment suggestion. With Large Language Models (LLMs) increasingly being used across diverse healthcare applications, comprehensive evaluation through dedicated benchmarks is crucial. However, such datasets remain scarce, especially across diverse languages and contexts. In this paper, we introduce MedErrBench, the first multilingual benchmark for error detection, localization, and correction, developed under the guidance of experienced clinicians. Based on an expanded taxonomy of ten common error types, MedErrBench covers English, Arabic and Chinese, with natural clinical cases annotated and reviewed by domain experts. We assessed the performance of a range of general-purpose, language-specific, and medical-domain language models across all three tasks. Our results reveal notable performance gaps, particularly in non-English settings, highlighting the need for clinically grounded, language-aware systems. By making MedErrBench and our evaluation protocols publicly-available, we aim to advance multilingual clinical NLP to promote safer and more equitable AI-based healthcare globally. The dataset is available in the supplementary material. An anonymized version of the dataset is available at: https://github.com/congboma/MedErrBench.
☆ Modelling the Morphology of Verbal Paradigms: A Case Study in the Tokenization of Turkish and Hebrew
We investigate how transformer models represent complex verb paradigms in Turkish and Modern Hebrew, concentrating on how tokenization strategies shape this ability. Using the Blackbird Language Matrices task on natural data, we show that for Turkish -- with its transparent morphological markers -- both monolingual and multilingual models succeed, either when tokenization is atomic or when it breaks words into small subword units. For Hebrew, instead, monolingual and multilingual models diverge. A multilingual model using character-level tokenization fails to capture the language non-concatenative morphology, but a monolingual model with morpheme-aware segmentation performs well. Performance improves on more synthetic datasets, in all models.
comment: 13 pages, 7 figures, to appear as proceedings of the SIGTURK 2026 Workshop
☆ Generative Ontology: When Structured Knowledge Learns to Create
Traditional ontologies excel at describing domain structure but cannot generate novel artifacts. Large language models generate fluently but produce outputs that lack structural validity, hallucinating mechanisms without components, goals without end conditions. We introduce Generative Ontology, a framework that synthesizes these complementary strengths: ontology provides the grammar; the LLM provides the creativity. Generative Ontology encodes domain knowledge as executable Pydantic schemas that constrain LLM generation via DSPy signatures. A multi-agent pipeline assigns specialized roles to different ontology domains: a Mechanics Architect designs game systems, a Theme Weaver integrates narrative, a Balance Critic identifies exploits. Each agent carrying a professional "anxiety" that prevents shallow, agreeable outputs. Retrieval-augmented generation grounds novel designs in precedents from existing exemplars, while iterative validation ensures coherence between mechanisms and components. We demonstrate the framework through GameGrammar, a system for generating complete tabletop game designs. Given a thematic prompt ("bioluminescent fungi competing in a cave ecosystem"), the pipeline produces structurally complete, playable game specifications with mechanisms, components, victory conditions, and setup instructions. These outputs satisfy ontological constraints while remaining genuinely creative. The pattern generalizes beyond games. Any domain with expert vocabulary, validity constraints, and accumulated exemplars (music composition, software architecture, culinary arts) is a candidate for Generative Ontology. We argue that constraints do not limit creativity but enable it: just as grammar makes poetry possible, ontology makes structured generation possible.
comment: 15 pages, 6 figures, 6 tables. Code available at https://github.com/bennycheung/GameGrammarCLI
☆ CASTLE: A Comprehensive Benchmark for Evaluating Student-Tailored Personalized Safety in Large Language Models
Large language models (LLMs) have advanced the development of personalized learning in education. However, their inherent generation mechanisms often produce homogeneous responses to identical prompts. This one-size-fits-all mechanism overlooks the substantial heterogeneity in students cognitive and psychological, thereby posing potential safety risks to vulnerable groups. Existing safety evaluations primarily rely on context-independent metrics such as factual accuracy, bias, or toxicity, which fail to capture the divergent harms that the same response might cause across different student attributes. To address this gap, we propose the concept of Student-Tailored Personalized Safety and construct CASTLE based on educational theories. This benchmark covers 15 educational safety risks and 14 student attributes, comprising 92,908 bilingual scenarios. We further design three evaluation metrics: Risk Sensitivity, measuring the model ability to detect risks; Emotional Empathy, evaluating the model capacity to recognize student states; and Student Alignment, assessing the match between model responses and student attributes. Experiments on 18 SOTA LLMs demonstrate that CASTLE poses a significant challenge: all models scored below an average safety rating of 2.3 out of 5, indicating substantial deficiencies in personalized safety assurance.
☆ Rewards as Labels: Revisiting RLVR from a Classification Perspective
Reinforcement Learning with Verifiable Rewards has recently advanced the capabilities of Large Language Models in complex reasoning tasks by providing explicit rule-based supervision. Among RLVR methods, GRPO and its variants have achieved strong empirical performance. Despite their success, we identify that they suffer from Gradient Misassignment in Positives and Gradient Domination in Negatives, which lead to inefficient and suboptimal policy updates. To address these issues, we propose Rewards as Labels (REAL), a novel framework that revisits verifiable rewards as categorical labels rather than scalar weights, thereby reformulating policy optimization as a classification problem. Building on this, we further introduce anchor logits to enhance policy learning. Our analysis reveals that REAL induces a monotonic and bounded gradient weighting, enabling balanced gradient allocation across rollouts and effectively mitigating the identified mismatches. Extensive experiments on mathematical reasoning benchmarks show that REAL improves training stability and consistently outperforms GRPO and strong variants such as DAPO. On the 1.5B model, REAL improves average Pass@1 over DAPO by 6.7%. These gains further scale to 7B model, REAL continues to outperform DAPO and GSPO by 6.2% and 1.7%, respectively. Notably, even with a vanilla binary cross-entropy, REAL remains stable and exceeds DAPO by 4.5% on average.
comment: 12 pages, 5 figures, 4 tables
☆ AI chatbots versus human healthcare professionals: a systematic review and meta-analysis of empathy in patient care
Background: Empathy is widely recognized for improving patient outcomes, including reduced pain and anxiety and improved satisfaction, and its absence can cause harm. Meanwhile, use of artificial intelligence (AI)-based chatbots in healthcare is rapidly expanding, with one in five general practitioners using generative AI to assist with tasks such as writing letters. Some studies suggest AI chatbots can outperform human healthcare professionals (HCPs) in empathy, though findings are mixed and lack synthesis. Sources of data: We searched multiple databases for studies comparing AI chatbots using large language models with human HCPs on empathy measures. We assessed risk of bias with ROBINS-I and synthesized findings using random-effects meta-analysis where feasible, whilst avoiding double counting. Areas of agreement: We identified 15 studies (2023-2024). Thirteen studies reported statistically significantly higher empathy ratings for AI, with only two studies situated in dermatology favouring human responses. Of the 15 studies, 13 provided extractable data and were suitable for pooling. Meta-analysis of those 13 studies, all utilising ChatGPT-3.5/4, showed a standardized mean difference of 0.87 (95% CI, 0.54-1.20) favouring AI (P < .00001), roughly equivalent to a two-point increase on a 10-point scale. Areas of controversy: Studies relied on text-based assessments that overlook non-verbal cues and evaluated empathy through proxy raters. Growing points: Our findings indicate that, in text-only scenarios, AI chatbots are frequently perceived as more empathic than human HCPs. Areas timely for developing research: Future research should validate these findings with direct patient evaluations and assess whether emerging voice-enabled AI systems can deliver similar empathic advantages.
comment: Open Access Invited Review. Systematic review and meta analysis of 15 studies 2023-2024. Published 20 October 2025
☆ BhashaSetu: Cross-Lingual Knowledge Transfer from High-Resource to Extreme Low-Resource Languages AACL
Despite remarkable advances in natural language processing, developing effective systems for low-resource languages remains a formidable challenge, with performances typically lagging far behind high-resource counterparts due to data scarcity and insufficient linguistic resources. Cross-lingual knowledge transfer has emerged as a promising approach to address this challenge by leveraging resources from high-resource languages. In this paper, we investigate methods for transferring linguistic knowledge from high-resource languages to low-resource languages, where the number of labeled training instances is in hundreds. We focus on sentence-level and word-level tasks. We introduce a novel method, GETR (Graph-Enhanced Token Representation) for cross-lingual knowledge transfer along with two adopted baselines (a) augmentation in hidden layers and (b) token embedding transfer through token translation. Experimental results demonstrate that our GNN-based approach significantly outperforms existing multilingual and cross-lingual baseline methods, achieving 13 percentage point improvements on truly low-resource languages (Mizo, Khasi) for POS tagging, and 20 and 27 percentage point improvements in macro-F1 on simulated low-resource languages (Marathi, Bangla, Malayalam) across sentiment classification and NER tasks respectively. We also present a detailed analysis of the transfer mechanisms and identify key factors that contribute to successful knowledge transfer in this linguistic context.
comment: Accepted as a long paper at IJCNLP-AACL Main Conference
☆ ArkTS-CodeSearch: A Open-Source ArkTS Dataset for Code Retrieval
ArkTS is a core programming language in the OpenHarmony ecosystem, yet research on ArkTS code intelligence is hindered by the lack of public datasets and evaluation benchmarks. This paper presents a large-scale ArkTS dataset constructed from open-source repositories, targeting code retrieval and code evaluation tasks. We design a single-search task, where natural language comments are used to retrieve corresponding ArkTS functions. ArkTS repositories are crawled from GitHub and Gitee, and comment-function pairs are extracted using tree-sitter-arkts, followed by cross-platform deduplication and statistical analysis of ArkTS function types. We further evaluate all existing open-source code embedding models on the single-search task and perform fine-tuning using both ArkTS and TypeScript training datasets, resulting in a high-performing model for ArkTS code understanding. This work establishes the first systematic benchmark for ArkTS code retrieval. Both the dataset and our fine-tuned model will be released publicly and are available at https://huggingface.co/hreyulog/embedinggemma_arkts and https://huggingface.co/datasets/hreyulog/arkts-code-docstring,establishing the first systematic benchmark for ArkTS code retrieval.
☆ Multi-Task GRPO: Reliable LLM Reasoning Across Tasks
RL-based post-training with GRPO is widely used to improve large language models on individual reasoning tasks. However, real-world deployment requires reliable performance across diverse tasks. A straightforward multi-task adaptation of GRPO often leads to imbalanced outcomes, with some tasks dominating optimization while others stagnate. Moreover, tasks can vary widely in how frequently prompts yield zero advantages (and thus zero gradients), which further distorts their effective contribution to the optimization signal. To address these issues, we propose a novel Multi-Task GRPO (MT-GRPO) algorithm that (i) dynamically adapts task weights to explicitly optimize worst-task performance and promote balanced progress across tasks, and (ii) introduces a ratio-preserving sampler to ensure task-wise policy gradients reflect the adapted weights. Experiments on both 3-task and 9-task settings show that MT-GRPO consistently outperforms baselines in worst-task accuracy. In particular, MT-GRPO achieves 16-28% and 6% absolute improvement on worst-task performance over standard GRPO and DAPO, respectively, while maintaining competitive average accuracy. Moreover, MT-GRPO requires 50% fewer training steps to reach 50% worst-task accuracy in the 3-task setting, demonstrating substantially improved efficiency in achieving reliable performance across tasks.
comment: Preprint
☆ Steering Large Reasoning Models towards Concise Reasoning via Flow Matching
Large Reasoning Models (LRMs) excel at complex reasoning tasks, but their efficiency is often hampered by overly verbose outputs. Prior steering methods attempt to address this issue by applying a single, global vector to hidden representations -- an approach grounded in the restrictive linear representation hypothesis. In this work, we introduce FlowSteer, a nonlinear steering method that goes beyond uniform linear shifts by learning a complete transformation between the distributions associated with verbose and concise reasoning. This transformation is learned via Flow Matching as a velocity field, enabling precise, input-dependent control over the model's reasoning process. By aligning steered representations with the distribution of concise-reasoning activations, FlowSteer yields more compact reasoning than the linear shifts. Across diverse reasoning benchmarks, FlowSteer demonstrates strong task performance and token efficiency compared to leading inference-time baselines. Our work demonstrates that modeling the full distributional transport with generative techniques offers a more effective and principled foundation for controlling LRMs.
comment: This paper has been accepted to Transactions on Machine Learning Research (TMLR)
☆ When Shared Knowledge Hurts: Spectral Over-Accumulation in Model Merging
Model merging combines multiple fine-tuned models into a single model by adding their weight updates, providing a lightweight alternative to retraining. Existing methods primarily target resolving conflicts between task updates, leaving the failure mode of over-counting shared knowledge unaddressed. We show that when tasks share aligned spectral directions (i.e., overlapping singular vectors), a simple linear combination repeatedly accumulates these directions, inflating the singular values and biasing the merged model toward shared subspaces. To mitigate this issue, we propose Singular Value Calibration (SVC), a training-free and data-free post-processing method that quantifies subspace overlap and rescales inflated singular values to restore a balanced spectrum. Across vision and language benchmarks, SVC consistently improves strong merging baselines and achieves state-of-the-art performance. Furthermore, by modifying only the singular values, SVC improves the performance of Task Arithmetic by 13.0%. Code is available at: https://github.com/lyymuwu/SVC.
☆ A Unified Multimodal Framework for Dataset Construction and Model-Based Diagnosis of Ameloblastoma
Artificial intelligence (AI)-enabled diagnostics in maxillofacial pathology require structured, high-quality multimodal datasets. However, existing resources provide limited ameloblastoma coverage and lack the format consistency needed for direct model training. We present a newly curated multimodal dataset specifically focused on ameloblastoma, integrating annotated radiological, histopathological, and intraoral clinical images with structured data derived from case reports. Natural language processing techniques were employed to extract clinically relevant features from textual reports, while image data underwent domain specific preprocessing and augmentation. Using this dataset, a multimodal deep learning model was developed to classify ameloblastoma variants, assess behavioral patterns such as recurrence risk, and support surgical planning. The model is designed to accept clinical inputs such as presenting complaint, age, and gender during deployment to enhance personalized inference. Quantitative evaluation demonstrated substantial improvements; variant classification accuracy increased from 46.2 percent to 65.9 percent, and abnormal tissue detection F1-score improved from 43.0 percent to 90.3 percent. Benchmarked against resources like MultiCaRe, this work advances patient-specific decision support by providing both a robust dataset and an adaptable multimodal AI framework.
☆ A Human-in-the-Loop, LLM-Centered Architecture for Knowledge-Graph Question Answering
Large Language Models (LLMs) excel at language understanding but remain limited in knowledge-intensive domains due to hallucinations, outdated information, and limited explainability. Text-based retrieval-augmented generation (RAG) helps ground model outputs in external sources but struggles with multi-hop reasoning. Knowledge Graphs (KGs), in contrast, support precise, explainable querying, yet require a knowledge of query languages. This work introduces an interactive framework in which LLMs generate and explain Cypher graph queries and users iteratively refine them through natural language. Applied to real-world KGs, the framework improves accessibility to complex datasets while preserving factual accuracy and semantic rigor and provides insight into how model performance varies across domains. Our core quantitative evaluation is a 90-query benchmark on a synthetic movie KG that measures query explanation quality and fault detection across multiple LLMs, complemented by two smaller real-life query-generation experiments on a Hyena KG and the MaRDI (Mathematical Research Data Initiative) KG.
☆ Transport and Merge: Cross-Architecture Merging for Large Language Models
Large language models (LLMs) achieve strong capabilities by scaling model capacity and training data, yet many real-world deployments rely on smaller models trained or adapted from low-resource data. This gap motivates the need for mechanisms to transfer knowledge from large, high-resource models to smaller, low-resource targets. While model merging provides an effective transfer mechanism, most existing approaches assume architecture-compatible models and therefore cannot directly transfer knowledge from large high-resource LLMs to heterogeneous low-resource targets. In this work, we propose a cross-architecture merging framework based on optimal transport (OT) that aligns activations to infer cross-neuron correspondences between heterogeneous models. The resulting transport plans are then used to guide direct weight-space fusion, enabling effective high-resource to low-resource transfer using only a small set of inputs. Extensive experiments across low-resource languages and specialized domains demonstrate consistent improvements over target models.
☆ LinguistAgent: A Reflective Multi-Model Platform for Automated Linguistic Annotation
Data annotation remains a significant bottleneck in the Humanities and Social Sciences, particularly for complex semantic tasks such as metaphor identification. While Large Language Models (LLMs) show promise, a significant gap remains between the theoretical capability of LLMs and their practical utility for researchers. This paper introduces LinguistAgent, an integrated, user-friendly platform that leverages a reflective multi-model architecture to automate linguistic annotation. The system implements a dual-agent workflow, comprising an Annotator and a Reviewer, to simulate a professional peer-review process. LinguistAgent supports comparative experiments across three paradigms: Prompt Engineering (Zero/Few-shot), Retrieval-Augmented Generation, and Fine-tuning. We demonstrate LinguistAgent's efficacy using the task of metaphor identification as an example, providing real-time token-level evaluation (Precision, Recall, and $F_1$ score) against human gold standards. The application and codes are released on https://github.com/Bingru-Li/LinguistAgent.
☆ Reasoning under Ambiguity: Uncertainty-Aware Multilingual Emotion Classification under Partial Supervision
Contemporary knowledge-based systems increasingly rely on multilingual emotion identification to support intelligent decision-making, yet they face major challenges due to emotional ambiguity and incomplete supervision. Emotion recognition from text is inherently uncertain because multiple emotional states often co-occur and emotion annotations are frequently missing or heterogeneous. Most existing multi-label emotion classification methods assume fully observed labels and rely on deterministic learning objectives, which can lead to biased learning and unreliable predictions under partial supervision. This paper introduces Reasoning under Ambiguity, an uncertainty-aware framework for multilingual multi-label emotion classification that explicitly aligns learning with annotation uncertainty. The proposed approach uses a shared multilingual encoder with language-specific optimization and an entropy-based ambiguity weighting mechanism that down-weights highly ambiguous training instances rather than treating missing labels as negative evidence. A mask-aware objective with positive-unlabeled regularization is further incorporated to enable robust learning under partial supervision. Experiments on English, Spanish, and Arabic emotion classification benchmarks demonstrate consistent improvements over strong baselines across multiple evaluation metrics, along with improved training stability, robustness to annotation sparsity, and enhanced interpretability.
☆ MerNav: A Highly Generalizable Memory-Execute-Review Framework for Zero-Shot Object Goal Navigation
Visual Language Navigation (VLN) is one of the fundamental capabilities for embodied intelligence and a critical challenge that urgently needs to be addressed. However, existing methods are still unsatisfactory in terms of both success rate (SR) and generalization: Supervised Fine-Tuning (SFT) approaches typically achieve higher SR, while Training-Free (TF) approaches often generalize better, but it is difficult to obtain both simultaneously. To this end, we propose a Memory-Execute-Review framework. It consists of three parts: a hierarchical memory module for providing information support, an execute module for routine decision-making and actions, and a review module for handling abnormal situations and correcting behavior. We validated the effectiveness of this framework on the Object Goal Navigation task. Across 4 datasets, our average SR achieved absolute improvements of 7% and 5% compared to all baseline methods under TF and Zero-Shot (ZS) settings, respectively. On the most commonly used HM3D_v0.1 and the more challenging open vocabulary dataset HM3D_OVON, the SR improved by 8% and 6%, under ZS settings. Furthermore, on the MP3D and HM3D_OVON datasets, our method not only outperformed all TF methods but also surpassed all SFT methods, achieving comprehensive leadership in both SR (5% and 2%) and generalization.
comment: 9 pages, 2 figures, 5 tables, conference
☆ Structured Context Engineering for File-Native Agentic Systems: Evaluating Schema Accuracy, Format Effectiveness, and Multi-File Navigation at Scale
Large Language Model agents increasingly operate external systems through programmatic interfaces, yet practitioners lack empirical guidance on how to structure the context these agents consume. Using SQL generation as a proxy for programmatic agent operations, we present a systematic study of context engineering for structured data, comprising 9,649 experiments across 11 models, 4 formats (YAML, Markdown, JSON, Token-Oriented Object Notation [TOON]), and schemas ranging from 10 to 10,000 tables. Our findings challenge common assumptions. First, architecture choice is model-dependent: file-based context retrieval improves accuracy for frontier-tier models (Claude, GPT, Gemini; +2.7%, p=0.029) but shows mixed results for open source models (aggregate -7.7%, p<0.001), with deficits varying substantially by model. Second, format does not significantly affect aggregate accuracy (chi-squared=2.45, p=0.484), though individual models, particularly open source, exhibit format-specific sensitivities. Third, model capability is the dominant factor, with a 21 percentage point accuracy gap between frontier and open source tiers that dwarfs any format or architecture effect. Fourth, file-native agents scale to 10,000 tables through domain-partitioned schemas while maintaining high navigation accuracy. Fifth, file size does not predict runtime efficiency: compact formats can consume significantly more tokens at scale due to format-unfamiliar search patterns. These findings provide practitioners with evidence-based guidance for deploying LLM agents on structured systems, demonstrating that architectural decisions should be tailored to model capability rather than assuming universal best practices.
comment: 8 pages, 7 figures, 10 tables, 26 references
☆ Causal Front-Door Adjustment for Robust Jailbreak Attacks on LLMs
Safety alignment mechanisms in Large Language Models (LLMs) often operate as latent internal states, obscuring the model's inherent capabilities. Building on this observation, we model the safety mechanism as an unobserved confounder from a causal perspective. Then, we propose the \textbf{C}ausal \textbf{F}ront-Door \textbf{A}djustment \textbf{A}ttack ({\textbf{CFA}}$^2$) to jailbreak LLM, which is a framework that leverages Pearl's Front-Door Criterion to sever the confounding associations for robust jailbreaking. Specifically, we employ Sparse Autoencoders (SAEs) to physically strip defense-related features, isolating the core task intent. We further reduce computationally expensive marginalization to a deterministic intervention with low inference complexity. Experiments demonstrate that {CFA}$^2$ achieves state-of-the-art attack success rates while offering a mechanistic interpretation of the jailbreaking process.
☆ Once Correct, Still Wrong: Counterfactual Hallucination in Multilingual Vision-Language Models
Vision-language models (VLMs) can achieve high accuracy while still accepting culturally plausible but visually incorrect interpretations. Existing hallucination benchmarks rarely test this failure mode, particularly outside Western contexts and English. We introduce M2CQA, a culturally grounded multimodal benchmark built from images spanning 17 MENA countries, paired with contrastive true and counterfactual statements in English, Arabic, and its dialects. To isolate hallucination beyond raw accuracy, we propose the CounterFactual Hallucination Rate (CFHR), which measures counterfactual acceptance conditioned on correctly answering the true statement. Evaluating state-of-the-art VLMs under multiple prompting strategies, we find that CFHR rises sharply in Arabic, especially in dialects, even when true-statement accuracy remains high. Moreover, reasoning-first prompting consistently increases counterfactual hallucination, while answering before justifying improves robustness. We will make the experimental resources and dataset publicly available for the community.
☆ Grammatical Error Correction Evaluation by Optimally Transporting Edit Representation ACL
Automatic evaluation in grammatical error correction (GEC) is crucial for selecting the best-performing systems. Currently, reference-based metrics are a popular choice, which basically measure the similarity between hypothesis and reference sentences. However, similarity measures based on embeddings, such as BERTScore, are often ineffective, since many words in the source sentences remain unchanged in both the hypothesis and the reference. This study focuses on edits specifically designed for GEC, i.e., ERRANT, and computes similarity measured over the edits from the source sentence. To this end, we propose edit vector, a representation for an edit, and introduce a new metric, UOT-ERRANT, which transports these edit vectors from hypothesis to reference using unbalanced optimal transport. Experiments with SEEDA meta-evaluation show that UOT-ERRANT improves evaluation performance, particularly in the +Fluency domain where many edits occur. Moreover, our method is highly interpretable because the transport plan can be interpreted as a soft edit alignment, making UOT-ERRANT a useful metric for both system ranking and analyzing GEC systems. Our code is available from https://github.com/gotutiyan/uot-errant.
comment: Accepted to TACL. This is a pre-MIT Press publication version
☆ SciDef: Automating Definition Extraction from Academic Literature with Large Language Models SIGIR 2026
Definitions are the foundation for any scientific work, but with a significant increase in publication numbers, gathering definitions relevant to any keyword has become challenging. We therefore introduce SciDef, an LLM-based pipeline for automated definition extraction. We test SciDef on DefExtra & DefSim, novel datasets of human-extracted definitions and definition-pairs' similarity, respectively. Evaluating 16 language models across prompting strategies, we demonstrate that multi-step and DSPy-optimized prompting improve extraction performance. To evaluate extraction, we test various metrics and show that an NLI-based method yields the most reliable results. We show that LLMs are largely able to extract definitions from scientific literature (86.4% of definitions from our test-set); yet future work should focus not just on finding definitions, but on identifying relevant ones, as models tend to over-generate them. Code & datasets are available at https://github.com/Media-Bias-Group/SciDef.
comment: Under Review - Submitted to SIGIR 2026 Resources Track; 8 pages, 6 figures, 4 tables
☆ H-AdminSim: A Multi-Agent Simulator for Realistic Hospital Administrative Workflows with FHIR Integration
Hospital administration departments handle a wide range of operational tasks and, in large hospitals, process over 10,000 requests per day, driving growing interest in LLM-based automation. However, prior work has focused primarily on patient--physician interactions or isolated administrative subtasks, failing to capture the complexity of real administrative workflows. To address this gap, we propose H-AdminSim, a comprehensive end-to-end simulation framework that combines realistic data generation with multi-agent-based simulation of hospital administrative workflows. These tasks are quantitatively evaluated using detailed rubrics, enabling systematic comparison of LLMs. Through FHIR integration, H-AdminSim provides a unified and interoperable environment for testing administrative workflows across heterogeneous hospital settings, serving as a standardized testbed for assessing the feasibility and performance of LLM-driven administrative automation.
☆ OPUS: Towards Efficient and Principled Data Selection in Large Language Model Pre-training in Every Iteration
As high-quality public text approaches exhaustion, a phenomenon known as the Data Wall, pre-training is shifting from more tokens to better tokens. However, existing methods either rely on heuristic static filters that ignore training dynamics, or use dynamic yet optimizer-agnostic criteria based on raw gradients. We propose OPUS (Optimizer-induced Projected Utility Selection), a dynamic data selection framework that defines utility in the optimizer-induced update space. OPUS scores candidates by projecting their effective updates, shaped by modern optimizers, onto a target direction derived from a stable, in-distribution proxy. To ensure scalability, we employ Ghost technique with CountSketch for computational efficiency, and Boltzmann sampling for data diversity, incurring only 4.7\% additional compute overhead. OPUS achieves remarkable results across diverse corpora, quality tiers, optimizers, and model scales. In pre-training of GPT-2 Large/XL on FineWeb and FineWeb-Edu with 30B tokens, OPUS outperforms industrial-level baselines and even full 200B-token training. Moreover, when combined with industrial-level static filters, OPUS further improves pre-training efficiency, even with lower-quality data. Furthermore, in continued pre-training of Qwen3-8B-Base on SciencePedia, OPUS achieves superior performance using only 0.5B tokens compared to full training with 3B tokens, demonstrating significant data efficiency gains in specialized domains.
comment: 45 pages, 7 figures, 8 tables
☆ Late-to-Early Training: LET LLMs Learn Earlier, So Faster and Better
As Large Language Models (LLMs) achieve remarkable empirical success through scaling model and data size, pretraining has become increasingly critical yet computationally prohibitive, hindering rapid development. Despite the availability of numerous pretrained LLMs developed at significant computational expense, a fundamental real-world question remains underexplored: \textit{Can we leverage existing small pretrained models to accelerate the training of larger models?} In this paper, we propose a Late-to-Early Training (LET) paradigm that enables LLMs to explicitly learn later knowledge in earlier steps and earlier layers. The core idea is to guide the early layers of an LLM during early training using representations from the late layers of a pretrained (i.e. late training phase) model. We identify two key mechanisms that drive LET's effectiveness: late-to-early-step learning and late-to-early-layer learning. These mechanisms significantly accelerate training convergence while robustly enhancing both language modeling capabilities and downstream task performance, enabling faster training with superior performance. Extensive experiments on 1.4B and 7B parameter models demonstrate LET's efficiency and effectiveness. Notably, when training a 1.4B LLM on the Pile dataset, our method achieves up to 1.6$\times$ speedup with nearly 5\% improvement in downstream task accuracy compared to standard training, even when using a pretrained model with 10$\times$ fewer parameters than the target model.
☆ Beyond Length: Context-Aware Expansion and Independence as Developmentally Sensitive Evaluation in Child Utterances
Evaluating the quality of children's utterances in adult-child dialogue remains challenging due to insufficient context-sensitive metrics. Common proxies such as Mean Length of Utterance (MLU), lexical diversity (vocd-D), and readability indices (Flesch-Kincaid Grade Level, Gunning Fog Index) are dominated by length and ignore conversational context, missing aspects of response quality such as reasoning depth, topic maintenance, and discourse planning. We introduce an LLM-as-a-judge framework that first classifies the Previous Adult Utterance Type and then scores the child's response along two axes: Expansion (contextual elaboration and inferential depth) and Independence (the child's contribution to advancing the discourse). These axes reflect fundamental dimensions in child language development, where Expansion captures elaboration, clause combining, and causal and contrastive connectives. Independence captures initiative, topic control, decreasing reliance on adult scaffolding through growing self-regulation, and audience design. We establish developmental validity by showing age-related patterns and demonstrate predictive value by improving age estimation over common baselines. We further confirm semantic sensitivity by detecting differences tied to discourse relations. Our metrics align with human judgments, enabling large-scale evaluation. This shifts child utterance assessment from simply measuring length to evaluating how meaningfully the child's speech contributes to and advances the conversation within its context.
☆ IESR:Efficient MCTS-Based Modular Reasoning for Text-to-SQL with Large Language Models
Text-to-SQL is a key natural language processing task that maps natural language questions to SQL queries, enabling intuitive interaction with web-based databases. Although current methods perform well on benchmarks like BIRD and Spider, they struggle with complex reasoning, domain knowledge, and hypothetical queries, and remain costly in enterprise deployment. To address these issues, we propose a framework named IESR(Information Enhanced Structured Reasoning) for lightweight large language models: (i) leverages LLMs for key information understanding and schema linking, and decoupling mathematical computation and SQL generation, (ii) integrates a multi-path reasoning mechanism based on Monte Carlo Tree Search (MCTS) with majority voting, and (iii) introduces a trajectory consistency verification module with a discriminator model to ensure accuracy and consistency. Experimental results demonstrate that IESR achieves state-of-the-art performance on the complex reasoning benchmark LogicCat (24.28 EX) and the Archer dataset (37.28 EX) using only compact lightweight models without fine-tuning. Furthermore, our analysis reveals that current coder models exhibit notable biases and deficiencies in physical knowledge, mathematical computation, and common-sense reasoning, highlighting important directions for future research. We released code at https://github.com/Ffunkytao/IESR-SLM.
comment: 25 pages, 16 figures, 8 tables. Hongyin Zan is corresponding author, Jiafan Lu is first co-author
☆ Cross-Lingual Empirical Evaluation of Large Language Models for Arabic Medical Tasks EACL 2026
In recent years, Large Language Models (LLMs) have become widely used in medical applications, such as clinical decision support, medical education, and medical question answering. Yet, these models are often English-centric, limiting their robustness and reliability for linguistically diverse communities. Recent work has highlighted discrepancies in performance in low-resource languages for various medical tasks, but the underlying causes remain poorly understood. In this study, we conduct a cross-lingual empirical analysis of LLM performance on Arabic and English medical question and answering. Our findings reveal a persistent language-driven performance gap that intensifies with increasing task complexity. Tokenization analysis exposes structural fragmentation in Arabic medical text, while reliability analysis suggests that model-reported confidence and explanations exhibit limited correlation with correctness. Together, these findings underscore the need for language-aware design and evaluation strategies in LLMs for medical tasks.
comment: Accepted to HeaLing-EACL 2026
☆ PACE: Defying the Scaling Hypothesis of Exploration in Iterative Alignment for Mathematical Reasoning
Iterative Direct Preference Optimization has emerged as the state-of-the-art paradigm for aligning Large Language Models on reasoning tasks. Standard implementations (DPO-R1) rely on Best-of-N sampling (e.g., $N \ge 8$) to mine golden trajectories from the distribution tail. In this paper, we challenge this scaling hypothesis and reveal a counter-intuitive phenomenon: in mathematical reasoning, aggressive exploration yields diminishing returns and even catastrophic policy collapse. We theoretically demonstrate that scaling $N$ amplifies verifier noise and induces detrimental distribution shifts. To resolve this, we introduce \textbf{PACE} (Proximal Alignment via Corrective Exploration), which replaces brute-force mining with a generation-based corrective strategy. Operating with a minimal budget ($2
☆ Multi-Field Tool Retrieval
Integrating external tools enables Large Language Models (LLMs) to interact with real-world environments and solve complex tasks. Given the growing scale of available tools, effective tool retrieval is essential to mitigate constraints of LLMs' context windows and ensure computational efficiency. Existing approaches typically treat tool retrieval as a traditional ad-hoc retrieval task, matching user queries against the entire raw tool documentation. In this paper, we identify three fundamental challenges that limit the effectiveness of this paradigm: (i) the incompleteness and structural inconsistency of tool documentation; (ii) the significant semantic and granular mismatch between user queries and technical tool documents; and, most importantly, (iii) the multi-aspect nature of tool utility, that involves distinct dimensions, such as functionality, input constraints, and output formats, varying in format and importance. To address these challenges, we introduce Multi-Field Tool Retrieval, a framework designed to align user intent with tool representations through fine-grained, multi-field modeling. Experimental results show that our framework achieves SOTA performance on five datasets and a mixed benchmark, exhibiting superior generalizability and robustness.
comment: 12 pages, 4 figures
☆ AgentXRay: White-Boxing Agentic Systems via Workflow Reconstruction
Large Language Models have shown strong capabilities in complex problem solving, yet many agentic systems remain difficult to interpret and control due to opaque internal workflows. While some frameworks offer explicit architectures for collaboration, many deployed agentic systems operate as black boxes to users. We address this by introducing Agentic Workflow Reconstruction (AWR), a new task aiming to synthesize an explicit, interpretable stand-in workflow that approximates a black-box system using only input--output access. We propose AgentXRay, a search-based framework that formulates AWR as a combinatorial optimization problem over discrete agent roles and tool invocations in a chain-structured workflow space. Unlike model distillation, AgentXRay produces editable white-box workflows that match target outputs under an observable, output-based proxy metric, without accessing model parameters. To navigate the vast search space, AgentXRay employs Monte Carlo Tree Search enhanced by a scoring-based Red-Black Pruning mechanism, which dynamically integrates proxy quality with search depth. Experiments across diverse domains demonstrate that AgentXRay achieves higher proxy similarity and reduces token consumption compared to unpruned search, enabling deeper workflow exploration under fixed iteration budgets.
☆ How Do Language Models Acquire Character-Level Information? EACL 2026
Language models (LMs) have been reported to implicitly encode character-level information, despite not being explicitly provided during training. However, the mechanisms underlying this phenomenon remain largely unexplored. To reveal the mechanisms, we analyze how models acquire character-level knowledge by comparing LMs trained under controlled settings, such as specifying the pre-training dataset or tokenizer, with those trained under standard settings. We categorize the contributing factors into those independent of tokenization. Our analysis reveals that merge rules and orthographic constraints constitute primary factors arising from tokenization, whereas semantic associations of substrings and syntactic information function as key factors independent of tokenization.
comment: Accepted to EACL 2026 Main Conference
☆ MentorCollab: Selective Large-to-Small Inference-Time Guidance for Efficient Reasoning
Large reasoning models (LRMs) achieve strong performance by producing long chains of thought, but their inference costs are high and often generate redundant reasoning. Small language models (SLMs) are far more efficient, yet struggle on multi-step reasoning tasks. A natural idea is to let a large model guide a small one at inference time as a mentor, yet existing collaboration methods often promote imitation, resulting in verbose reasoning without consistent error correction. We propose MentorCollab, an inference-time collaboration method in which an LRM selectively and sparsely guides an SLM, rather than taking over generation. At randomly sampled token positions, we probe for divergences between the two models and use a lightweight verifier to decide whether the SLM should follow a short lookahead segment from its mentor or continue on its own. Across 15 SLM--LRM pairs and 3 domains (math reasoning, general knowledge, and commonsense reasoning), our method improves performance in 12 settings, with average gains of 3.0% and up to 8.0%, while adopting only having 18.4% tokens generated by the expensive mentor model on average. We find that short segments and selective probing are sufficient for effective collaboration. Our results show that selective inference-time guidance restores large-model reasoning ability without substantial inference overhead.
☆ FlashBlock: Attention Caching for Efficient Long-Context Block Diffusion
Generating long-form content, such as minute-long videos and extended texts, is increasingly important for modern generative models. Block diffusion improves inference efficiency via KV caching and block-wise causal inference and has been widely adopted in diffusion language models and video generation. However, in long-context settings, block diffusion still incurs substantial overhead from repeatedly computing attention over a growing KV cache. We identify an underexplored property of block diffusion: cross-step redundancy of attention within a block. Our analysis shows that attention outputs from tokens outside the current block remain largely stable across diffusion steps, while block-internal attention varies significantly. Based on this observation, we propose FlashBlock, a cached block-external attention mechanism that reuses stable attention output, reducing attention computation and KV cache access without modifying the diffusion process. Moreover, FlashBlock is orthogonal to sparse attention and can be combined as a complementary residual reuse strategy, substantially improving model accuracy under aggressive sparsification. Experiments on diffusion language models and video generation demonstrate up to 1.44$\times$ higher token throughput and up to 1.6$\times$ reduction in attention time, with negligible impact on generation quality. Project page: https://caesarhhh.github.io/FlashBlock/.
☆ Towards a Science of Collective AI: LLM-based Multi-Agent Systems Need a Transition from Blind Trial-and-Error to Rigorous Science
Recent advancements in Large Language Models (LLMs) have greatly extended the capabilities of Multi-Agent Systems (MAS), demonstrating significant effectiveness across a wide range of complex and open-ended domains. However, despite this rapid progress, the field still relies heavily on empirical trial-and-error. It lacks a unified and principled scientific framework necessary for systematic optimization and improvement. This bottleneck stems from the ambiguity of attribution: first, the absence of a structured taxonomy of factors leaves researchers restricted to unguided adjustments; second, the lack of a unified metric fails to distinguish genuine collaboration gain from mere resource accumulation. In this paper, we advocate for a transition to design science through an integrated framework. We advocate to establish the collaboration gain metric ($Γ$) as the scientific standard to isolate intrinsic gains from increased budgets. Leveraging $Γ$, we propose a factor attribution paradigm to systematically identify collaboration-driving factors. To support this, we construct a systematic MAS factor library, structuring the design space into control-level presets and information-level dynamics. Ultimately, this framework facilitates the transition from blind experimentation to rigorous science, paving the way towards a true science of Collective AI.
☆ Back to Basics: Revisiting Exploration in Reinforcement Learning for LLM Reasoning via Generative Probabilities
Reinforcement Learning with Verifiable Rewards (RLVR) has emerged as an indispensable paradigm for enhancing reasoning in Large Language Models (LLMs). However, standard policy optimization methods, such as Group Relative Policy Optimization (GRPO), often converge to low-entropy policies, leading to severe mode collapse and limited output diversity. We analyze this issue from the perspective of sampling probability dynamics, identifying that the standard objective disproportionately reinforces the highest-likelihood paths, thereby suppressing valid alternative reasoning chains. To address this, we propose a novel Advantage Re-weighting Mechanism (ARM) designed to equilibrate the confidence levels across all correct responses. By incorporating Prompt Perplexity and Answer Confidence into the advantage estimation, our method dynamically reshapes the reward signal to attenuate the gradient updates of over-confident reasoning paths, while redistributing probability mass toward under-explored correct solutions. Empirical results demonstrate that our approach significantly enhances generative diversity and response entropy while maintaining competitive accuracy, effectively achieving a superior trade-off between exploration and exploitation in reasoning tasks. Empirical results on Qwen2.5 and DeepSeek models across mathematical and coding benchmarks show that ProGRPO significantly mitigates entropy collapse. Specifically, on Qwen2.5-7B, our method outperforms GRPO by 5.7% in Pass@1 and, notably, by 13.9% in Pass@32, highlighting its superior capability in generating diverse correct reasoning paths.
☆ Hybrid Gated Flow (HGF): Stabilizing 1.58-bit LLMs via Selective Low-Rank Correction
The deployment of Large Language Models (LLMs) on edge devices is fundamentally constrained by the "Memory Wall" -- a hardware limitation where memory bandwidth, not compute, becomes the bottleneck. Recent 1.58-bit quantization techniques (e.g., BitNet b1.58) dramatically reduce memory footprint but typically incur a perplexity degradation of 20-25% compared to FP16 baselines. In this work, we introduce Hybrid Gated Flow (HGF), a dual-stream architecture that couples a 1.58-bit ternary backbone with a learnable, low-rank FP16 correction path controlled by adaptive gates. Through extensive experiments on the TinyStories dataset across two training regimes (2500 and 3500 steps), we demonstrate that HGF 5.4 achieves a validation loss of 0.9306 compared to BitNet's 1.0294, recovering approximately 55% of the quality gap between pure ternary quantization and the FP16 baseline (0.8490). This recovery is achieved with only ~12-15% memory overhead beyond the ternary backbone. Furthermore, we provide empirical evidence for an emergent phenomenon: quantization as structural regularization. While a full-precision differential attention baseline (Diff_Only) exhibited training instability with validation loss exceeding 1.68, the ternary-anchored HGF maintained robust convergence throughout training. Finally, we report preliminary results extending this architecture to 1.2B and 3B parameter models trained on SlimPajama and FineWeb-Edu. These larger-scale experiments confirm that the architectural stability and quality recovery observed in small-scale proxies scale linearly to production-grade language modeling regimes.
comment: 21 pages, 4 figures, 6 tables. Code and models will be released at opencores.ai
☆ Length-Unbiased Sequence Policy Optimization: Revealing and Controlling Response Length Variation in RLVR
Recent applications of Reinforcement Learning with Verifiable Rewards (RLVR) to Large Language Models (LLMs) and Vision-Language Models (VLMs) have demonstrated significant success in enhancing reasoning capabilities for complex tasks. During RLVR training, an increase in response length is often regarded as a key factor contributing to the growth of reasoning ability. However, the patterns of change in response length vary significantly across different RLVR algorithms during the training process. To provide a fundamental explanation for these variations, this paper conducts an in-depth analysis of the components of mainstream RLVR algorithms. We present a theoretical analysis of the factors influencing response length and validate our theory through extensive experimentation. Building upon these theoretical findings, we propose the Length-Unbiased Sequence Policy Optimization (LUSPO) algorithm. Specifically, we rectify the length bias inherent in Group Sequence Policy Optimization (GSPO), rendering its loss function unbiased with respect to response length and thereby resolving the issue of response length collapse. We conduct extensive experiments across mathematical reasoning benchmarks and multimodal reasoning scenarios, where LUSPO consistently achieves superior performance. Empirical results demonstrate that LUSPO represents a novel, state-of-the-art optimization strategy compared to existing methods such as GRPO and GSPO.
☆ CoPE: Clipped RoPE as A Scalable Free Lunch for Long Context LLMs
Rotary Positional Embedding (RoPE) is a key component of context scaling in Large Language Models (LLMs). While various methods have been proposed to adapt RoPE to longer contexts, their guiding principles generally fall into two categories: (1) out-of-distribution (OOD) mitigation, which scales RoPE frequencies to accommodate unseen positions, and (2) Semantic Modeling, which posits that the attention scores computed with RoPE should always prioritize semantically similar tokens. In this work, we unify these seemingly distinct objectives through a minimalist intervention, namely CoPE: soft clipping lowfrequency components of RoPE. CoPE not only eliminates OOD outliers and refines semantic signals, but also prevents spectral leakage caused by hard clipping. Extensive experiments demonstrate that simply applying our soft clipping strategy to RoPE yields significant performance gains that scale up to 256k context length, validating our theoretical analysis and establishing CoPE as a new state-of-the-art for length generalization. Our code, data, and models are available at https://github.com/hrlics/CoPE.
☆ Copyright Detective: A Forensic System to Evidence LLMs Flickering Copyright Leakage Risks
We present Copyright Detective, the first interactive forensic system for detecting, analyzing, and visualizing potential copyright risks in LLM outputs. The system treats copyright infringement versus compliance as an evidence discovery process rather than a static classification task due to the complex nature of copyright law. It integrates multiple detection paradigms, including content recall testing, paraphrase-level similarity analysis, persuasive jailbreak probing, and unlearning verification, within a unified and extensible framework. Through interactive prompting, response collection, and iterative workflows, our system enables systematic auditing of verbatim memorization and paraphrase-level leakage, supporting responsible deployment and transparent evaluation of LLM copyright risks even with black-box access.
☆ FedMosaic: Federated Retrieval-Augmented Generation via Parametric Adapters
Retrieval-Augmented Generation (RAG) enhances Large Language Models (LLMs) by grounding generation in external knowledge to improve factuality and reduce hallucinations. Yet most deployments assume a centralized corpus, which is infeasible in privacy aware domains where knowledge remains siloed. This motivates federated RAG (FedRAG), where a central LLM server collaborates with distributed silos without sharing raw documents. In context RAG violates this requirement by transmitting verbatim documents, whereas parametric RAG encodes documents into lightweight adapters that merge with a frozen LLM at inference, avoiding raw-text exchange. We adopt the parametric approach but face two unique challenges induced by FedRAG: high storage and communication from per-document adapters, and destructive aggregation caused by indiscriminately merging multiple adapters. We present FedMosaic, the first federated RAG framework built on parametric adapters. FedMosaic clusters semantically related documents into multi-document adapters with document-specific masks to reduce overhead while preserving specificity, and performs selective adapter aggregation to combine only relevance-aligned, nonconflicting adapters. Experiments show that FedMosaic achieves an average 10.9% higher accuracy than state-of-the-art methods in four categories, while lowering storage costs by 78.8% to 86.3% and communication costs by 91.4%, and never sharing raw documents.
comment: 11 pages
☆ Faithful Bi-Directional Model Steering via Distribution Matching and Distributed Interchange Interventions ICLR 2026
Intervention-based model steering offers a lightweight and interpretable alternative to prompting and fine-tuning. However, by adapting strong optimization objectives from fine-tuning, current methods are susceptible to overfitting and often underperform, sometimes generating unnatural outputs. We hypothesize that this is because effective steering requires the faithful identification of internal model mechanisms, not the enforcement of external preferences. To this end, we build on the principles of distributed alignment search (DAS), the standard for causal variable localization, to propose a new steering method: Concept DAS (CDAS). While we adopt the core mechanism of DAS, distributed interchange intervention (DII), we introduce a novel distribution matching objective tailored for the steering task by aligning intervened output distributions with counterfactual distributions. CDAS differs from prior work in two main ways: first, it learns interventions via weak-supervised distribution matching rather than probability maximization; second, it uses DIIs that naturally enable bi-directional steering and allow steering factors to be derived from data, reducing the effort required for hyperparameter tuning and resulting in more faithful and stable control. On AxBench, a large-scale model steering benchmark, we show that CDAS does not always outperform preference-optimization methods but may benefit more from increased model scale. In two safety-related case studies, overriding refusal behaviors of safety-aligned models and neutralizing a chain-of-thought backdoor, CDAS achieves systematic steering while maintaining general model utility. These results indicate that CDAS is complementary to preference-optimization approaches and conditionally constitutes a robust approach to intervention-based model steering. Our code is available at https://github.com/colored-dye/concept_das.
comment: 55 pages, 25 figures; accepted for ICLR 2026
☆ Bagpiper: Solving Open-Ended Audio Tasks via Rich Captions
Current audio foundation models typically rely on rigid, task-specific supervision, addressing isolated factors of audio rather than the whole. In contrast, human intelligence processes audio holistically, seamlessly bridging physical signals with abstract cognitive concepts to execute complex tasks. Grounded in this philosophy, we introduce Bagpiper, an 8B audio foundation model that interprets physical audio via rich captions, i.e., comprehensive natural language descriptions that encapsulate the critical cognitive concepts inherent in the signal (e.g., transcription, audio events). By pre-training on a massive corpus of 600B tokens, the model establishes a robust bidirectional mapping between raw audio and this high-level conceptual space. During fine-tuning, Bagpiper adopts a caption-then-process workflow, simulating an intermediate cognitive reasoning step to solve diverse tasks without task-specific priors. Experimentally, Bagpiper outperforms Qwen-2.5-Omni on MMAU and AIRBench for audio understanding and surpasses CosyVoice3 and TangoFlux in generation quality, capable of synthesizing arbitrary compositions of speech, music, and sound effects. To the best of our knowledge, Bagpiper is among the first works that achieve unified understanding generation for general audio. Model, data, and code are available at Bagpiper Home Page.
☆ Quantifying the Knowledge Proximity Between Academic and Industry Research: An Entity and Semantic Perspective
The academia and industry are characterized by a reciprocal shaping and dynamic feedback mechanism. Despite distinct institutional logics, they have adapted closely in collaborative publishing and talent mobility, demonstrating tension between institutional divergence and intensive collaboration. Existing studies on their knowledge proximity mainly rely on macro indicators such as the number of collaborative papers or patents, lacking an analysis of knowledge units in the literature. This has led to an insufficient grasp of fine-grained knowledge proximity between industry and academia, potentially undermining collaboration frameworks and resource allocation efficiency. To remedy the limitation, this study quantifies the trajectory of academia-industry co-evolution through fine-grained entities and semantic space. In the entity measurement part, we extract fine-grained knowledge entities via pre-trained models, measure sequence overlaps using cosine similarity, and analyze topological features through complex network analysis. At the semantic level, we employ unsupervised contrastive learning to quantify convergence in semantic spaces by measuring cross-institutional textual similarities. Finally, we use citation distribution patterns to examine correlations between bidirectional knowledge flows and similarity. Analysis reveals that knowledge proximity between academia and industry rises, particularly following technological change. This provides textual evidence of bidirectional adaptation in co-evolution. Additionally, academia's knowledge dominance weakens during technological paradigm shifts. The dataset and code for this paper can be accessed at https://github.com/tinierZhao/Academic-Industrial-associations.
☆ Aligning Large Language Model Behavior with Human Citation Preferences
Most services built on powerful large-scale language models (LLMs) add citations to their output to enhance credibility. Recent research has paid increasing attention to the question of what reference documents to link to outputs. However, how LLMs recognize cite-worthiness and how this process should be controlled remains underexplored. In this study, we focus on what kinds of content LLMs currently tend to cite and how well that behavior aligns with human preferences. We construct a dataset to characterize the relationship between human citation preferences and LLM behavior. Web-derived texts are categorized into eight citation-motivation types, and pairwise citation preferences are exhaustively evaluated across all type combinations to capture fine-grained contrasts. Our results show that humans most frequently seek citations for medical text, and stronger models display a similar tendency. We also find that current models are as much as $27\%$ more likely than humans to add citations to text that is explicitly marked as needing citations on sources such as Wikipedia, and this overemphasis reduces alignment accuracy. Conversely, models systematically underselect numeric sentences (by $-22.6\%$ relative to humans) and sentences containing personal names (by $-20.1\%$), categories for which humans typically demand citations. Furthermore, experiments with Direct Preference Optimization demonstrate that model behavior can be calibrated to better match human citation preferences. We expect this study to provide a foundation for more fine-grained investigations into LLM citation preferences.
comment: Work In Progress
☆ Are Open-Weight LLMs Ready for Social Media Moderation? A Comparative Study on Bluesky
As internet access expands, so does exposure to harmful content, increasing the need for effective moderation. Research has demonstrated that large language models (LLMs) can be effectively utilized for social media moderation tasks, including harmful content detection. While proprietary LLMs have been shown to zero-shot outperform traditional machine learning models, the out-of-the-box capability of open-weight LLMs remains an open question. Motivated by recent developments of reasoning LLMs, we evaluate seven state-of-the-art models: four proprietary and three open-weight. Testing with real-world posts on Bluesky, moderation decisions by Bluesky Moderation Service, and annotations by two authors, we find a considerable degree of overlap between the sensitivity (81%--97%) and specificity (91%--100%) of the open-weight LLMs and those (72%--98%, and 93%--99%) of the proprietary ones. Additionally, our analysis reveals that specificity exceeds sensitivity for rudeness detection, but the opposite holds for intolerance and threats. Lastly, we identify inter-rater agreement across human moderators and the LLMs, highlighting considerations for deploying LLMs in both platform-scale and personalized moderation contexts. These findings show open-weight LLMs can support privacy-preserving moderation on consumer-grade hardware and suggest new directions for designing moderation systems that balance community values with individual user preferences.
☆ The Single-Multi Evolution Loop for Self-Improving Model Collaboration Systems
Model collaboration -- systems where multiple language models (LMs) collaborate -- combines the strengths of diverse models with cost in loading multiple LMs. We improve efficiency while preserving the strengths of collaboration by distilling collaborative patterns into a single model, where the model is trained on the outputs of the model collaboration system. At inference time, only the distilled model is employed: it imitates the collaboration while only incurring the cost of a single model. Furthermore, we propose the single-multi evolution loop: multiple LMs collaborate, each distills from the collaborative outputs, and these post-distillation improved LMs collaborate again, forming a collective evolution ecosystem where models evolve and self-improve by interacting with an environment of other models. Extensive experiments with 7 collaboration strategies and 15 tasks (QA, reasoning, factuality, etc.) demonstrate that: 1) individual models improve by 8.0% on average, absorbing the strengths of collaboration while reducing the cost to a single model; 2) the collaboration also benefits from the stronger and more synergistic LMs after distillation, improving over initial systems without evolution by 14.9% on average. Analysis reveals that the single-multi evolution loop outperforms various existing evolutionary AI methods, is compatible with diverse model/collaboration/distillation settings, and helps solve problems where the initial model/system struggles to.
comment: Code at https://github.com/BunsenFeng/moco_distill
☆ Among Us: Measuring and Mitigating Malicious Contributions in Model Collaboration Systems
Language models (LMs) are increasingly used in collaboration: multiple LMs trained by different parties collaborate through routing systems, multi-agent debate, model merging, and more. Critical safety risks remain in this decentralized paradigm: what if some of the models in multi-LLM systems are compromised or malicious? We first quantify the impact of malicious models by engineering four categories of malicious LMs, plug them into four types of popular model collaboration systems, and evaluate the compromised system across 10 datasets. We find that malicious models have a severe impact on the multi-LLM systems, especially for reasoning and safety domains where performance is lowered by 7.12% and 7.94% on average. We then propose mitigation strategies to alleviate the impact of malicious components, by employing external supervisors that oversee model collaboration to disable/mask them out to reduce their influence. On average, these strategies recover 95.31% of the initial performance, while making model collaboration systems fully resistant to malicious models remains an open research question.
comment: 19 pages, 15 tables, 4 figures
☆ EBPO: Empirical Bayes Shrinkage for Stabilizing Group-Relative Policy Optimization
Reinforcement Learning with Verifiable Rewards (RLVR) has proven effective for enhancing the reasoning capabilities of Large Language Models (LLMs). However, dominant approaches like Group Relative Policy Optimization (GRPO) face critical stability challenges: they suffer from high estimator variance under computational constraints (small group sizes) and vanishing gradient signals in saturated failure regimes where all responses yield identical zero rewards. To address this, we propose Empirical Bayes Policy Optimization (EBPO), a novel framework that regularizes local group-based baselines by borrowing strength from the policy's accumulated global statistics. Instead of estimating baselines in isolation, EBPO employs a shrinkage estimator that dynamically balances local group statistics with a global prior updated via Welford's online algorithm. Theoretically, we demonstrate that EBPO guarantees strictly lower Mean Squared Error (MSE), bounded entropy decay, and non-vanishing penalty signals in failure scenarios compared to GRPO. Empirically, EBPO consistently outperforms GRPO and other established baselines across diverse benchmarks, including AIME and OlympiadBench. Notably, EBPO exhibits superior training stability, achieving high-performance gains even with small group sizes, and benefits significantly from difficulty-stratified curriculum learning.
☆ GreekMMLU: A Native-Sourced Multitask Benchmark for Evaluating Language Models in Greek
Large Language Models (LLMs) are commonly trained on multilingual corpora that include Greek, yet reliable evaluation benchmarks for Greek-particularly those based on authentic, native-sourced content-remain limited. Existing datasets are often machine-translated from English, failing to capture Greek linguistic and cultural characteristics. We introduce GreekMMLU, a native-sourced benchmark for massive multitask language understanding in Greek, comprising 21,805 multiple-choice questions across 45 subject areas, organized under a newly defined subject taxonomy and annotated with educational difficulty levels spanning primary to professional examinations. All questions are sourced or authored in Greek from academic, professional, and governmental exams. We publicly release 16,857 samples and reserve 4,948 samples for a private leaderboard to enable robust and contamination-resistant evaluation. Evaluations of over 80 open- and closed-source LLMs reveal substantial performance gaps between frontier and open-weight models, as well as between Greek-adapted models and general multilingual ones. Finally, we provide a systematic analysis of factors influencing performance-including model scale, adaptation, and prompting-and derive insights for improving LLM capabilities in Greek.
♻ ☆ Language Models and Logic Programs for Trustworthy Tax Reasoning AAAI 2026
According to the United States Internal Revenue Service, ``the average American spends $\$270$ and 13 hours filing their taxes''. Even beyond the U.S., tax filing requires complex reasoning, combining application of overlapping rules with numerical calculations. Because errors can incur costly penalties, any automated system must deliver high accuracy and auditability, making modern large language models (LLMs) poorly suited for this task. We propose an approach that integrates LLMs with a symbolic solver to calculate tax obligations. We evaluate variants of this system on the challenging StAtutory Reasoning Assessment (SARA) dataset, and include a novel method for estimating the cost of deploying such a system based on real-world penalties for tax errors. We further show how combining up-front translation of plain-text rules into formal logic programs, combined with intelligently retrieved exemplars for formal case representations, can dramatically improve performance on this task and reduce costs to well below real-world averages. Our results demonstrate the effectiveness of applying semantic parsing methods to statutory reasoning, and show promising economic feasibility of neuro-symbolic architectures for increasing access to reliable tax assistance.
comment: Accepted to AAAI 2026
♻ ☆ DEBATE: A Large-Scale Benchmark for Evaluating Opinion Dynamics in Role-Playing LLM Agents
Accurately modeling opinion change through social interactions is crucial for understanding and mitigating polarization, misinformation, and societal conflict. Recent work simulates opinion dynamics with role-playing LLM agents (RPLAs), but multi-agent simulations often display unnatural group behavior (e.g., premature convergence) and lack empirical benchmarks for assessing alignment with real human group interactions. We introduce DEBATE, a large-scale benchmark for evaluating the authenticity of opinion dynamics in multi-agent RPLA simulations. DEBATE contains 36,383 messages from 2,832 U.S.-based participants across 708 groups and 107 topics, with both public messages and private Likert-scale beliefs, enabling evaluation at the utterance and group levels (and supporting future individual-level analyses). We instantiate "digital twin" RPLAs with seven LLMs and evaluate across two settings: next-message prediction and full conversation rollout, using stance-alignment and opinion-convergence metrics. In zero-shot settings, RPLA groups exhibit strong opinion convergence relative to human groups. Post-training via supervised fine-tuning (SFT) and Direct Preference Optimization (DPO) improves stance alignment and brings group-level convergence closer to human behavior, though discrepancies in opinion change and belief updating remain. DEBATE enables rigorous benchmarking of simulated opinion dynamics and supports future research on aligning multi-agent RPLAs with realistic human interactions.
♻ ☆ Group-Adaptive Adversarial Learning for Robust Fake News Detection Against Malicious Comments
Online fake news profoundly distorts public judgment and erodes trust in social platforms. While existing detectors achieve competitive performance on benchmark datasets, they remain notably vulnerable to malicious comments designed specifically to induce misclassification. This evolving threat landscape necessitates detection systems that simultaneously prioritize predictive accuracy and structural robustness. However, current detectors often fail to generalize across diverse and novel comment attack patterns. To bridge this gap, we propose AdComment, an adaptive adversarial training framework for robustness enhancement against diverse malicious comments. Based on cognitive psychology, we categorize adversarial comments into Fact Distortion, Logical Confusion, and Emotional Manipulation, and leverage LLMs to synthesize diverse, category-specific perturbations. Central to our framework is an InfoDirichlet Resampling (IDR) mechanism that dynamically adjusts malicious comment proportions during training, thereby steering optimization toward the model's most susceptible regions. Experimental results demonstrate that our approach achieves state-of-the-art performance on three benchmark datasets, improving the F1 scores by 17.9%, 14.5% and 9.0%, respectively.
comment: 10 pages, 12 figures
♻ ☆ CoT is Not the Chain of Truth: An Empirical Internal Analysis of Reasoning LLMs for Fake News Generation
From generating headlines to fabricating news, the Large Language Models (LLMs) are typically assessed by their final outputs, under the safety assumption that a refusal response signifies safe reasoning throughout the entire process. Challenging this assumption, our study reveals that during fake news generation, even when a model rejects a harmful request, its Chain-of-Thought (CoT) reasoning may still internally contain and propagate unsafe narratives. To analyze this phenomenon, we introduce a unified safety-analysis framework that systematically deconstructs CoT generation across model layers and evaluates the role of individual attention heads through Jacobian-based spectral metrics. Within this framework, we introduce three interpretable measures: stability, geometry, and energy to quantify how specific attention heads respond or embed deceptive reasoning patterns. Extensive experiments on multiple reasoning-oriented LLMs show that the generation risk rise significantly when the thinking mode is activated, where the critical routing decisions concentrated in only a few contiguous mid-depth layers. By precisely identifying the attention heads responsible for this divergence, our work challenges the assumption that refusal implies safety and provides a new understanding perspective for mitigating latent reasoning risks.
comment: 28 pages, 35 figures
♻ ☆ When Are Two RLHF Objectives the Same?
The preference optimization literature contains many proposed objectives, often presented as distinct improvements. We introduce Opal, a canonicalization algorithm that determines whether two preference objectives are algebraically equivalent by producing either a canonical form or a concrete witness of non-equivalence. Applying Opal reveals that many widely used methods optimize the same underlying objective, while others are provably distinct. For example, batch normalization can cause the same response pair to receive different gradients depending on batch composition. We identify a small set of structural mechanisms that give rise to genuinely different objectives; most remaining differences are reparameterizations.
comment: 21 pages
♻ ☆ TASTE: Text-Aligned Speech Tokenization and Embedding for Spoken Language Modeling ICLR 2026
Recent efforts target spoken language models (SLMs) that not only listen but also speak for more natural human-LLM interaction. Joint speech-text modeling is a promising direction to achieve this. However, the effectiveness of recent speech tokens for joint modeling remains underexplored. To address this, we introduce Text-Aligned Speech Tokenization and Embedding (TASTE), a method that directly addresses the modality gap by aligning speech token with the corresponding text transcription during the tokenization stage. We propose a method that can achieve this through a attention-based aggregation mechanism and with speech reconstruction as the training objective. We conduct extensive experiments and show that TASTE can preserve essential paralinguistic information while dramatically reducing the token sequence length. With TASTE, we perform straightforward joint spoken language modeling by using Low-Rank Adaptation on the pre-trained text LLM. Experimental results show that TASTE-based SLMs perform comparable to previous work on SALMON and StoryCloze; while significantly outperform other pre-trained SLMs on speech continuation across subjective and objective evaluations. To our knowledge, TASTE is the first end-to-end approach that utilizes a reconstruction objective to automatically learn a text-aligned speech tokenization and embedding suitable for spoken language modeling. Our demo, code, and model are available at https://mtkresearch.github.io/TASTE-SpokenLM.github.io.
comment: ICLR 2026
♻ ☆ SelfReflect: Can LLMs Communicate Their Internal Answer Distribution? ICLR 2026
The common approach to communicate a large language model's (LLM) uncertainty is to add a percentage number or a hedging word to its response. But is this all we can do? Instead of generating a single answer and then hedging it, an LLM that is fully transparent to the user needs to be able to reflect on its internal belief distribution and output a summary of all options it deems possible, and how likely they are. To test whether LLMs possess this capability, we develop the SelfReflect metric, an information-theoretic distance between a given summary and a distribution over answers. In interventional and human studies, we find that SelfReflect indicates even slight deviations, yielding a fine measure of faithfulness between a summary string and an LLM's actual internal distribution over answers. With SelfReflect, we make a resounding negative observation: modern LLMs are, across the board, incapable of revealing what they are uncertain about, neither through reasoning, nor chains-of-thoughts, nor explicit finetuning. However, we do find that LLMs are able to generate faithful summaries of their uncertainties if we help them by sampling multiple outputs and feeding them back into the context. This simple approach shines a light at the universal way of communicating LLM uncertainties whose future development the SelfReflect score enables. To support the development of this universal form of LLM uncertainties, we publish the code that implements our metric for arbitrary LLMs under https://github.com/apple/ml-selfreflect .
comment: Accepted at ICLR 2026
♻ ☆ Prompt Augmentation Scales up GRPO Training on Mathematical Reasoning
Reinforcement learning algorithms such as group-relative policy optimization (GRPO) have demonstrated strong potential for improving the mathematical reasoning capabilities of large language models. However, prior work has consistently observed an entropy collapse phenomenon during reinforcement post-training, characterized by a monotonic decrease in policy entropy that ultimately leads to training instability and collapse. As a result, most existing approaches restrict training to short horizons (typically 5-20 epochs), limiting sustained exploration and hindering further policy improvement. In addition, nearly all prior work relies on a single, fixed reasoning prompt or template during training. In this work, we introduce prompt augmentation, a training strategy that instructs the model to generate reasoning traces under diverse templates and formats, thereby increasing rollout diversity. We show that, without a KL regularization term, prompt augmentation enables stable scaling of training duration under a fixed dataset and allows the model to tolerate low-entropy regimes without premature collapse. Empirically, a Qwen2.5-Math-1.5B model trained with prompt augmentation on the MATH Level 3-5 dataset achieves state-of-the-art performance, reaching 45.2 per-benchmark accuracy and 51.8 per-question accuracy on standard mathematical reasoning benchmarks, including AIME24, AMC, MATH500, Minerva, and OlympiadBench. The code and model checkpoints are available at https://github.com/wenquanlu/prompt-augmentation-GRPO.
♻ ☆ Vision-R1: Incentivizing Reasoning Capability in Multimodal Large Language Models ICLR 2026
DeepSeek-R1-Zero has successfully demonstrated the emergence of reasoning capabilities in LLMs purely through Reinforcement Learning (RL). Inspired by this breakthrough, we explore how RL can be utilized to enhance the reasoning capability of MLLMs. However, direct training with RL struggles to activate complex reasoning capabilities such as questioning and reflection in MLLMs, due to the absence of substantial high-quality multimodal reasoning data. To address this issue, we propose the reasoning MLLM, Vision-R1, to improve multimodal reasoning capability. Specifically, we first construct a high-quality multimodal CoT dataset without human annotations by leveraging an existing MLLM and DeepSeek-R1 through modality bridging and data filtering to obtain a 200K multimodal CoT dataset, Vision-R1-cold dataset. It serves as cold-start initialization data for Vision-R1. To mitigate the optimization challenges caused by overthinking after cold start, we propose Progressive Thinking Suppression Training (PTST) strategy and employ Group Relative Policy Optimization (GRPO) with the hard formatting result reward function to gradually refine the model's ability to learn correct and complex reasoning processes on a 10K multimodal math dataset. Comprehensive experiments show our model achieves an average improvement of $\sim$6% across various multimodal math reasoning benchmarks. Vision-R1-7B achieves a 73.5% accuracy on the widely used MathVista benchmark, which is only 0.4% lower than the leading reasoning model, OpenAI O1. Scaling up the amount of multimodal math data in the RL training, Vision-R1-32B and Vison-R1-72B achieves 76.4% and 78.2% MathVista benchmark scores, respectively. The datasets and code will be released in: https://github.com/Osilly/Vision-R1 .
comment: Accepted to ICLR 2026. Code is available at https://github.com/Osilly/Vision-R1
♻ ☆ LLM-Based Social Simulations Require a Boundary
This position paper argues that LLM-based social simulations require clear boundaries to make meaningful contributions to social science. While Large Language Models (LLMs) offer promising capabilities for simulating human behavior, their tendency to produce homogeneous outputs, acting as an "average persona", fundamentally limits their ability to capture the behavioral diversity essential for complex social dynamics. We examine why heterogeneity matters for social simulations and how current LLMs fall short, analyzing the relationship between mean alignment and variance in LLM-generated behaviors. Through a systematic review of representative studies, we find that validation practices often fail to match the heterogeneity requirements of research questions: while most papers include ground truth comparisons, fewer than half explicitly assess behavioral variance, and most that do report lower variance than human populations. We propose that researchers should: (1) match validation depth to the heterogeneity demands of their research questions, (2) explicitly report variance alongside mean alignment, and (3) constrain claims to collective-level qualitative patterns when variance is insufficient. Rather than dismissing LLM-based simulation, we advocate for a boundary-aware approach that ensures these methods contribute genuine insights to social science.
♻ ☆ When Iterative RAG Beats Ideal Evidence: A Diagnostic Study in Scientific Multi-hop Question Answering
Retrieval-Augmented Generation (RAG) extends large language models (LLMs) beyond parametric knowledge, yet it is unclear when iterative retrieval-reasoning loops meaningfully outperform static RAG, particularly in scientific domains with multi-hop reasoning, sparse domain knowledge, and heterogeneous evidence. We provide the first controlled, mechanism-level diagnostic study of whether synchronized iterative retrieval and reasoning can surpass an idealized static upper bound (Gold Context) RAG. We benchmark eleven state-of-the-art LLMs under three regimes: (i) No Context, measuring reliance on parametric memory; (ii) Gold Context, where all oracle evidence is supplied at once; and (iii) Iterative RAG, a training-free controller that alternates retrieval, hypothesis refinement, and evidence-aware stopping. Using the chemistry-focused ChemKGMultiHopQA dataset, we isolate questions requiring genuine retrieval and analyze behavior with diagnostics spanning retrieval coverage gaps, anchor-carry drop, query quality, composition fidelity, and control calibration. Across models, Iterative RAG consistently outperforms Gold Context, with gains up to 25.6 percentage points, especially for non-reasoning fine-tuned models. Staged retrieval reduces late-hop failures, mitigates context overload, and enables dynamic correction of early hypothesis drift, but remaining failure modes include incomplete hop coverage, distractor latch trajectories, early stopping miscalibration, and high composition failure rates even with perfect retrieval. Overall, staged retrieval is often more influential than the mere presence of ideal evidence; we provide practical guidance for deploying and diagnosing RAG systems in specialized scientific settings and a foundation for more reliable, controllable iterative retrieval-reasoning frameworks.
comment: 27 pages, 15 figures
♻ ☆ Why Tree-Style Branching Matters for Thought Advantage Estimation in GRPO
Group Relative Policy Optimization (GRPO) trains Chain-of-Thought reasoning with verifiable rewards, but estimating thought-level advantages without value functions often suffers from high variance. Although tree-style branching is used in practice to reduce the variance, it lacks a theoretical explanation of why it works and whether it is important or even potentially necessary. We study thought-level advantage estimation in GRPO from a variance perspective under a minimal tree-style setting where multiple answers are sampled for each thought. Using the multivariate delta method, we reveal an asymmetry in how different sampling dimensions affect variance. Increasing the number of sampled thoughts ($K$) leaves a strictly positive variance floor, whereas increasing the number of answers per thought ($M$) induces a monotonic decrease in variance, asymptotically decreasing it to zero. This implies that accurate thought-level advantage estimation is impossible through scaling thought sampling alone, making branching a potentially necessary mechanism rather than a heuristic. Experiments further provide empirical evidence for both the effectiveness and necessity of answer-level branching, demonstrating improved optimization stability, training efficiency, and final performance not only in math but also across a broad range of vision domains and under different model architectures and sizes.
comment: Under review
♻ ☆ Understanding and Improving Length Generalization in Hierarchical Sparse Attention Models ICLR 2026
Effectively processing long contexts is a critical challenge for language models. While standard Transformers are limited by quadratic complexity and poor length extrapolation, alternative architectures like sliding window attention and state space models sacrifice the ability to effectively utilize the full context due to their fixed-size memory. Chunk-based sparse attention has emerged as a promising paradigm for extreme length generalization, yet the key architectural principles underpinning its success are not yet fully understood. In this work, we present a systematic dissection of these models to identify the core components driving their performance. Through a unified framework and comprehensive ablation studies, we demonstrate that a combination of three design principles is critical: (1) an expressive, non-linear Chunk Encoder with a dedicated CLS token to produce representations for retrieval; (2) a Bypassing Residual Path to stably integrate retrieved global information without it being overridden by the local residual stream; and (3) enforced selection sparsity during pre-training to bridge the train-test distribution gap. We provide a theoretical motivation for intra-chunk information processing and landmark generation. By combining these principles, we establish a new state-of-the-art for training-free length extrapolation, successfully generalizing models trained on a 4K context to 32 million tokens on RULER and BABILong. Our findings provide a clear and empirically-grounded set of design principles for developing future, highly-capable long-context language models.
comment: Accepted to ICLR 2026
♻ ☆ From Latent Signals to Reflection Behavior: Tracing Meta-Cognitive Activation Trajectory in R1-Style LLMs
R1-style LLMs have attracted growing attention for their capacity for self-reflection, yet the internal mechanisms underlying such behavior remain unclear. To bridge this gap, we anchor on the onset of reflection behavior and trace its layer-wise activation trajectory. Using the logit lens to read out token-level semantics, we uncover a structured progression: (i) Latent-control layers, where an approximate linear direction encodes the semantics of thinking budget; (ii) Semantic-pivot layers, where discourse-level cues, including turning-point and summarization cues, surface and dominate the probability mass; and (iii) Behavior-overt layers, where the likelihood of reflection-behavior tokens begins to rise until they become highly likely to be sampled. Moreover, our targeted interventions uncover a causal chain across these stages: prompt-level semantics modulate the projection of activations along latent-control directions, thereby inducing competition between turning-point and summarization cues in semantic-pivot layers, which in turn regulates the sampling likelihood of reflection-behavior tokens in behavior-overt layers. Collectively, our findings suggest a human-like meta-cognitive process-progressing from latent monitoring, to discourse-level regulation, and to finally overt self-reflection. Our analysis code can be found at https://github.com/DYR1/S3-CoT.
♻ ☆ Segmentation-free Goodness of Pronunciation
Mispronunciation detection and diagnosis (MDD) is a significant part in modern computer-aided language learning (CALL) systems. Most systems implementing phoneme-level MDD through goodness of pronunciation (GOP), however, rely on pre-segmentation of speech into phonetic units. This limits the accuracy of these methods and the possibility to use modern CTC-based acoustic models for their evaluation. In this study, we first propose self-alignment GOP (GOP-SA) that enables the use of CTC-trained ASR models for MDD. Next, we define a more general segmentation-free method that takes all possible segmentations of the canonical transcription into account (GOP-SF). We give a theoretical account of our definition of GOP-SF, an implementation that solves potential numerical issues as well as a proper normalization which allows the use of acoustic models with different peakiness over time. We provide extensive experimental results on the CMU Kids and speechocean762 datasets comparing the different definitions of our methods, estimating the dependency of GOP-SF on the peakiness of the acoustic models and on the amount of context around the target phoneme. Finally, we compare our methods with recent studies over the speechocean762 data showing that the feature vectors derived from the proposed method achieve state-of-the-art results on phoneme-level pronunciation assessment.
comment: The article has been accepted for publication by IEEE TASLPRO
♻ ☆ DeepAgent: A General Reasoning Agent with Scalable Toolsets WWW 2026
Large reasoning models have demonstrated strong problem-solving abilities, yet real-world tasks often require external tools and long-horizon interactions. Existing agent frameworks typically follow predefined workflows, which limit autonomous and global task completion. In this paper, we introduce DeepAgent, an end-to-end deep reasoning agent that performs autonomous thinking, tool discovery, and action execution within a single, coherent reasoning process. To manage long-horizon interactions, we introduce an autonomous memory folding mechanism that compresses past interactions into structured episodic, working, and tool memories, reducing error accumulation while preserving critical information. To teach general-purpose tool use efficiently and stably, we develop an end-to-end reinforcement learning strategy, namely ToolPO, that leverages LLM-simulated APIs and applies tool-call advantage attribution to assign fine-grained credit to the tool invocation tokens. Extensive experiments on eight benchmarks, including general tool-use tasks (ToolBench, API-Bank, TMDB, Spotify, ToolHop) and downstream applications (ALFWorld, WebShop, GAIA, HLE), demonstrate that DeepAgent consistently outperforms baselines across both labeled-tool and open-set tool retrieval scenarios. The code and demo are available at https://github.com/RUC-NLPIR/DeepAgent.
comment: Accepted by WWW 2026
♻ ☆ Text2SQL-Flow: A Robust SQL-Aware Data Augmentation Framework for Text-to-SQL
The data-centric paradigm has become pivotal in AI, especially for Text-to-SQL, where performance is limited by scarce, simplistic, and low-diversity datasets. To address this, we propose Text2SQL-Flow, a SQL-aware data augmentation framework that generates large-scale, semantically valid, and structurally diverse Text-to-SQL pairs from minimal seed data. It operates across six augmentation dimensions and integrates an end-to-end pipeline featuring SQL execution verification, natural language question generation, chain-of-thought reasoning traces, and data classification. A modular Database Manager ensures cross-database compatibility and scalability. Using this framework, we build SQLFlow, a high-quality dataset of 89,544 annotated examples. We evaluate SQLFlow in two settings: (1) For open-source LLMs, fine-tuning on SQLFlow consistently improves performance across benchmarks under the same data budget. (2) For closed-source LLMs, we introduce a masked alignment retrieval method that treats SQLFlow as both knowledge base and training data for the retriever. This enables structure-aware example matching by modeling fine-grained alignments between questions and SQL queries. Experiments show our retrieval strategy outperforms existing methods, underscoring the value of SQLFlow's high-fidelity data and our novel technique. Our work establishes a scalable, data-centric foundation for advancing Text-to-SQL systems and highlights the critical role of high-quality structured data in modern AI.
♻ ☆ POLAR: A Benchmark for Multilingual, Multicultural, and Multi-Event Online Polarization
Online polarization poses a growing challenge for democratic discourse, yet most computational social science research remains monolingual, culturally narrow, or event-specific. We introduce POLAR, a multilingual, multicultural, and multi-event dataset with over 110K instances in 22 languages drawn from diverse online platforms and real-world events. Polarization is annotated along three axes, namely detection, type, and manifestation, using a variety of annotation platforms adapted to each cultural context. We conduct two main experiments: (1) fine-tuning six pretrained small language models; and (2) evaluating a range of open and closed large language models in few-shot and zero-shot settings. The results show that, while most models perform well in binary polarization detection, they achieve substantially lower performance when predicting polarization types and manifestations. These findings highlight the complex, highly contextual nature of polarization and demonstrate the need for robust, adaptable approaches in NLP and computational social science. All resources will be released to support further research and effective mitigation of digital polarization globally.
comment: Preprint
♻ ☆ LH-Deception: Simulating and Understanding LLM Deceptive Behaviors in Long-Horizon Interactions ICLR 2026
Deception is a pervasive feature of human communication and an emerging concern in large language models (LLMs). While recent studies document instances of LLM deception, most evaluations remain confined to single-turn prompts and fail to capture the long-horizon interactions in which deceptive strategies typically unfold. We introduce a new simulation framework, LH-Deception, for a systematic, empirical quantification of deception in LLMs under extended sequences of interdependent tasks and dynamic contextual pressures. LH-Deception is designed as a multi-agent system: a performer agent tasked with completing tasks and a supervisor agent that evaluates progress, provides feedback, and maintains evolving states of trust. An independent deception auditor then reviews full trajectories to identify when and how deception occurs. We conduct extensive experiments across 11 frontier models, spanning both closed-source and open-source systems, and find that deception is model-dependent, increases with event pressure, and consistently erodes supervisor trust. Qualitative analyses further reveal emergent, long-horizon phenomena, such as ``chains of deception", which are invisible to static, single-turn evaluations. Our findings provide a foundation for evaluating future LLMs in real-world, trust-sensitive contexts.
comment: ICLR 2026
♻ ☆ LIBMoE: A Library for comprehensive benchmarking Mixture of Experts in Large Language Models
Mixture of experts (MoE) architectures have become a cornerstone for scaling up and are a key component in most large language models such as GPT-OSS, DeepSeek-V3, Llama-4, and Gemini-2.5. However, systematic research on MoE remains severely constrained by the prohibitive computational costs of training and evaluation, restricting large-scale studies accessible to most researchers. We introduce LibMoE, a unified framework for reproducible, efficient, and extensible MoE research that supports both pretraining and sparse-upcycling regimes. Beyond unified implementations, the framework provides transparent analytical tools for probing routing and expert dynamics. Leveraging this foundation, we conduct a comprehensive analysis along three dimensions: (i) routing dynamics, covering expert selection patterns, routing stability and optimality, and how routing entropy reveals task specialization and expert diversity; (ii) the effect of lightweight initialization on load balancing, demonstrating how subtle changes in router initialization shape early expert utilization; and (iii) training regime differences, revealing how sparse upcycling and full pretraining exhibit distinct routing patterns and stability profiles. By lowering the barrier to entry and standardizing evaluation, along with our comprehensive analysis, LibMoE broadens access to MoE research and establishes a reliable benchmark to guide future innovations. GitHub: \href{https://github.com/Fsoft-AIC/LibMoE}{https://github.com/Fsoft-AIC/LibMoE}.
comment: 15 pages, 9 figures
♻ ☆ Diversity or Precision? A Deep Dive into Next Token Prediction
Recent advancements have shown that reinforcement learning (RL) can substantially improve the reasoning abilities of large language models (LLMs). The effectiveness of such RL training, however, depends critically on the exploration space defined by the pre-trained model's token-output distribution. In this paper, we revisit the standard cross-entropy loss, interpreting it as a specific instance of policy gradient optimization applied within a single-step episode. To systematically study how the pre-trained distribution shapes the exploration potential for subsequent RL, we propose a generalized pre-training objective that adapts on-policy RL principles to supervised learning. By framing next-token prediction as a stochastic decision process, we introduce a reward-shaping strategy that explicitly balances diversity and precision. Our method employs a positive reward scaling factor to control probability concentration on ground-truth tokens and a rank-aware mechanism that treats high-ranking and low-ranking negative tokens asymmetrically. This allows us to reshape the pre-trained token-output distribution and investigate how to provide a more favorable exploration space for RL, ultimately enhancing end-to-end reasoning performance. Contrary to the intuition that higher distribution entropy facilitates effective exploration, we find that imposing a precision-oriented prior yields a superior exploration space for RL.
♻ ☆ Breaking the MoE LLM Trilemma: Dynamic Expert Clustering with Structured Compression ICML 2026
Mixture-of-Experts (MoE) Large Language Models (LLMs) face a trilemma of load imbalance, parameter redundancy, and communication overhead. We introduce a unified framework based on dynamic expert clustering and structured compression to address these issues cohesively. Our method employs an online clustering procedure that periodically regroups experts using a fused metric of parameter and activation similarity, which stabilizes expert utilization. To our knowledge, this is one of the first frameworks to leverage the semantic embedding capability of the router to dynamically reconfigure the model's architecture during training for substantial efficiency gains. Within each cluster, we decompose expert weights into a shared base matrix and extremely low-rank residual adapters, achieving up to fivefold parameter reduction per group while preserving specialization. This structure enables a two-stage hierarchical routing strategy: tokens are first assigned to a cluster, then to specific experts within it, drastically reducing the routing search space and the volume of all-to-all communication. Furthermore, a heterogeneous precision scheme, which stores shared bases in FP16 and residual factors in INT4, coupled with dynamic offloading of inactive clusters, reduces peak memory consumption to levels comparable to dense models. Evaluated on GLUE and WikiText-103, our framework matches the quality of standard MoE models while reducing total parameters by approximately 80%, improving throughput by 10% to 20%, and lowering expert load variance by a factor of over three. Our work demonstrates that structural reorganization is a principled path toward scalable, efficient, and memory-effective MoE LLMs. Code is available at https://github.com/szdtzpj/Breaking_the_moe_trilemma
comment: 10 pages, 2 figures, 8 tables. Under review as a conference paper at ICML 2026
♻ ☆ Remembering Unequally: Global and Disciplinary Bias in LLM Reconstruction of Scholarly Coauthor Lists
Ongoing breakthroughs in large language models (LLMs) are reshaping scholarly search and discovery interfaces. While these systems offer new possibilities for navigating scientific knowledge, they also raise concerns about fairness and representational bias rooted in the models' memorized training data. As LLMs are increasingly used to answer queries about researchers and research communities, their ability to accurately reconstruct scholarly coauthor lists becomes an important but underexamined issue. In this study, we investigate how memorization in LLMs affects the reconstruction of coauthor lists and whether this process reflects existing inequalities across academic disciplines and world regions. We evaluate three prominent models, DeepSeek R1, Llama 4 Scout, and Mixtral 8x7B, by comparing their generated coauthor lists against bibliographic reference data. Our analysis reveals a systematic advantage for highly cited researchers, indicating that LLM memorization disproportionately favors already visible scholars. However, this pattern is not uniform: certain disciplines, such as Clinical Medicine, and some regions, including parts of Africa, exhibit more balanced reconstruction outcomes. These findings highlight both the risks and limitations of relying on LLM-generated relational knowledge in scholarly discovery contexts and emphasize the need for careful auditing of memorization-driven biases in LLM-based systems.
♻ ☆ The Why Behind the Action: Unveiling Internal Drivers via Agentic Attribution
Large Language Model (LLM)-based agents are widely used in real-world applications such as customer service, web navigation, and software engineering. As these systems become more autonomous and are deployed at scale, understanding why an agent takes a particular action becomes increasingly important for accountability and governance. However, existing research predominantly focuses on \textit{failure attribution} to localize explicit errors in unsuccessful trajectories, which is insufficient for explaining \textbf{the reason behind agent behaviors}. To bridge this gap, we propose a novel framework for \textbf{general agentic attribution}, designed to identify the internal factors driving agent actions regardless of the task outcome. Our framework operates hierarchically to manage the complexity of agent interactions. Specifically, at the \textit{component level}, we employ temporal likelihood dynamics to identify critical interaction steps; then at the \textit{sentence level}, we refine this localization using perturbation-based analysis to isolate the specific textual evidence. We validate our framework across a diverse suite of agentic scenarios, including standard tool use and subtle reliability risks like memory-induced bias. Experimental results demonstrate that the proposed framework reliably pinpoints pivotal historical events and sentences behind the agent behavior, offering a critical step toward safer and more accountable agentic systems. Codes are available at https://github.com/AI45Lab/AgentDoG.
♻ ☆ Fine-tuned LLM-based Code Migration Framework
The study presents the outcomes of research and experimental validation in the domain of automated codebase migration, with a focus on addressing challenges in transitioning SQL-based systems. The proposed method for migration essentially appears as a framework that leverages the best aspects of traditional software engineering techniques and provides an iterative, scalable, precise and efficient solution for modern database transformations. The central piece of the approach is the integration of a fine-tuned Large Language Model to address critical issues in SQL code conversion, such as syntax mapping, resolving discrepancies between Oracle PL/SQL and PostgreSQL, and optimising database elements such as stored procedures, triggers, views, and overall database logic. Thus, the method involves a trade-off between fine-tuning and prompt engineering. Special attention is given to a fine-tuning approach, which enhances the adaptability and compatibility with migration requirements across the entire database. According to the achieved results, fine-tuning plays a very important role. The study employs targeted evaluation methodologies along with computational metrics to measure the success of iterative conversion cycles. Core innovations include automated SQL feature detection, semi-supervised error analysis and integration of Subject Matter Experts feedback within a systematic migration workflow. The methodology achieves significant reductions in Syntax Error Rates, enhances feature alignment throughout migration iterations, and leverages dataset sampling to ensure continual improvement. By embedding GAI into the migration process, the framework facilitates precise feature mapping, semi-automated error resolution, and data-driven optimisation loops, improving workflow efficiency.
comment: 16 pages, 27 figures, 7 references
♻ ☆ CoSteer: Collaborative Decoding-Time Personalization via Local Delta Steering
Personalization has become crucial for adapting models to the diverse and evolving needs of users across cultural, temporal, and contextual dimensions. While existing methods often rely on centralized fine-tuning or static preference alignment within a single model, they struggle to achieve both real-time and high-quality personalization under the resource and privacy constraints of personal devices. To address this challenge, we propose CoSteer, a collaborative framework that enables tuning-free, real-time personalization via decoding-time adaptation. By leveraging logit differences between context-aware and context-agnostic local small models, CoSteer steers cloud-based large models, ensuring effective personalization while preserving the large model's capabilities. Personalization is handled locally, with only final tokens sent to the cloud, maintaining both user context and system efficiency. Through extensive experiments across a wide range of tasks, we demonstrate that CoSteer generates high-quality personalized content, ensuring both effectiveness and computational efficiency. Our results highlight its robustness across models and environments, confirming its practical applicability in real-world scenarios.
♻ ☆ Dissecting the SWE-Bench Leaderboards: Profiling Submitters and Architectures of LLM- and Agent-Based Repair Systems ICSE
The rapid progress in Automated Program Repair (APR) has been driven by advances in AI, particularly large language models (LLMs) and agent-based systems. SWE-Bench is a recent benchmark designed to evaluate LLM-based repair systems using real issues and pull requests mined from 12 popular open-source Python repositories. Its public leaderboards -- SWE-Bench Lite and SWE-Bench Verified -- have become central platforms for tracking progress and comparing solutions. However, because the submission process does not require detailed documentation, the architectural design and origin of many solutions remain unclear. In this paper, we present the first comprehensive study of all submissions to the SWE-Bench Lite (79 entries) and Verified (99 entries) leaderboards, analyzing 80 unique approaches across dimensions such as submitter type, product availability, LLM usage, and system architecture. Our findings reveal the dominance of proprietary LLMs (especially Claude 3.5), the presence of both agentic and non-agentic designs, and a contributor base spanning from individual developers to large tech companies.
comment: Part of this work (RQ1) has been published at the 2026 IEEE/ACM 48th International Conference on Software Engineering (ICSE-SEIP 2026), DOI: 10.1145/3786583.3786904. The published version is also available on arXiv at arXiv:2602.04449
♻ ☆ GTPO and GRPO-S: Token and Sequence-Level Reward Shaping with Policy Entropy
Reinforcement Learning (RL) is pivotal for enhancing Large Language Model (LLM) reasoning, yet mainstream algorithms such as GRPO and DAPO remain constrained by a coarse-grained credit assignment paradigm, where all tokens within the same response receive the identical reward. In this paper, we propose Dynamic Entropy Weighting, systematically define entropy-based weight ratios $\frac{H_{i,t}}{\sum_{k=1}^{n} H_{k,t}}$ and similar variants to redistribute rewards and get fine-grained rewards through two new algorithms: Group Token Policy Optimization (GTPO), which assigns an entropy-weighted reward to each token and synthesizes token-specific advantage function to drive the model toward optimal path, and the analogous algorithm Sequence-Level GRPO (GRPO-S), which extends this design to the sequence level and exhibits superior stability in long Chain-of-Thought (CoT) reasoning tasks.
♻ ☆ HBO: Hierarchical Balancing Optimization for Fine-Tuning Large Language Models
Fine-tuning large language models (LLMs) on a mixture of diverse datasets poses challenges due to data imbalance and heterogeneity. Existing methods often address these issues across datasets (globally) but overlook the imbalance and heterogeneity within individual datasets (locally), which limits their effectiveness. We introduce Hierarchical Balancing Optimization (HBO), a novel method that enables LLMs to autonomously adjust data allocation during fine-tuning both across datasets (globally) and within each individual dataset (locally). HBO employs a bilevel optimization strategy with two types of actors: a Global Actor, which balances data sampling across different subsets of the training mixture, and several Local Actors, which optimizes data usage within each subset based on difficulty levels. These actors are guided by reward functions derived from the LLM's training state, which measure learning progress and relative performance improvement. We evaluate HBO on three LLM backbones across nine diverse tasks in multilingual and multitask setups. Results show that HBO consistently outperforms existing baselines, achieving significant accuracy gains. Our in-depth analysis further demonstrates that both the global actor and local actors of HBO effectively adjust data usage during fine-tuning. HBO provides a comprehensive solution to the challenges of data imbalance and heterogeneity in LLM fine-tuning, enabling more effective training across diverse datasets.
♻ ☆ Fin-R1: A Large Language Model for Financial Reasoning through Reinforcement Learning
In recent years, general-purpose large language models (LLMs) such as GPT, Gemini, Claude, and DeepSeek have advanced at an unprecedented pace. Despite these achievements, their application to finance remains challenging, due to fragmented data sources, intransparent reasoning processes, and weak transferability to business applications. In response, we introduce Fin-R1, a reasoning LLM designed for financial scenarios. With a compact size of 7 billion parameters, Fin-R1 reduces deployment costs while addressing the aforementioned challenges. Its development follows a two-stage pipeline. First, we construct Fin-R1-Data, a high-quality financial dataset consisting of 60,091 chain-of-thought (CoT) samples, distilled and filtered from multiple authoritative benchmarks to ensure consistency and reliability. Second, we train Fin-R1 using Fin-R1-Data through supervised fine-tuning (SFT), followed by reinforcement learning (RL). This stage substantially improves the model's ability to solve complex financial reasoning tasks, yielding outputs that are both accurate and interpretable. Despite its relatively small parameter scale, Fin-R1 achieves competitive empirical performance across established financial benchmarks and demonstrates practical utility in compliance checking and robo-advisory. Our code is publicly available at https://github.com/SUFE-AIFLM-Lab/Fin-R1, and has already attracted over 700 stars.
♻ ☆ Learning to Summarize by Learning to Quiz: Adversarial Agentic Collaboration for Long Document Summarization
Long document summarization remains a significant challenge for current large language models (LLMs), as existing approaches commonly struggle with information loss, factual inconsistencies, and coherence issues when processing excessively long documents. We propose SummQ, a novel adversarial multi-agent framework that addresses these limitations through collaborative intelligence between specialized agents operating in two complementary domains: summarization and quizzing. Our approach employs summary generators and reviewers that work collaboratively to create and evaluate comprehensive summaries, while quiz generators and reviewers create comprehension questions that serve as continuous quality checks for the summarization process. This adversarial dynamic, enhanced by an examinee agent that validates whether the generated summary contains the information needed to answer the quiz questions, enables iterative refinement through multifaceted feedback mechanisms. We evaluate SummQ on three widely used long document summarization benchmarks. Experimental results demonstrate that our framework significantly outperforms existing state-of-the-art methods across ROUGE and BERTScore metrics, as well as in LLM-as-a-Judge and human evaluations. Our comprehensive analyses reveal the effectiveness of the multi-agent collaboration dynamics, the influence of different agent configurations, and the impact of the quizzing mechanism. This work establishes a new approach for long document summarization that uses adversarial agentic collaboration to improve summarization quality.
♻ ☆ DecompressionLM: Deterministic, Diagnostic, and Zero-Shot Concept Graph Extraction from Language Models
Existing knowledge probing methods rely on pre-defined queries, limiting extraction to known concepts. We introduce DecompressionLM, a stateless framework for zero-shot concept graph extraction that discovers what language models encode without pre-specified queries or shared cross-sequence state. Our method targets three limitations of common decoding-based probing approaches: (i) cross-sequence coupling that concentrates probability mass on high-frequency prefixes, (ii) competitive decoding effects that suppress long-tail concepts, and (iii) scalability constraints arising from sequential exploration. Using Van der Corput low-discrepancy sequences with arithmetic decoding, DecompressionLM enables deterministic, embarrassingly parallel generation without shared state across sequences. Across two model families and five quantization variants, we find that activation-aware quantization (AWQ-4bit) expands concept coverage by 30-170%, while uniform quantization (GPTQ-Int4) induces 71-86% coverage collapse - divergent behaviors not reliably reflected by explanation-level perplexity. Corpus-based verification further reveals a 19.6-point hallucination gap between top- and bottom-ranked MMLU-Pro Law models. DecompressionLM establishes concept coverage as a complementary evaluation dimension for assessing knowledge breadth and factual grounding in compressed models intended for deployment.
♻ ☆ Hallucination is a Consequence of Space-Optimality: A Rate-Distortion Theorem for Membership Testing
Large language models often hallucinate with high confidence on "random facts" that lack inferable patterns. We formalize the memorization of such facts as a membership testing problem, unifying the discrete error metrics of Bloom filters with the continuous log-loss of LLMs. By analyzing this problem in the regime where facts are sparse in the universe of plausible claims, we establish a rate-distortion theorem: the optimal memory efficiency is characterized by the minimum KL divergence between score distributions on facts and non-facts. This theoretical framework provides a distinctive explanation for hallucination: even with optimal training, perfect data, and a simplified "closed world" setting, the information-theoretically optimal strategy under limited capacity is not to abstain or forget, but to assign high confidence to some non-facts, resulting in hallucination. We validate this theory empirically on synthetic data, showing that hallucinations persist as a natural consequence of lossy compression.
♻ ☆ Pattern Enhanced Multi-Turn Jailbreaking: Exploiting Structural Vulnerabilities in Large Language Models
Large language models (LLMs) remain vulnerable to multi-turn jailbreaking attacks that exploit conversational context to bypass safety constraints gradually. These attacks target different harm categories through distinct conversational approaches. Existing multi-turn methods often rely on heuristic or ad hoc exploration strategies, providing limited insight into underlying model weaknesses. The relationship between conversation patterns and model vulnerabilities across harm categories remains poorly understood. We propose Pattern Enhanced Chain of Attack (PE-CoA), a framework of five conversation patterns to construct multi-turn jailbreaks through natural dialogue. Evaluating PE-CoA on twelve LLMs spanning ten harm categories, we achieve state-of-the-art performance, uncovering pattern-specific vulnerabilities and LLM behavioral characteristics: models exhibit distinct weakness profiles, defense to one pattern does not generalize to others, and model families share similar failure modes. These findings highlight limitations of safety training and indicate the need for pattern-aware defenses. Code available on: https://github.com/Ragib-Amin-Nihal/PE-CoA
♻ ☆ Invisible Walls in Cities: Designing LLM Agent to Predict Urban Segregation Experience with Social Media Content
Understanding experienced segregation in urban daily life is crucial for addressing societal inequalities and fostering inclusivity. The abundance of user-generated reviews on social media encapsulates nuanced perceptions and feelings associated with different places, offering rich insights into segregation. However, leveraging this data poses significant challenges due to its vast volume, ambiguity, and confluence of diverse perspectives. To tackle these challenges, we propose a novel Large Language Model (LLM) agent to automate online review mining for segregation prediction. Specifically, we propose a reflective LLM coder to digest social media content into insights consistent with real-world feedback, and eventually produce a codebook capturing key dimensions that signal segregation experience, such as cultural resonance and appeal, accessibility and convenience, and community engagement and local involvement. Guided by the codebook, LLMs can generate both informative review summaries and ratings for segregation prediction. Moreover, we design a REasoning-and-EMbedding (RE'EM) framework, which combines the reasoning and embedding capabilities of language models to integrate multi-channel features for segregation prediction. Experiments on real-world data demonstrate that our agent substantially improves prediction accuracy, with a 22.79% elevation in R$^{2}$ and a 9.33% reduction in MSE. The derived codebook is generalizable across three different cities, consistently improving prediction accuracy. Moreover, our user study confirms that the codebook-guided summaries provide cognitive gains for human participants in perceiving places of interest (POIs)' social inclusiveness. Our study marks an important step toward understanding implicit social barriers and inequalities, demonstrating the great potential of promoting social inclusiveness with Web technology.
comment: 11 pages, 6 figures. This paper has been accepted at The ACM Web Conference 2026
♻ ☆ In-context Time Series Predictor ICLR 2025
Recent Transformer-based large language models (LLMs) demonstrate in-context learning ability to perform various functions based solely on the provided context, without updating model parameters. To fully utilize the in-context capabilities in time series forecasting (TSF) problems, unlike previous Transformer-based or LLM-based time series forecasting methods, we reformulate "time series forecasting tasks" as input tokens by constructing a series of (lookback, future) pairs within the tokens. This method aligns more closely with the inherent in-context mechanisms, and is more parameter-efficient without the need of using pre-trained LLM parameters. Furthermore, it addresses issues such as overfitting in existing Transformer-based TSF models, consistently achieving better performance across full-data, few-shot, and zero-shot settings compared to previous architectures.
comment: Camera-ready version. Accepted at ICLR 2025
♻ ☆ PASH at TREC 2021 Deep Learning Track: Generative Enhanced Model for Multi-stage Ranking
This paper describes the PASH participation in TREC 2021 Deep Learning Track. In the recall stage, we adopt a scheme combining sparse and dense retrieval method. In the multi-stage ranking phase, point-wise and pair-wise ranking strategies are used one after another based on model continual pre-trained on general knowledge and document-level data. Compared to TREC 2020 Deep Learning Track, we have additionally introduced the generative model T5 to further enhance the performance.
comment: TREC 2021
♻ ☆ Verifying the Verifiers: Unveiling Pitfalls and Potentials in Fact Verifiers
Fact verification is essential for ensuring the reliability of LLM applications. In this study, we evaluate 12 pre-trained LLMs and one specialized fact-verifier, including frontier LLMs and open-weight reasoning LLMs, using a collection of examples from 14 fact-checking benchmarks. We share three findings intended to guide future development of more robust fact verifiers. First, we highlight the importance of addressing annotation errors and ambiguity in datasets, demonstrating that approximately 16\% of ambiguous or incorrectly labeled data substantially influences model rankings. Neglecting this issue may result in misleading conclusions during comparative evaluations, and we suggest using a systematic pipeline utilizing LLM-as-a-judge to help identify these issues at scale. Second, we discover that frontier LLMs with few-shot in-context examples, often overlooked in previous works, achieve top-tier performance. We therefore recommend that future studies include comparisons with these simple yet highly effective baselines. Lastly, despite their effectiveness, frontier LLMs incur substantial costs, motivating the development of small, fine-tuned fact verifiers. We show that these small models still have room for improvement, particularly on instances that require complex reasoning. Encouragingly, we demonstrate that augmenting training with synthetic multi-hop reasoning data significantly enhances their capabilities in such instances. We release our code, model, and dataset at https://github.com/just1nseo/verifying-the-verifiers.
comment: Accepted to COLM 2025
♻ ☆ Patterns in the Transition From Founder-Leadership to Community Governance of Open Source
Open digital public infrastructure needs community management to ensure accountability, sustainability, and robustness. Yet open-source projects often rely on centralized decision-making, and the determinants of successful community management remain unclear. We analyze 637 GitHub repositories to trace transitions from founder-led to shared governance. Specifically, we document trajectories to community governance by extracting institutional roles, actions, and deontic cues from version-controlled project constitutions GOVERNANCE .md. With a semantic parsing pipeline, we cluster elements into broader role and action types. We find roles and actions grow, and regulation becomes more balanced, reflecting increases in governance scope and differentiation over time. Rather than shifting tone, communities grow by layering and refining responsibilities. As transitions to community management mature, projects increasingly regulate ecosystem-level relationships and add definition to project oversight roles. Overall, this work offers a scalable pipeline for tracking the growth and development of community governance regimes from open-source software's familiar default of founder-ownership.
♻ ☆ Position: The Real Barrier to LLM Agent Usability is Agentic ROI
Large Language Model (LLM) agents represent a promising shift in human-AI interaction, moving beyond passive prompt-response systems to autonomous agents capable of reasoning, planning, and goal-directed action. While LLM agents are technically capable of performing a broad range of tasks, not all of these capabilities translate into meaningful usability. This position paper argues that the central question for LLM agent usability is no longer whether a task can be automated, but whether it delivers sufficient Agentic Return on Investment (Agentic ROI). Agentic ROI reframes evaluation from raw performance to a holistic, utility-driven perspective, guiding when, where, and for whom LLM agents should be deployed. Despite widespread application in high-ROI tasks like coding and scientific research, we identify a critical usability gap in mass-market, everyday applications. To address this, we propose a zigzag developmental trajectory: first scaling up to improve information gain and time savings, then scaling down to reduce cost. We present a strategic roadmap across these phases to make LLM agents truly usable, accessible, and scalable in real-world applications.
♻ ☆ Mil-SCORE: Benchmarking Long-Context Geospatial Reasoning and Planning in Large Language Models
As large language models (LLMs) are applied to increasingly longer and more complex tasks, there is a growing need for realistic long-context benchmarks that require selective reading and integration of heterogeneous, multi-modal information sources. This need is especially acute for geospatial planning problems, such as those found in planning for large-scale military operations, which demand fast and accurate reasoning over maps, orders, intelligence reports, and other distributed data. To address this gap, we present MilSCORE (Military Scenario Contextual Reasoning), to our knowledge the first scenario-level dataset of expert-authored, multi-hop questions grounded in a complex, simulated military planning scenario used for training. MilSCORE is designed to evaluate high-stakes decision-making and planning, probing LLMs' ability to combine tactical and spatial reasoning across multiple sources and to reason over long-horizon, geospatially rich context. The benchmark includes a diverse set of question types across seven categories targeting both factual recall and multi-step reasoning about constraints, strategy, and spatial analysis. We provide an evaluation protocol and report baseline results for a range of contemporary vision-language models. Our findings highlight substantial headroom on MilSCORE, indicating that current systems struggle with realistic, scenario-level long-context planning, and positioning MilSCORE as a challenging testbed for future work.
♻ ☆ Training Data Efficiency in Multimodal Process Reward Models
Multimodal Process Reward Models (MPRMs) are central to step-level supervision for visual reasoning in MLLMs. Training MPRMs typically requires large-scale Monte Carlo (MC)-annotated corpora, incurring substantial training cost. This paper studies the data efficiency for MPRM training. Our preliminary experiments reveal that MPRM training quickly saturates under random subsampling of the training data, indicating substantial redundancy within existing MC-annotated corpora. To explain this, we formalize a theoretical framework and reveal that informative gradient updates depend on two factors: label mixtures of positive/negative steps and label reliability (average MC scores of positive steps). Guided by these insights, we propose the Balanced-Information Score (BIS), which prioritizes both mixture and reliability based on existing MC signals at the rollout level, without incurring any additional cost. Across two backbones (InternVL2.5-8B and Qwen2.5-VL-7B) on VisualProcessBench, BIS-selected subsets consistently match and even surpass the full-data performance at small fractions. Notably, the BIS subset reaches full-data performance using only 10% of the training data, improving over random subsampling by a relative 4.1%.
♻ ☆ CARL: Focusing Agentic Reinforcement Learning on Critical Actions
Agents capable of accomplishing complex tasks through multiple interactions with the environment have emerged as a popular research direction. However, in such multi-step settings, the conventional group-level policy optimization algorithm becomes suboptimal because of its underlying assumption that each action holds equal contribution, which deviates significantly from reality. Our analysis reveals that only a small fraction of actions are critical in determining the final outcome. Building on this insight, we propose CARL, a critical-action-focused reinforcement learning algorithm tailored for long-horizon agentic reasoning. CARL leverages entropy as a heuristic proxy for action criticality and achieves focused training by assigning rewards to high-criticality actions while excluding low-criticality actions from model updates, avoiding noisy credit assignment and redundant computation. Extensive experiments demonstrate that CARL achieves both stronger performance and higher efficiency across diverse evaluation settings. The source code will be publicly available.
comment: 17 pages, 5 figures
♻ ☆ FASA: Frequency-aware Sparse Attention ICLR 2026
The deployment of Large Language Models (LLMs) faces a critical bottleneck when handling lengthy inputs: the prohibitive memory footprint of the Key Value (KV) cache. To address this bottleneck, the token pruning paradigm leverages attention sparsity to selectively retain a small, critical subset of tokens. However, existing approaches fall short, with static methods risking irreversible information loss and dynamic strategies employing heuristics that insufficiently capture the query-dependent nature of token importance. We propose FASA, a novel framework that achieves query-aware token eviction by dynamically predicting token importance. FASA stems from a novel insight into RoPE: the discovery of functional sparsity at the frequency-chunk (FC) level. Our key finding is that a small, identifiable subset of "dominant" FCs consistently exhibits high contextual agreement with the full attention head. This provides a robust and computationally free proxy for identifying salient tokens. Building on this insight, FASA first identifies a critical set of tokens using dominant FCs, and then performs focused attention computation solely on this pruned subset. Across a spectrum of long-context tasks, from sequence modeling to complex CoT reasoning, FASA consistently outperforms all token-eviction baselines and achieves near-oracle accuracy, demonstrating remarkable robustness even under constraint budgets. Notably, on LongBench-V1, FASA reaches nearly 100\% of full-KV performance when only keeping 256 tokens, and achieves 2.56$\times$ speedup using just 18.9\% of the cache on AIME24.
comment: Accepted by ICLR 2026
♻ ☆ Real-Time Detection of Hallucinated Entities in Long-Form Generation
Large language models are now routinely used in high-stakes applications where hallucinations can cause serious harm, such as medical consultations or legal advice. Existing hallucination detection methods, however, are impractical for real-world use, as they are either limited to short factual queries or require costly external verification. We present a cheap, scalable method for real-time identification of hallucinated tokens in long-form generations, and scale it effectively to 70B parameter models. Our approach targets entity-level hallucinations-e.g., fabricated names, dates, citations-rather than claim-level, thereby naturally mapping to token-level labels and enabling streaming detection. We develop an annotation methodology that leverages web search to annotate model responses with grounded labels indicating which tokens correspond to fabricated entities. This dataset enables us to train effective hallucination classifiers with simple and efficient methods such as linear probes. Evaluating across four model families, our classifiers consistently outperform baselines on long-form responses, including more expensive methods such as semantic entropy (e.g., AUC 0.90 vs 0.71 for Llama-3.3-70B), and are also an improvement in short-form question-answering settings. Despite being trained only to detect hallucinated entities, our probes effectively detect incorrect answers in mathematical reasoning tasks, indicating generalization beyond entities. While our annotation methodology is expensive, we find that annotated responses from one model can be used to train effective classifiers on other models; accordingly, we publicly release our datasets to facilitate reuse. Overall, our work suggests a promising new approach for scalable, real-world hallucination detection.
♻ ☆ Improving Diffusion Language Model Decoding through Joint Search in Generation Order and Token Space
Diffusion Language Models (DLMs) offer order-agnostic generation that can explore many possible decoding trajectories. However, current decoding methods commit to a single trajectory, limiting exploration in trajectory space. We introduce Order-Token Search to explore this space through jointly searching over generation order and token values. Its core is a likelihood estimator that scores denoising actions, enabling stable pruning and efficient exploration of diverse trajectories. Across mathematical reasoning and coding benchmarks, Order-Token Search consistently outperforms baselines on GSM8K, MATH500, Countdown, and HumanEval (3.1%, 3.8%, 7.9%, and 6.8% absolute over backbone), matching or surpassing diffu-GRPO post-trained d1-LLaDA. Our work establishes joint search as a key component for advancing decoding in DLMs.
♻ ☆ Horizon-LM: A RAM-Centric Architecture for LLM Training
The rapid growth of large language models (LLMs) has outpaced the evolution of single-GPU hardware, making model scale increasingly constrained by memory capacity rather than computation. While modern training systems extend GPU memory through distributed parallelism and offloading across CPU and storage tiers, they fundamentally retain a GPU-centric execution paradigm in which GPUs host persistent model replicas and full autograd graphs. As a result, scaling large models remains tightly coupled to multi-GPU clusters, complex distributed runtimes, and unpredictable host memory consumption, creating substantial barriers for node-scale post-training workloads such as instruction tuning, alignment, and domain adaptation. We present Horizon-LM, a memory-centric training system that redefines the roles of CPU and GPU for large-model optimization. Horizon-LM treats host memory as the authoritative parameter store and uses GPUs solely as transient compute engines through a CPU-master, GPU-template execution model. By eliminating persistent GPU-resident modules and autograd graphs, employing explicit recomputation with manual gradient propagation, and introducing a pipelined double-buffered execution engine, Horizon-LM decouples model scale from GPU count and bounds memory usage to the theoretical parameter footprint. On a single H200 GPU with 1.5\,TB host RAM, Horizon-LM reliably trains models up to 120B parameters. On a standard single A100 machine, Horizon-LM achieves up to 12.2$\times$ higher training throughput than DeepSpeed ZeRO-3 with CPU offloading while preserving numerical correctness. Across platforms and scales, Horizon-LM sustains high device utilization and predictable memory growth, demonstrating that host memory, not GPU memory, defines the true feasibility boundary for node-scale large-model training.
♻ ☆ LittleBit: Ultra Low-Bit Quantization via Latent Factorization NeurIPS 2025
The deployment of large language models (LLMs) is frequently hindered by prohibitive memory and computational requirements. While quantization mitigates these bottlenecks, maintaining model fidelity in the sub-1-bit regime remains a persistent challenge. In this paper, we introduce LittleBit, a novel framework for extreme LLM compression. We target quantization rates as low as $0.1$ bits per weight (BPW), achieving a memory reduction of approximately $31\times$, which effectively compresses Llama2-13B to under $0.9$ GB. We represent weights via low-rank latent matrix factorization and subsequently binarize the resulting factors. To counteract the information loss inherent to such drastic precision reduction, we integrate a multi-scale compensation mechanism that learns importance parameters across row, column, and latent dimensions. Two primary contributions enable effective training: Dual Sign-Value-Independent Decomposition (Dual-SVID) for quantization-aware training (QAT) initialization, and Residual Compensation to minimize approximation errors. Extensive experiments confirm the superiority of LittleBit in the sub-1-bit domain; for instance, our method at $0.1$ BPW surpasses the performance of leading techniques operating at $0.7$ BPW on Llama2-7B. We establish a new size-performance trade-off -- unlocking a potential $11.6\times$ inference speedup relative to FP16 -- and render powerful LLMs practical for resource-constrained environments. Our code is available at https://github.com/SamsungLabs/LittleBit.
comment: Accepted to NeurIPS 2025. Banseok Lee and Dongkyu Kim contributed equally
♻ ☆ The Gradient-Causal Gap: Why Gradient Importance Fails on Complex Tasks ICLR
Removing ''important'' high-gradient components from a neural network can improve generalization, while removing unimportant'' low-gradient components can destroy it. We demonstrate this paradox by formalizing the \textit{Gradient-Causal Gap} in Transformers trained on algorithmic tasks. While gradient magnitude and causal importance align on simple tasks ($ρ=0.73$ for reversal), this relationship collapses as task complexity increases ($ρ=0.32$ for sorting), sometimes becoming inverted ($ρ=-0.11$). Pruning experiments reveal that gradient magnitude is not merely inaccurate but \textit{unpredictably} so. Removing low-gradient ''Hidden Heroes'' consistently devastates OOD accuracy ($-32\%$). Removing high-gradient ''Gradient Bloats'' is a coin flip: harmless in most seeds (indicating optimization noise), catastrophic in others (indicating overfitting circuits). This unpredictability means gradient-based pruning cannot reliably preserve model capabilities.
comment: 8 pages, 4 figures. Under Review. Code:https://anonymous.4open.science/r/ICLR_2026_LIT-workshop_CG-D42B
♻ ☆ Your Latent Reasoning is Secretly Policy Improvement Operator
Recently, small models with latent recursion have obtained promising results on complex reasoning tasks. These results are typically explained by the theory that such recursion increases a networks depth, allowing it to compactly emulate the capacity of larger models. However, the performance of recursively added layers remains behind the capabilities of one pass models with the same feed forward depth. This means that in the looped version, not every recursive step effectively contributes to depth. This raises the question: when and why does latent reasoning improve performance, and when does it result in dead compute? In our work, we analyze the algorithms that latent reasoning provides answer to this question. We show that latent reasoning can be formalized as a classifier free guidance and policy improvement algorithm. Building on these insights, we propose to use a training schemes from reinforcement learning and diffusion methods for latent reasoning models. Using the Tiny Recursive Model as our testbed, we show that with our modifications we can avoid dead compute steps and reduce the total number of forward passes by 18x while maintaining performance. Broadly speaking, we show how a policy improvement perspective on recursive steps can explain model behavior and provide insights for further improvements.
♻ ☆ STACK: Adversarial Attacks on LLM Safeguard Pipelines
Frontier AI developers are relying on layers of safeguards to protect against catastrophic misuse of AI systems. Anthropic and OpenAI guard their latest Opus 4 model and GPT-5 models using such defense pipelines, and other frontier developers including Google DeepMind pledge to soon deploy similar defenses. However, the security of such pipelines is unclear, with limited prior work evaluating or attacking these pipelines. We address this gap by developing and red-teaming an open-source defense pipeline. First, we find that a novel few-shot-prompted input and output classifier outperforms state-of-the-art open-weight safeguard model ShieldGemma across three attacks and two datasets, reducing the attack success rate (ASR) to 0% on the catastrophic misuse dataset ClearHarm. Second, we introduce a STaged AttaCK (STACK) procedure that achieves 71% ASR on ClearHarm in a black-box attack against the few-shot-prompted classifier pipeline. Finally, we also evaluate STACK in a transfer setting, achieving 33% ASR, providing initial evidence that it is feasible to design attacks with no access to the target pipeline. We conclude by suggesting specific mitigations that developers could use to thwart staged attacks.
comment: Add results on other models and datasets
Computer Vision and Pattern Recognition 150
☆ Shared LoRA Subspaces for almost Strict Continual Learning
Adapting large pretrained models to new tasks efficiently and continually is crucial for real-world deployment but remains challenging due to catastrophic forgetting and the high cost of retraining. While parameter-efficient tuning methods like low rank adaptation (LoRA) reduce computational demands, they lack mechanisms for strict continual learning and knowledge integration, without relying on data replay, or multiple adapters. We propose Share, a novel approach to parameter efficient continual finetuning that learns and dynamically updates a single, shared low-rank subspace, enabling seamless adaptation across multiple tasks and modalities. Share constructs a foundational subspace that extracts core knowledge from past tasks and incrementally integrates new information by identifying essential subspace directions. Knowledge from each new task is incorporated into this evolving subspace, facilitating forward knowledge transfer, while minimizing catastrophic interference. This approach achieves up to 100x parameter reduction and 281x memory savings over traditional LoRA methods, maintaining performance comparable to jointly trained models. A single Share model can replace hundreds of task-specific LoRA adapters, supporting scalable, asynchronous continual learning. Experiments across image classification, natural language understanding, 3D pose estimation, and text-to-image generation validate its effectiveness, making Share a practical and scalable solution for lifelong learning in large-scale AI systems.
☆ Pseudo-Invertible Neural Networks
The Moore-Penrose Pseudo-inverse (PInv) serves as the fundamental solution for linear systems. In this paper, we propose a natural generalization of PInv to the nonlinear regime in general and to neural networks in particular. We introduce Surjective Pseudo-invertible Neural Networks (SPNN), a class of architectures explicitly designed to admit a tractable non-linear PInv. The proposed non-linear PInv and its implementation in SPNN satisfy fundamental geometric properties. One such property is null-space projection or "Back-Projection", $x' = x + A^\dagger(y-Ax)$, which moves a sample $x$ to its closest consistent state $x'$ satisfying $Ax=y$. We formalize Non-Linear Back-Projection (NLBP), a method that guarantees the same consistency constraint for non-linear mappings $f(x)=y$ via our defined PInv. We leverage SPNNs to expand the scope of zero-shot inverse problems. Diffusion-based null-space projection has revolutionized zero-shot solving for linear inverse problems by exploiting closed-form back-projection. We extend this method to non-linear degradations. Here, "degradation" is broadly generalized to include any non-linear loss of information, spanning from optical distortions to semantic abstractions like classification. This approach enables zero-shot inversion of complex degradations and allows precise semantic control over generative outputs without retraining the diffusion prior.
☆ Predicting Camera Pose from Perspective Descriptions for Spatial Reasoning
Multi-image spatial reasoning remains challenging for current multimodal large language models (MLLMs). While single-view perception is inherently 2D, reasoning over multiple views requires building a coherent scene understanding across viewpoints. In particular, we study perspective taking, where a model must build a coherent 3D understanding from multi-view observations and use it to reason from a new, language-specified viewpoint. We introduce CAMCUE, a pose-aware multi-image framework that uses camera pose as an explicit geometric anchor for cross-view fusion and novel-view reasoning. CAMCUE injects per-view pose into visual tokens, grounds natural-language viewpoint descriptions to a target camera pose, and synthesizes a pose-conditioned imagined target view to support answering. To support this setting, we curate CAMCUE-DATA with 27,668 training and 508 test instances pairing multi-view images and poses with diverse target-viewpoint descriptions and perspective-shift questions. We also include human-annotated viewpoint descriptions in the test split to evaluate generalization to human language. CAMCUE improves overall accuracy by 9.06% and predicts target poses from natural-language viewpoint descriptions with over 90% rotation accuracy within 20° and translation accuracy within a 0.5 error threshold. This direct grounding avoids expensive test-time search-and-match, reducing inference time from 256.6s to 1.45s per example and enabling fast, interactive use in real-world scenarios.
☆ SwimBird: Eliciting Switchable Reasoning Mode in Hybrid Autoregressive MLLMs
Multimodal Large Language Models (MLLMs) have made remarkable progress in multimodal perception and reasoning by bridging vision and language. However, most existing MLLMs perform reasoning primarily with textual CoT, which limits their effectiveness on vision-intensive tasks. Recent approaches inject a fixed number of continuous hidden states as "visual thoughts" into the reasoning process and improve visual performance, but often at the cost of degraded text-based logical reasoning. We argue that the core limitation lies in a rigid, pre-defined reasoning pattern that cannot adaptively choose the most suitable thinking modality for different user queries. We introduce SwimBird, a reasoning-switchable MLLM that dynamically switches among three reasoning modes conditioned on the input: (1) text-only reasoning, (2) vision-only reasoning (continuous hidden states as visual thoughts), and (3) interleaved vision-text reasoning. To enable this capability, we adopt a hybrid autoregressive formulation that unifies next-token prediction for textual thoughts with next-embedding prediction for visual thoughts, and design a systematic reasoning-mode curation strategy to construct SwimBird-SFT-92K, a diverse supervised fine-tuning dataset covering all three reasoning patterns. By enabling flexible, query-adaptive mode selection, SwimBird preserves strong textual logic while substantially improving performance on vision-dense tasks. Experiments across diverse benchmarks covering textual reasoning and challenging visual understanding demonstrate that SwimBird achieves state-of-the-art results and robust gains over prior fixed-pattern multimodal reasoning methods.
comment: Project Page: https://accio-lab.github.io/SwimBird
☆ CommCP: Efficient Multi-Agent Coordination via LLM-Based Communication with Conformal Prediction ICRA 2026
To complete assignments provided by humans in natural language, robots must interpret commands, generate and answer relevant questions for scene understanding, and manipulate target objects. Real-world deployments often require multiple heterogeneous robots with different manipulation capabilities to handle different assignments cooperatively. Beyond the need for specialized manipulation skills, effective information gathering is important in completing these assignments. To address this component of the problem, we formalize the information-gathering process in a fully cooperative setting as an underexplored multi-agent multi-task Embodied Question Answering (MM-EQA) problem, which is a novel extension of canonical Embodied Question Answering (EQA), where effective communication is crucial for coordinating efforts without redundancy. To address this problem, we propose CommCP, a novel LLM-based decentralized communication framework designed for MM-EQA. Our framework employs conformal prediction to calibrate the generated messages, thereby minimizing receiver distractions and enhancing communication reliability. To evaluate our framework, we introduce an MM-EQA benchmark featuring diverse, photo-realistic household scenarios with embodied questions. Experimental results demonstrate that CommCP significantly enhances the task success rate and exploration efficiency over baselines. The experiment videos, code, and dataset are available on our project website: https://comm-cp.github.io.
comment: IEEE International Conference on Robotics and Automation (ICRA 2026); Project Website: https://comm-cp.github.io/
☆ Thinking with Geometry: Active Geometry Integration for Spatial Reasoning
Recent progress in spatial reasoning with Multimodal Large Language Models (MLLMs) increasingly leverages geometric priors from 3D encoders. However, most existing integration strategies remain passive: geometry is exposed as a global stream and fused in an indiscriminate manner, which often induces semantic-geometry misalignment and redundant signals. We propose GeoThinker, a framework that shifts the paradigm from passive fusion to active perception. Instead of feature mixing, GeoThinker enables the model to selectively retrieve geometric evidence conditioned on its internal reasoning demands. GeoThinker achieves this through Spatial-Grounded Fusion applied at carefully selected VLM layers, where semantic visual priors selectively query and integrate task-relevant geometry via frame-strict cross-attention, further calibrated by Importance Gating that biases per-frame attention toward task-relevant structures. Comprehensive evaluation results show that GeoThinker sets a new state-of-the-art in spatial intelligence, achieving a peak score of 72.6 on the VSI-Bench. Furthermore, GeoThinker demonstrates robust generalization and significantly improved spatial perception across complex downstream scenarios, including embodied referring and autonomous driving. Our results indicate that the ability to actively integrate spatial structures is essential for next-generation spatial intelligence. Code can be found at https://github.com/Li-Hao-yuan/GeoThinker.
☆ InterPrior: Scaling Generative Control for Physics-Based Human-Object Interactions
Humans rarely plan whole-body interactions with objects at the level of explicit whole-body movements. High-level intentions, such as affordance, define the goal, while coordinated balance, contact, and manipulation can emerge naturally from underlying physical and motor priors. Scaling such priors is key to enabling humanoids to compose and generalize loco-manipulation skills across diverse contexts while maintaining physically coherent whole-body coordination. To this end, we introduce InterPrior, a scalable framework that learns a unified generative controller through large-scale imitation pretraining and post-training by reinforcement learning. InterPrior first distills a full-reference imitation expert into a versatile, goal-conditioned variational policy that reconstructs motion from multimodal observations and high-level intent. While the distilled policy reconstructs training behaviors, it does not generalize reliably due to the vast configuration space of large-scale human-object interactions. To address this, we apply data augmentation with physical perturbations, and then perform reinforcement learning finetuning to improve competence on unseen goals and initializations. Together, these steps consolidate the reconstructed latent skills into a valid manifold, yielding a motion prior that generalizes beyond the training data, e.g., it can incorporate new behaviors such as interactions with unseen objects. We further demonstrate its effectiveness for user-interactive control and its potential for real robot deployment.
comment: Webpage: https://sirui-xu.github.io/InterPrior/
☆ V-Retrver: Evidence-Driven Agentic Reasoning for Universal Multimodal Retrieval
Multimodal Large Language Models (MLLMs) have recently been applied to universal multimodal retrieval, where Chain-of-Thought (CoT) reasoning improves candidate reranking. However, existing approaches remain largely language-driven, relying on static visual encodings and lacking the ability to actively verify fine-grained visual evidence, which often leads to speculative reasoning in visually ambiguous cases. We propose V-Retrver, an evidence-driven retrieval framework that reformulates multimodal retrieval as an agentic reasoning process grounded in visual inspection. V-Retrver enables an MLLM to selectively acquire visual evidence during reasoning via external visual tools, performing a multimodal interleaved reasoning process that alternates between hypothesis generation and targeted visual verification.To train such an evidence-gathering retrieval agent, we adopt a curriculum-based learning strategy combining supervised reasoning activation, rejection-based refinement, and reinforcement learning with an evidence-aligned objective. Experiments across multiple multimodal retrieval benchmarks demonstrate consistent improvements in retrieval accuracy (with 23.0% improvements on average), perception-driven reasoning reliability, and generalization.
☆ Splat and Distill: Augmenting Teachers with Feed-Forward 3D Reconstruction For 3D-Aware Distillation ICLR 2026
Vision Foundation Models (VFMs) have achieved remarkable success when applied to various downstream 2D tasks. Despite their effectiveness, they often exhibit a critical lack of 3D awareness. To this end, we introduce Splat and Distill, a framework that instills robust 3D awareness into 2D VFMs by augmenting the teacher model with a fast, feed-forward 3D reconstruction pipeline. Given 2D features produced by a teacher model, our method first lifts these features into an explicit 3D Gaussian representation, in a feedforward manner. These 3D features are then ``splatted" onto novel viewpoints, producing a set of novel 2D feature maps used to supervise the student model, ``distilling" geometrically grounded knowledge. By replacing slow per-scene optimization of prior work with our feed-forward lifting approach, our framework avoids feature-averaging artifacts, creating a dynamic learning process where the teacher's consistency improves alongside that of the student. We conduct a comprehensive evaluation on a suite of downstream tasks, including monocular depth estimation, surface normal estimation, multi-view correspondence, and semantic segmentation. Our method significantly outperforms prior works, not only achieving substantial gains in 3D awareness but also enhancing the underlying semantic richness of 2D features. Project page is available at https://davidshavin4.github.io/Splat-and-Distill/
comment: Accepted to ICLR 2026
☆ Context Forcing: Consistent Autoregressive Video Generation with Long Context
Recent approaches to real-time long video generation typically employ streaming tuning strategies, attempting to train a long-context student using a short-context (memoryless) teacher. In these frameworks, the student performs long rollouts but receives supervision from a teacher limited to short 5-second windows. This structural discrepancy creates a critical \textbf{student-teacher mismatch}: the teacher's inability to access long-term history prevents it from guiding the student on global temporal dependencies, effectively capping the student's context length. To resolve this, we propose \textbf{Context Forcing}, a novel framework that trains a long-context student via a long-context teacher. By ensuring the teacher is aware of the full generation history, we eliminate the supervision mismatch, enabling the robust training of models capable of long-term consistency. To make this computationally feasible for extreme durations (e.g., 2 minutes), we introduce a context management system that transforms the linearly growing context into a \textbf{Slow-Fast Memory} architecture, significantly reducing visual redundancy. Extensive results demonstrate that our method enables effective context lengths exceeding 20 seconds -- 2 to 10 times longer than state-of-the-art methods like LongLive and Infinite-RoPE. By leveraging this extended context, Context Forcing preserves superior consistency across long durations, surpassing state-of-the-art baselines on various long video evaluation metrics.
☆ MambaVF: State Space Model for Efficient Video Fusion
Video fusion is a fundamental technique in various video processing tasks. However, existing video fusion methods heavily rely on optical flow estimation and feature warping, resulting in severe computational overhead and limited scalability. This paper presents MambaVF, an efficient video fusion framework based on state space models (SSMs) that performs temporal modeling without explicit motion estimation. First, by reformulating video fusion as a sequential state update process, MambaVF captures long-range temporal dependencies with linear complexity while significantly reducing computation and memory costs. Second, MambaVF proposes a lightweight SSM-based fusion module that replaces conventional flow-guided alignment via a spatio-temporal bidirectional scanning mechanism. This module enables efficient information aggregation across frames. Extensive experiments across multiple benchmarks demonstrate that our MambaVF achieves state-of-the-art performance in multi-exposure, multi-focus, infrared-visible, and medical video fusion tasks. We highlight that MambaVF enjoys high efficiency, reducing up to 92.25% of parameters and 88.79% of computational FLOPs and a 2.1x speedup compared to existing methods. Project page: https://mambavf.github.io
☆ GenArena: How Can We Achieve Human-Aligned Evaluation for Visual Generation Tasks?
The rapid advancement of visual generation models has outpaced traditional evaluation approaches, necessitating the adoption of Vision-Language Models as surrogate judges. In this work, we systematically investigate the reliability of the prevailing absolute pointwise scoring standard, across a wide spectrum of visual generation tasks. Our analysis reveals that this paradigm is limited due to stochastic inconsistency and poor alignment with human perception. To resolve these limitations, we introduce GenArena, a unified evaluation framework that leverages a pairwise comparison paradigm to ensure stable and human-aligned evaluation. Crucially, our experiments uncover a transformative finding that simply adopting this pairwise protocol enables off-the-shelf open-source models to outperform top-tier proprietary models. Notably, our method boosts evaluation accuracy by over 20% and achieves a Spearman correlation of 0.86 with the authoritative LMArena leaderboard, drastically surpassing the 0.36 correlation of pointwise methods. Based on GenArena, we benchmark state-of-the-art visual generation models across diverse tasks, providing the community with a rigorous and automated evaluation standard for visual generation.
comment: Project Page: https://genarena.github.io/, Code: https://github.com/ruihanglix/genarena
☆ VisRefiner: Learning from Visual Differences for Screenshot-to-Code Generation
Screenshot-to-code generation aims to translate user interface screenshots into executable frontend code that faithfully reproduces the target layout and style. Existing multimodal large language models perform this mapping directly from screenshots but are trained without observing the visual outcomes of their generated code. In contrast, human developers iteratively render their implementation, compare it with the design, and learn how visual differences relate to code changes. Inspired by this process, we propose VisRefiner, a training framework that enables models to learn from visual differences between rendered predictions and reference designs. We construct difference-aligned supervision that associates visual discrepancies with corresponding code edits, allowing the model to understand how appearance variations arise from implementation changes. Building on this, we introduce a reinforcement learning stage for self-refinement, where the model improves its generated code by observing both the rendered output and the target design, identifying their visual differences, and updating the code accordingly. Experiments show that VisRefiner substantially improves single-step generation quality and layout fidelity, while also endowing models with strong self-refinement ability. These results demonstrate the effectiveness of learning from visual differences for advancing screenshot-to-code generation.
☆ RISE-Video: Can Video Generators Decode Implicit World Rules?
While generative video models have achieved remarkable visual fidelity, their capacity to internalize and reason over implicit world rules remains a critical yet under-explored frontier. To bridge this gap, we present RISE-Video, a pioneering reasoning-oriented benchmark for Text-Image-to-Video (TI2V) synthesis that shifts the evaluative focus from surface-level aesthetics to deep cognitive reasoning. RISE-Video comprises 467 meticulously human-annotated samples spanning eight rigorous categories, providing a structured testbed for probing model intelligence across diverse dimensions, ranging from commonsense and spatial dynamics to specialized subject domains. Our framework introduces a multi-dimensional evaluation protocol consisting of four metrics: \textit{Reasoning Alignment}, \textit{Temporal Consistency}, \textit{Physical Rationality}, and \textit{Visual Quality}. To further support scalable evaluation, we propose an automated pipeline leveraging Large Multimodal Models (LMMs) to emulate human-centric assessment. Extensive experiments on 11 state-of-the-art TI2V models reveal pervasive deficiencies in simulating complex scenarios under implicit constraints, offering critical insights for the advancement of future world-simulating generative models.
comment: 38 pages, 16 figures, 3 tables; Code: https://github.com/VisionXLab/RISE-Video; HuggingFace: https://huggingface.co/datasets/VisionXLab/RISE-Video
☆ LSA: Localized Semantic Alignment for Enhancing Temporal Consistency in Traffic Video Generation
Controllable video generation has emerged as a versatile tool for autonomous driving, enabling realistic synthesis of traffic scenarios. However, existing methods depend on control signals at inference time to guide the generative model towards temporally consistent generation of dynamic objects, limiting their utility as scalable and generalizable data engines. In this work, we propose Localized Semantic Alignment (LSA), a simple yet effective framework for fine-tuning pre-trained video generation models. LSA enhances temporal consistency by aligning semantic features between ground-truth and generated video clips. Specifically, we compare the output of an off-the-shelf feature extraction model between the ground-truth and generated video clips localized around dynamic objects inducing a semantic feature consistency loss. We fine-tune the base model by combining this loss with the standard diffusion loss. The model fine-tuned for a single epoch with our novel loss outperforms the baselines in common video generation evaluation metrics. To further test the temporal consistency in generated videos we adapt two additional metrics from object detection task, namely mAP and mIoU. Extensive experiments on nuScenes and KITTI datasets show the effectiveness of our approach in enhancing temporal consistency in video generation without the need for external control signals during inference and any computational overheads.
comment: Accepted to IEEE IV 2026. 8 pages, 3 figures. Code available at https://github.com/mirlanium/LSA
☆ Better Source, Better Flow: Learning Condition-Dependent Source Distribution for Flow Matching
Flow matching has recently emerged as a promising alternative to diffusion-based generative models, particularly for text-to-image generation. Despite its flexibility in allowing arbitrary source distributions, most existing approaches rely on a standard Gaussian distribution, a choice inherited from diffusion models, and rarely consider the source distribution itself as an optimization target in such settings. In this work, we show that principled design of the source distribution is not only feasible but also beneficial at the scale of modern text-to-image systems. Specifically, we propose learning a condition-dependent source distribution under flow matching objective that better exploit rich conditioning signals. We identify key failure modes that arise when directly incorporating conditioning into the source, including distributional collapse and instability, and show that appropriate variance regularization and directional alignment between source and target are critical for stable and effective learning. We further analyze how the choice of target representation space impacts flow matching with structured sources, revealing regimes in which such designs are most effective. Extensive experiments across multiple text-to-image benchmarks demonstrate consistent and robust improvements, including up to a 3x faster convergence in FID, highlighting the practical benefits of a principled source distribution design for conditional flow matching.
comment: Project Page: https://junwankimm.github.io/CSFM
☆ Multi-Scale Global-Instance Prompt Tuning for Continual Test-time Adaptation in Medical Image Segmentation
Distribution shift is a common challenge in medical images obtained from different clinical centers, significantly hindering the deployment of pre-trained semantic segmentation models in real-world applications across multiple domains. Continual Test-Time Adaptation(CTTA) has emerged as a promising approach to address cross-domain shifts during continually evolving target domains. Most existing CTTA methods rely on incrementally updating model parameters, which inevitably suffer from error accumulation and catastrophic forgetting, especially in long-term adaptation. Recent prompt-tuning-based works have shown potential to mitigate the two issues above by updating only visual prompts. While these approaches have demonstrated promising performance, several limitations remain:1)lacking multi-scale prompt diversity, 2)inadequate incorporation of instance-specific knowledge, and 3)risk of privacy leakage. To overcome these limitations, we propose Multi-scale Global-Instance Prompt Tuning(MGIPT), to enhance scale diversity of prompts and capture both global- and instance-level knowledge for robust CTTA. Specifically, MGIPT consists of an Adaptive-scale Instance Prompt(AIP) and a Multi-scale Global-level Prompt(MGP). AIP dynamically learns lightweight and instance-specific prompts to mitigate error accumulation with adaptive optimal-scale selection mechanism. MGP captures domain-level knowledge across different scales to ensure robust adaptation with anti-forgetting capabilities. These complementary components are combined through a weighted ensemble approach, enabling effective dual-level adaptation that integrates both global and local information. Extensive experiments on medical image segmentation benchmarks demonstrate that our MGIPT outperforms state-of-the-art methods, achieving robust adaptation across continually changing target domains.
comment: 8 pages, BIBM2025
☆ CLIP-Map: Structured Matrix Mapping for Parameter-Efficient CLIP Compression
Contrastive Language-Image Pre-training (CLIP) has achieved widely applications in various computer vision tasks, e.g., text-to-image generation, Image-Text retrieval and Image captioning. However, CLIP suffers from high memory and computation cost, which prohibits its usage to the resource-limited application scenarios. Existing CLIP compression methods typically reduce the size of pre-trained CLIP weights by selecting their subset as weight inheritance for further retraining via mask optimization or important weight measurement. However, these select-based weight inheritance often compromises the feature presentation ability, especially on the extreme compression. In this paper, we propose a novel mapping-based CLIP compression framework, CLIP-Map. It leverages learnable matrices to map and combine pretrained weights by Full-Mapping with Kronecker Factorization, aiming to preserve as much information from the original weights as possible. To mitigate the optimization challenges introduced by the learnable mapping, we propose Diagonal Inheritance Initialization to reduce the distribution shifting problem for efficient and effective mapping learning. Extensive experimental results demonstrate that the proposed CLIP-Map outperforms select-based frameworks across various compression ratios, with particularly significant gains observed under high compression settings.
☆ Neural Implicit 3D Cardiac Shape Reconstruction from Sparse CT Angiography Slices Mimicking 2D Transthoracic Echocardiography Views
Accurate 3D representations of cardiac structures allow quantitative analysis of anatomy and function. In this work, we propose a method for reconstructing complete 3D cardiac shapes from segmentations of sparse planes in CT angiography (CTA) for application in 2D transthoracic echocardiography (TTE). Our method uses a neural implicit function to reconstruct the 3D shape of the cardiac chambers and left-ventricle myocardium from sparse CTA planes. To investigate the feasibility of achieving 3D reconstruction from 2D TTE, we select planes that mimic the standard apical 2D TTE views. During training, a multi-layer perceptron learns shape priors from 3D segmentations of the target structures in CTA. At test time, the network reconstructs 3D cardiac shapes from segmentations of TTE-mimicking CTA planes by jointly optimizing the latent code and the rigid transforms that map the observed planes into 3D space. For each heart, we simulate four realistic apical views, and we compare reconstructed multi-class volumes with the reference CTA volumes. On a held-out set of CTA segmentations, our approach achieves an average Dice coefficient of 0.86 $\pm$ 0.04 across all structures. Our method also achieves markedly lower volume errors than the clinical standard, Simpson's biplane rule: 4.88 $\pm$ 4.26 mL vs. 8.14 $\pm$ 6.04 mL, respectively, for the left ventricle; and 6.40 $\pm$ 7.37 mL vs. 37.76 $\pm$ 22.96 mL, respectively, for the left atrium. This suggests that our approach offers a viable route to more accurate 3D chamber quantification in 2D transthoracic echocardiography.
☆ EoCD: Encoder only Remote Sensing Change Detection
Being a cornerstone of temporal analysis, change detection has been playing a pivotal role in modern earth observation. Existing change detection methods rely on the Siamese encoder to individually extract temporal features followed by temporal fusion. Subsequently, these methods design sophisticated decoders to improve the change detection performance without taking into consideration the complexity of the model. These aforementioned issues intensify the overall computational cost as well as the network's complexity which is undesirable. Alternatively, few methods utilize the early fusion scheme to combine the temporal images. These methods prevent the extra overhead of Siamese encoder, however, they also rely on sophisticated decoders for better performance. In addition, these methods demonstrate inferior performance as compared to late fusion based methods. To bridge these gaps, we introduce encoder only change detection (EoCD) that is a simple and effective method for the change detection task. The proposed method performs the early fusion of the temporal data and replaces the decoder with a parameter-free multiscale feature fusion module thereby significantly reducing the overall complexity of the model. EoCD demonstrate the optimal balance between the change detection performance and the prediction speed across a variety of encoder architectures. Additionally, EoCD demonstrate that the performance of the model is predominantly dependent on the encoder network, making the decoder an additional component. Extensive experimentation on four challenging change detection datasets reveals the effectiveness of the proposed method.
☆ Contour Refinement using Discrete Diffusion in Low Data Regime
Boundary detection of irregular and translucent objects is an important problem with applications in medical imaging, environmental monitoring and manufacturing, where many of these applications are plagued with scarce labeled data and low in situ computational resources. While recent image segmentation studies focus on segmentation mask alignment with ground-truth, the task of boundary detection remains understudied, especially in the low data regime. In this work, we present a lightweight discrete diffusion contour refinement pipeline for robust boundary detection in the low data regime. We use a Convolutional Neural Network(CNN) architecture with self-attention layers as the core of our pipeline, and condition on a segmentation mask, iteratively denoising a sparse contour representation. We introduce multiple novel adaptations for improved low-data efficacy and inference efficiency, including using a simplified diffusion process, a customized model architecture, and minimal post processing to produce a dense, isolated contour given a dataset of size <500 training images. Our method outperforms several SOTA baselines on the medical imaging dataset KVASIR, is competitive on HAM10K and our custom wildfire dataset, Smoke, while improving inference framerate by 3.5X.
comment: CRV 2026, 8 pages, 6 figures
☆ Pathwise Test-Time Correction for Autoregressive Long Video Generation
Distilled autoregressive diffusion models facilitate real-time short video synthesis but suffer from severe error accumulation during long-sequence generation. While existing Test-Time Optimization (TTO) methods prove effective for images or short clips, we identify that they fail to mitigate drift in extended sequences due to unstable reward landscapes and the hypersensitivity of distilled parameters. To overcome these limitations, we introduce Test-Time Correction (TTC), a training-free alternative. Specifically, TTC utilizes the initial frame as a stable reference anchor to calibrate intermediate stochastic states along the sampling trajectory. Extensive experiments demonstrate that our method seamlessly integrates with various distilled models, extending generation lengths with negligible overhead while matching the quality of resource-intensive training-based methods on 30-second benchmarks.
Self-Supervised Learning with a Multi-Task Latent Space Objective
Self-supervised learning (SSL) methods based on Siamese networks learn visual representations by aligning different views of the same image. The multi-crop strategy, which incorporates small local crops to global ones, enhances many SSL frameworks but causes instability in predictor-based architectures such as BYOL, SimSiam, and MoCo v3. We trace this failure to the shared predictor used across all views and demonstrate that assigning a separate predictor to each view type stabilizes multi-crop training, resulting in significant performance gains. Extending this idea, we treat each spatial transformation as a distinct alignment task and add cutout views, where part of the image is masked before encoding. This yields a simple multi-task formulation of asymmetric Siamese SSL that combines global, local, and masked views into a single framework. The approach is stable, generally applicable across backbones, and consistently improves the performance of ResNet and ViT models on ImageNet.
☆ UI-Mem: Self-Evolving Experience Memory for Online Reinforcement Learning in Mobile GUI Agents
Online Reinforcement Learning (RL) offers a promising paradigm for enhancing GUI agents through direct environment interaction. However, its effectiveness is severely hindered by inefficient credit assignment in long-horizon tasks and repetitive errors across tasks due to the lack of experience transfer. To address these challenges, we propose UI-Mem, a novel framework that enhances GUI online RL with a Hierarchical Experience Memory. Unlike traditional replay buffers, our memory accumulates structured knowledge, including high-level workflows, subtask skills, and failure patterns. These experiences are stored as parameterized templates that enable cross-task and cross-application transfer. To effectively integrate memory guidance into online RL, we introduce Stratified Group Sampling, which injects varying levels of guidance across trajectories within each rollout group to maintain outcome diversity, driving the unguided policy toward internalizing guided behaviors. Furthermore, a Self-Evolving Loop continuously abstracts novel strategies and errors to keep the memory aligned with the agent's evolving policy. Experiments on online GUI benchmarks demonstrate that UI-Mem significantly outperforms traditional RL baselines and static reuse strategies, with strong generalization to unseen applications. Project page: https://ui-mem.github.io
comment: 23 pages, 16 figures. Project page: https://ui-mem.github.io
☆ Weaver: End-to-End Agentic System Training for Video Interleaved Reasoning
Video reasoning constitutes a comprehensive assessment of a model's capabilities, as it demands robust perceptual and interpretive skills, thereby serving as a means to explore the boundaries of model performance. While recent research has leveraged text-centric Chain-of-Thought reasoning to augment these capabilities, such approaches frequently suffer from representational mismatch and restricted by limited perceptual acuity. To address these limitations, we propose Weaver, a novel, end-to-end trainable multimodal reasoning agentic system. Weaver empowers its policy model to dynamically invoke diverse tools throughout the reasoning process, enabling progressive acquisition of crucial visual cues and construction of authentic multimodal reasoning trajectories. Furthermore, we integrate a reinforcement learning algorithm to allow the system to freely explore strategies for employing and combining these tools with trajectory-free data. Extensive experiments demonstrate that our system, Weaver, enhances performance on several complex video reasoning benchmarks, particularly those involving long videos.
☆ Sparse Video Generation Propels Real-World Beyond-the-View Vision-Language Navigation
Why must vision-language navigation be bound to detailed and verbose language instructions? While such details ease decision-making, they fundamentally contradict the goal for navigation in the real-world. Ideally, agents should possess the autonomy to navigate in unknown environments guided solely by simple and high-level intents. Realizing this ambition introduces a formidable challenge: Beyond-the-View Navigation (BVN), where agents must locate distant, unseen targets without dense and step-by-step guidance. Existing large language model (LLM)-based methods, though adept at following dense instructions, often suffer from short-sighted behaviors due to their reliance on short-horimzon supervision. Simply extending the supervision horizon, however, destabilizes LLM training. In this work, we identify that video generation models inherently benefit from long-horizon supervision to align with language instructions, rendering them uniquely suitable for BVN tasks. Capitalizing on this insight, we propose introducing the video generation model into this field for the first time. Yet, the prohibitive latency for generating videos spanning tens of seconds makes real-world deployment impractical. To bridge this gap, we propose SparseVideoNav, achieving sub-second trajectory inference guided by a generated sparse future spanning a 20-second horizon. This yields a remarkable 27x speed-up compared to the unoptimized counterpart. Extensive real-world zero-shot experiments demonstrate that SparseVideoNav achieves 2.5x the success rate of state-of-the-art LLM baselines on BVN tasks and marks the first realization of such capability in challenging night scenes.
☆ NVS-HO: A Benchmark for Novel View Synthesis of Handheld Objects
We propose NVS-HO, the first benchmark designed for novel view synthesis of handheld objects in real-world environments using only RGB inputs. Each object is recorded in two complementary RGB sequences: (1) a handheld sequence, where the object is manipulated in front of a static camera, and (2) a board sequence, where the object is fixed on a ChArUco board to provide accurate camera poses via marker detection. The goal of NVS-HO is to learn a NVS model that captures the full appearance of an object from (1), whereas (2) provides the ground-truth images used for evaluation. To establish baselines, we consider both a classical SfM pipeline and a state-of-the-art pre-trained feed-forward neural network (VGGT) as pose estimators, and train NVS models based on NeRF and Gaussian Splatting. Our experiments reveal significant performance gaps in current methods under unconstrained handheld conditions, highlighting the need for more robust approaches. NVS-HO thus offers a challenging real-world benchmark to drive progress in RGB-based novel view synthesis of handheld objects.
☆ Focus-Scan-Refine: From Human Visual Perception to Efficient Visual Token Pruning
Vision-language models (VLMs) often generate massive visual tokens that greatly increase inference latency and memory footprint; while training-free token pruning offers a practical remedy, existing methods still struggle to balance local evidence and global context under aggressive compression. We propose Focus-Scan-Refine (FSR), a human-inspired, plug-and-play pruning framework that mimics how humans answer visual questions: focus on key evidence, then scan globally if needed, and refine the scanned context by aggregating relevant details. FSR first focuses on key evidence by combining visual importance with instruction relevance, avoiding the bias toward visually salient but query-irrelevant regions. It then scans for complementary context conditioned on the focused set, selecting tokens that are most different from the focused evidence. Finally, FSR refines the scanned context by aggregating nearby informative tokens into the scan anchors via similarity-based assignment and score-weighted merging, without increasing the token budget. Extensive experiments across multiple VLM backbones and vision-language benchmarks show that FSR consistently improves the accuracy-efficiency trade-off over existing state-of-the-art pruning methods. The source codes can be found at https://github.com/ILOT-code/FSR
☆ Allocentric Perceiver: Disentangling Allocentric Reasoning from Egocentric Visual Priors via Frame Instantiation
With the rising need for spatially grounded tasks such as Vision-Language Navigation/Action, allocentric perception capabilities in Vision-Language Models (VLMs) are receiving growing focus. However, VLMs remain brittle on allocentric spatial queries that require explicit perspective shifts, where the answer depends on reasoning in a target-centric frame rather than the observed camera view. Thus, we introduce Allocentric Perceiver, a training-free strategy that recovers metric 3D states from one or more images with off-the-shelf geometric experts, and then instantiates a query-conditioned allocentric reference frame aligned with the instruction's semantic intent. By deterministically transforming reconstructed geometry into the target frame and prompting the backbone VLM with structured, geometry-grounded representations, Allocentric Perceriver offloads mental rotation from implicit reasoning to explicit computation. We evaluate Allocentric Perciver across multiple backbone families on spatial reasoning benchmarks, observing consistent and substantial gains ($\sim$10%) on allocentric tasks while maintaining strong egocentric performance, and surpassing both spatial-perception-finetuned models and state-of-the-art open-source and proprietary models.
☆ ReText: Text Boosts Generalization in Image-Based Person Re-identification
Generalizable image-based person re-identification (Re-ID) aims to recognize individuals across cameras in unseen domains without retraining. While multiple existing approaches address the domain gap through complex architectures, recent findings indicate that better generalization can be achieved by stylistically diverse single-camera data. Although this data is easy to collect, it lacks complexity due to minimal cross-view variation. We propose ReText, a novel method trained on a mixture of multi-camera Re-ID data and single-camera data, where the latter is complemented by textual descriptions to enrich semantic cues. During training, ReText jointly optimizes three tasks: (1) Re-ID on multi-camera data, (2) image-text matching, and (3) image reconstruction guided by text on single-camera data. Experiments demonstrate that ReText achieves strong generalization and significantly outperforms state-of-the-art methods on cross-domain Re-ID benchmarks. To the best of our knowledge, this is the first work to explore multimodal joint learning on a mixture of multi-camera and single-camera data in image-based person Re-ID.
☆ FMPose3D: monocular 3D pose estimation via flow matching
Monocular 3D pose estimation is fundamentally ill-posed due to depth ambiguity and occlusions, thereby motivating probabilistic methods that generate multiple plausible 3D pose hypotheses. In particular, diffusion-based models have recently demonstrated strong performance, but their iterative denoising process typically requires many timesteps for each prediction, making inference computationally expensive. In contrast, we leverage Flow Matching (FM) to learn a velocity field defined by an Ordinary Differential Equation (ODE), enabling efficient generation of 3D pose samples with only a few integration steps. We propose a novel generative pose estimation framework, FMPose3D, that formulates 3D pose estimation as a conditional distribution transport problem. It continuously transports samples from a standard Gaussian prior to the distribution of plausible 3D poses conditioned only on 2D inputs. Although ODE trajectories are deterministic, FMPose3D naturally generates various pose hypotheses by sampling different noise seeds. To obtain a single accurate prediction from those hypotheses, we further introduce a Reprojection-based Posterior Expectation Aggregation (RPEA) module, which approximates the Bayesian posterior expectation over 3D hypotheses. FMPose3D surpasses existing methods on the widely used human pose estimation benchmarks Human3.6M and MPI-INF-3DHP, and further achieves state-of-the-art performance on the 3D animal pose datasets Animal3D and CtrlAni3D, demonstrating strong performance across both 3D pose domains. The code is available at https://github.com/AdaptiveMotorControlLab/FMPose3D.
☆ Disc-Centric Contrastive Learning for Lumbar Spine Severity Grading
This work examines a disc-centric approach for automated severity grading of lumbar spinal stenosis from sagittal T2-weighted MRI. The method combines contrastive pretraining with disc-level fine-tuning, using a single anatomically localized region of interest per intervertebral disc. Contrastive learning is employed to help the model focus on meaningful disc features and reduce sensitivity to irrelevant differences in image appearance. The framework includes an auxiliary regression task for disc localization and applies weighted focal loss to address class imbalance. Experiments demonstrate a 78.1% balanced accuracy and a reduced severe-to-normal misclassification rate of 2.13% compared with supervised training from scratch. Detecting discs with moderate severity can still be challenging, but focusing on disc-level features provides a practical way to assess the lumbar spinal stenosis.
☆ Neuro-Inspired Visual Pattern Recognition via Biological Reservoir Computing
In this paper, we present a neuro-inspired approach to reservoir computing (RC) in which a network of in vitro cultured cortical neurons serves as the physical reservoir. Rather than relying on artificial recurrent models to approximate neural dynamics, our biological reservoir computing (BRC) system leverages the spontaneous and stimulus-evoked activity of living neural circuits as its computational substrate. A high-density multi-electrode array (HD-MEA) provides simultaneous stimulation and readout across hundreds of channels: input patterns are delivered through selected electrodes, while the remaining ones capture the resulting high-dimensional neural responses, yielding a biologically grounded feature representation. A linear readout layer (single-layer perceptron) is then trained to classify these reservoir states, enabling the living neural network to perform static visual pattern-recognition tasks within a computer-vision framework. We evaluate the system across a sequence of tasks of increasing difficulty, ranging from pointwise stimuli to oriented bars, clock-digit-like shapes, and handwritten digits from the MNIST dataset. Despite the inherent variability of biological neural responses-arising from noise, spontaneous activity, and inter-session differences-the system consistently generates high-dimensional representations that support accurate classification. These results demonstrate that in vitro cortical networks can function as effective reservoirs for static visual pattern recognition, opening new avenues for integrating living neural substrates into neuromorphic computing frameworks. More broadly, this work contributes to the effort to incorporate biological principles into machine learning and supports the goals of neuro-inspired vision by illustrating how living neural systems can inform the design of efficient and biologically grounded computational models.
☆ Depth as Prior Knowledge for Object Detection
Detecting small and distant objects remains challenging for object detectors due to scale variation, low resolution, and background clutter. Safety-critical applications require reliable detection of these objects for safe planning. Depth information can improve detection, but existing approaches require complex, model-specific architectural modifications. We provide a theoretical analysis followed by an empirical investigation of the depth-detection relationship. Together, they explain how depth causes systematic performance degradation and why depth-informed supervision mitigates it. We introduce DepthPrior, a framework that uses depth as prior knowledge rather than as a fused feature, providing comparable benefits without modifying detector architectures. DepthPrior consists of Depth-Based Loss Weighting (DLW) and Depth-Based Loss Stratification (DLS) during training, and Depth-Aware Confidence Thresholding (DCT) during inference. The only overhead is the initial cost of depth estimation. Experiments across four benchmarks (KITTI, MS COCO, VisDrone, SUN RGB-D) and two detectors (YOLOv11, EfficientDet) demonstrate the effectiveness of DepthPrior, achieving up to +9% mAP$_S$ and +7% mAR$_S$ for small objects, with inference recovery rates as high as 95:1 (true vs. false detections). DepthPrior offers these benefits without additional sensors, architectural changes, or performance costs. Code is available at https://github.com/mos-ks/DepthPrior.
comment: This work has been submitted to the IEEE for possible publication
☆ Adaptive Global and Fine-Grained Perceptual Fusion for MLLM Embeddings Compatible with Hard Negative Amplification
Multimodal embeddings serve as a bridge for aligning vision and language, with the two primary implementations -- CLIP-based and MLLM-based embedding models -- both limited to capturing only global semantic information. Although numerous studies have focused on fine-grained understanding, we observe that complex scenarios currently targeted by MLLM embeddings often involve a hybrid perceptual pattern of both global and fine-grained elements, thus necessitating a compatible fusion mechanism. In this paper, we propose Adaptive Global and Fine-grained perceptual Fusion for MLLM Embeddings (AGFF-Embed), a method that prompts the MLLM to generate multiple embeddings focusing on different dimensions of semantic information, which are then adaptively and smoothly aggregated. Furthermore, we adapt AGFF-Embed with the Explicit Gradient Amplification (EGA) technique to achieve in-batch hard negatives enhancement without requiring fine-grained editing of the dataset. Evaluation on the MMEB and MMVP-VLM benchmarks shows that AGFF-Embed comprehensively achieves state-of-the-art performance in both general and fine-grained understanding compared to other multimodal embedding models.
Exploring the Temporal Consistency for Point-Level Weakly-Supervised Temporal Action Localization
Point-supervised Temporal Action Localization (PTAL) adopts a lightly frame-annotated paradigm (\textit{i.e.}, labeling only a single frame per action instance) to train a model to effectively locate action instances within untrimmed videos. Most existing approaches design the task head of models with only a point-supervised snippet-level classification, without explicit modeling of understanding temporal relationships among frames of an action. However, understanding the temporal relationships of frames is crucial because it can help a model understand how an action is defined and therefore benefits localizing the full frames of an action. To this end, in this paper, we design a multi-task learning framework that fully utilizes point supervision to boost the model's temporal understanding capability for action localization. Specifically, we design three self-supervised temporal understanding tasks: (i) Action Completion, (ii) Action Order Understanding, and (iii) Action Regularity Understanding. These tasks help a model understand the temporal consistency of actions across videos. To the best of our knowledge, this is the first attempt to explicitly explore temporal consistency for point supervision action localization. Extensive experimental results on four benchmark datasets demonstrate the effectiveness of the proposed method compared to several state-of-the-art approaches.
☆ Ethology of Latent Spaces
This study challenges the presumed neutrality of latent spaces in vision language models (VLMs) by adopting an ethological perspective on their algorithmic behaviors. Rather than constituting spaces of homogeneous indeterminacy, latent spaces exhibit model-specific algorithmic sensitivities, understood as differential regimes of perceptual salience shaped by training data and architectural choices. Through a comparative analysis of three models (OpenAI CLIP, OpenCLIP LAION, SigLIP) applied to a corpus of 301 artworks (15th to 20th), we reveal substantial divergences in the attribution of political and cultural categories. Using bipolar semantic axes derived from vector analogies (Mikolov et al., 2013), we show that SigLIP classifies 59.4% of the artworks as politically engaged, compared to only 4% for OpenCLIP. African masks receive the highest political scores in SigLIP while remaining apolitical in OpenAI CLIP. On an aesthetic colonial axis, inter-model discrepancies reach 72.6 percentage points. We introduce three operational concepts: computational latent politicization, describing the emergence of political categories without intentional encoding; emergent bias, irreducible to statistical or normative bias and detectable only through contrastive analysis; and three algorithmic scopic regimes: entropic (LAION), institutional (OpenAI), and semiotic (SigLIP), which structure distinct modes of visibility. Drawing on Foucault's notion of the archive, Jameson's ideologeme, and Simondon's theory of individuation, we argue that training datasets function as quasi-archives whose discursive formations crystallize within latent space. This work contributes to a critical reassessment of the conditions under which VLMs are applied to digital art history and calls for methodologies that integrate learning architectures into any delegation of cultural interpretation to algorithmic agents.
comment: 23. pages, 14 figures, presented Hyperheritage International Symposium 9 ( https://paragraphe.univ-paris8.fr/IMG/pdf/programme_colloque_his9_campuscondorcet_v3.pdf ) and accepted for publication in double-blind peer review in French in 2026-2027
☆ Poster: Camera Tampering Detection for Outdoor IoT Systems
Recently, the use of smart cameras in outdoor settings has grown to improve surveillance and security. Nonetheless, these systems are susceptible to tampering, whether from deliberate vandalism or harsh environmental conditions, which can undermine their monitoring effectiveness. In this context, detecting camera tampering is more challenging when a camera is capturing still images rather than video as there is no sequence of continuous frames over time. In this study, we propose two approaches for detecting tampered images: a rule-based method and a deep-learning-based method. The aim is to evaluate how each method performs in terms of accuracy, computational demands, and the data required for training when applied to real-world scenarios. Our results show that the deep-learning model provides higher accuracy, while the rule-based method is more appropriate for scenarios where resources are limited and a prolonged calibration phase is impractical. We also offer publicly available datasets with normal, blurred, and rotated images to support the development and evaluation of camera tampering detection methods, addressing the need for such resources.
comment: Proceedings of the 2024 INTERNATIONAL CONFERENCE ON EMBEDDED WIRELESS SYSTEMS AND NETWORKS (EWSN)
☆ ShapeUP: Scalable Image-Conditioned 3D Editing
Recent advancements in 3D foundation models have enabled the generation of high-fidelity assets, yet precise 3D manipulation remains a significant challenge. Existing 3D editing frameworks often face a difficult trade-off between visual controllability, geometric consistency, and scalability. Specifically, optimization-based methods are prohibitively slow, multi-view 2D propagation techniques suffer from visual drift, and training-free latent manipulation methods are inherently bound by frozen priors and cannot directly benefit from scaling. In this work, we present ShapeUP, a scalable, image-conditioned 3D editing framework that formulates editing as a supervised latent-to-latent translation within a native 3D representation. This formulation allows ShapeUP to build on a pretrained 3D foundation model, leveraging its strong generative prior while adapting it to editing through supervised training. In practice, ShapeUP is trained on triplets consisting of a source 3D shape, an edited 2D image, and the corresponding edited 3D shape, and learns a direct mapping using a 3D Diffusion Transformer (DiT). This image-as-prompt approach enables fine-grained visual control over both local and global edits and achieves implicit, mask-free localization, while maintaining strict structural consistency with the original asset. Our extensive evaluations demonstrate that ShapeUP consistently outperforms current trained and training-free baselines in both identity preservation and edit fidelity, offering a robust and scalable paradigm for native 3D content creation.
☆ Enhancing Personality Recognition by Comparing the Predictive Power of Traits, Facets, and Nuances
Personality is a complex, hierarchical construct typically assessed through item-level questionnaires aggregated into broad trait scores. Personality recognition models aim to infer personality traits from different sources of behavioral data. However, reliance on broad trait scores as ground truth, combined with limited training data, poses challenges for generalization, as similar trait scores can manifest through diverse, context dependent behaviors. In this work, we explore the predictive impact of the more granular hierarchical levels of the Big-Five Personality Model, facets and nuances, to enhance personality recognition from audiovisual interaction data. Using the UDIVA v0.5 dataset, we trained a transformer-based model including cross-modal (audiovisual) and cross-subject (dyad-aware) attention mechanisms. Results show that nuance-level models consistently outperform facet and trait-level models, reducing mean squared error by up to 74% across interaction scenarios.
comment: Accepted to the 2025 13th International Conference on Affective Computing and Intelligent Interaction (Late Breaking Results)
☆ UniSurg: A Video-Native Foundation Model for Universal Understanding of Surgical Videos
While foundation models have advanced surgical video analysis, current approaches rely predominantly on pixel-level reconstruction objectives that waste model capacity on low-level visual details - such as smoke, specular reflections, and fluid motion - rather than semantic structures essential for surgical understanding. We present UniSurg, a video-native foundation model that shifts the learning paradigm from pixel-level reconstruction to latent motion prediction. Built on the Video Joint Embedding Predictive Architecture (V-JEPA), UniSurg introduces three key technical innovations tailored to surgical videos: 1) motion-guided latent prediction to prioritize semantically meaningful regions, 2) spatiotemporal affinity self-distillation to enforce relational consistency, and 3) feature diversity regularization to prevent representation collapse in texture-sparse surgical scenes. To enable large-scale pretraining, we curate UniSurg-15M, the largest surgical video dataset to date, comprising 3,658 hours of video from 50 sources across 13 anatomical regions. Extensive experiments across 17 benchmarks demonstrate that UniSurg significantly outperforms state-of-the-art methods on surgical workflow recognition (+14.6% F1 on EgoSurgery, +10.3% on PitVis), action triplet recognition (39.54% mAP-IVT on CholecT50), skill assessment, polyp segmentation, and depth estimation. These results establish UniSurg as a new standard for universal, motion-oriented surgical video understanding.
☆ ROMAN: Reward-Orchestrated Multi-Head Attention Network for Autonomous Driving System Testing
Automated Driving System (ADS) acts as the brain of autonomous vehicles, responsible for their safety and efficiency. Safe deployment requires thorough testing in diverse real-world scenarios and compliance with traffic laws like speed limits, signal obedience, and right-of-way rules. Violations like running red lights or speeding pose severe safety risks. However, current testing approaches face significant challenges: limited ability to generate complex and high-risk law-breaking scenarios, and failing to account for complex interactions involving multiple vehicles and critical situations. To address these challenges, we propose ROMAN, a novel scenario generation approach for ADS testing that combines a multi-head attention network with a traffic law weighting mechanism. ROMAN is designed to generate high-risk violation scenarios to enable more thorough and targeted ADS evaluation. The multi-head attention mechanism models interactions among vehicles, traffic signals, and other factors. The traffic law weighting mechanism implements a workflow that leverages an LLM-based risk weighting module to evaluate violations based on the two dimensions of severity and occurrence. We have evaluated ROMAN by testing the Baidu Apollo ADS within the CARLA simulation platform and conducting extensive experiments to measure its performance. Experimental results demonstrate that ROMAN surpassed state-of-the-art tools ABLE and LawBreaker by achieving 7.91% higher average violation count than ABLE and 55.96% higher than LawBreaker, while also maintaining greater scenario diversity. In addition, only ROMAN successfully generated violation scenarios for every clause of the input traffic laws, enabling it to identify more high-risk violations than existing approaches.
comment: The manuscript includes 13 pages, 8 tables, and 7 figures
☆ Unified Sensor Simulation for Autonomous Driving
In this work, we introduce \textbf{XSIM}, a sensor simulation framework for autonomous driving. XSIM extends 3DGUT splatting with a generalized rolling-shutter modeling tailored for autonomous driving applications. Our framework provides a unified and flexible formulation for appearance and geometric sensor modeling, enabling rendering of complex sensor distortions in dynamic environments. We identify spherical cameras, such as LiDARs, as a critical edge case for existing 3DGUT splatting due to cyclic projection and time discontinuities at azimuth boundaries leading to incorrect particle projection. To address this issue, we propose a phase modeling mechanism that explicitly accounts temporal and shape discontinuities of Gaussians projected by the Unscented Transform at azimuth borders. In addition, we introduce an extended 3D Gaussian representation that incorporates two distinct opacity parameters to resolve mismatches between geometry and color distributions. As a result, our framework provides enhanced scene representations with improved geometric consistency and photorealistic appearance. We evaluate our framework extensively on multiple autonomous driving datasets, including Waymo Open Dataset, Argoverse 2, and PandaSet. Our framework consistently outperforms strong recent baselines and achieves state-of-the-art performance across all datasets. The source code is publicly available at \href{https://github.com/whesense/XSIM}{https://github.com/whesense/XSIM}.
☆ Shiva-DiT: Residual-Based Differentiable Top-$k$ Selection for Efficient Diffusion Transformers
Diffusion Transformers (DiTs) incur prohibitive computational costs due to the quadratic scaling of self-attention. Existing pruning methods fail to simultaneously satisfy differentiability, efficiency, and the strict static budgets required for hardware overhead. To address this, we propose Shiva-DiT, which effectively reconciles these conflicting requirements via Residual-Based Differentiable Top-$k$ Selection. By leveraging a residual-aware straight-through estimator, our method enforces deterministic token counts for static compilation while preserving end-to-end learnability through residual gradient estimation. Furthermore, we introduce a Context-Aware Router and Adaptive Ratio Policy to autonomously learn an adaptive pruning schedule. Experiments on mainstream models, including SD3.5, demonstrate that Shiva-DiT establishes a new Pareto frontier, achieving a 1.54$\times$ wall-clock speedup with superior fidelity compared to existing baselines, effectively eliminating ragged tensor overheads.
☆ Multi-instance robust fitting for non-classical geometric models
Most existing robust fitting methods are designed for classical models, such as lines, circles, and planes. In contrast, fewer methods have been developed to robustly handle non-classical models, such as spiral curves, procedural character models, and free-form surfaces. Furthermore, existing methods primarily focus on reconstructing a single instance of a non-classical model. This paper aims to reconstruct multiple instances of non-classical models from noisy data. We formulate this multi-instance fitting task as an optimization problem, which comprises an estimator and an optimizer. Specifically, we propose a novel estimator based on the model-to-data error, capable of handling outliers without a predefined error threshold. Since the proposed estimator is non-differentiable with respect to the model parameters, we employ a meta-heuristic algorithm as the optimizer to seek the global optimum. The effectiveness of our method are demonstrated through experimental results on various non-classical models. The code is available at https://github.com/zhangzongliang/fitting.
☆ CAViT -- Channel-Aware Vision Transformer for Dynamic Feature Fusion CVPR 25
Vision Transformers (ViTs) have demonstrated strong performance across a range of computer vision tasks by modeling long-range spatial interactions via self-attention. However, channel-wise mixing in ViTs remains static, relying on fixed multilayer perceptrons (MLPs) that lack adaptability to input content. We introduce 'CAViT', a dual-attention architecture that replaces the static MLP with a dynamic, attention-based mechanism for feature interaction. Each Transformer block in CAViT performs spatial self-attention followed by channel-wise self-attention, allowing the model to dynamically recalibrate feature representations based on global image context. This unified and content-aware token mixing strategy enhances representational expressiveness without increasing depth or complexity. We validate CAViT across five benchmark datasets spanning both natural and medical domains, where it outperforms the standard ViT baseline by up to +3.6% in accuracy, while reducing parameter count and FLOPs by over 30%. Qualitative attention maps reveal sharper and semantically meaningful activation patterns, validating the effectiveness of our attention-driven token mixing.
comment: Presented at the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2025 (CVPR 25) in the 4th Workshop on Transformers for Visions - T4V (https://sites.google.com/view/t4v-cvpr25/) Accepted for Publication at 33rd International Conference on Artificial Intelligence and Cognitive Science (AICS 2025), where it was shortlisted for Best Paper Award. (https://aicsconf.org/?page_id=278)
☆ EgoPoseVR: Spatiotemporal Multi-Modal Reasoning for Egocentric Full-Body Pose in Virtual Reality
Immersive virtual reality (VR) applications demand accurate, temporally coherent full-body pose tracking. Recent head-mounted camera-based approaches show promise in egocentric pose estimation, but encounter challenges when applied to VR head-mounted displays (HMDs), including temporal instability, inaccurate lower-body estimation, and the lack of real-time performance. To address these limitations, we present EgoPoseVR, an end-to-end framework for accurate egocentric full-body pose estimation in VR that integrates headset motion cues with egocentric RGB-D observations through a dual-modality fusion pipeline. A spatiotemporal encoder extracts frame- and joint-level representations, which are fused via cross-attention to fully exploit complementary motion cues across modalities. A kinematic optimization module then imposes constraints from HMD signals, enhancing the accuracy and stability of pose estimation. To facilitate training and evaluation, we introduce a large-scale synthetic dataset of over 1.8 million temporally aligned HMD and RGB-D frames across diverse VR scenarios. Experimental results show that EgoPoseVR outperforms state-of-the-art egocentric pose estimation models. A user study in real-world scenes further shows that EgoPoseVR achieved significantly higher subjective ratings in accuracy, stability, embodiment, and intention for future use compared to baseline methods. These results show that EgoPoseVR enables robust full-body pose tracking, offering a practical solution for accurate VR embodiment without requiring additional body-worn sensors or room-scale tracking systems.
☆ A Mixed Reality System for Robust Manikin Localization in Childbirth Training
Opportunities for medical students to gain practical experience in vaginal births are increasingly constrained by shortened clinical rotations, patient reluctance, and the unpredictable nature of labour. To alleviate clinicians' instructional burden and enhance trainees' learning efficiency, we introduce a mixed reality (MR) system for childbirth training that combines virtual guidance with tactile manikin interaction, thereby preserving authentic haptic feedback while enabling independent practice without continuous on-site expert supervision. The system extends the passthrough capability of commercial head-mounted displays (HMDs) by spatially calibrating an external RGB-D camera, allowing real-time visual integration of physical training objects. Building on this capability, we implement a coarse-to-fine localization pipeline that first aligns the maternal manikin with fiducial markers to define a delivery region and then registers the pre-scanned neonatal head within this area. This process enables spatially accurate overlay of virtual guiding hands near the manikin, allowing trainees to follow expert trajectories reinforced by haptic interaction. Experimental evaluations demonstrate that the system achieves accurate and stable manikin localization on a standalone headset, ensuring practical deployment without external computing resources. A large-scale user study involving 83 fourth-year medical students was subsequently conducted to compare MR-based and virtual reality (VR)-based childbirth training. Four senior obstetricians independently assessed performance using standardized criteria. Results showed that MR training achieved significantly higher scores in delivery, post-delivery, and overall task performance, and was consistently preferred by trainees over VR training.
☆ Geometric Observability Index: An Operator-Theoretic Framework for Per-Feature Sensitivity, Weak Observability, and Dynamic Effects in SE(3) Pose Estimation
We present a unified operator-theoretic framework for analyzing per-feature sensitivity in camera pose estimation on the Lie group SE(3). Classical sensitivity tools - conditioning analyses, Euclidean perturbation arguments, and Fisher information bounds - do not explain how individual image features influence the pose estimate, nor why dynamic or inconsistent observations can disproportionately distort modern SLAM and structure-from-motion systems. To address this gap, we extend influence function theory to matrix Lie groups and derive an intrinsic perturbation operator for left-trivialized M-estimators on SE(3). The resulting Geometric Observability Index (GOI) quantifies the contribution of a single measurement through the curvature operator and the Lie algebraic structure of the observable subspace. GOI admits a spectral decomposition along the principal directions of the observable curvature, revealing a direct correspondence between weak observability and amplified sensitivity. In the population regime, GOI coincides with the Fisher information geometry on SE(3), yielding a single-measurement analogue of the Cramer-Rao bound. The same spectral mechanism explains classical degeneracies such as pure rotation and vanishing parallax, as well as dynamic feature amplification along weak curvature directions. Overall, GOI provides a geometrically consistent description of measurement influence that unifies conditioning analysis, Fisher information geometry, influence function theory, and dynamic scene detectability through the spectral geometry of the curvature operator. Because these quantities arise directly within Gauss-Newton pipelines, the curvature spectrum and GOI also yield lightweight, training-free diagnostic signals for identifying dynamic features and detecting weak observability configurations without modifying existing SLAM architectures.
☆ LoGoSeg: Integrating Local and Global Features for Open-Vocabulary Semantic Segmentation
Open-vocabulary semantic segmentation (OVSS) extends traditional closed-set segmentation by enabling pixel-wise annotation for both seen and unseen categories using arbitrary textual descriptions. While existing methods leverage vision-language models (VLMs) like CLIP, their reliance on image-level pretraining often results in imprecise spatial alignment, leading to mismatched segmentations in ambiguous or cluttered scenes. However, most existing approaches lack strong object priors and region-level constraints, which can lead to object hallucination or missed detections, further degrading performance. To address these challenges, we propose LoGoSeg, an efficient single-stage framework that integrates three key innovations: (i) an object existence prior that dynamically weights relevant categories through global image-text similarity, effectively reducing hallucinations; (ii) a region-aware alignment module that establishes precise region-level visual-textual correspondences; and (iii) a dual-stream fusion mechanism that optimally combines local structural information with global semantic context. Unlike prior works, LoGoSeg eliminates the need for external mask proposals, additional backbones, or extra datasets, ensuring efficiency. Extensive experiments on six benchmarks (A-847, PC-459, A-150, PC-59, PAS-20, and PAS-20b) demonstrate its competitive performance and strong generalization in open-vocabulary settings.
☆ LocateEdit-Bench: A Benchmark for Instruction-Based Editing Localization
Recent advancements in image editing have enabled highly controllable and semantically-aware alteration of visual content, posing unprecedented challenges to manipulation localization. However, existing AI-generated forgery localization methods primarily focus on inpainting-based manipulations, making them ineffective against the latest instruction-based editing paradigms. To bridge this critical gap, we propose LocateEdit-Bench, a large-scale dataset comprising $231$K edited images, designed specifically to benchmark localization methods against instruction-driven image editing. Our dataset incorporates four cutting-edge editing models and covers three common edit types. We conduct a detailed analysis of the dataset and develop two multi-metric evaluation protocols to assess existing localization methods. Our work establishes a foundation to keep pace with the evolving landscape of image editing, thereby facilitating the development of effective methods for future forgery localization. Dataset will be open-sourced upon acceptance.
comment: 11 pages, 7 figures
☆ A Hybrid CNN and ML Framework for Multi-modal Classification of Movement Disorders Using MRI and Brain Structural Features SP
Atypical Parkinsonian Disorders (APD), also known as Parkinson-plus syndrome, are a group of neurodegenerative diseases that include progressive supranuclear palsy (PSP) and multiple system atrophy (MSA). In the early stages, overlapping clinical features often lead to misdiagnosis as Parkinson's disease (PD). Identifying reliable imaging biomarkers for early differential diagnosis remains a critical challenge. In this study, we propose a hybrid framework combining convolutional neural networks (CNNs) with machine learning (ML) techniques to classify APD subtypes versus PD and distinguish between the subtypes themselves: PSP vs. PD, MSA vs. PD, and PSP vs. MSA. The model leverages multi-modal input data, including T1-weighted magnetic resonance imaging (MRI), segmentation masks of 12 deep brain structures associated with APD, and their corresponding volumetric measurements. By integrating these complementary modalities, including image data, structural segmentation masks, and quantitative volume features, the hybrid approach achieved promising classification performance with area under the curve (AUC) scores of 0.95 for PSP vs. PD, 0.86 for MSA vs. PD, and 0.92 for PSP vs. MSA. These results highlight the potential of combining spatial and structural information for robust subtype differentiation. In conclusion, this study demonstrates that fusing CNN-based image features with volume-based ML inputs improves classification accuracy for APD subtypes. The proposed approach may contribute to more reliable early-stage diagnosis, facilitating timely and targeted interventions in clinical practice.
comment: To be published in Proceedings of SPIE Medical Imaging 2026
☆ Visual Implicit Geometry Transformer for Autonomous Driving
We introduce the Visual Implicit Geometry Transformer (ViGT), an autonomous driving geometric model that estimates continuous 3D occupancy fields from surround-view camera rigs. ViGT represents a step towards foundational geometric models for autonomous driving, prioritizing scalability, architectural simplicity, and generalization across diverse sensor configurations. Our approach achieves this through a calibration-free architecture, enabling a single model to adapt to different sensor setups. Unlike general-purpose geometric foundational models that focus on pixel-aligned predictions, ViGT estimates a continuous 3D occupancy field in a birds-eye-view (BEV) addressing domain-specific requirements. ViGT naturally infers geometry from multiple camera views into a single metric coordinate frame, providing a common representation for multiple geometric tasks. Unlike most existing occupancy models, we adopt a self-supervised training procedure that leverages synchronized image-LiDAR pairs, eliminating the need for costly manual annotations. We validate the scalability and generalizability of our approach by training our model on a mixture of five large-scale autonomous driving datasets (NuScenes, Waymo, NuPlan, ONCE, and Argoverse) and achieving state-of-the-art performance on the pointmap estimation task, with the best average rank across all evaluated baselines. We further evaluate ViGT on the Occ3D-nuScenes benchmark, where ViGT achieves comparable performance with supervised methods. The source code is publicly available at \href{https://github.com/whesense/ViGT}{https://github.com/whesense/ViGT}.
☆ ShapeGaussian: High-Fidelity 4D Human Reconstruction in Monocular Videos via Vision Priors
We introduce ShapeGaussian, a high-fidelity, template-free method for 4D human reconstruction from casual monocular videos. Generic reconstruction methods lacking robust vision priors, such as 4DGS, struggle to capture high-deformation human motion without multi-view cues. While template-based approaches, primarily relying on SMPL, such as HUGS, can produce photorealistic results, they are highly susceptible to errors in human pose estimation, often leading to unrealistic artifacts. In contrast, ShapeGaussian effectively integrates template-free vision priors to achieve both high-fidelity and robust scene reconstructions. Our method follows a two-step pipeline: first, we learn a coarse, deformable geometry using pretrained models that estimate data-driven priors, providing a foundation for reconstruction. Then, we refine this geometry using a neural deformation model to capture fine-grained dynamic details. By leveraging 2D vision priors, we mitigate artifacts from erroneous pose estimation in template-based methods and employ multiple reference frames to resolve the invisibility issue of 2D keypoints in a template-free manner. Extensive experiments demonstrate that ShapeGaussian surpasses template-based methods in reconstruction accuracy, achieving superior visual quality and robustness across diverse human motions in casual monocular videos.
☆ PIRATR: Parametric Object Inference for Robotic Applications with Transformers in 3D Point Clouds ICRA
We present PIRATR, an end-to-end 3D object detection framework for robotic use cases in point clouds. Extending PI3DETR, our method streamlines parametric 3D object detection by jointly estimating multi-class 6-DoF poses and class-specific parametric attributes directly from occlusion-affected point cloud data. This formulation enables not only geometric localization but also the estimation of task-relevant properties for parametric objects, such as a gripper's opening, where the 3D model is adjusted according to simple, predefined rules. The architecture employs modular, class-specific heads, making it straightforward to extend to novel object types without re-designing the pipeline. We validate PIRATR on an automated forklift platform, focusing on three structurally and functionally diverse categories: crane grippers, loading platforms, and pallets. Trained entirely in a synthetic environment, PIRATR generalizes effectively to real outdoor LiDAR scans, achieving a detection mAP of 0.919 without additional fine-tuning. PIRATR establishes a new paradigm of pose-aware, parameterized perception. This bridges the gap between low-level geometric reasoning and actionable world models, paving the way for scalable, simulation-trained perception systems that can be deployed in dynamic robotic environments. Code available at https://github.com/swingaxe/piratr.
comment: 8 Pages, 11 Figures, Accepted at 2026 IEEE International Conference on Robotics & Automation (ICRA) Vienna
☆ IndustryShapes: An RGB-D Benchmark dataset for 6D object pose estimation of industrial assembly components and tools ICRA 2026
We introduce IndustryShapes, a new RGB-D benchmark dataset of industrial tools and components, designed for both instance-level and novel object 6D pose estimation approaches. The dataset provides a realistic and application-relevant testbed for benchmarking these methods in the context of industrial robotics bridging the gap between lab-based research and deployment in real-world manufacturing scenarios. Unlike many previous datasets that focus on household or consumer products or use synthetic, clean tabletop datasets, or objects captured solely in controlled lab environments, IndustryShapes introduces five new object types with challenging properties, also captured in realistic industrial assembly settings. The dataset has diverse complexity, from simple to more challenging scenes, with single and multiple objects, including scenes with multiple instances of the same object and it is organized in two parts: the classic set and the extended set. The classic set includes a total of 4,6k images and 6k annotated poses. The extended set introduces additional data modalities to support the evaluation of model-free and sequence-based approaches. To the best of our knowledge, IndustryShapes is the first dataset to offer RGB-D static onboarding sequences. We further evaluate the dataset on a representative set of state-of-the art methods for instance-based and novel object 6D pose estimation, including also object detection, segmentation, showing that there is room for improvement in this domain. The dataset page can be found in https://pose-lab.github.io/IndustryShapes.
comment: To appear in ICRA 2026
☆ VLN-Pilot: Large Vision-Language Model as an Autonomous Indoor Drone Operator
This paper introduces VLN-Pilot, a novel framework in which a large Vision-and-Language Model (VLLM) assumes the role of a human pilot for indoor drone navigation. By leveraging the multimodal reasoning abilities of VLLMs, VLN-Pilot interprets free-form natural language instructions and grounds them in visual observations to plan and execute drone trajectories in GPS-denied indoor environments. Unlike traditional rule-based or geometric path-planning approaches, our framework integrates language-driven semantic understanding with visual perception, enabling context-aware, high-level flight behaviors with minimal task-specific engineering. VLN-Pilot supports fully autonomous instruction-following for drones by reasoning about spatial relationships, obstacle avoidance, and dynamic reactivity to unforeseen events. We validate our framework on a custom photorealistic indoor simulation benchmark and demonstrate the ability of the VLLM-driven agent to achieve high success rates on complex instruction-following tasks, including long-horizon navigation with multiple semantic targets. Experimental results highlight the promise of replacing remote drone pilots with a language-guided autonomous agent, opening avenues for scalable, human-friendly control of indoor UAVs in tasks such as inspection, search-and-rescue, and facility monitoring. Our results suggest that VLLM-based pilots may dramatically reduce operator workload while improving safety and mission flexibility in constrained indoor environments.
☆ FastVMT: Eliminating Redundancy in Video Motion Transfer ICLR2026
Video motion transfer aims to synthesize videos by generating visual content according to a text prompt while transferring the motion pattern observed in a reference video. Recent methods predominantly use the Diffusion Transformer (DiT) architecture. To achieve satisfactory runtime, several methods attempt to accelerate the computations in the DiT, but fail to address structural sources of inefficiency. In this work, we identify and remove two types of computational redundancy in earlier work: motion redundancy arises because the generic DiT architecture does not reflect the fact that frame-to-frame motion is small and smooth; gradient redundancy occurs if one ignores that gradients change slowly along the diffusion trajectory. To mitigate motion redundancy, we mask the corresponding attention layers to a local neighborhood such that interaction weights are not computed unnecessarily distant image regions. To exploit gradient redundancy, we design an optimization scheme that reuses gradients from previous diffusion steps and skips unwarranted gradient computations. On average, FastVMT achieves a 3.43x speedup without degrading the visual fidelity or the temporal consistency of the generated videos.
comment: Accepted by ICLR2026, Project page: fastvmt.gitHub.io, Code: https://github.com/mayuelala/FastVMT
☆ A Comparative Study of 3D Person Detection: Sensor Modalities and Robustness in Diverse Indoor and Outdoor Environments
Accurate 3D person detection is critical for safety in applications such as robotics, industrial monitoring, and surveillance. This work presents a systematic evaluation of 3D person detection using camera-only, LiDAR-only, and camera-LiDAR fusion. While most existing research focuses on autonomous driving, we explore detection performance and robustness in diverse indoor and outdoor scenes using the JRDB dataset. We compare three representative models - BEVDepth (camera), PointPillars (LiDAR), and DAL (camera-LiDAR fusion) - and analyze their behavior under varying occlusion and distance levels. Our results show that the fusion-based approach consistently outperforms single-modality models, particularly in challenging scenarios. We further investigate robustness against sensor corruptions and misalignments, revealing that while DAL offers improved resilience, it remains sensitive to sensor misalignment and certain LiDAR-based corruptions. In contrast, the camera-based BEVDepth model showed the lowest performance and was most affected by occlusion, distance, and noise. Our findings highlight the importance of utilizing sensor fusion for enhanced 3D person detection, while also underscoring the need for ongoing research to address the vulnerabilities inherent in these systems.
comment: Accepted for VISAPP 2026
☆ When Shared Knowledge Hurts: Spectral Over-Accumulation in Model Merging
Model merging combines multiple fine-tuned models into a single model by adding their weight updates, providing a lightweight alternative to retraining. Existing methods primarily target resolving conflicts between task updates, leaving the failure mode of over-counting shared knowledge unaddressed. We show that when tasks share aligned spectral directions (i.e., overlapping singular vectors), a simple linear combination repeatedly accumulates these directions, inflating the singular values and biasing the merged model toward shared subspaces. To mitigate this issue, we propose Singular Value Calibration (SVC), a training-free and data-free post-processing method that quantifies subspace overlap and rescales inflated singular values to restore a balanced spectrum. Across vision and language benchmarks, SVC consistently improves strong merging baselines and achieves state-of-the-art performance. Furthermore, by modifying only the singular values, SVC improves the performance of Task Arithmetic by 13.0%. Code is available at: https://github.com/lyymuwu/SVC.
☆ SSG: Scaled Spatial Guidance for Multi-Scale Visual Autoregressive Generation ICLR 2026
Visual autoregressive (VAR) models generate images through next-scale prediction, naturally achieving coarse-to-fine, fast, high-fidelity synthesis mirroring human perception. In practice, this hierarchy can drift at inference time, as limited capacity and accumulated error cause the model to deviate from its coarse-to-fine nature. We revisit this limitation from an information-theoretic perspective and deduce that ensuring each scale contributes high-frequency content not explained by earlier scales mitigates the train-inference discrepancy. With this insight, we propose Scaled Spatial Guidance (SSG), training-free, inference-time guidance that steers generation toward the intended hierarchy while maintaining global coherence. SSG emphasizes target high-frequency signals, defined as the semantic residual, isolated from a coarser prior. To obtain this prior, we leverage a principled frequency-domain procedure, Discrete Spatial Enhancement (DSE), which is devised to sharpen and better isolate the semantic residual through frequency-aware construction. SSG applies broadly across VAR models leveraging discrete visual tokens, regardless of tokenization design or conditioning modality. Experiments demonstrate SSG yields consistent gains in fidelity and diversity while preserving low latency, revealing untapped efficiency in coarse-to-fine image generation. Code is available at https://github.com/Youngwoo-git/SSG.
comment: Accepted to ICLR 2026
☆ Generalization of Self-Supervised Vision Transformers for Protein Localization Across Microscopy Domains
Task-specific microscopy datasets are often too small to train deep learning models that learn robust feature representations. Self-supervised learning (SSL) can mitigate this by pretraining on large unlabeled datasets, but it remains unclear how well such representations transfer across microscopy domains with different staining protocols and channel configurations. We investigate the cross-domain transferability of DINO-pretrained Vision Transformers for protein localization on the OpenCell dataset. We generate image embeddings using three DINO backbones pretrained on ImageNet-1k, the Human Protein Atlas (HPA), and OpenCell, and evaluate them by training a supervised classification head on OpenCell labels. All pretrained models transfer well, with the microscopy-specific HPA-pretrained model achieving the best performance (mean macro $F_1$-score = 0.8221 \pm 0.0062), slightly outperforming a DINO model trained directly on OpenCell (0.8057 \pm 0.0090). These results highlight the value of large-scale pretraining and indicate that domain-relevant SSL representations can generalize effectively to related but distinct microscopy datasets, enabling strong downstream performance even when task-specific labeled data are limited.
comment: AMEE Conference Proceeding 2025, 11 pages, 2 figures
☆ Mapper-GIN: Lightweight Structural Graph Abstraction for Corrupted 3D Point Cloud Classification
Robust 3D point cloud classification is often pursued by scaling up backbones or relying on specialized data augmentation. We instead ask whether structural abstraction alone can improve robustness, and study a simple topology-inspired decomposition based on the Mapper algorithm. We propose Mapper-GIN, a lightweight pipeline that partitions a point cloud into overlapping regions using Mapper (PCA lens, cubical cover, and followed by density-based clustering), constructs a region graph from their overlaps, and performs graph classification with a Graph Isomorphism Network. On the corruption benchmark ModelNet40-C, Mapper-GIN achieves competitive and stable accuracy under Noise and Transformation corruptions with only 0.5M parameters. In contrast to prior approaches that require heavier architectures or additional mechanisms to gain robustness, Mapper-GIN attains strong corruption robustness through simple region-level graph abstraction and GIN message passing. Overall, our results suggest that region-graph structure offers an efficient and interpretable source of robustness for 3D visual recognition.
☆ VGGT-Motion: Motion-Aware Calibration-Free Monocular SLAM for Long-Range Consistency
Despite recent progress in calibration-free monocular SLAM via 3D vision foundation models, scale drift remains severe on long sequences. Motion-agnostic partitioning breaks contextual coherence and causes zero-motion drift, while conventional geometric alignment is computationally expensive. To address these issues, we propose VGGT-Motion, a calibration-free SLAM system for efficient and robust global consistency over kilometer-scale trajectories. Specifically, we first propose a motion-aware submap construction mechanism that uses optical flow to guide adaptive partitioning, prune static redundancy, and encapsulate turns for stable local geometry. We then design an anchor-driven direct Sim(3) registration strategy. By exploiting context-balanced anchors, it achieves search-free, pixel-wise dense alignment and efficient loop closure without costly feature matching. Finally, a lightweight submap-level pose graph optimization enforces global consistency with linear complexity, enabling scalable long-range operation. Experiments show that VGGT-Motion markedly improves trajectory accuracy and efficiency, achieving state-of-the-art performance in zero-shot, long-range calibration-free monocular SLAM.
☆ XEmoGPT: An Explainable Multimodal Emotion Recognition Framework with Cue-Level Perception and Reasoning
Explainable Multimodal Emotion Recognition plays a crucial role in applications such as human-computer interaction and social media analytics. However, current approaches struggle with cue-level perception and reasoning due to two main challenges: 1) general-purpose modality encoders are pretrained to capture global structures and general semantics rather than fine-grained emotional cues, resulting in limited sensitivity to emotional signals; and 2) available datasets usually involve a trade-off between annotation quality and scale, which leads to insufficient supervision for emotional cues and ultimately limits cue-level reasoning. Moreover, existing evaluation metrics are inadequate for assessing cue-level reasoning performance. To address these challenges, we propose eXplainable Emotion GPT (XEmoGPT), a novel EMER framework capable of both perceiving and reasoning over emotional cues. It incorporates two specialized modules: the Video Emotional Cue Bridge (VECB) and the Audio Emotional Cue Bridge (AECB), which enhance the video and audio encoders through carefully designed tasks for fine-grained emotional cue perception. To further support cue-level reasoning, we construct a large-scale dataset, EmoCue, designed to teach XEmoGPT how to reason over multimodal emotional cues. In addition, we introduce EmoCue-360, an automated metric that extracts and matches emotional cues using semantic similarity, and release EmoCue-Eval, a benchmark of 400 expert-annotated samples covering diverse emotional scenarios. Experimental results show that XEmoGPT achieves strong performance in both emotional cue perception and reasoning.
☆ Feature points evaluation on omnidirectional vision with a photorealistic fisheye sequence -- A report on experiments done in 2014
What is this report: This is a scientific report, contributing with a detailed bibliography, a dataset which we will call now PFSeq for ''Photorealistic Fisheye Sequence'' and make available at https://doi.org/10. 57745/DYIVVU, and comprehensive experiments. This work should be considered as a draft, and has been done during my PhD thesis ''Construction of 3D models from fisheye video data-Application to the localisation in urban area'' in 2014 [Mor16]. These results have never been published. The aim was to find the best features detector and descriptor for fisheye images, in the context of selfcalibration, with cameras mounted on the top of a car and aiming at the zenith (to proceed then fisheye visual odometry and stereovision in urban scenes). We face a chicken and egg problem, because we can not take advantage of an accurate projection model for an optimal features detection and description, and we rightly need good features to perform the calibration (i.e. to compute the accurate projection model of the camera). What is not this report: It does not contribute with new features algorithm. It does not compare standard features algorithms to algorithms designed for omnidirectional images (unfortunately). It has not been peer-reviewed. Discussions have been translated and enhanced but the experiments have not been run again and the report has not been updated accordingly to the evolution of the state-of-the-art (read this as a 2014 report).
☆ SOMA-1M: A Large-Scale SAR-Optical Multi-resolution Alignment Dataset for Multi-Task Remote Sensing
Synthetic Aperture Radar (SAR) and optical imagery provide complementary strengths that constitute the critical foundation for transcending single-modality constraints and facilitating cross-modal collaborative processing and intelligent interpretation. However, existing benchmark datasets often suffer from limitations such as single spatial resolution, insufficient data scale, and low alignment accuracy, making them inadequate for supporting the training and generalization of multi-scale foundation models. To address these challenges, we introduce SOMA-1M (SAR-Optical Multi-resolution Alignment), a pixel-level precisely aligned dataset containing over 1.3 million pairs of georeferenced images with a specification of 512 x 512 pixels. This dataset integrates imagery from Sentinel-1, PIESAT-1, Capella Space, and Google Earth, achieving global multi-scale coverage from 0.5 m to 10 m. It encompasses 12 typical land cover categories, effectively ensuring scene diversity and complexity. To address multimodal projection deformation and massive data registration, we designed a rigorous coarse-to-fine image matching framework ensuring pixel-level alignment. Based on this dataset, we established comprehensive evaluation benchmarks for four hierarchical vision tasks, including image matching, image fusion, SAR-assisted cloud removal, and cross-modal translation, involving over 30 mainstream algorithms. Experimental results demonstrate that supervised training on SOMA-1M significantly enhances performance across all tasks. Notably, multimodal remote sensing image (MRSI) matching performance achieves current state-of-the-art (SOTA) levels. SOMA-1M serves as a foundational resource for robust multimodal algorithms and remote sensing foundation models. The dataset will be released publicly at: https://github.com/PeihaoWu/SOMA-1M.
☆ MerNav: A Highly Generalizable Memory-Execute-Review Framework for Zero-Shot Object Goal Navigation
Visual Language Navigation (VLN) is one of the fundamental capabilities for embodied intelligence and a critical challenge that urgently needs to be addressed. However, existing methods are still unsatisfactory in terms of both success rate (SR) and generalization: Supervised Fine-Tuning (SFT) approaches typically achieve higher SR, while Training-Free (TF) approaches often generalize better, but it is difficult to obtain both simultaneously. To this end, we propose a Memory-Execute-Review framework. It consists of three parts: a hierarchical memory module for providing information support, an execute module for routine decision-making and actions, and a review module for handling abnormal situations and correcting behavior. We validated the effectiveness of this framework on the Object Goal Navigation task. Across 4 datasets, our average SR achieved absolute improvements of 7% and 5% compared to all baseline methods under TF and Zero-Shot (ZS) settings, respectively. On the most commonly used HM3D_v0.1 and the more challenging open vocabulary dataset HM3D_OVON, the SR improved by 8% and 6%, under ZS settings. Furthermore, on the MP3D and HM3D_OVON datasets, our method not only outperformed all TF methods but also surpassed all SFT methods, achieving comprehensive leadership in both SR (5% and 2%) and generalization.
comment: 9 pages, 2 figures, 5 tables, conference
☆ Refine and Purify: Orthogonal Basis Optimization with Null-Space Denoising for Conditional Representation Learning
Conditional representation learning aims to extract criterion-specific features for customized tasks. Recent studies project universal features onto the conditional feature subspace spanned by an LLM-generated text basis to obtain conditional representations. However, such methods face two key limitations: sensitivity to subspace basis and vulnerability to inter-subspace interference. To address these challenges, we propose OD-CRL, a novel framework integrating Adaptive Orthogonal Basis Optimization (AOBO) and Null-Space Denoising Projection (NSDP). Specifically, AOBO constructs orthogonal semantic bases via singular value decomposition with a curvature-based truncation. NSDP suppresses non-target semantic interference by projecting embeddings onto the null space of irrelevant subspaces. Extensive experiments conducted across customized clustering, customized classification, and customized retrieval tasks demonstrate that OD-CRL achieves a new state-of-the-art performance with superior generalization.
☆ Attention Retention for Continual Learning with Vision Transformers AAAI-2026
Continual learning (CL) empowers AI systems to progressively acquire knowledge from non-stationary data streams. However, catastrophic forgetting remains a critical challenge. In this work, we identify attention drift in Vision Transformers as a primary source of catastrophic forgetting, where the attention to previously learned visual concepts shifts significantly after learning new tasks. Inspired by neuroscientific insights into the selective attention in the human visual system, we propose a novel attention-retaining framework to mitigate forgetting in CL. Our method constrains attention drift by explicitly modifying gradients during backpropagation through a two-step process: 1) extracting attention maps of the previous task using a layer-wise rollout mechanism and generating instance-adaptive binary masks, and 2) when learning a new task, applying these masks to zero out gradients associated with previous attention regions, thereby preventing disruption of learned visual concepts. For compatibility with modern optimizers, the gradient masking process is further enhanced by scaling parameter updates proportionally to maintain their relative magnitudes. Experiments and visualizations demonstrate the effectiveness of our method in mitigating catastrophic forgetting and preserving visual concepts. It achieves state-of-the-art performance and exhibits robust generalizability across diverse CL scenarios.
comment: AAAI-2026 Camera Ready
☆ Towards Segmenting the Invisible: An End-to-End Registration and Segmentation Framework for Weakly Supervised Tumour Analysis ECAI 2025
Liver tumour ablation presents a significant clinical challenge: whilst tumours are clearly visible on pre-operative MRI, they are often effectively invisible on intra-operative CT due to minimal contrast between pathological and healthy tissue. This work investigates the feasibility of cross-modality weak supervision for scenarios where pathology is visible in one modality (MRI) but absent in another (CT). We present a hybrid registration-segmentation framework that combines MSCGUNet for inter-modal image registration with a UNet-based segmentation module, enabling registration-assisted pseudo-label generation for CT images. Our evaluation on the CHAOS dataset demonstrates that the pipeline can successfully register and segment healthy liver anatomy, achieving a Dice score of 0.72. However, when applied to clinical data containing tumours, performance degrades substantially (Dice score of 0.16), revealing the fundamental limitations of current registration methods when the target pathology lacks corresponding visual features in the target modality. We analyse the "domain gap" and "feature absence" problems, demonstrating that whilst spatial propagation of labels via registration is feasible for visible structures, segmenting truly invisible pathology remains an open challenge. Our findings highlight that registration-based label transfer cannot compensate for the absence of discriminative features in the target modality, providing important insights for future research in cross-modality medical image analysis. Code an weights are available at: https://github.com/BudhaTronix/Weakly-Supervised-Tumour-Detection
comment: Accepted for AIBio at ECAI 2025
☆ DisCa: Accelerating Video Diffusion Transformers with Distillation-Compatible Learnable Feature Caching
While diffusion models have achieved great success in the field of video generation, this progress is accompanied by a rapidly escalating computational burden. Among the existing acceleration methods, Feature Caching is popular due to its training-free property and considerable speedup performance, but it inevitably faces semantic and detail drop with further compression. Another widely adopted method, training-aware step-distillation, though successful in image generation, also faces drastic degradation in video generation with a few steps. Furthermore, the quality loss becomes more severe when simply applying training-free feature caching to the step-distilled models, due to the sparser sampling steps. This paper novelly introduces a distillation-compatible learnable feature caching mechanism for the first time. We employ a lightweight learnable neural predictor instead of traditional training-free heuristics for diffusion models, enabling a more accurate capture of the high-dimensional feature evolution process. Furthermore, we explore the challenges of highly compressed distillation on large-scale video models and propose a conservative Restricted MeanFlow approach to achieve more stable and lossless distillation. By undertaking these initiatives, we further push the acceleration boundaries to $11.8\times$ while preserving generation quality. Extensive experiments demonstrate the effectiveness of our method. The code is in the supplementary materials and will be publicly available.
comment: 17 pages, 7 figures; cvpr2026 submission
☆ Synthetic Defect Geometries of Cast Metal Objects Modeled via 2d Voronoi Tessellations
In industry, defect detection is crucial for quality control. Non-destructive testing (NDT) methods are preferred as they do not influence the functionality of the object while inspecting. Automated data evaluation for automated defect detection is a growing field of research. In particular, machine learning approaches show promising results. To provide training data in sufficient amount and quality, synthetic data can be used. Rule-based approaches enable synthetic data generation in a controllable environment. Therefore, a digital twin of the inspected object including synthetic defects is needed. We present parametric methods to model 3d mesh objects of various defect types that can then be added to the object geometry to obtain synthetic defective objects. The models are motivated by common defects in metal casting but can be transferred to other machining procedures that produce similar defect shapes. Synthetic data resembling the real inspection data can then be created by using a physically based Monte Carlo simulation of the respective testing method. Using our defect models, a variable and arbitrarily large synthetic data set can be generated with the possibility to include rarely occurring defects in sufficient quantity. Pixel-perfect annotation can be created in parallel. As an example, we will use visual surface inspection, but the procedure can be applied in combination with simulations for any other NDT method.
☆ Stable Velocity: A Variance Perspective on Flow Matching
While flow matching is elegant, its reliance on single-sample conditional velocities leads to high-variance training targets that destabilize optimization and slow convergence. By explicitly characterizing this variance, we identify 1) a high-variance regime near the prior, where optimization is challenging, and 2) a low-variance regime near the data distribution, where conditional and marginal velocities nearly coincide. Leveraging this insight, we propose Stable Velocity, a unified framework that improves both training and sampling. For training, we introduce Stable Velocity Matching (StableVM), an unbiased variance-reduction objective, along with Variance-Aware Representation Alignment (VA-REPA), which adaptively strengthen auxiliary supervision in the low-variance regime. For inference, we show that dynamics in the low-variance regime admit closed-form simplifications, enabling Stable Velocity Sampling (StableVS), a finetuning-free acceleration. Extensive experiments on ImageNet $256\times256$ and large pretrained text-to-image and text-to-video models, including SD3.5, Flux, Qwen-Image, and Wan2.2, demonstrate consistent improvements in training efficiency and more than $2\times$ faster sampling within the low-variance regime without degrading sample quality. Our code is available at https://github.com/linYDTHU/StableVelocity.
☆ LD-SLRO: Latent Diffusion Structured Light for 3-D Reconstruction of Highly Reflective Objects
Fringe projection profilometry-based 3-D reconstruction of objects with high reflectivity and low surface roughness remains a significant challenge. When measuring such glossy surfaces, specular reflection and indirect illumination often lead to severe distortion or loss of the projected fringe patterns. To address these issues, we propose a latent diffusion-based structured light for reflective objects (LD-SLRO). Phase-shifted fringe images captured from highly reflective surfaces are first encoded to extract latent representations that capture surface reflectance characteristics. These latent features are then used as conditional inputs to a latent diffusion model, which probabilistically suppresses reflection-induced artifacts and recover lost fringe information, yielding high-quality fringe images. The proposed components, including the specular reflection encoder, time-variant channel affine layer, and attention modules, further improve fringe restoration quality. In addition, LD-SLRO provides high flexibility in configuring the input and output fringe sets. Experimental results demonstrate that the proposed method improves both fringe quality and 3-D reconstruction accuracy over state-of-the-art methods, reducing the average root-mean-squared error from 1.8176 mm to 0.9619 mm.
comment: 10 pages, 7 figures
☆ M$^2$-Miner: Multi-Agent Enhanced MCTS for Mobile GUI Agent Data Mining ICLR 2026
Graphical User Interface (GUI) agent is pivotal to advancing intelligent human-computer interaction paradigms. Constructing powerful GUI agents necessitates the large-scale annotation of high-quality user-behavior trajectory data (i.e., intent-trajectory pairs) for training. However, manual annotation methods and current GUI agent data mining approaches typically face three critical challenges: high construction cost, poor data quality, and low data richness. To address these issues, we propose M$^2$-Miner, the first low-cost and automated mobile GUI agent data-mining framework based on Monte Carlo Tree Search (MCTS). For better data mining efficiency and quality, we present a collaborative multi-agent framework, comprising InferAgent, OrchestraAgent, and JudgeAgent for guidance, acceleration, and evaluation. To further enhance the efficiency of mining and enrich intent diversity, we design an intent recycling strategy to extract extra valuable interaction trajectories. Additionally, a progressive model-in-the-loop training strategy is introduced to improve the success rate of data mining. Extensive experiments have demonstrated that the GUI agent fine-tuned using our mined data achieves state-of-the-art performance on several commonly used mobile GUI benchmarks. Our work will be released to facilitate the community research.
comment: Accepted by ICLR 2026. Supplementary material is included at the end of the main paper (16 pages, 15 figures, 2 tables)
☆ Multi-AD: Cross-Domain Unsupervised Anomaly Detection for Medical and Industrial Applications
Traditional deep learning models often lack annotated data, especially in cross-domain applications such as anomaly detection, which is critical for early disease diagnosis in medicine and defect detection in industry. To address this challenge, we propose Multi-AD, a convolutional neural network (CNN) model for robust unsupervised anomaly detection across medical and industrial images. Our approach employs the squeeze-and-excitation (SE) block to enhance feature extraction via channel-wise attention, enabling the model to focus on the most relevant features and detect subtle anomalies. Knowledge distillation (KD) transfers informative features from the teacher to the student model, enabling effective learning of the differences between normal and anomalous data. Then, the discriminator network further enhances the model's capacity to distinguish between normal and anomalous data. At the inference stage, by integrating multi-scale features, the student model can detect anomalies of varying sizes. The teacher-student (T-S) architecture ensures consistent representation of high-dimensional features while adapting them to enhance anomaly detection. Multi-AD was evaluated on several medical datasets, including brain MRI, liver CT, and retina OCT, as well as industrial datasets, such as MVTec AD, demonstrating strong generalization across multiple domains. Experimental results demonstrated that our approach consistently outperformed state-of-the-art models, achieving the best average AUROC for both image-level (81.4% for medical and 99.6% for industrial) and pixel-level (97.0% for medical and 98.4% for industrial) tasks, making it effective for real-world applications.
comment: 28 pages, 8 figures
☆ NeVStereo: A NeRF-Driven NVS-Stereo Architecture for High-Fidelity 3D Tasks
In modern dense 3D reconstruction, feed-forward systems (e.g., VGGT, pi3) focus on end-to-end matching and geometry prediction but do not explicitly output the novel view synthesis (NVS). Neural rendering-based approaches offer high-fidelity NVS and detailed geometry from posed images, yet they typically assume fixed camera poses and can be sensitive to pose errors. As a result, it remains non-trivial to obtain a single framework that can offer accurate poses, reliable depth, high-quality rendering, and accurate 3D surfaces from casually captured views. We present NeVStereo, a NeRF-driven NVS-stereo architecture that aims to jointly deliver camera poses, multi-view depth, novel view synthesis, and surface reconstruction from multi-view RGB-only inputs. NeVStereo combines NeRF-based NVS for stereo-friendly renderings, confidence-guided multi-view depth estimation, NeRF-coupled bundle adjustment for pose refinement, and an iterative refinement stage that updates both depth and the radiance field to improve geometric consistency. This design mitigated the common NeRF-based issues such as surface stacking, artifacts, and pose-depth coupling. Across indoor, outdoor, tabletop, and aerial benchmarks, our experiments indicate that NeVStereo achieves consistently strong zero-shot performance, with up to 36% lower depth error, 10.4% improved pose accuracy, 4.5% higher NVS fidelity, and state-of-the-art mesh quality (F1 91.93%, Chamfer 4.35 mm) compared to existing prestigious methods.
☆ Disco: Densely-overlapping Cell Instance Segmentation via Adjacency-aware Collaborative Coloring ICLR 2026
Accurate cell instance segmentation is foundational for digital pathology analysis. Existing methods based on contour detection and distance mapping still face significant challenges in processing complex and dense cellular regions. Graph coloring-based methods provide a new paradigm for this task, yet the effectiveness of this paradigm in real-world scenarios with dense overlaps and complex topologies has not been verified. Addressing this issue, we release a large-scale dataset GBC-FS 2025, which contains highly complex and dense sub-cellular nuclear arrangements. We conduct the first systematic analysis of the chromatic properties of cell adjacency graphs across four diverse datasets and reveal an important discovery: most real-world cell graphs are non-bipartite, with a high prevalence of odd-length cycles (predominantly triangles). This makes simple 2-coloring theory insufficient for handling complex tissues, while higher-chromaticity models would cause representational redundancy and optimization difficulties. Building on this observation of complex real-world contexts, we propose Disco (Densely-overlapping Cell Instance Segmentation via Adjacency-aware COllaborative Coloring), an adjacency-aware framework based on the "divide and conquer" principle. It uniquely combines a data-driven topological labeling strategy with a constrained deep learning system to resolve complex adjacency conflicts. First, "Explicit Marking" strategy transforms the topological challenge into a learnable classification task by recursively decomposing the cell graph and isolating a "conflict set." Second, "Implicit Disambiguation" mechanism resolves ambiguities in conflict regions by enforcing feature dissimilarity between different instances, enabling the model to learn separable feature representations.
comment: 17 pages, 10 figures; ICLR 2026
☆ VMF-GOS: Geometry-guided virtual Outlier Synthesis for Long-Tailed OOD Detection
Out-of-Distribution (OOD) detection under long-tailed distributions is a highly challenging task because the scarcity of samples in tail classes leads to blurred decision boundaries in the feature space. Current state-of-the-art (sota) methods typically employ Outlier Exposure (OE) strategies, relying on large-scale real external datasets (such as 80 Million Tiny Images) to regularize the feature space. However, this dependence on external data often becomes infeasible in practical deployment due to high data acquisition costs and privacy sensitivity. To this end, we propose a novel data-free framework aimed at completely eliminating reliance on external datasets while maintaining superior detection performance. We introduce a Geometry-guided virtual Outlier Synthesis (GOS) strategy that models statistical properties using the von Mises-Fisher (vMF) distribution on a hypersphere. Specifically, we locate a low-likelihood annulus in the feature space and perform directional sampling of virtual outliers in this region. Simultaneously, we introduce a new Dual-Granularity Semantic Loss (DGS) that utilizes contrastive learning to maximize the distinction between in-distribution (ID) features and these synthesized boundary outliers. Extensive experiments on benchmarks such as CIFAR-LT demonstrate that our method outperforms sota approaches that utilize external real images.
☆ TSBOW: Traffic Surveillance Benchmark for Occluded Vehicles Under Various Weather Conditions AAAI
Global warming has intensified the frequency and severity of extreme weather events, which degrade CCTV signal and video quality while disrupting traffic flow, thereby increasing traffic accident rates. Existing datasets, often limited to light haze, rain, and snow, fail to capture extreme weather conditions. To address this gap, this study introduces the Traffic Surveillance Benchmark for Occluded vehicles under various Weather conditions (TSBOW), a comprehensive dataset designed to enhance occluded vehicle detection across diverse annual weather scenarios. Comprising over 32 hours of real-world traffic data from densely populated urban areas, TSBOW includes more than 48,000 manually annotated and 3.2 million semi-labeled frames; bounding boxes spanning eight traffic participant classes from large vehicles to micromobility devices and pedestrians. We establish an object detection benchmark for TSBOW, highlighting challenges posed by occlusions and adverse weather. With its varied road types, scales, and viewpoints, TSBOW serves as a critical resource for advancing Intelligent Transportation Systems. Our findings underscore the potential of CCTV-based traffic monitoring, pave the way for new research and applications. The TSBOW dataset is publicly available at: https://github.com/SKKUAutoLab/TSBOW.
comment: This paper has been accepted by the 40th AAAI Conference on Artificial Intelligence (AAAI-26)
☆ Explainable Pathomics Feature Visualization via Correlation-aware Conditional Feature Editing
Pathomics is a recent approach that offers rich quantitative features beyond what black-box deep learning can provide, supporting more reproducible and explainable biomarkers in digital pathology. However, many derived features (e.g., "second-order moment") remain difficult to interpret, especially across different clinical contexts, which limits their practical adoption. Conditional diffusion models show promise for explainability through feature editing, but they typically assume feature independence**--**an assumption violated by intrinsically correlated pathomics features. Consequently, editing one feature while fixing others can push the model off the biological manifold and produce unrealistic artifacts. To address this, we propose a Manifold-Aware Diffusion (MAD) framework for controllable and biologically plausible cell nuclei editing. Unlike existing approaches, our method regularizes feature trajectories within a disentangled latent space learned by a variational auto-encoder (VAE). This ensures that manipulating a target feature automatically adjusts correlated attributes to remain within the learned distribution of real cells. These optimized features then guide a conditional diffusion model to synthesize high-fidelity images. Experiments demonstrate that our approach is able to navigate the manifold of pathomics features when editing those features. The proposed method outperforms baseline methods in conditional feature editing while preserving structural coherence.
Dataset Distillation via Relative Distribution Matching and Cognitive Heritage
Dataset distillation seeks to synthesize a highly compact dataset that achieves performance comparable to the original dataset on downstream tasks. For the classification task that use pre-trained self-supervised models as backbones, previous linear gradient matching optimizes synthetic images by encouraging them to mimic the gradient updates induced by real images on the linear classifier. However, this batch-level formulation requires loading thousands of real images and applying multiple rounds of differentiable augmentations to synthetic images at each distillation step, leading to substantial computational and memory overhead. In this paper, we introduce statistical flow matching , a stable and efficient supervised learning framework that optimizes synthetic images by aligning constant statistical flows from target class centers to non-target class centers in the original data. Our approach loads raw statistics only once and performs a single augmentation pass on the synthetic data, achieving performance comparable to or better than the state-of-the-art methods with 10x lower GPU memory usage and 4x shorter runtime. Furthermore, we propose a classifier inheritance strategy that reuses the classifier trained on the original dataset for inference, requiring only an extremely lightweight linear projector and marginal storage while achieving substantial performance gains.
☆ Parallel Swin Transformer-Enhanced 3D MRI-to-CT Synthesis for MRI-Only Radiotherapy Planning
MRI provides superior soft tissue contrast without ionizing radiation; however, the absence of electron density information limits its direct use for dose calculation. As a result, current radiotherapy workflows rely on combined MRI and CT acquisitions, increasing registration uncertainty and procedural complexity. Synthetic CT generation enables MRI only planning but remains challenging due to nonlinear MRI-CT relationships and anatomical variability. We propose Parallel Swin Transformer-Enhanced Med2Transformer, a 3D architecture that integrates convolutional encoding with dual Swin Transformer branches to model both local anatomical detail and long-range contextual dependencies. Multi-scale shifted window attention with hierarchical feature aggregation improves anatomical fidelity. Experiments on public and clinical datasets demonstrate higher image similarity and improved geometric accuracy compared with baseline methods. Dosimetric evaluation shows clinically acceptable performance, with a mean target dose error of 1.69%. Code is available at: https://github.com/mobaidoctor/med2transformer.
☆ Dolphin-v2: Universal Document Parsing via Scalable Anchor Prompting
Document parsing has garnered widespread attention as vision-language models (VLMs) advance OCR capabilities. However, the field remains fragmented across dozens of specialized models with varying strengths, forcing users to navigate complex model selection and limiting system scalability. Moreover, existing two-stage approaches depend on axis-aligned bounding boxes for layout detection, failing to handle distorted or photographed documents effectively. To this end, we present Dolphin-v2, a two-stage document image parsing model that substantially improves upon the original Dolphin. In the first stage, Dolphin-v2 jointly performs document type classification (digital-born versus photographed) alongside layout analysis. For digital-born documents, it conducts finer-grained element detection with reading order prediction. In the second stage, we employ a hybrid parsing strategy: photographed documents are parsed holistically as complete pages to handle geometric distortions, while digital-born documents undergo element-wise parallel parsing guided by the detected layout anchors, enabling efficient content extraction. Compared with the original Dolphin, Dolphin-v2 introduces several crucial enhancements: (1) robust parsing of photographed documents via holistic page-level understanding, (2) finer-grained element detection (21 categories) with semantic attribute extraction such as author information and document metadata, and (3) code block recognition with indentation preservation, which existing systems typically lack. Comprehensive evaluations are conducted on DocPTBench, OmniDocBench, and our self-constructed RealDoc-160 benchmark. The results demonstrate substantial improvements: +14.78 points overall on the challenging OmniDocBench and 91% error reduction on photographed documents, while maintaining efficient inference through parallel processing.
☆ VRIQ: Benchmarking and Analyzing Visual-Reasoning IQ of VLMs
Recent progress in Vision Language Models (VLMs) has raised the question of whether they can reliably perform nonverbal reasoning. To this end, we introduce VRIQ (Visual Reasoning IQ), a novel benchmark designed to assess and analyze the visual reasoning ability of VLMs. We evaluate models on two sets of tasks: abstract puzzle-style and natural-image reasoning tasks. We find that on abstract puzzles, performance remains near random with an average accuracy of around 28%, while natural tasks yield better but still weak results with 45% accuracy. We also find that tool-augmented reasoning demonstrates only modest improvements. To uncover the source of this weakness, we introduce diagnostic probes targeting perception and reasoning. Our analysis demonstrates that around 56% of failures arise from perception alone, 43% from both perception and reasoning, and only a mere 1% from reasoning alone. This motivates us to design fine-grained diagnostic probe questions targeting specific perception categories (e.g., shape, count, position, 3D/depth), revealing that certain categories cause more failures than others. Our benchmark and analysis establish that current VLMs, even with visual reasoning tools, remain unreliable abstract reasoners, mostly due to perception limitations, and offer a principled basis for improving visual reasoning in multimodal systems.
☆ SAIL: Self-Amplified Iterative Learning for Diffusion Model Alignment with Minimal Human Feedback
Aligning diffusion models with human preferences remains challenging, particularly when reward models are unavailable or impractical to obtain, and collecting large-scale preference datasets is prohibitively expensive. \textit{This raises a fundamental question: can we achieve effective alignment using only minimal human feedback, without auxiliary reward models, by unlocking the latent capabilities within diffusion models themselves?} In this paper, we propose \textbf{SAIL} (\textbf{S}elf-\textbf{A}mplified \textbf{I}terative \textbf{L}earning), a novel framework that enables diffusion models to act as their own teachers through iterative self-improvement. Starting from a minimal seed set of human-annotated preference pairs, SAIL operates in a closed-loop manner where the model progressively generates diverse samples, self-annotates preferences based on its evolving understanding, and refines itself using this self-augmented dataset. To ensure robust learning and prevent catastrophic forgetting, we introduce a ranked preference mixup strategy that carefully balances exploration with adherence to initial human priors. Extensive experiments demonstrate that SAIL consistently outperforms state-of-the-art methods across multiple benchmarks while using merely 6\% of the preference data required by existing approaches, revealing that diffusion models possess remarkable self-improvement capabilities that, when properly harnessed, can effectively replace both large-scale human annotation and external reward models.
☆ Erase at the Core: Representation Unlearning for Machine Unlearning
Many approximate machine unlearning methods demonstrate strong logit-level forgetting -- such as near-zero accuracy on the forget set -- yet continue to preserve substantial information within their internal feature representations. We refer to this discrepancy as superficial forgetting. Recent studies indicate that most existing unlearning approaches primarily alter the final classifier, leaving intermediate representations largely unchanged and highly similar to those of the original model. To address this limitation, we introduce the Erase at the Core (EC), a framework designed to enforce forgetting throughout the entire network hierarchy. EC integrates multi-layer contrastive unlearning on the forget set with retain set preservation through deeply supervised learning. Concretely, EC attaches auxiliary modules to intermediate layers and applies both contrastive unlearning and cross-entropy losses at each supervision point, with layer-wise weighted losses. Experimental results show that EC not only achieves effective logit-level forgetting, but also substantially reduces representational similarity to the original model across intermediate layers. Furthermore, EC is model-agnostic and can be incorporated as a plug-in module into existing unlearning methods, improving representation-level forgetting while maintaining performance on the retain set.
☆ Imagine a City: CityGenAgent for Procedural 3D City Generation
The automated generation of interactive 3D cities is a critical challenge with broad applications in autonomous driving, virtual reality, and embodied intelligence. While recent advances in generative models and procedural techniques have improved the realism of city generation, existing methods often struggle with high-fidelity asset creation, controllability, and manipulation. In this work, we introduce CityGenAgent, a natural language-driven framework for hierarchical procedural generation of high-quality 3D cities. Our approach decomposes city generation into two interpretable components, Block Program and Building Program. To ensure structural correctness and semantic alignment, we adopt a two-stage learning strategy: (1) Supervised Fine-Tuning (SFT). We train BlockGen and BuildingGen to generate valid programs that adhere to schema constraints, including non-self-intersecting polygons and complete fields; (2) Reinforcement Learning (RL). We design Spatial Alignment Reward to enhance spatial reasoning ability and Visual Consistency Reward to bridge the gap between textual descriptions and the visual modality. Benefiting from the programs and the models' generalization, CityGenAgent supports natural language editing and manipulation. Comprehensive evaluations demonstrate superior semantic alignment, visual quality, and controllability compared to existing methods, establishing a robust foundation for scalable 3D city generation.
☆ Breaking Semantic Hegemony: Decoupling Principal and Residual Subspaces for Generalized OOD Detection
While feature-based post-hoc methods have made significant strides in Out-of-Distribution (OOD) detection, we uncover a counter-intuitive Simplicity Paradox in existing state-of-the-art (SOTA) models: these models exhibit keen sensitivity in distinguishing semantically subtle OOD samples but suffer from severe Geometric Blindness when confronting structurally distinct yet semantically simple samples or high-frequency sensor noise. We attribute this phenomenon to Semantic Hegemony within the deep feature space and reveal its mathematical essence through the lens of Neural Collapse. Theoretical analysis demonstrates that the spectral concentration bias, induced by the high variance of the principal subspace, numerically masks the structural distribution shift signals that should be significant in the residual subspace. To address this issue, we propose D-KNN, a training-free, plug-and-play geometric decoupling framework. This method utilizes orthogonal decomposition to explicitly separate semantic components from structural residuals and introduces a dual-space calibration mechanism to reactivate the model's sensitivity to weak residual signals. Extensive experiments demonstrate that D-KNN effectively breaks Semantic Hegemony, establishing new SOTA performance on both CIFAR and ImageNet benchmarks. Notably, in resolving the Simplicity Paradox, it reduces the FPR95 from 31.3% to 2.3%; when addressing sensor failures such as Gaussian noise, it boosts the detection performance (AUROC) from a baseline of 79.7% to 94.9%.
☆ Multimodal Latent Reasoning via Hierarchical Visual Cues Injection
The advancement of multimodal large language models (MLLMs) has enabled impressive perception capabilities. However, their reasoning process often remains a "fast thinking" paradigm, reliant on end-to-end generation or explicit, language-centric chains of thought (CoT), which can be inefficient, verbose, and prone to hallucination. This work posits that robust reasoning should evolve within a latent space, integrating multimodal signals seamlessly. We propose multimodal latent reasoning via HIerarchical Visual cuEs injection (\emph{HIVE}), a novel framework that instills deliberate, "slow thinking" without depending on superficial textual rationales. Our method recursively extends transformer blocks, creating an internal loop for iterative reasoning refinement. Crucially, it injectively grounds this process with hierarchical visual cues from global scene context to fine-grained regional details directly into the model's latent representations. This enables the model to perform grounded, multi-step inference entirely in the aligned latent space. Extensive evaluations demonstrate that test-time scaling is effective when incorporating vision knowledge, and that integrating hierarchical information significantly enhances the model's understanding of complex scenes.
☆ Learning with Adaptive Prototype Manifolds for Out-of-Distribution Detection
Out-of-distribution (OOD) detection is a critical task for the safe deployment of machine learning models in the real world. Existing prototype-based representation learning methods have demonstrated exceptional performance. Specifically, we identify two fundamental flaws that universally constrain these methods: the Static Homogeneity Assumption (fixed representational resources for all classes) and the Learning-Inference Disconnect (discarding rich prototype quality knowledge at inference). These flaws fundamentally limit the model's capacity and performance. To address these issues, we propose APEX (Adaptive Prototype for eXtensive OOD Detection), a novel OOD detection framework designed via a Two-Stage Repair process to optimize the learned feature manifold. APEX introduces two key innovations to address these respective flaws: (1) an Adaptive Prototype Manifold (APM), which leverages the Minimum Description Length (MDL) principle to automatically determine the optimal prototype complexity $K_c^*$ for each class, thereby fundamentally resolving prototype collision; and (2) a Posterior-Aware OOD Scoring (PAOS) mechanism, which quantifies prototype quality (cohesion and separation) to bridge the learning-inference disconnect. Comprehensive experiments on benchmarks such as CIFAR-100 validate the superiority of our method, where APEX achieves new state-of-the-art performance.
☆ Consistency-Preserving Concept Erasure via Unsafe-Safe Pairing and Directional Fisher-weighted Adaptation
With the increasing versatility of text-to-image diffusion models, the ability to selectively erase undesirable concepts (e.g., harmful content) has become indispensable. However, existing concept erasure approaches primarily focus on removing unsafe concepts without providing guidance toward corresponding safe alternatives, which often leads to failure in preserving the structural and semantic consistency between the original and erased generations. In this paper, we propose a novel framework, PAIRed Erasing (PAIR), which reframes concept erasure from simple removal to consistency-preserving semantic realignment using unsafe-safe pairs. We first generate safe counterparts from unsafe inputs while preserving structural and semantic fidelity, forming paired unsafe-safe multimodal data. Leveraging these pairs, we introduce two key components: (1) Paired Semantic Realignment, a guided objective that uses unsafe-safe pairs to explicitly map target concepts to semantically aligned safe anchors; and (2) Fisher-weighted Initialization for DoRA, which initializes parameter-efficient low-rank adaptation matrices using unsafe-safe pairs, encouraging the generation of safe alternatives while selectively suppressing unsafe concepts. Together, these components enable fine-grained erasure that removes only the targeted concepts while maintaining overall semantic consistency. Extensive experiments demonstrate that our approach significantly outperforms state-of-the-art baselines, achieving effective concept erasure while preserving structural integrity, semantic coherence, and generation quality.
☆ MTPano: Multi-Task Panoramic Scene Understanding via Label-Free Integration of Dense Prediction Priors
Comprehensive panoramic scene understanding is critical for immersive applications, yet it remains challenging due to the scarcity of high-resolution, multi-task annotations. While perspective foundation models have achieved success through data scaling, directly adapting them to the panoramic domain often fails due to severe geometric distortions and coordinate system discrepancies. Furthermore, the underlying relations between diverse dense prediction tasks in spherical spaces are underexplored. To address these challenges, we propose MTPano, a robust multi-task panoramic foundation model established by a label-free training pipeline. First, to circumvent data scarcity, we leverage powerful perspective dense priors. We project panoramic images into perspective patches to generate accurate, domain-gap-free pseudo-labels using off-the-shelf foundation models, which are then re-projected to serve as patch-wise supervision. Second, to tackle the interference between task types, we categorize tasks into rotation-invariant (e.g., depth, segmentation) and rotation-variant (e.g., surface normals) groups. We introduce the Panoramic Dual BridgeNet, which disentangles these feature streams via geometry-aware modulation layers that inject absolute position and ray direction priors. To handle the distortion from equirectangular projections (ERP), we incorporate ERP token mixers followed by a dual-branch BridgeNet for interactions with gradient truncation, facilitating beneficial cross-task information sharing while blocking conflicting gradients from incompatible task attributes. Additionally, we introduce auxiliary tasks (image gradient, point map, etc.) to fertilize the cross-task learning process. Extensive experiments demonstrate that MTPano achieves state-of-the-art performance on multiple benchmarks and delivers competitive results against task-specific panoramic specialist foundation models.
☆ Wid3R: Wide Field-of-View 3D Reconstruction via Camera Model Conditioning
We present Wid3R, a feed-forward neural network for visual geometry reconstruction that supports wide field-of-view camera models. Prior methods typically assume that input images are rectified or captured with pinhole cameras, since both their architectures and training datasets are tailored to perspective images only. These assumptions limit their applicability in real-world scenarios that use fisheye or panoramic cameras and often require careful calibration and undistortion. In contrast, Wid3R is a generalizable multi-view 3D estimation method that can model wide field-of-view camera types. Our approach leverages a ray representation with spherical harmonics and a novel camera model token within the network, enabling distortion-aware 3D reconstruction. Furthermore, Wid3R is the first multi-view foundation model to support feed-forward 3D reconstruction directly from 360 imagery. It demonstrates strong zero-shot robustness and consistently outperforms prior methods, achieving improvements of up to +77.33 on Stanford2D3D.
☆ FlashBlock: Attention Caching for Efficient Long-Context Block Diffusion
Generating long-form content, such as minute-long videos and extended texts, is increasingly important for modern generative models. Block diffusion improves inference efficiency via KV caching and block-wise causal inference and has been widely adopted in diffusion language models and video generation. However, in long-context settings, block diffusion still incurs substantial overhead from repeatedly computing attention over a growing KV cache. We identify an underexplored property of block diffusion: cross-step redundancy of attention within a block. Our analysis shows that attention outputs from tokens outside the current block remain largely stable across diffusion steps, while block-internal attention varies significantly. Based on this observation, we propose FlashBlock, a cached block-external attention mechanism that reuses stable attention output, reducing attention computation and KV cache access without modifying the diffusion process. Moreover, FlashBlock is orthogonal to sparse attention and can be combined as a complementary residual reuse strategy, substantially improving model accuracy under aggressive sparsification. Experiments on diffusion language models and video generation demonstrate up to 1.44$\times$ higher token throughput and up to 1.6$\times$ reduction in attention time, with negligible impact on generation quality. Project page: https://caesarhhh.github.io/FlashBlock/.
☆ Fast-SAM3D: 3Dfy Anything in Images but Faster
SAM3D enables scalable, open-world 3D reconstruction from complex scenes, yet its deployment is hindered by prohibitive inference latency. In this work, we conduct the \textbf{first systematic investigation} into its inference dynamics, revealing that generic acceleration strategies are brittle in this context. We demonstrate that these failures stem from neglecting the pipeline's inherent multi-level \textbf{heterogeneity}: the kinematic distinctiveness between shape and layout, the intrinsic sparsity of texture refinement, and the spectral variance across geometries. To address this, we present \textbf{Fast-SAM3D}, a training-free framework that dynamically aligns computation with instantaneous generation complexity. Our approach integrates three heterogeneity-aware mechanisms: (1) \textit{Modality-Aware Step Caching} to decouple structural evolution from sensitive layout updates; (2) \textit{Joint Spatiotemporal Token Carving} to concentrate refinement on high-entropy regions; and (3) \textit{Spectral-Aware Token Aggregation} to adapt decoding resolution. Extensive experiments demonstrate that Fast-SAM3D delivers up to \textbf{2.67$\times$} end-to-end speedup with negligible fidelity loss, establishing a new Pareto frontier for efficient single-view 3D generation. Our code is released in https://github.com/wlfeng0509/Fast-SAM3D.
♻ ☆ SIRR-LMM: Single-image Reflection Removal via Large Multimodal Model WACV
Glass surfaces create complex interactions of reflected and transmitted light, making single-image reflection removal (SIRR) challenging. Existing datasets suffer from limited physical realism in synthetic data or insufficient scale in real captures. We introduce a synthetic dataset generation framework that path-traces 3D glass models over real background imagery to create physically accurate reflection scenarios with varied glass properties, camera settings, and post-processing effects. To leverage the capabilities of Large Multimodal Model (LMM), we concatenate the image layers into a single composite input, apply joint captioning, and fine-tune the model using task-specific LoRA rather than full-parameter training. This enables our approach to achieve improved reflection removal and separation performance compared to state-of-the-art methods.
comment: 12 pages, 14 figures, accepted in WACVW 2026
♻ ☆ Image-to-Image Translation with Diffusion Transformers and CLIP-Based Image Conditioning
Image-to-image translation aims to learn a mapping between a source and a target domain, enabling tasks such as style transfer, appearance transformation, and domain adaptation. In this work, we explore a diffusion-based framework for image-to-image translation by adapting Diffusion Transformers (DiT), which combine the denoising capabilities of diffusion models with the global modeling power of transformers. To guide the translation process, we condition the model on image embeddings extracted from a pre-trained CLIP encoder, allowing for fine-grained and structurally consistent translations without relying on text or class labels. We incorporate both a CLIP similarity loss to enforce semantic consistency and an LPIPS perceptual loss to enhance visual fidelity during training. We validate our approach on two benchmark datasets: face2comics, which translates real human faces to comic-style illustrations, and edges2shoes, which translates edge maps to realistic shoe images. Experimental results demonstrate that DiT, combined with CLIP-based conditioning and perceptual similarity objectives, achieves high-quality, semantically faithful translations, offering a promising alternative to GAN-based models for paired image-to-image translation tasks.
comment: Published in: 2025 6th International Conference on Computer Vision, Image and Deep Learning (CVIDL)
♻ ☆ Quantifying and Inducing Shape Bias in CNNs via Max-Pool Dilation
Convolutional Neural Networks (CNNs) exhibit a well-known texture bias, prioritizing local patterns over global shapes - a tendency inherent to their convolutional architecture. While this bias is beneficial for texture-rich natural images, it often degrades performance on shape-dominant data such as illustrations and sketches. Although prior work has proposed shape-biased models to mitigate this issue, these approaches lack a quantitative metric for identifying which datasets would actually benefit from such modifications. To address this limitation, we propose a data-driven metric that quantifies the shape-texture balance within a dataset by computing the Structural Similarity Index (SSIM) between an image's luminance (Y) channel and its L0-smoothed counterpart. Building on this metric, we introduce a computationally efficient adaptation method that promotes shape bias by modifying the dilation of max-pooling operations while keeping convolutional weights frozen. Experimental results demonstrate consistent accuracy improvements on shape-dominant datasets, particularly in low-data regimes where full fine-tuning is impractical, requiring training only the final classification layer.
comment: Accepted to IEVC 2026. 4 pages, 1 figure, 3 tables
♻ ☆ Hidden in Plain Sight -- Class Competition Focuses Attribution Maps
Attribution methods reveal which input features a neural network uses for a prediction, adding transparency to their decisions. A common problem is that these attributions seem unspecific, highlighting both important and irrelevant features. We revisit the common attribution pipeline and observe that using logits as attribution target is a main cause of this phenomenon. We show that the solution is in plain sight: considering distributions of attributions over multiple classes using existing attribution methods yields specific and fine-grained attributions. On common benchmarks, including the grid-pointing game and randomization-based sanity checks, this improves the ability of 18 attribution methods across 7 architectures up to 2x, agnostic to model architecture.
♻ ☆ Vision-R1: Incentivizing Reasoning Capability in Multimodal Large Language Models ICLR 2026
DeepSeek-R1-Zero has successfully demonstrated the emergence of reasoning capabilities in LLMs purely through Reinforcement Learning (RL). Inspired by this breakthrough, we explore how RL can be utilized to enhance the reasoning capability of MLLMs. However, direct training with RL struggles to activate complex reasoning capabilities such as questioning and reflection in MLLMs, due to the absence of substantial high-quality multimodal reasoning data. To address this issue, we propose the reasoning MLLM, Vision-R1, to improve multimodal reasoning capability. Specifically, we first construct a high-quality multimodal CoT dataset without human annotations by leveraging an existing MLLM and DeepSeek-R1 through modality bridging and data filtering to obtain a 200K multimodal CoT dataset, Vision-R1-cold dataset. It serves as cold-start initialization data for Vision-R1. To mitigate the optimization challenges caused by overthinking after cold start, we propose Progressive Thinking Suppression Training (PTST) strategy and employ Group Relative Policy Optimization (GRPO) with the hard formatting result reward function to gradually refine the model's ability to learn correct and complex reasoning processes on a 10K multimodal math dataset. Comprehensive experiments show our model achieves an average improvement of $\sim$6% across various multimodal math reasoning benchmarks. Vision-R1-7B achieves a 73.5% accuracy on the widely used MathVista benchmark, which is only 0.4% lower than the leading reasoning model, OpenAI O1. Scaling up the amount of multimodal math data in the RL training, Vision-R1-32B and Vison-R1-72B achieves 76.4% and 78.2% MathVista benchmark scores, respectively. The datasets and code will be released in: https://github.com/Osilly/Vision-R1 .
comment: Accepted to ICLR 2026. Code is available at https://github.com/Osilly/Vision-R1
♻ ☆ GIQ: Benchmarking 3D Geometric Reasoning of Vision Foundation Models with Simulated and Real Polyhedra ICLR 2026
Modern monocular 3D reconstruction methods and vision-language models (VLMs) demonstrate impressive results on standard benchmarks, yet recent works cast doubt on their true understanding of geometric properties. We introduce GOQ, a comprehensive benchmark specifically designed to evaluate the geometric reasoning capabilities of vision and vision-language foundation models. GIQ comprises synthetic and real-world images and corresponding 3D meshes of diverse polyhedra covering varying levels of complexity and symmetry, from Platonic, Archimedean, Johnson, and Catalan solids to stellations and compound shapes. Through systematic experiments involving monocular 3D reconstruction, 3D symmetry detection, mental rotation tests, and zero-shot shape classification tasks, we reveal significant shortcomings in current models. State-of-the-art reconstruction algorithms trained on extensive 3D datasets struggle to reconstruct even basic geometric Platonic solids accurately. Next, although foundation models may be shown via linear and non-linear probing to capture specific 3D symmetry elements, they falter significantly in tasks requiring detailed geometric differentiation, such as mental rotation. Moreover, advanced vision-language assistants such as ChatGPT, Gemini and Claud exhibit remarkably low accuracy in interpreting basic shape properties such as face geometry, convexity, and compound structures of complex polyhedra. GIQ is publicly available at toomanymatts.github.io/giq-benchmark/, providing a structured platform to benchmark critical gaps in geometric intelligence and facilitate future progress in robust, geometry-aware representation learning.
comment: Accepted to ICLR 2026. Camera ready version
♻ ☆ Towards Visually Explaining Statistical Tests with Applications in Biomedical Imaging
Deep neural two-sample tests have recently shown strong power for detecting distributional differences between groups, yet their black-box nature limits interpretability and practical adoption in biomedical analysis. Moreover, most existing post-hoc explainability methods rely on class labels, making them unsuitable for label-free statistical testing settings. We propose an explainable deep statistical testing framework that augments deep two-sample tests with sample-level and feature-level explanations, revealing which individual samples and which input features drive statistically significant group differences. Our method highlights which image regions and which individual samples contribute most to the detected group difference, providing spatial and instance-wise insight into the test's decision. Applied to biomedical imaging data, the proposed framework identifies influential samples and highlights anatomically meaningful regions associated with disease-related variation. This work bridges statistical inference and explainable AI, enabling interpretable, label-free population analysis in medical imaging.
♻ ☆ Event2Vec: Processing Neuromorphic Events Directly by Representations in Vector Space
Neuromorphic event cameras possess superior temporal resolution, power efficiency, and dynamic range compared to traditional cameras. However, their asynchronous and sparse data format poses a significant challenge for conventional deep learning methods. Existing methods either convert the events into dense synchronous frame representations for processing by powerful CNNs or Transformers, but lose the asynchronous, sparse and high temporal resolution characteristics of events during the conversion process; or adopt irregular models such as sparse convolution, spiking neural networks, or graph neural networks to process the irregular event representations but fail to take full advantage of GPU acceleration. Inspired by word-to-vector models, we draw an analogy between words and events to introduce event2vec, a novel representation that allows neural networks to process events directly. This approach is fully compatible with the parallel processing capabilities of Transformers. We demonstrate the effectiveness of event2vec on the DVS Gesture, ASL-DVS, and DVS-Lip benchmarks, showing that event2vec is remarkably parameter-efficient, features high throughput and low latency, and achieves high accuracy even with an extremely low number of events or low spatial resolutions. Event2vec introduces a novel paradigm by demonstrating for the first time that sparse, irregular event data can be directly integrated into high-throughput Transformer architectures. This breakthrough resolves the long-standing conflict between maintaining data sparsity and maximizing GPU efficiency, offering a promising balance for real-time, low-latency neuromorphic vision tasks. The code is provided in https://github.com/Intelligent-Computing-Lab-Panda/event2vec.
comment: Fix a minor error in the abstract within the metadata of the previous version
♻ ☆ Robust automatic brain vessel segmentation in 3D CTA scans using dynamic 4D-CTA data
In this study, we develop a novel methodology for annotating the brain vasculature using dynamic 4D-CTA head scans. By using multiple time points from dynamic CTA acquisitions, we subtract bone and soft tissue to enhance the visualization of arteries and veins, reducing the effort required to obtain manual annotations of brain vessels. We then train deep learning models on our ground truth annotations by using the same segmentation for multiple phases from the dynamic 4D-CTA collection, effectively enlarging our dataset by 4 to 5 times and inducing robustness to contrast phases. In total, our dataset comprises 110 training images from 25 patients and 165 test images from 14 patients. In comparison with two similarly-sized datasets for CTA-based brain vessel segmentation, a nnUNet model trained on our dataset can achieve significantly better segmentations across all vascular regions, with an average mDC of 0.846 for arteries and 0.957 for veins in the TopBrain dataset. Furthermore, metrics such as average directed Hausdorff distance (adHD) and topology sensitivity (tSens) reflected similar trends: using our dataset resulted in low error margins (adHD of 0.304 mm for arteries and 0.078 for veins) and high sensitivity (tSens of 0.877 for arteries and 0.974 for veins), indicating excellent accuracy in capturing vessel morphology. Our code and model weights are available online at https://github.com/alceballosa/robust-vessel-segmentation
comment: 18 pages, 10 figures
♻ ☆ One-step Latent-free Image Generation with Pixel Mean Flows
Modern diffusion/flow-based models for image generation typically exhibit two core characteristics: (i) using multi-step sampling, and (ii) operating in a latent space. Recent advances have made encouraging progress on each aspect individually, paving the way toward one-step diffusion/flow without latents. In this work, we take a further step towards this goal and propose "pixel MeanFlow" (pMF). Our core guideline is to formulate the network output space and the loss space separately. The network target is designed to be on a presumed low-dimensional image manifold (i.e., x-prediction), while the loss is defined via MeanFlow in the velocity space. We introduce a simple transformation between the image manifold and the average velocity field. In experiments, pMF achieves strong results for one-step latent-free generation on ImageNet at 256x256 resolution (2.22 FID) and 512x512 resolution (2.48 FID), filling a key missing piece in this regime. We hope that our study will further advance the boundaries of diffusion/flow-based generative models.
comment: Tech report. Code at https://github.com/Lyy-iiis/pMF
♻ ☆ Optimized $k$-means color quantization of digital images in machine-based and human perception-based colorspaces
Color quantization represents an image using a fraction of its original number of colors while only minimally losing its visual quality. The $k$-means algorithm is commonly used in this context, but has mostly been applied in the machine-based RGB colorspace composed of the three primary colors. However, some recent studies have indicated its improved performance in human perception-based colorspaces. We investigated the performance of $k$-means color quantization at four quantization levels in the RGB, CIE-XYZ, and CIE-LUV/CIE-HCL colorspaces, on 148 varied digital images spanning a wide range of scenes, subjects and settings. The Visual Information Fidelity (VIF) measure numerically assessed the quality of the quantized images, and showed that in about half of the cases, $k$-means color quantization is best in the RGB space, while at other times, and especially for higher quantization levels ($k$), the CIE-XYZ colorspace is where it usually does better. There are also some cases, especially at lower $k$, where the best performance is obtained in the CIE-LUV colorspace. Further analysis of the performances in terms of the distributions of the hue, chromaticity and luminance in an image presents a nuanced perspective and characterization of the images for which each colorspace is better for $k$-means color quantization.
comment: 25 pages, 11 figures, 5 tables, accepted in the Journal of Electronic Imaging
♻ ☆ SharpTimeGS: Sharp and Stable Dynamic Gaussian Splatting via Lifespan Modulation
Novel view synthesis of dynamic scenes is fundamental to achieving photorealistic 4D reconstruction and immersive visual experiences. Recent progress in Gaussian-based representations has significantly improved real-time rendering quality, yet existing methods still struggle to maintain a balance between long-term static and short-term dynamic regions in both representation and optimization. To address this, we present SharpTimeGS, a lifespan-aware 4D Gaussian framework that achieves temporally adaptive modeling of both static and dynamic regions under a unified representation. Specifically, we introduce a learnable lifespan parameter that reformulates temporal visibility from a Gaussian-shaped decay into a flat-top profile, allowing primitives to remain consistently active over their intended duration and avoiding redundant densification. In addition, the learned lifespan modulates each primitives' motion, reducing drift in long-lived static points while retaining unrestricted motion for short-lived dynamic ones. This effectively decouples motion magnitude from temporal duration, improving long-term stability without compromising dynamic fidelity. Moreover, we design a lifespan-velocity-aware densification strategy that mitigates optimization imbalance between static and dynamic regions by allocating more capacity to regions with pronounced motion while keeping static areas compact and stable. Extensive experiments on multiple benchmarks demonstrate that our method achieves state-of-the-art performance while supporting real-time rendering up to 4K resolution at 100 FPS on one RTX 4090.
♻ ☆ A 96pJ/Frame/Pixel and 61pJ/Event Anti-UAV System with Hybrid Object Tracking Modes
We present an energy-efficient anti-UAV system that integrates frame-based and event-driven object tracking to enable reliable detection of small and fast-moving drones. The system reconstructs binary event frames using run-length encoding, generates region proposals, and adaptively switches between frame mode and event mode based on object size and velocity. A Fast Object Tracking Unit improves robustness for high-speed targets through adaptive thresholding and trajectory-based classification. The neural processing unit supports both grayscale-patch and trajectory inference with a custom instruction set and a zero-skipping MAC architecture, reducing redundant neural computations by more than 97 percent. Implemented in 40 nm CMOS technology, the 2 mm^2 chip achieves 96 pJ per frame per pixel and 61 pJ per event at 0.8 V, and reaches 98.2 percent recognition accuracy on public UAV datasets across 50 to 400 m ranges and 5 to 80 pixels per second speeds. The results demonstrate state-of-the-art end-to-end energy efficiency for anti-UAV systems.
comment: 2 pages, 7 figures, conference paper published in IEEE Asian Solid-State Circuits Conference 2025
♻ ☆ REArtGS++: Generalizable Articulation Reconstruction with Temporal Geometry Constraint via Planar Gaussian Splatting
Articulated objects are pervasive in daily environments, such as drawers and refrigerators. Towards their part-level surface reconstruction and joint parameter estimation, REArtGS introduces a category-agnostic approach using multi-view RGB images at two different states. However, we observe that REArtGS still struggles with screw-joint or multi-part objects and lacks geometric constraints for unseen states. In this paper, we propose REArtGS++, a novel method towards generalizable articulated object reconstruction with temporal geometry constraint and planar Gaussian splatting. We first model a decoupled screw motion for each joint without type prior, and jointly optimize part-aware Gaussians with joint parameters through part motion blending. To introduce time-continuous geometric constraint for articulated modeling, we encourage Gaussians to be planar and propose a temporally consistent regularization between planar normal and depth through Taylor first-order expansion. Extensive experiments on both synthetic and real-world articulated objects demonstrate our superiority in generalizable part-level surface reconstruction and joint parameter estimation, compared to existing approaches. Project Site: https://sites.google.com/view/reartgs2/home.
comment: 10 pages, 7 figures
♻ ☆ Improved Bag-of-Words Image Retrieval with Geometric Constraints for Ground Texture Localization ICRA 2025
Ground texture localization using a downward-facing camera offers a low-cost, high-precision localization solution that is robust to dynamic environments and requires no environmental modification. We present a significantly improved bag-of-words (BoW) image retrieval system for ground texture localization, achieving substantially higher accuracy for global localization and higher precision and recall for loop closure detection in SLAM. Our approach leverages an approximate $k$-means (AKM) vocabulary with soft assignment, and exploits the consistent orientation and constant scale constraints inherent to ground texture localization. Identifying the different needs of global localization vs. loop closure detection for SLAM, we present both high-accuracy and high-speed versions of our algorithm. We test the effect of each of our proposed improvements through an ablation study and demonstrate our method's effectiveness for both global localization and loop closure detection. With numerous ground texture localization systems already using BoW, our method can readily replace other generic BoW systems in their pipeline and immediately improve their results.
comment: Accepted to ICRA 2025
♻ ☆ Many-for-Many: Unify the Training of Multiple Video and Image Generation and Manipulation Tasks
Diffusion models have shown impressive performance in many visual generation and manipulation tasks. Many existing methods focus on training a model for a specific task, especially, text-to-video (T2V) generation, while many other works focus on finetuning the pretrained T2V model for image-to-video (I2V), video-to-video (V2V), image and video manipulation tasks, etc. However, training a strong T2V foundation model requires a large amount of high-quality annotations, which is very costly. In addition, many existing models can perform only one or several tasks. In this work, we introduce a unified framework, namely many-for-many, which leverages the available training data from many different visual generation and manipulation tasks to train a single model for those different tasks. Specifically, we design a lightweight adapter to unify the different conditions in different tasks, then employ a joint image-video learning strategy to progressively train the model from scratch. Our joint learning leads to a unified visual generation and manipulation model with improved video generation performance. In addition, we introduce depth maps as a condition to help our model better perceive the 3D space in visual generation. Two versions of our model are trained with different model sizes (8B and 2B), each of which can perform more than 10 different tasks. In particular, our 8B model demonstrates highly competitive performance in video generation tasks compared to open-source and even commercial engines. Our models and source codes are available at https://github.com/leeruibin/MfM.git.
♻ ☆ CMD-HAR: Cross-Modal Disentanglement for Wearable Human Activity Recognition
Human Activity Recognition (HAR) is a fundamental technology for numerous human - centered intelligent applications. Although deep learning methods have been utilized to accelerate feature extraction, issues such as multimodal data mixing, activity heterogeneity, and complex model deployment remain largely unresolved. The aim of this paper is to address issues such as multimodal data mixing, activity heterogeneity, and complex model deployment in sensor-based human activity recognition. We propose a spatiotemporal attention modal decomposition alignment fusion strategy to tackle the problem of the mixed distribution of sensor data. Key discriminative features of activities are captured through cross-modal spatio-temporal disentangled representation, and gradient modulation is combined to alleviate data heterogeneity. In addition, a wearable deployment simulation system is constructed. We conducted experiments on a large number of public datasets, demonstrating the effectiveness of the model.
♻ ☆ EEG Foundation Models: Progresses, Benchmarking, and Open Problems
Electroencephalography (EEG) foundation models have recently emerged as a promising paradigm for brain-computer interfaces (BCIs), aiming to learn transferable neural representations from large-scale heterogeneous recordings. Despite rapid progresses, there lacks fair and comprehensive comparisons of existing EEG foundation models, due to inconsistent pre-training objectives, preprocessing choices, and downstream evaluation protocols. This paper fills this gap. We first review 50 representative models and organize their design choices into a unified taxonomic framework including data standardization, model architectures, and self-supervised pre-training strategies. We then evaluate 12 open-source foundation models and competitive specialist baselines across 13 EEG datasets spanning nine BCI paradigms. Emphasizing real-world deployments, we consider both cross-subject generalization under a leave-one-subject-out protocol and rapid calibration under a within-subject few-shot setting. We further compare full-parameter fine-tuning with linear probing to assess the transferability of pre-trained representations, and examine the relationship between model scale and downstream performance. Our results indicate that: 1) linear probing is frequently insufficient; 2) specialist models trained from scratch remain competitive across many tasks; and, 3) larger foundation models do not necessarily yield better generalization performance under current data regimes and training practices.
♻ ☆ Efficient Scene Modeling via Structure-Aware and Region-Prioritized 3D Gaussians
Reconstructing 3D scenes with high fidelity and efficiency remains a central pursuit in computer vision and graphics. Recent advances in 3D Gaussian Splatting (3DGS) enable photorealistic rendering with Gaussian primitives, yet the modeling process remains governed predominantly by photometric supervision. This reliance often leads to irregular spatial distribution and indiscriminate primitive adjustments that largely ignore underlying geometric context. In this work, we rethink Gaussian modeling from a geometric standpoint and introduce Mini-Splatting2, an efficient scene modeling framework that couples structure-aware distribution and region-prioritized optimization, driving 3DGS into a geometry-regulated paradigm. The structure-aware distribution enforces spatial regularity through structured reorganization and representation sparsity, ensuring balanced structural coverage for compact organization. The region-prioritized optimization improves training discrimination through geometric saliency and computational selectivity, fostering appropriate structural emergence for fast convergence. These mechanisms alleviate the long-standing tension among representation compactness, convergence acceleration, and rendering fidelity. Extensive experiments demonstrate that Mini-Splatting2 achieves up to 4$\times$ fewer Gaussians and 3$\times$ faster optimization while maintaining state-of-the-art visual quality, paving the way towards structured and efficient 3D Gaussian modeling.
♻ ☆ Customizing Visual Emotion Evaluation for MLLMs: An Open-vocabulary, Multifaceted, and Scalable Approach ICLR 2026
Recently, Multimodal Large Language Models (MLLMs) have achieved exceptional performance across diverse tasks, continually surpassing previous expectations regarding their capabilities. Nevertheless, their proficiency in perceiving emotions from images remains debated, with studies yielding divergent results in zero-shot scenarios. We argue that this inconsistency stems partly from constraints in existing evaluation methods, including the oversight of plausible responses, limited emotional taxonomies, neglect of contextual factors, and labor-intensive annotations. To facilitate customized visual emotion evaluation for MLLMs, we propose an Emotion Statement Judgment task that overcomes these constraints. Complementing this task, we devise an automated pipeline that efficiently constructs emotion-centric statements with minimal human effort. Through systematically evaluating prevailing MLLMs, our study showcases their stronger performance in emotion interpretation and context-based emotion judgment, while revealing relative limitations in comprehending perception subjectivity. When compared to humans, even top-performing MLLMs like GPT4o demonstrate remarkable performance gaps, underscoring key areas for future improvement. By developing a fundamental evaluation framework and conducting a comprehensive MLLM assessment, we hope this work contributes to advancing emotional intelligence in MLLMs. Project page: https://github.com/wdqqdw/MVEI.
comment: Accepted by ICLR 2026
♻ ☆ Histo-Miner: Deep learning based tissue features extraction pipeline from H&E whole slide images of cutaneous squamous cell carcinoma
Recent advancements in digital pathology have enabled comprehensive analysis of Whole-Slide Images (WSI) from tissue samples, leveraging high-resolution microscopy and computational capabilities. Despite this progress, there is a lack of labeled datasets and open source pipelines specifically tailored for analysis of skin tissue. Here we propose Histo-Miner, a deep learning-based pipeline for analysis of skin WSIs and generate two datasets with labeled nuclei and tumor regions. We develop our pipeline for the analysis of patient samples of cutaneous squamous cell carcinoma (cSCC), a frequent non-melanoma skin cancer. Utilizing the two datasets, comprising 47,392 annotated cell nuclei and 144 tumor-segmented WSIs respectively, both from cSCC patients, Histo-Miner employs convolutional neural networks and vision transformers for nucleus segmentation and classification as well as tumor region segmentation. Performance of trained models positively compares to state of the art with multi-class Panoptic Quality (mPQ) of 0.569 for nucleus segmentation, macro-averaged F1 of 0.832 for nucleus classification and mean Intersection over Union (mIoU) of 0.907 for tumor region segmentation. From these predictions we generate a compact feature vector summarizing tissue morphology and cellular interactions, which can be used for various downstream tasks. Here, we use Histo-Miner to predict cSCC patient response to immunotherapy based on pre-treatment WSIs from 45 patients. Histo-Miner identifies percentages of lymphocytes, the granulocyte to lymphocyte ratio in tumor vicinity and the distances between granulocytes and plasma cells in tumors as predictive features for therapy response. This highlights the applicability of Histo-Miner to clinically relevant scenarios, providing direct interpretation of the classification and insights into the underlying biology.
comment: 37 pages including supplement, 5 core figures. Version 2: change sections order, add new supplementary sections, minor text updates. Version 3: Author addition and update of author contributions, increase font on 2 figures, minor text updates
♻ ☆ BioLite U-Net: Edge-Deployable Semantic Segmentation for In Situ Bioprinting Monitoring ICRA 2026
Bioprinting is a rapidly advancing field that offers a transformative approach to fabricating tissue and organ models through the precise deposition of cell-laden bioinks. Ensuring the fidelity and consistency of printed structures in real-time remains a core challenge, particularly under constraints imposed by limited imaging data and resource-constrained embedded hardware. Semantic segmentation of the extrusion process, differentiating between nozzle, extruded bioink, and surrounding background, enables in situ monitoring critical to maintaining print quality and biological viability. In this work, we introduce a lightweight semantic segmentation framework tailored for real-time bioprinting applications. We present a novel, manually annotated dataset comprising 787 RGB images captured during the bioprinting process, labeled across three classes: nozzle, bioink, and background. To achieve fast and efficient inference suitable for integration with bioprinting systems, we propose a BioLite U-Net architecture that leverages depthwise separable convolutions to drastically reduce computational load without compromising accuracy. Our model is benchmarked against MobileNetV2 and MobileNetV3-based segmentation baselines using mean Intersection over Union (mIoU), Dice score, and pixel accuracy. All models were evaluated on a Raspberry Pi 4B to assess real-world feasibility. The proposed BioLite U-Net achieves an mIoU of 92.85% and a Dice score of 96.17%, while being over 1300x smaller than MobileNetV2-DeepLabV3+. On-device inference takes 335 ms per frame, demonstrating near real-time capability. Compared to MobileNet baselines, BioLite U-Net offers a superior tradeoff between segmentation accuracy, efficiency, and deployability, making it highly suitable for intelligent, closed-loop bioprinting systems.
comment: 8 pages, 5 figures, conference-style submission (ICRA 2026). Includes dataset description, BioLite U-Net architecture, benchmark results on edge device (Raspberry Pi 4B)
♻ ☆ MRD: Using Physically Based Differentiable Rendering to Probe Vision Models for 3D Scene Understanding
While deep learning methods have achieved impressive success in many vision benchmarks, it remains difficult to understand and explain the representations and decisions of these models. Though vision models are typically trained on 2D inputs, they are often assumed to develop an implicit representation of the underlying 3D scene (for example, showing tolerance to partial occlusion, or the ability to reason about relative depth). Here, we introduce MRD (metamers rendered differentiably), an approach that uses physically based differentiable rendering to probe vision models' implicit understanding of generative 3D scene properties, by finding 3D scene parameters that are physically different but produce the same model activation (i.e. are model metamers). Unlike previous pixel-based methods for evaluating model representations, these reconstruction results are always grounded in physical scene descriptions. This means we can, for example, probe a model's sensitivity to object shape while holding material and lighting constant. As a proof-of-principle, we assess multiple models in their ability to recover scene parameters of geometry (shape) and bidirectional reflectance distribution function (material). The results show high similarity in model activation between target and optimized scenes, with varying visual results. Qualitatively, these reconstructions help investigate the physical scene attributes to which models are sensitive or invariant. MRD holds promise for advancing our understanding of both computer and human vision by enabling analysis of how physical scene parameters drive changes in model responses.
comment: 23 pages, 11 figures. Added appendix with more figure results. Code will be available here: https://github.com/ag-perception-wallis-lab/MRD
♻ ☆ Deep Probabilistic Supervision for Image Classification
Supervised training of deep neural networks for classification typically relies on hard targets, which promote overconfidence and can limit calibration, generalization, and robustness. Self-distillation methods aim to mitigate this by leveraging inter-class and sample-specific information present in the model's own predictions, but often remain dependent on hard targets without explicitly modeling predictive uncertainty. With this in mind, we propose Deep Probabilistic Supervision (DPS), a principled learning framework constructing sample-specific target distributions via statistical inference on the model's own predictions, remaining independent of hard targets after initialization. We show that DPS consistently yields higher test accuracy (e.g., +2.0% for DenseNet-264 on ImageNet) and significantly lower Expected Calibration Error (ECE) (-40% ResNet-50, CIFAR-100) than existing self-distillation methods. When combined with a contrastive loss, DPS achieves state-of-the-art robustness under label noise.
comment: 16 pages, 12 figures
♻ ☆ PIO-FVLM: Rethinking Training-Free Visual Token Reduction for VLM Acceleration from an Inference-Objective Perspective
Recently, reducing redundant visual tokens in vision-language models (VLMs) to accelerate VLM inference has emerged as a hot topic. However, most existing methods rely on heuristics constructed based on inter-visual-token similarity or cross-modal visual-text similarity, which gives rise to certain limitations in compression performance and practical deployment. In contrast, we propose PIO-FVLM from the perspective of inference objectives, which transforms visual token compression into preserving output result invariance and selects tokens primarily by their importance to this goal. Specially, vision tokens are reordered with the guidance of token-level gradient saliency generated by our designed layer-local proxy loss, a coarse constraint from the current layer to the final result. Then the most valuable vision tokens are selected following the non-maximum suppression (NMS) principle. The proposed PIO-FVLM is training-free and compatible with FlashAttention, friendly to practical application and deployment. It can be deployed independently as an encoder-free method, or combined with encoder compression approaches like VisionZip for use as an encoder-involved method. On LLaVA-Next-7B, PIO-FVLM retains just 11.1% of visual tokens but maintains 97.2% of the original performance, with a 2.67$\times$ prefill speedup, 2.11$\times$ inference speedup, 6.22$\times$ lower FLOPs, and 6.05$\times$ reduced KV Cache overhead. Our code is available at https://github.com/ocy1/PIO-FVLM.
♻ ☆ Test-time Adaptive Hierarchical Co-enhanced Denoising Network for Reliable Multimodal Classification
Reliable learning of multimodal data (e.g., multi-omics) is a widely concerning issue, especially in safety-critical applications such as medical diagnosis. However, low-quality data induced by multimodal noise poses a major challenge in this domain, causing existing methods to suffer from two key limitations. First, they struggle to handle heterogeneous data noise, hindering robust multimodal representation learning. Second, they exhibit limited adaptability and generalization when encountering previously unseen noise. To address these issues, we propose Test-time Adaptive Hierarchical Co-enhanced Denoising Network (TAHCD). On one hand, TAHCD introduces the Adaptive Stable Subspace Alignment and Sample-Adaptive Confidence Alignment to reliably remove heterogeneous noise. They account for noise at both global and instance levels and enable jointly removal of modality-specific and cross-modality noise, achieving robust learning. On the other hand, TAHCD introduces Test-Time Cooperative Enhancement, which adaptively updates the model in response to input noise in a label-free manner, thus improving generalization. This is achieved by collaboratively enhancing the joint removal process of modality-specific and cross-modality noise across global and instance levels according to sample noise. Experiments on multiple benchmarks demonstrate that the proposed method achieves superior classification performance, robustness, and generalization compared with state-of-the-art reliable multimodal learning approaches.
comment: 14 pages,9 figures, 8 tables
♻ ☆ Plug-and-play linear attention with provable guarantees for training-free image restoration
Multi-head self-attention (MHSA) is a key building block in modern vision Transformers, yet its quadratic complexity in the number of tokens remains a major bottleneck for real-time and resource-constrained deployment. We present PnP-Nystra, a training-free Nyström-based linear attention module designed as a plug-and-play replacement for MHSA in {pretrained} image restoration Transformers, with provable kernel approximation error guarantees. PnP-Nystra integrates directly into window-based architectures such as SwinIR, Uformer, and Dehazeformer, yielding efficient inference without finetuning. Across denoising, deblurring, dehazing, and super-resolution on images, PnP-Nystra delivers $1.8$--$3.6\times$ speedups on an NVIDIA RTX 4090 GPU and $1.8$--$7\times$ speedups on CPU inference. Compared with the strongest training-free linear-attention baselines we evaluate, our method incurs the smallest quality drop and stays closest to the original model's outputs.
♻ ☆ Vector Quantization using Gaussian Variational Autoencoder
Vector-quantized variational autoencoders (VQ-VAEs) are discrete autoencoders that compress images into discrete tokens. However, they are difficult to train due to discretization. In this paper, we propose a simple yet effective technique dubbed Gaussian Quant (GQ), which first trains a Gaussian VAE under certain constraints and then converts it into a VQ-VAE without additional training. For conversion, GQ generates random Gaussian noise as a codebook and finds the closest noise vector to the posterior mean. Theoretically, we prove that when the logarithm of the codebook size exceeds the bits-back coding rate of the Gaussian VAE, a small quantization error is guaranteed. Practically, we propose a heuristic to train Gaussian VAEs for effective conversion, named the target divergence constraint (TDC). Empirically, we show that GQ outperforms previous VQ-VAEs, such as VQGAN, FSQ, LFQ, and BSQ, on both UNet and ViT architectures. Furthermore, TDC also improves previous Gaussian VAE discretization methods, such as TokenBridge. The source code is provided in the supplementary materials.
♻ ☆ RefAM: Attention Magnets for Zero-Shot Referral Segmentation
Most existing approaches to referring segmentation achieve strong performance only through fine-tuning or by composing multiple pre-trained models, often at the cost of additional training and architectural modifications. Meanwhile, large-scale generative diffusion models encode rich semantic information, making them attractive as general-purpose feature extractors. In this work, we introduce a new method that directly exploits features, attention scores, from diffusion transformers for downstream tasks, requiring neither architectural modifications nor additional training. To systematically evaluate these features, we extend benchmarks with vision-language grounding tasks spanning both images and videos. Our key insight is that stop words act as attention magnets: they accumulate surplus attention and can be filtered to reduce noise. Moreover, we identify global attention sinks (GAS) emerging in deeper layers and show that they can be safely suppressed or redirected onto auxiliary tokens, leading to sharper and more accurate grounding maps. We further propose an attention redistribution strategy, where appended stop words partition background activations into smaller clusters, yielding sharper and more localized heatmaps. Building on these findings, we develop RefAM, a simple training-free grounding framework that combines cross-attention maps, GAS handling, and redistribution. Across zero-shot referring image and video segmentation benchmarks, our approach achieves strong performance and surpasses prior methods on most datasets, establishing a new state of the art without fine-tuning, additional components and complex reasoning.
comment: Project Page: https://refam-diffusion.github.io/
♻ ☆ Feature Engineering is Not Dead: Reviving Classical Machine Learning with Entropy, HOG, and LBP Feature Fusion for Image Classification
Feature engineering continues to play a critical role in image classification, particularly when interpretability and computational efficiency are prioritized over deep learning models with millions of parameters. In this study, we revisit classical machine learning based image classification through a novel approach centered on Permutation Entropy (PE), a robust and computationally lightweight measure traditionally used in time series analysis but rarely applied to image data. We extend PE to two-dimensional images and propose a multiscale, multi-orientation entropy-based feature extraction approach that characterizes spatial order and complexity along rows, columns, diagonals, anti-diagonals, and local patches of the image. To enhance the discriminatory power of the entropy features, we integrate two classic image descriptors: the Histogram of Oriented Gradients (HOG) to capture shape and edge structure, and Local Binary Patterns (LBP) to encode micro-texture of an image. The resulting hand-crafted feature set, comprising of 780 dimensions, is used to train Support Vector Machine (SVM) classifiers optimized through grid search. The proposed approach is evaluated on multiple benchmark datasets, including Fashion-MNIST, KMNIST, EMNIST, and CIFAR-10, where it delivers competitive classification performance without relying on deep architectures. Our results demonstrate that the fusion of PE with HOG and LBP provides a compact, interpretable, and effective alternative to computationally expensive and limited interpretable deep learning models. This shows a potential of entropy-based descriptors in image classification and contributes a lightweight and generalizable solution to interpretable machine learning in image classification and computer vision.
♻ ☆ TennisTV: Do Multimodal Large Language Models Understand Tennis Rallies?
Multimodal large language models (MLLMs) excel at general video understanding but struggle with fast, high-frequency sports like tennis, where rally clips are short yet information-dense. To systematically evaluate MLLMs in this challenging domain, we present TennisTV, the first and most comprehensive benchmark for tennis video understanding. TennisTV models each rally as a temporal-ordered sequence of consecutive stroke events, using automated pipelines for filtering and question generation. It covers 8 tasks from the stroke level to the rally level and includes 2527 human-verified questions. Evaluating 17 representative MLLMs, we provide the first systematic assessment of tennis video understanding. Results yield two key insights: (i) frame-sampling density should be tailored and balanced across tasks, and (ii) improving temporal grounding is essential for stronger reasoning.
♻ ☆ Investigating the Impact of Histopathological Foundation Models on Regressive Prediction of Homologous Recombination Deficiency
Foundation models pretrained on large-scale histopathology data have found great success in various fields of computational pathology, but their impact on regressive biomarker prediction remains underexplored. In this work, we systematically evaluate histopathological foundation models for regression-based tasks, demonstrated through the prediction of homologous recombination deficiency (HRD) score - a critical biomarker for personalized cancer treatment. Within multiple instance learning frameworks, we extract patch-level features from whole slide images (WSI) using five state-of-the-art foundation models, and evaluate their impact compared to contrastive learning-based features. Models are trained to predict continuous HRD scores based on these extracted features across breast, endometrial, and lung cancer cohorts from two public medical data collections. Extensive experiments demonstrate that models trained on foundation model features consistently outperform the baseline in terms of predictive accuracy and generalization capabilities while exhibiting systematic differences among the foundation models. Additionally, we propose a distribution-based upsampling strategy to mitigate target imbalance in these datasets, significantly improving the recall and balanced accuracy for underrepresented but clinically important patient populations. Furthermore, we investigate the impact of different sampling strategies and instance bagsizes by ablation studies. Our results highlight the benefits of large-scale histopathological pretraining for more precise and transferable regressive biomarker prediction, showcasing its potential to advance AI-driven precision oncology.
comment: 9 pages, 7 figures and 5 tables
♻ ☆ RANGER: A Monocular Zero-Shot Semantic Navigation Framework through Contextual Adaptation ICRA 2026
Efficiently finding targets in complex environments is fundamental to real-world embodied applications. While recent advances in multimodal foundation models have enabled zero-shot object goal navigation, allowing robots to search for arbitrary objects without fine-tuning, existing methods face two key limitations: (1) heavy reliance on precise depth and pose information provided by simulators, which restricts applicability in real-world scenarios; and (2) lack of in-context learning (ICL) capability, making it difficult to quickly adapt to new environments, as in leveraging short videos. To address these challenges, we propose RANGER, a novel zero-shot, open-vocabulary semantic navigation framework that operates using only a monocular camera. Leveraging powerful 3D foundation models, RANGER eliminates the dependency on depth and pose while exhibiting strong ICL capability. By simply observing a short video of a new environment, the system can also significantly improve task efficiency without requiring architectural modifications or fine-tuning. The framework integrates several key components: keyframe-based 3D reconstruction, semantic point cloud generation, vision-language model (VLM)-driven exploration value estimation, high-level adaptive waypoint selection, and low-level action execution. Experiments on the HM3D benchmark and real-world environments demonstrate that RANGER achieves competitive performance in terms of navigation success rate and exploration efficiency, while showing superior ICL adaptability, with no previous 3D mapping of the environment required.
comment: Accepted at ICRA 2026
♻ ☆ A Contrastive Learning Foundation Model Based on Perfectly Aligned Sample Pairs for Remote Sensing Images
Self-Supervised Learning (SSL) enables us to pre-train foundation models without costly labeled data. Among SSL methods, Contrastive Learning (CL) methods are better at obtaining accurate semantic representations in noise interference. However, due to the significant domain gap, while CL methods have achieved great success in many computer vision tasks, they still require specific adaptation for Remote Sensing (RS) images. To this end, we present a novel self-supervised method called PerA, which produces all-purpose RS features through semantically Perfectly Aligned sample pairs. Specifically, PerA obtains features from sampled views by applying spatially disjoint masks to augmented images rather than random cropping. Our framework provides high-quality features by ensuring consistency between teacher and student and predicting learnable mask tokens. Compared to previous contrastive methods, our method demonstrates higher memory efficiency and can be trained with larger batches due to its sparse inputs. Additionally, the proposed method demonstrates remarkable adaptability to uncurated RS data and reduce the impact of the potential semantic inconsistency. We also collect an unlabeled pre-training dataset, which contains about 5 million RS images. We conducted experiments on multiple downstream task datasets and achieved performance comparable to previous state-of-the-art methods with a limited model scale, demonstrating the effectiveness of our approach. We hope this work will contribute to practical remote sensing interpretation works.
comment: This article has been accepted for publication in Geo-spatial Information Science, published by Taylor & Francis
♻ ☆ MaxSup: Overcoming Representation Collapse in Label Smoothing NeurIPS 2025
Label Smoothing (LS) is widely adopted to reduce overconfidence in neural network predictions and improve generalization. Despite these benefits, recent studies reveal two critical issues with LS. First, LS induces overconfidence in misclassified samples. Second, it compacts feature representations into overly tight clusters, diluting intra-class diversity, although the precise cause of this phenomenon remained elusive. In this paper, we analytically decompose the LS-induced loss, exposing two key terms: (i) a regularization term that dampens overconfidence only when the prediction is correct, and (ii) an error-amplification term that arises under misclassifications. This latter term compels the network to reinforce incorrect predictions with undue certainty, exacerbating representation collapse. To address these shortcomings, we propose Max Suppression (MaxSup), which applies uniform regularization to both correct and incorrect predictions by penalizing the top-1 logit rather than the ground-truth logit. Through extensive feature-space analyses, we show that MaxSup restores intra-class variation and sharpens inter-class boundaries. Experiments on large-scale image classification and multiple downstream tasks confirm that MaxSup is a more robust alternative to LS. Code is available at: https://github.com/ZhouYuxuanYX/Maximum-Suppression-Regularization
comment: NeurIPS 2025 Oral (0.36% acceptance); code: https://github.com/ZhouYuxuanYX/Maximum-Suppression-Regularization
♻ ☆ Active Perception Agent for Omnimodal Audio-Video Understanding
Omnimodal large language models have made significant strides in unifying audio and visual modalities; however, they often face challenges in fine-grained cross-modal understanding and have difficulty with multimodal alignment. To address these limitations, we introduce OmniAgent, to our best knowledge, the first fully active perception agent that dynamically orchestrates specialized unimodal tools to achieve more fine-grained omnimodal reasoning. Unlike previous works that rely on rigid, static workflows and dense frame-captioning, we demonstrate a paradigm shift from passive response generation to active multimodal inquiry. OmniAgent employs dynamic planning to autonomously orchestrate tool invocation on demand, strategically concentrating perceptual attention on task-relevant cues. Central to our approach is a novel coarse-to-fine audio-guided perception paradigm, which leverages audio cues to localize temporal events and guide subsequent reasoning. Extensive empirical evaluations on three audio-video understanding benchmarks demonstrate that OmniAgent achieves state-of-the-art performance, surpassing leading open-source and closed-source models by substantial margins of 10% - 20% accuracy without training.
comment: Website:https://kd-tao.github.io/OmniAgent/
♻ ☆ DPMambaIR: All-in-One Image Restoration via Degradation-Aware Prompt State Space Model
All-in-One image restoration aims to address multiple image degradation problems using a single model, offering a more practical and versatile solution compared to designing dedicated models for each degradation type. Existing approaches typically rely on Degradation-specific models or coarse-grained degradation prompts to guide image restoration. However, they lack fine-grained modeling of degradation information and face limitations in balancing multi-task conflicts. To overcome these limitations, we propose DPMambaIR, a novel All-in-One image restoration framework that introduces a fine-grained degradation extractor and a Degradation-Aware Prompt State Space Model (DP-SSM). The DP-SSM leverages the fine-grained degradation features captured by the extractor as dynamic prompts, which are then incorporated into the state space modeling process. This enhances the model's adaptability to diverse degradation types, while a complementary High-Frequency Enhancement Block (HEB) recovers local high-frequency details. Extensive experiments on a mixed dataset containing seven degradation types show that DPMambaIR achieves the best performance, with 27.69dB and 0.893 in PSNR and SSIM, respectively. These results highlight the potential and superiority of DPMambaIR as a unified solution for All-in-One image restoration.
♻ ☆ See Less, See Right: Bi-directional Perceptual Shaping For Multimodal Reasoning
Large vision-language models (VLMs) often benefit from intermediate visual cues, either injected via external tools or generated as latent visual tokens during reasoning, but these mechanisms still overlook fine-grained visual evidence (e.g., polylines in charts), generalize poorly across domains, and incur high inference-time cost. In this paper, we propose Bi-directional Perceptual Shaping (BiPS), which transforms question-conditioned masked views into bidirectional where-to-look signals that shape perception during training. BiPS first applies a KL-consistency constraint between the original image and an evidence-preserving view that keeps only question-relevant regions, encouraging coarse but complete coverage of supporting pixels. It then applies a KL-separation constraint between the original and an evidence-ablated view where critical pixels are masked so the image no longer supports the original answer, discouraging text-only shortcuts (i.e., answering from text alone) and enforcing fine-grained visual reliance. Across eight benchmarks, BiPS boosts Qwen2.5-VL-7B by 8.2% on average and shows strong out-of-domain generalization to unseen datasets and image types.
♻ ☆ PPE: Positional Preservation Embedding for Token Compression in Multimodal Large Language Models ICLR 2026
Multimodal large language models (MLLMs) have achieved strong performance on vision-language tasks, yet often suffer from inefficiencies due to redundant visual tokens. Existing token merging methods reduce sequence length but frequently disrupt spatial layouts and temporal continuity by disregarding positional relationships. In this work, we propose a novel encoding operator dubbed as \textbf{P}ositional \textbf{P}reservation \textbf{E}mbedding (\textbf{PPE}), which has the main hallmark of preservation of spatiotemporal structure during visual token compression. PPE explicitly introduces the disentangled encoding of 3D positions in the token dimension, enabling each compressed token to encapsulate different positions from multiple original tokens. Furthermore, we show that PPE can effectively support cascade clustering -- a progressive token compression strategy that leads to better performance retention. PPE is a parameter-free and generic operator that can be seamlessly integrated into existing token merging methods without any adjustments. Applied to state-of-the-art token merging framework, PPE achieves consistent improvements of $2\%\sim5\%$ across multiple vision-language benchmarks, including MMBench (general vision understanding), TextVQA (layout understanding) and VideoMME (temporal understanding). These results demonstrate that preserving positional cues is critical for efficient and effective MLLM reasoning. Our code is available at https://github.com/MouxiaoHuang/PPE.
comment: ICLR 2026
♻ ☆ Physics-Driven Local-Whole Elastic Deformation Modeling for Point Cloud Representation Learning
Existing point cloud representation learning methods primarily rely on data-driven strategies to extract geometric information from large amounts of scattered data. However, most methods focus solely on the spatial distribution features of point clouds while overlooking the relationship between local information and the whole structure, which limits the accuracy of point cloud representation. Local information reflect the fine-grained variations of an object, while the whole structure is determined by the interaction and combination of these local features, collectively defining the object's shape. In real-world, objects undergo deformation under external forces, and this deformation gradually affects the whole structure through the propagation of forces from local regions, thereby altering the object's geometric features. Therefore, appropriately introducing a physics-driven mechanism to capture the topological relationships between local parts and the whole object can effectively mitigate for the limitations of data-driven point cloud methods in structural modeling, and enhance the generalization and interpretability of point cloud representations for downstream tasks such as understanding and recognition. Inspired by this, we incorporate a physics-driven mechanism into the data-driven method to learn fine-grained features in point clouds and model the structural relationship between local regions and the whole shape. Specifically, we design a dual-task encoder-decoder framework that combines the geometric modeling capability of data-driven implicit fields with physics-driven elastic deformation. Through the integration of physics-based loss functions, the framework is guided to predict localized deformation and explicitly capture the correspondence between local structural changes and whole shape variations.
♻ ☆ LayoutCoT: Unleashing the Deep Reasoning Potential of Large Language Models for Layout Generation
Conditional layout generation aims to automatically generate visually appealing and semantically coherent layouts from user-defined constraints. While recent methods based on generative models have shown promising results, they typically require substantial amounts of training data or extensive fine-tuning, limiting their versatility and practical applicability. Alternatively, some training-free approaches leveraging in-context learning with Large Language Models (LLMs) have emerged, but they often suffer from limited reasoning capabilities and overly simplistic ranking mechanisms, which restrict their ability to generate consistently high-quality layouts. To this end, we propose LayoutCoT, a novel approach that leverages the reasoning capabilities of LLMs through a combination of Retrieval-Augmented Generation (RAG) and Chain-of-Thought (CoT) techniques. Specifically, LayoutCoT transforms layout representations into a standardized serialized format suitable for processing by LLMs. A Layout-aware RAG is used to facilitate effective retrieval and generate a coarse layout by LLMs. This preliminary layout, together with the selected exemplars, is then fed into a specially designed CoT reasoning module for iterative refinement, significantly enhancing both semantic coherence and visual quality. We conduct extensive experiments on five public datasets spanning three conditional layout generation tasks. Experimental results demonstrate that LayoutCoT achieves state-of-the-art performance without requiring training or fine-tuning. Notably, our CoT reasoning module enables standard LLMs, even those without explicit deep reasoning abilities, to outperform specialized deep-reasoning models such as deepseek-R1, highlighting the potential of our approach in unleashing the deep reasoning capabilities of LLMs for layout generation tasks.
♻ ☆ JSynFlow: Japanese Synthesised Flowchart Visual Question Answering Dataset built with Large Language Models
Vision and language models (VLMs) are expected to analyse complex documents, such as those containing flowcharts, through a question-answering (QA) interface. The ability to recognise and interpret these flowcharts is in high demand, as they provide valuable insights unavailable in text-only explanations. However, developing VLMs with precise flowchart understanding requires large-scale datasets of flowchart images and corresponding text, the creation of which is highly time-consuming. To address this challenge, we introduce JSynFlow, a synthesised visual QA dataset for Japanese flowcharts, generated using large language models (LLMs). Our dataset comprises task descriptions for various business occupations, the corresponding flowchart images rendered from domain-specific language (DSL) code, and related QA pairs. This paper details the dataset's synthesis procedure and demonstrates that fine-tuning with JSynFlow significantly improves VLM performance on flowchart-based QA tasks. Our dataset is publicly available at https://huggingface.co/datasets/jri-advtechlab/jsynflow.
comment: 7 pages, 1 figure
♻ ☆ Image inpainting for corrupted images by using the semi-super resolution GAN
Image inpainting is a valuable technique for enhancing images that have been corrupted. The primary challenge in this research revolves around the extent of corruption in the input image that the deep learning model must restore. To address this challenge, we introduce a Generative Adversarial Network (GAN) for learning and replicating the missing pixels. Additionally, we have developed a distinct variant of the Super-Resolution GAN (SRGAN), which we refer to as the Semi-SRGAN (SSRGAN). Furthermore, we leveraged three diverse datasets to assess the robustness and accuracy of our proposed model. Our training process involves varying levels of pixel corruption to attain optimal accuracy and generate high-quality images.
♻ ☆ MVGS: Multi-view Regulated Gaussian Splatting for Novel View Synthesis
Recent works in volume rendering, \textit{e.g.} NeRF and 3D Gaussian Splatting (3DGS), significantly advance the rendering quality and efficiency with the help of the learned implicit neural radiance field or 3D Gaussians. Rendering on top of an explicit representation, the vanilla 3DGS and its variants deliver real-time efficiency by optimizing the parametric model with single-view supervision per iteration during training which is adopted from NeRF. Consequently, certain views are overfitted, leading to unsatisfying appearance in novel-view synthesis and imprecise 3D geometries. To solve aforementioned problems, we propose a new 3DGS optimization method embodying four key novel contributions: 1) We transform the conventional single-view training paradigm into a multi-view training strategy. With our proposed multi-view regulation, 3D Gaussian attributes are further optimized without overfitting certain training views. As a general solution, we improve the overall accuracy in a variety of scenarios and different Gaussian variants. 2) Inspired by the benefit introduced by additional views, we further propose a cross-intrinsic guidance scheme, leading to a coarse-to-fine training procedure concerning different resolutions. 3) Built on top of our multi-view regulated training, we further propose a cross-ray densification strategy, densifying more Gaussian kernels in the ray-intersect regions from a selection of views. 4) By further investigating the densification strategy, we found that the effect of densification should be enhanced when certain views are distinct dramatically. As a solution, we propose a novel multi-view augmented densification strategy, where 3D Gaussians are encouraged to get densified to a sufficient number accordingly, resulting in improved reconstruction accuracy.
comment: Project Page:https://xiaobiaodu.github.io/mvgs-project/
♻ ☆ Invariance on Manifolds: Understanding Robust Visual Representations for Place Recognition
Visual Place Recognition (VPR) demands representations robust to drastic environmental and viewpoint shifts. Current aggregation paradigms, however, either rely on data-hungry supervision or simplistic first-order statistics, often neglecting intrinsic structural correlations. In this work, we propose a Second-Order Geometric Statistics framework that inherently captures geometric stability without training. We conceptualize scenes as covariance descriptors on the Symmetric Positive Definite (SPD) manifold, where perturbations manifest as tractable congruence transformations. By leveraging geometry-aware Riemannian mappings, we project these descriptors into a linearized Euclidean embedding, effectively decoupling signal structure from noise. Our approach introduces a training-free framework built upon fixed, pre-trained backbones, achieving strong zero-shot generalization without parameter updates. Extensive experiments confirm that our method achieves highly competitive performance against state-of-the-art baselines, particularly excelling in challenging zero-shot scenarios.
comment: 14pages, 5 figures
♻ ☆ Personalized Safety Alignment for Text-to-Image Diffusion Models
Text-to-image diffusion models have revolutionized visual content generation, yet their deployment is hindered by a fundamental limitation: safety mechanisms enforce rigid, uniform standards that fail to reflect diverse user preferences shaped by age, culture, or personal beliefs. To address this, we propose Personalized Safety Alignment (PSA), a framework that transitions generative safety from static filtration to user-conditioned adaptation. We introduce Sage, a large-scale dataset capturing diverse safety boundaries across 1,000 simulated user profiles, covering complex risks often missed by traditional datasets. By integrating these profiles via a parameter-efficient cross-attention adapter, PSA dynamically modulates generation to align with individual sensitivities. Extensive experiments demonstrate that PSA achieves a calibrated safety-quality trade-off: under permissive profiles, it relaxes over-cautious constraints to enhance visual fidelity, while under restrictive profiles, it enforces state-of-the-art suppression, significantly outperforming static baselines. Furthermore, PSA exhibits superior instruction adherence compared to prompt-engineering methods, establishing personalization as a vital direction for creating adaptive, user-centered, and responsible generative AI. Our code, data, and models are publicly available at https://github.com/M-E-AGI-Lab/PSAlign.
♻ ☆ PEAR: Pixel-aligned Expressive humAn mesh Recovery
Reconstructing detailed 3D human meshes from a single in-the-wild image remains a fundamental challenge in computer vision. Existing SMPLX-based methods often suffer from slow inference, produce only coarse body poses, and exhibit misalignments or unnatural artifacts in fine-grained regions such as the face and hands. These issues make current approaches difficult to apply to downstream tasks. To address these challenges, we propose PEAR-a fast and robust framework for pixel-aligned expressive human mesh recovery. PEAR explicitly tackles three major limitations of existing methods: slow inference, inaccurate localization of fine-grained human pose details, and insufficient facial expression capture. Specifically, to enable real-time SMPLX parameter inference, we depart from prior designs that rely on high resolution inputs or multi-branch architectures. Instead, we adopt a clean and unified ViT-based model capable of recovering coarse 3D human geometry. To compensate for the loss of fine-grained details caused by this simplified architecture, we introduce pixel-level supervision to optimize the geometry, significantly improving the reconstruction accuracy of fine-grained human details. To make this approach practical, we further propose a modular data annotation strategy that enriches the training data and enhances the robustness of the model. Overall, PEAR is a preprocessing-free framework that can simultaneously infer EHM-s (SMPLX and scaled-FLAME) parameters at over 100 FPS. Extensive experiments on multiple benchmark datasets demonstrate that our method achieves substantial improvements in pose estimation accuracy compared to previous SMPLX-based approaches. Project page: https://wujh2001.github.io/PEAR
comment: 23 pages
♻ ☆ Imperceptible Protection against Style Imitation from Diffusion Models
Recent progress in diffusion models has profoundly enhanced the fidelity of image generation, but it has raised concerns about copyright infringements. While prior methods have introduced adversarial perturbations to prevent style imitation, most are accompanied by the degradation of artworks' visual quality. Recognizing the importance of maintaining this, we introduce a visually improved protection method while preserving its protection capability. To this end, we devise a perceptual map to highlight areas sensitive to human eyes, guided by instance-aware refinement, which refines the protection intensity accordingly. We also introduce a difficulty-aware protection by predicting how difficult the artwork is to protect and dynamically adjusting the intensity based on this. Lastly, we integrate a perceptual constraints bank to further improve the imperceptibility. Results show that our method substantially elevates the quality of the protected image without compromising on protection efficacy.
comment: IEEE Transactions on Multimedia
♻ ☆ Alignment of Diffusion Models: Fundamentals, Challenges, and Future
Diffusion models have emerged as the leading paradigm in generative modeling, excelling in various applications. Despite their success, these models often misalign with human intentions and generate results with undesired properties or even harmful content. Inspired by the success and popularity of alignment in tuning large language models, recent studies have investigated aligning diffusion models with human expectations and preferences. This work mainly reviews alignment of diffusion models, covering advancements in fundamentals of alignment, alignment techniques of diffusion models, preference benchmarks, and evaluation for diffusion models. Moreover, we discuss key perspectives on current challenges and promising future directions on solving the remaining challenges in alignment of diffusion models. To the best of our knowledge, our work is the first comprehensive review paper for researchers and engineers to comprehend, practice, and research alignment of diffusion models.
comment: Accepted at ACM Computing Surveys. 35 pages, 5 figures, 4 tables. Paper List: github.com/xie-lab-ml/awesome-alignment-of-diffusion-models
♻ ☆ VisMem: Latent Vision Memory Unlocks Potential of Vision-Language Models
Despite the remarkable success of Vision-Language Models (VLMs), their performance on a range of complex visual tasks is often hindered by a "visual processing bottleneck": a propensity to lose grounding in visual evidence and exhibit a deficit in contextualized visual experience during prolonged generation. Drawing inspiration from human cognitive memory theory, which distinguishes short-term visually-dominant memory and long-term semantically-dominant memory, we propose VisMem, a cognitively-aligned framework that equips VLMs with dynamic latent vision memories, a short-term module for fine-grained perceptual retention and a long-term module for abstract semantic consolidation. These memories are seamlessly invoked during inference, allowing VLMs to maintain both perceptual fidelity and semantic consistency across thinking and generation. Extensive experiments across diverse visual benchmarks for understanding, reasoning, and generation reveal that VisMem delivers a significant average performance boost of 11.0% relative to the vanilla model and outperforms all counterparts, establishing a new paradigm for latent-space memory enhancement. The code will be available: https://github.com/YU-deep/VisMem.git.
♻ ☆ Human Body Restoration with One-Step Diffusion Model and A New Benchmark ICML 2025
Human body restoration, as a specific application of image restoration, is widely applied in practice and plays a vital role across diverse fields. However, thorough research remains difficult, particularly due to the lack of benchmark datasets. In this study, we propose a high-quality dataset automated cropping and filtering (HQ-ACF) pipeline. This pipeline leverages existing object detection datasets and other unlabeled images to automatically crop and filter high-quality human images. Using this pipeline, we constructed a person-based restoration with sophisticated objects and natural activities (\emph{PERSONA}) dataset, which includes training, validation, and test sets. The dataset significantly surpasses other human-related datasets in both quality and content richness. Finally, we propose \emph{OSDHuman}, a novel one-step diffusion model for human body restoration. Specifically, we propose a high-fidelity image embedder (HFIE) as the prompt generator to better guide the model with low-quality human image information, effectively avoiding misleading prompts. Experimental results show that OSDHuman outperforms existing methods in both visual quality and quantitative metrics. The dataset and code will at https://github.com/gobunu/OSDHuman.
comment: 8 pages, 9 figures. Accepted at ICML 2025
♻ ☆ Representation Geometry as a Diagnostic for Out-of-Distribution Robustness
Robust generalization under distribution shift remains difficult to monitor and optimize in the absence of target-domain labels, as models with similar in-distribution accuracy can exhibit markedly different out-of-distribution (OOD) performance. While prior work has focused on training-time regularization and low-order representation statistics, little is known about whether the geometric structure of learned embeddings provides reliable post-hoc signals of robustness. We propose a geometry-based diagnostic framework that constructs class-conditional mutual k-nearest-neighbor graphs from in-distribution embeddings and extracts two complementary invariants: a global spectral complexity proxy based on the reduced log-determinant of the normalized Laplacian, and a local smoothness measure based on Ollivier--Ricci curvature. Across multiple architectures, training regimes, and corruption benchmarks, we find that lower spectral complexity and higher mean curvature consistently predict stronger OOD accuracy across checkpoints. Controlled perturbations and topological analyses further show that these signals reflect meaningful representation structure rather than superficial embedding statistics. Our results demonstrate that representation geometry enables interpretable, label-free robustness diagnosis and supports reliable unsupervised checkpoint selection under distribution shift.
♻ ☆ StyleMe3D: Stylization with Disentangled Priors by Multiple Encoders on 3D Gaussians
Current 3D Gaussian Splatting stylization approaches are limited in their ability to represent diverse artistic styles, frequently defaulting to low-level texture replacement or yielding semantically inconsistent outputs. In this paper, we introduce StyleMe3D, a novel hierarchical framework that achieves comprehensive, high-fidelity stylization by disentangling multi-level style representations while preserving geometric fidelity. The cornerstone of StyleMe3D is Dynamic Style Score Distillation (DSSD), which harnesses latent priors from a style-aware diffusion model to provide high-level semantic guidance, ensuring robust and expressive style transfer. To further refine this distillation process, we propose a multi-modal alignment strategy using the CLIP latent space: a CLIP-based style stream evaluator (Contrastive Style Descriptor) that enforces middle-level stylistic similarity, and a CLIP-based content stream evaluator (3D Gaussian Quality Assessment) that acts as a global regularizer to mitigate typical GS quality degradation. Finally, a VGG-based Simultaneously Optimized Scale module is integrated to refine fine-grained texture details at the low-level. Extensive experiments demonstrate that our method consistently preserves intricate geometric details and achieves coherent stylistic effects across entire scenes, significantly surpassing state-of-the-art baselines in both qualitative and quantitative evaluations.
comment: 18 pages; Project page: https://styleme3d.github.io/
Artificial Intelligence 150
☆ Shared LoRA Subspaces for almost Strict Continual Learning
Adapting large pretrained models to new tasks efficiently and continually is crucial for real-world deployment but remains challenging due to catastrophic forgetting and the high cost of retraining. While parameter-efficient tuning methods like low rank adaptation (LoRA) reduce computational demands, they lack mechanisms for strict continual learning and knowledge integration, without relying on data replay, or multiple adapters. We propose Share, a novel approach to parameter efficient continual finetuning that learns and dynamically updates a single, shared low-rank subspace, enabling seamless adaptation across multiple tasks and modalities. Share constructs a foundational subspace that extracts core knowledge from past tasks and incrementally integrates new information by identifying essential subspace directions. Knowledge from each new task is incorporated into this evolving subspace, facilitating forward knowledge transfer, while minimizing catastrophic interference. This approach achieves up to 100x parameter reduction and 281x memory savings over traditional LoRA methods, maintaining performance comparable to jointly trained models. A single Share model can replace hundreds of task-specific LoRA adapters, supporting scalable, asynchronous continual learning. Experiments across image classification, natural language understanding, 3D pose estimation, and text-to-image generation validate its effectiveness, making Share a practical and scalable solution for lifelong learning in large-scale AI systems.
☆ DyTopo: Dynamic Topology Routing for Multi-Agent Reasoning via Semantic Matching
Multi-agent systems built from prompted large language models can improve multi-round reasoning, yet most existing pipelines rely on fixed, trajectory-wide communication patterns that are poorly matched to the stage-dependent needs of iterative problem solving. We introduce DyTopo, a manager-guided multi-agent framework that reconstructs a sparse directed communication graph at each round. Conditioned on the manager's round goal, each agent outputs lightweight natural-language query (need) and \key (offer) descriptors; DyTopo embeds these descriptors and performs semantic matching, routing private messages only along the induced edges. Across code generation and mathematical reasoning benchmarks and four LLM backbones, DyTopo consistently outperforms over the strongest baseline (avg. +6.2). Beyond accuracy, DyTopo yields an interpretable coordination trace via the evolving graphs, enabling qualitative inspection of how communication pathways reconfigure across rounds.
☆ CommCP: Efficient Multi-Agent Coordination via LLM-Based Communication with Conformal Prediction ICRA 2026
To complete assignments provided by humans in natural language, robots must interpret commands, generate and answer relevant questions for scene understanding, and manipulate target objects. Real-world deployments often require multiple heterogeneous robots with different manipulation capabilities to handle different assignments cooperatively. Beyond the need for specialized manipulation skills, effective information gathering is important in completing these assignments. To address this component of the problem, we formalize the information-gathering process in a fully cooperative setting as an underexplored multi-agent multi-task Embodied Question Answering (MM-EQA) problem, which is a novel extension of canonical Embodied Question Answering (EQA), where effective communication is crucial for coordinating efforts without redundancy. To address this problem, we propose CommCP, a novel LLM-based decentralized communication framework designed for MM-EQA. Our framework employs conformal prediction to calibrate the generated messages, thereby minimizing receiver distractions and enhancing communication reliability. To evaluate our framework, we introduce an MM-EQA benchmark featuring diverse, photo-realistic household scenarios with embodied questions. Experimental results demonstrate that CommCP significantly enhances the task success rate and exploration efficiency over baselines. The experiment videos, code, and dataset are available on our project website: https://comm-cp.github.io.
comment: IEEE International Conference on Robotics and Automation (ICRA 2026); Project Website: https://comm-cp.github.io/
☆ Learning Query-Aware Budget-Tier Routing for Runtime Agent Memory
Memory is increasingly central to Large Language Model (LLM) agents operating beyond a single context window, yet most existing systems rely on offline, query-agnostic memory construction that can be inefficient and may discard query-critical information. Although runtime memory utilization is a natural alternative, prior work often incurs substantial overhead and offers limited explicit control over the performance-cost trade-off. In this work, we present \textbf{BudgetMem}, a runtime agent memory framework for explicit, query-aware performance-cost control. BudgetMem structures memory processing as a set of memory modules, each offered in three budget tiers (i.e., \textsc{Low}/\textsc{Mid}/\textsc{High}). A lightweight router performs budget-tier routing across modules to balance task performance and memory construction cost, which is implemented as a compact neural policy trained with reinforcement learning. Using BudgetMem as a unified testbed, we study three complementary strategies for realizing budget tiers: implementation (method complexity), reasoning (inference behavior), and capacity (module model size). Across LoCoMo, LongMemEval, and HotpotQA, BudgetMem surpasses strong baselines when performance is prioritized (i.e., high-budget setting), and delivers better accuracy-cost frontiers under tighter budgets. Moreover, our analysis disentangles the strengths and weaknesses of different tiering strategies, clarifying when each axis delivers the most favorable trade-offs under varying budget regimes.
comment: Code is available at https://github.com/ViktorAxelsen/BudgetMem
☆ Learning Event-Based Shooter Models from Virtual Reality Experiments
Virtual reality (VR) has emerged as a powerful tool for evaluating school security measures in high-risk scenarios such as school shootings, offering experimental control and high behavioral fidelity. However, assessing new interventions in VR requires recruiting new participant cohorts for each condition, making large-scale or iterative evaluation difficult. These limitations are especially restrictive when attempting to learn effective intervention strategies, which typically require many training episodes. To address this challenge, we develop a data-driven discrete-event simulator (DES) that models shooter movement and in-region actions as stochastic processes learned from participant behavior in VR studies. We use the simulator to examine the impact of a robot-based shooter intervention strategy. Once shown to reproduce key empirical patterns, the DES enables scalable evaluation and learning of intervention strategies that are infeasible to train directly with human subjects. Overall, this work demonstrates a high-to-mid fidelity simulation workflow that provides a scalable surrogate for developing and evaluating autonomous school-security interventions.
comment: Preprint under review for conference publication. 9 pages, 4 figures, 4 tables
☆ Correctness-Optimized Residual Activation Lens (CORAL): Transferrable and Calibration-Aware Inference-Time Steering
Large language models (LLMs) exhibit persistent miscalibration, especially after instruction tuning and preference alignment. Modified training objectives can improve calibration, but retraining is expensive. Inference-time steering offers a lightweight alternative, yet most existing methods optimize proxies for correctness rather than correctness itself. We introduce CORAL (Correctness-Optimized Residual Activation Lens), a regularized inference-time steering method that captures distributed correctness signals from model internal activations using weight-decay MLP probes. We evaluate CORAL across three 7B-parameter models and find that it consistently improves accuracy by 10\% and expected calibration error (ECE) by 50\% on average. We additionally demonstrate that these gains transfer without retraining to the complete published test sets of four held-out benchmarks (ARC-Challenge, HellaSwag, Math-MC, OpenBookQA), averaging 14\% accuracy improvements and 49\% ECE improvements. Our results support the hypothesis that distributed information in model internals can be extracted using regularized probes when individual neurons are insufficient. CORAL thus provides a compute-efficient, transferable, and calibration-aware approach to improve MCQA performance during inference.
☆ Optimism Stabilizes Thompson Sampling for Adaptive Inference
Thompson sampling (TS) is widely used for stochastic multi-armed bandits, yet its inferential properties under adaptive data collection are subtle. Classical asymptotic theory for sample means can fail because arm-specific sample sizes are random and coupled with the rewards through the action-selection rule. We study this phenomenon in the $K$-armed Gaussian bandit and identify \emph{optimism} as a key mechanism for restoring \emph{stability}, a sufficient condition for valid asymptotic inference requiring each arm's pull count to concentrate around a deterministic scale. First, we prove that variance-inflated TS \citep{halder2025stable} is stable for any $K \ge 2$, including the challenging regime where multiple arms are optimal. This resolves the open question raised by \citet{halder2025stable} through extending their results from the two-armed setting to the general $K$-armed setting. Second, we analyze an alternative optimistic modification that keeps the posterior variance unchanged but adds an explicit mean bonus to posterior mean, and establish the same stability conclusion. In summary, suitably implemented optimism stabilizes Thompson sampling and enables asymptotically valid inference in multi-armed bandits, while incurring only a mild additional regret cost.
☆ GenArena: How Can We Achieve Human-Aligned Evaluation for Visual Generation Tasks?
The rapid advancement of visual generation models has outpaced traditional evaluation approaches, necessitating the adoption of Vision-Language Models as surrogate judges. In this work, we systematically investigate the reliability of the prevailing absolute pointwise scoring standard, across a wide spectrum of visual generation tasks. Our analysis reveals that this paradigm is limited due to stochastic inconsistency and poor alignment with human perception. To resolve these limitations, we introduce GenArena, a unified evaluation framework that leverages a pairwise comparison paradigm to ensure stable and human-aligned evaluation. Crucially, our experiments uncover a transformative finding that simply adopting this pairwise protocol enables off-the-shelf open-source models to outperform top-tier proprietary models. Notably, our method boosts evaluation accuracy by over 20% and achieves a Spearman correlation of 0.86 with the authoritative LMArena leaderboard, drastically surpassing the 0.36 correlation of pointwise methods. Based on GenArena, we benchmark state-of-the-art visual generation models across diverse tasks, providing the community with a rigorous and automated evaluation standard for visual generation.
comment: Project Page: https://genarena.github.io/, Code: https://github.com/ruihanglix/genarena
☆ AgenticPay: A Multi-Agent LLM Negotiation System for Buyer-Seller Transactions
Large language model (LLM)-based agents are increasingly expected to negotiate, coordinate, and transact autonomously, yet existing benchmarks lack principled settings for evaluating language-mediated economic interaction among multiple agents. We introduce AgenticPay, a benchmark and simulation framework for multi-agent buyer-seller negotiation driven by natural language. AgenticPay models markets in which buyers and sellers possess private constraints and product-dependent valuations, and must reach agreements through multi-round linguistic negotiation rather than numeric bidding alone. The framework supports a diverse suite of over 110 tasks ranging from bilateral bargaining to many-to-many markets, with structured action extraction and metrics for feasibility, efficiency, and welfare. Benchmarking state-of-the-art proprietary and open-weight LLMs reveals substantial gaps in negotiation performance and highlights challenges in long-horizon strategic reasoning, establishing AgenticPay as a foundation for studying agentic commerce and language-based market interaction. Code and dataset are available at the link: https://github.com/SafeRL-Lab/AgenticPay.
☆ Speech Emotion Recognition Leveraging OpenAI's Whisper Representations and Attentive Pooling Methods
Speech Emotion Recognition (SER) research has faced limitations due to the lack of standard and sufficiently large datasets. Recent studies have leveraged pre-trained models to extract features for downstream tasks such as SER. This work explores the capabilities of Whisper, a pre-trained ASR system, in speech emotion recognition by proposing two attention-based pooling methods, Multi-head Attentive Average Pooling and QKV Pooling, designed to efficiently reduce the dimensionality of Whisper representations while preserving emotional features. We experiment on English and Persian, using the IEMOCAP and ShEMO datasets respectively, with Whisper Tiny and Small. Our multi-head QKV architecture achieves state-of-the-art results on the ShEMO dataset, with a 2.47% improvement in unweighted accuracy. We further compare the performance of different Whisper encoder layers and find that intermediate layers often perform better for SER on the Persian dataset, providing a lightweight and efficient alternative to much larger models such as HuBERT X-Large. Our findings highlight the potential of Whisper as a representation extractor for SER and demonstrate the effectiveness of attention-based pooling for dimension reduction.
☆ Diamond Maps: Efficient Reward Alignment via Stochastic Flow Maps
Flow and diffusion models produce high-quality samples, but adapting them to user preferences or constraints post-training remains costly and brittle, a challenge commonly called reward alignment. We argue that efficient reward alignment should be a property of the generative model itself, not an afterthought, and redesign the model for adaptability. We propose "Diamond Maps", stochastic flow map models that enable efficient and accurate alignment to arbitrary rewards at inference time. Diamond Maps amortize many simulation steps into a single-step sampler, like flow maps, while preserving the stochasticity required for optimal reward alignment. This design makes search, sequential Monte Carlo, and guidance scalable by enabling efficient and consistent estimation of the value function. Our experiments show that Diamond Maps can be learned efficiently via distillation from GLASS Flows, achieve stronger reward alignment performance, and scale better than existing methods. Our results point toward a practical route to generative models that can be rapidly adapted to arbitrary preferences and constraints at inference time.
☆ RISE-Video: Can Video Generators Decode Implicit World Rules?
While generative video models have achieved remarkable visual fidelity, their capacity to internalize and reason over implicit world rules remains a critical yet under-explored frontier. To bridge this gap, we present RISE-Video, a pioneering reasoning-oriented benchmark for Text-Image-to-Video (TI2V) synthesis that shifts the evaluative focus from surface-level aesthetics to deep cognitive reasoning. RISE-Video comprises 467 meticulously human-annotated samples spanning eight rigorous categories, providing a structured testbed for probing model intelligence across diverse dimensions, ranging from commonsense and spatial dynamics to specialized subject domains. Our framework introduces a multi-dimensional evaluation protocol consisting of four metrics: \textit{Reasoning Alignment}, \textit{Temporal Consistency}, \textit{Physical Rationality}, and \textit{Visual Quality}. To further support scalable evaluation, we propose an automated pipeline leveraging Large Multimodal Models (LMMs) to emulate human-centric assessment. Extensive experiments on 11 state-of-the-art TI2V models reveal pervasive deficiencies in simulating complex scenarios under implicit constraints, offering critical insights for the advancement of future world-simulating generative models.
comment: 38 pages, 16 figures, 3 tables; Code: https://github.com/VisionXLab/RISE-Video; HuggingFace: https://huggingface.co/datasets/VisionXLab/RISE-Video
☆ Geographically-aware Transformer-based Traffic Forecasting for Urban Motorway Digital Twins
The operational effectiveness of digital-twin technology in motorway traffic management depends on the availability of a continuous flow of high-resolution real-time traffic data. To function as a proactive decision-making support layer within traffic management, a digital twin must also incorporate predicted traffic conditions in addition to real-time observations. Due to the spatio-temporal complexity and the time-variant, non-linear nature of traffic dynamics, predicting motorway traffic remains a difficult problem. Sequence-based deep-learning models offer clear advantages over classical machine learning and statistical models in capturing long-range, temporal dependencies in time-series traffic data, yet limitations in forecasting accuracy and model complexity point to the need for further improvements. To improve motorway traffic forecasting, this paper introduces a Geographically-aware Transformer-based Traffic Forecasting GATTF model, which exploits the geographical relationships between distributed sensors using their mutual information (MI). The model has been evaluated using real-time data from the Geneva motorway network in Switzerland and results confirm that incorporating geographical awareness through MI enhances the accuracy of GATTF forecasting compared to a standard Transformer, without increasing model complexity.
comment: IEEE IV2026 37th IEEE Intelligent Vehicles Symposium
☆ Clifford Kolmogorov-Arnold Networks
We introduce Clifford Kolmogorov-Arnold Network (ClKAN), a flexible and efficient architecture for function approximation in arbitrary Clifford algebra spaces. We propose the use of Randomized Quasi Monte Carlo grid generation as a solution to the exponential scaling associated with higher dimensional algebras. Our ClKAN also introduces new batch normalization strategies to deal with variable domain input. ClKAN finds application in scientific discovery and engineering, and is validated in synthetic and physics inspired tasks.
comment: This work has been submitted to the IEEE for possible publication
☆ Inverse Depth Scaling From Most Layers Being Similar
Neural scaling laws relate loss to model size in large language models (LLMs), yet depth and width may contribute to performance differently, requiring more detailed studies. Here, we quantify how depth affects loss via analysis of LLMs and toy residual networks. We find loss scales inversely proportional to depth in LLMs, probably due to functionally similar layers reducing error through ensemble averaging rather than compositional learning or discretizing smooth dynamics. This regime is inefficient yet robust and may arise from the architectural bias of residual networks and target functions incompatible with smooth dynamics. The findings suggest that improving LLM efficiency may require architectural innovations to encourage compositional use of depth.
comment: 23 pages, 24 figures
☆ LSA: Localized Semantic Alignment for Enhancing Temporal Consistency in Traffic Video Generation
Controllable video generation has emerged as a versatile tool for autonomous driving, enabling realistic synthesis of traffic scenarios. However, existing methods depend on control signals at inference time to guide the generative model towards temporally consistent generation of dynamic objects, limiting their utility as scalable and generalizable data engines. In this work, we propose Localized Semantic Alignment (LSA), a simple yet effective framework for fine-tuning pre-trained video generation models. LSA enhances temporal consistency by aligning semantic features between ground-truth and generated video clips. Specifically, we compare the output of an off-the-shelf feature extraction model between the ground-truth and generated video clips localized around dynamic objects inducing a semantic feature consistency loss. We fine-tune the base model by combining this loss with the standard diffusion loss. The model fine-tuned for a single epoch with our novel loss outperforms the baselines in common video generation evaluation metrics. To further test the temporal consistency in generated videos we adapt two additional metrics from object detection task, namely mAP and mIoU. Extensive experiments on nuScenes and KITTI datasets show the effectiveness of our approach in enhancing temporal consistency in video generation without the need for external control signals during inference and any computational overheads.
comment: Accepted to IEEE IV 2026. 8 pages, 3 figures. Code available at https://github.com/mirlanium/LSA
☆ Learning to Share: Selective Memory for Efficient Parallel Agentic Systems
Agentic systems solve complex tasks by coordinating multiple agents that iteratively reason, invoke tools, and exchange intermediate results. To improve robustness and solution quality, recent approaches deploy multiple agent teams running in parallel to explore diverse reasoning trajectories. However, parallel execution comes at a significant computational cost: when different teams independently reason about similar sub-problems or execute analogous steps, they repeatedly perform substantial overlapping computation. To address these limitations, in this paper, we propose Learning to Share (LTS), a learned shared-memory mechanism for parallel agentic frameworks that enables selective cross-team information reuse while controlling context growth. LTS introduces a global memory bank accessible to all teams and a lightweight controller that decides whether intermediate agent steps should be added to memory or not. The controller is trained using stepwise reinforcement learning with usage-aware credit assignment, allowing it to identify information that is globally useful across parallel executions. Experiments on the AssistantBench and GAIA benchmarks show that LTS significantly reduces overall runtime while matching or improving task performance compared to memory-free parallel baselines, demonstrating that learned memory admission is an effective strategy for improving the efficiency of parallel agentic systems. Project page: https://joefioresi718.github.io/LTS_webpage/
☆ Better Source, Better Flow: Learning Condition-Dependent Source Distribution for Flow Matching
Flow matching has recently emerged as a promising alternative to diffusion-based generative models, particularly for text-to-image generation. Despite its flexibility in allowing arbitrary source distributions, most existing approaches rely on a standard Gaussian distribution, a choice inherited from diffusion models, and rarely consider the source distribution itself as an optimization target in such settings. In this work, we show that principled design of the source distribution is not only feasible but also beneficial at the scale of modern text-to-image systems. Specifically, we propose learning a condition-dependent source distribution under flow matching objective that better exploit rich conditioning signals. We identify key failure modes that arise when directly incorporating conditioning into the source, including distributional collapse and instability, and show that appropriate variance regularization and directional alignment between source and target are critical for stable and effective learning. We further analyze how the choice of target representation space impacts flow matching with structured sources, revealing regimes in which such designs are most effective. Extensive experiments across multiple text-to-image benchmarks demonstrate consistent and robust improvements, including up to a 3x faster convergence in FID, highlighting the practical benefits of a principled source distribution design for conditional flow matching.
comment: Project Page: https://junwankimm.github.io/CSFM
☆ Compound Deception in Elite Peer Review: A Failure Mode Taxonomy of 100 Fabricated Citations at NeurIPS 2025
Large language models (LLMs) are increasingly used in academic writing workflows, yet they frequently hallucinate by generating citations to sources that do not exist. This study analyzes 100 AI-generated hallucinated citations that appeared in papers accepted by the 2025 Conference on Neural Information Processing Systems (NeurIPS), one of the world's most prestigious AI conferences. Despite review by 3-5 expert researchers per paper, these fabricated citations evaded detection, appearing in 53 published papers (approx. 1% of all accepted papers). We develop a five-category taxonomy that classifies hallucinations by their failure mode: Total Fabrication (66%), Partial Attribute Corruption (27%), Identifier Hijacking (4%), Placeholder Hallucination (2%), and Semantic Hallucination (1%). Our analysis reveals a critical finding: every hallucination (100%) exhibited compound failure modes. The distribution of secondary characteristics was dominated by Semantic Hallucination (63%) and Identifier Hijacking (29%), which often appeared alongside Total Fabrication to create a veneer of plausibility and false verifiability. These compound structures exploit multiple verification heuristics simultaneously, explaining why peer review fails to detect them. The distribution exhibits a bimodal pattern: 92% of contaminated papers contain 1-2 hallucinations (minimal AI use) while 8% contain 4-13 hallucinations (heavy reliance). These findings demonstrate that current peer review processes do not include effective citation verification and that the problem extends beyond NeurIPS to other major conferences, government reports, and professional consulting. We propose mandatory automated citation verification at submission as an implementable solution to prevent fabricated citations from becoming normalized in scientific literature.
☆ Quantum Reinforcement Learning with Transformers for the Capacitated Vehicle Routing Problem
This paper addresses the Capacitated Vehicle Routing Problem (CVRP) by comparing classical and quantum Reinforcement Learning (RL) approaches. An Advantage Actor-Critic (A2C) agent is implemented in classical, full quantum, and hybrid variants, integrating transformer architectures to capture the relationships between vehicles, clients, and the depot through self- and cross-attention mechanisms. The experiments focus on multi-vehicle scenarios with capacity constraints, considering 20 clients and 4 vehicles, and are conducted over ten independent runs. Performance is assessed using routing distance, route compactness, and route overlap. The results show that all three approaches are capable of learning effective routing policies. However, quantum-enhanced models outperform the classical baseline and produce more robust route organization, with the hybrid architecture achieving the best overall performance across distance, compactness, and route overlap. In addition to quantitative improvements, qualitative visualizations reveal that quantum-based models generate more structured and coherent routing solutions. These findings highlight the potential of hybrid quantum-classical reinforcement learning models for addressing complex combinatorial optimization problems such as the CVRP.
comment: 22 pages, 12 figures
☆ Verification of the Implicit World Model in a Generative Model via Adversarial Sequences ICLR 2026
Generative sequence models are typically trained on sample sequences from natural or formal languages. It is a crucial question whether -- or to what extent -- sample-based training is able to capture the true structure of these languages, often referred to as the ``world model''. Theoretical results indicate that we can hope for soundness at best, that is, generating valid sequences, but not necessarily all of them. However, it is still important to have practical tools that are able to verify whether a given sequence model is sound. In this study, we focus on chess, as it is a domain that provides enough complexity while having a simple rule-based world model. We propose adversarial sequence generation for verifying the soundness of the sequence model. Our adversaries generate valid sequences so as to force the sequence model to generate an invalid next move prediction. Apart from the falsification of soundness, this method is also suitable for a more fine-grained analysis of the failure modes and the effects of different choices during training. To demonstrate this, we propose a number of methods for adversarial sequence generation and evaluate the approach on a large set of chess models. We train models on random as well as high-quality chess games, using several training recipes. We find that none of the models are sound, but some training techniques and dataset choices are able to improve soundness remarkably. We also investigate the potential application of board state probes in both our training and attack methods. Our findings indicate that the extracted board states have no causal role in next token prediction in most of the models.
comment: Accepted at ICLR 2026. Code, datasets, and models are available at https://github.com/szegedai/world-model-verification
☆ Regularized Calibration with Successive Rounding for Post-Training Quantization
Large language models (LLMs) deliver robust performance across diverse applications, yet their deployment often faces challenges due to the memory and latency costs of storing and accessing billions of parameters. Post-training quantization (PTQ) enables efficient inference by mapping pretrained weights to low-bit formats without retraining, but its effectiveness depends critically on both the quantization objective and the rounding procedure used to obtain low-bit weight representations. In this work, we show that interpolating between symmetric and asymmetric calibration acts as a form of regularization that preserves the standard quadratic structure used in PTQ while providing robustness to activation mismatch. Building on this perspective, we derive a simple successive rounding procedure that naturally incorporates asymmetric calibration, as well as a bounded-search extension that allows for an explicit trade-off between quantization quality and the compute cost. Experiments across multiple LLM families, quantization bit-widths, and benchmarks demonstrate that the proposed bounded search based on a regularized asymmetric calibration objective consistently improves perplexity and accuracy over PTQ baselines, while incurring only modest and controllable additional computational cost.
☆ Parity, Sensitivity, and Transformers
The transformer architecture is almost a decade old. Despite that, we still have a limited understanding of what this architecture can or cannot compute. For instance, can a 1-layer transformer solve PARITY -- or more generally -- which kinds of transformers can do it? Known constructions for PARITY have at least 2 layers and employ impractical features: either a length-dependent positional encoding, or hardmax, or layernorm without the regularization parameter, or they are not implementable with causal masking. We give a new construction of a transformer for PARITY with softmax, length-independent and polynomially bounded positional encoding, no layernorm, working both with and without causal masking. We also give the first lower bound for transformers solving PARITY -- by showing that it cannot be done with only one layer and one head.
comment: 15 pages
☆ Metric Hedonic Games on the Line AAMAS 2026
Hedonic games are fundamental models for investigating the formation of coalitions among a set of strategic agents, where every agent has a certain utility for every possible coalition of agents it can be part of. To avoid the intractability of defining exponentially many utilities for all possible coalitions, many variants with succinct representations of the agents' utility functions have been devised and analyzed, e.g., modified fractional hedonic games by Monaco et al. [JAAMAS 2020]. We extend this by studying a novel succinct variant that is related to modified fractional hedonic games. In our model, each agent has a fixed type-value and an agent's cost for some given coalition is based on the differences between its value and those of the other members of its coalition. This allows to model natural situations like athletes forming training groups with similar performance levels or voters that partition themselves along a political spectrum. In particular, we investigate natural variants where an agent's cost is defined by distance thresholds, or by the maximum or average value difference to the other agents in its coalition. For these settings, we study the existence of stable coalition structures, their properties, and their quality in terms of the price of anarchy and the price of stability. Further, we investigate the impact of limiting the maximum number of coalitions. Despite the simple setting with metric distances on a line, we uncover a rich landscape of models, partially with counter-intuitive behavior. Also, our focus on both swap stability and jump stability allows us to study the influence of fixing the number and the size of the coalitions. Overall, we find that stable coalition structures always exist but that their properties and quality can vary widely.
comment: accepted at AAMAS 2026, full version
☆ Dr. Kernel: Reinforcement Learning Done Right for Triton Kernel Generations
High-quality kernel is critical for scalable AI systems, and enabling LLMs to generate such code would advance AI development. However, training LLMs for this task requires sufficient data, a robust environment, and the process is often vulnerable to reward hacking and lazy optimization. In these cases, models may hack training rewards and prioritize trivial correctness over meaningful speedup. In this paper, we systematically study reinforcement learning (RL) for kernel generation. We first design KernelGYM, a robust distributed GPU environment that supports reward hacking check, data collection from multi-turn interactions and long-term RL training. Building on KernelGYM, we investigate effective multi-turn RL methods and identify a biased policy gradient issue caused by self-inclusion in GRPO. To solve this, we propose Turn-level Reinforce-Leave-One-Out (TRLOO) to provide unbiased advantage estimation for multi-turn RL. To alleviate lazy optimization, we incorporate mismatch correction for training stability and introduce Profiling-based Rewards (PR) and Profiling-based Rejection Sampling (PRS) to overcome the issue. The trained model, Dr.Kernel-14B, reaches performance competitive with Claude-4.5-Sonnet in Kernelbench. Finally, we study sequential test-time scaling for Dr.Kernel-14B. On the KernelBench Level-2 subset, 31.6% of the generated kernels achieve at least a 1.2x speedup over the Torch reference, surpassing Claude-4.5-Sonnet (26.7%) and GPT-5 (28.6%). When selecting the best candidate across all turns, this 1.2x speedup rate further increases to 47.8%. All resources, including environment, training code, models, and dataset, are included in https://www.github.com/hkust-nlp/KernelGYM.
☆ Neural Implicit 3D Cardiac Shape Reconstruction from Sparse CT Angiography Slices Mimicking 2D Transthoracic Echocardiography Views
Accurate 3D representations of cardiac structures allow quantitative analysis of anatomy and function. In this work, we propose a method for reconstructing complete 3D cardiac shapes from segmentations of sparse planes in CT angiography (CTA) for application in 2D transthoracic echocardiography (TTE). Our method uses a neural implicit function to reconstruct the 3D shape of the cardiac chambers and left-ventricle myocardium from sparse CTA planes. To investigate the feasibility of achieving 3D reconstruction from 2D TTE, we select planes that mimic the standard apical 2D TTE views. During training, a multi-layer perceptron learns shape priors from 3D segmentations of the target structures in CTA. At test time, the network reconstructs 3D cardiac shapes from segmentations of TTE-mimicking CTA planes by jointly optimizing the latent code and the rigid transforms that map the observed planes into 3D space. For each heart, we simulate four realistic apical views, and we compare reconstructed multi-class volumes with the reference CTA volumes. On a held-out set of CTA segmentations, our approach achieves an average Dice coefficient of 0.86 $\pm$ 0.04 across all structures. Our method also achieves markedly lower volume errors than the clinical standard, Simpson's biplane rule: 4.88 $\pm$ 4.26 mL vs. 8.14 $\pm$ 6.04 mL, respectively, for the left ventricle; and 6.40 $\pm$ 7.37 mL vs. 37.76 $\pm$ 22.96 mL, respectively, for the left atrium. This suggests that our approach offers a viable route to more accurate 3D chamber quantification in 2D transthoracic echocardiography.
☆ A Guide to Large Language Models in Modeling and Simulation: From Core Techniques to Critical Challenges
Large language models (LLMs) have rapidly become familiar tools to researchers and practitioners. Concepts such as prompting, temperature, or few-shot examples are now widely recognized, and LLMs are increasingly used in Modeling & Simulation (M&S) workflows. However, practices that appear straightforward may introduce subtle issues, unnecessary complexity, or may even lead to inferior results. Adding more data can backfire (e.g., deteriorating performance through model collapse or inadvertently wiping out existing guardrails), spending time on fine-tuning a model can be unnecessary without a prior assessment of what it already knows, setting the temperature to 0 is not sufficient to make LLMs deterministic, providing a large volume of M&S data as input can be excessive (LLMs cannot attend to everything) but naive simplifications can lose information. We aim to provide comprehensive and practical guidance on how to use LLMs, with an emphasis on M&S applications. We discuss common sources of confusion, including non-determinism, knowledge augmentation (including RAG and LoRA), decomposition of M&S data, and hyper-parameter settings. We emphasize principled design choices, diagnostic strategies, and empirical evaluation, with the goal of helping modelers make informed decisions about when, how, and whether to rely on LLMs.
comment: Book chapter. Accepted in Artificial Intelligence in Modeling and Simulation, Philippe J. Giabbanelli and Istvan David (eds). Series on Simulation Foundations, Methods and Applications. Springer, Cham. Series ISSN: 2195-2817
☆ EuroLLM-22B: Technical Report
This report presents EuroLLM-22B, a large language model trained from scratch to support the needs of European citizens by covering all 24 official European Union languages and 11 additional languages. EuroLLM addresses the issue of European languages being underrepresented and underserved in existing open large language models. We provide a comprehensive overview of EuroLLM-22B's development, including tokenizer design, architectural specifications, data filtering, and training procedures. Across a broad set of multilingual benchmarks, EuroLLM-22B demonstrates strong performance in reasoning, instruction following, and translation, achieving results competitive with models of comparable size. To support future research, we release our base and instruction-tuned models, our multilingual web pretraining data and updated EuroBlocks instruction datasets, as well as our pre-training and evaluation codebases.
☆ Agent2Agent Threats in Safety-Critical LLM Assistants: A Human-Centric Taxonomy
The integration of Large Language Model (LLM)-based conversational agents into vehicles creates novel security challenges at the intersection of agentic AI, automotive safety, and inter-agent communication. As these intelligent assistants coordinate with external services via protocols such as Google's Agent-to-Agent (A2A), they establish attack surfaces where manipulations can propagate through natural language payloads, potentially causing severe consequences ranging from driver distraction to unauthorized vehicle control. Existing AI security frameworks, while foundational, lack the rigorous "separation of concerns" standard in safety-critical systems engineering by co-mingling the concepts of what is being protected (assets) with how it is attacked (attack paths). This paper addresses this methodological gap by proposing a threat modeling framework called AgentHeLLM (Agent Hazard Exploration for LLM Assistants) that formally separates asset identification from attack path analysis. We introduce a human-centric asset taxonomy derived from harm-oriented "victim modeling" and inspired by the Universal Declaration of Human Rights, and a formal graph-based model that distinguishes poison paths (malicious data propagation) from trigger paths (activation actions). We demonstrate the framework's practical applicability through an open-source attack path suggestion tool AgentHeLLM Attack Path Generator that automates multi-stage threat discovery using a bi-level search strategy.
☆ Beyond Manual Planning: Seating Allocation for Large Organizations
We introduce the Hierarchical Seating Allocation Problem (HSAP) which addresses the optimal assignment of hierarchically structured organizational teams to physical seating arrangements on a floor plan. This problem is driven by the necessity for large organizations with large hierarchies to ensure that teams with close hierarchical relationships are seated in proximity to one another, such as ensuring a research group occupies a contiguous area. Currently, this problem is managed manually leading to infrequent and suboptimal replanning efforts. To alleviate this manual process, we propose an end-to-end framework to solve the HSAP. A scalable approach to calculate the distance between any pair of seats using a probabilistic road map (PRM) and rapidly-exploring random trees (RRT) which is combined with heuristic search and dynamic programming approach to solve the HSAP using integer programming. We demonstrate our approach under different sized instances by evaluating the PRM framework and subsequent allocations both quantitatively and qualitatively.
☆ xList-Hate: A Checklist-Based Framework for Interpretable and Generalizable Hate Speech Detection
Hate speech detection is commonly framed as a direct binary classification problem despite being a composite concept defined through multiple interacting factors that vary across legal frameworks, platform policies, and annotation guidelines. As a result, supervised models often overfit dataset-specific definitions and exhibit limited robustness under domain shift and annotation noise. We introduce xList-Hate, a diagnostic framework that decomposes hate speech detection into a checklist of explicit, concept-level questions grounded in widely shared normative criteria. Each question is independently answered by a large language model (LLM), producing a binary diagnostic representation that captures hateful content features without directly predicting the final label. These diagnostic signals are then aggregated by a lightweight, fully interpretable decision tree, yielding transparent and auditable predictions. We evaluate it across multiple hate speech benchmarks and model families, comparing it against zero-shot LLM classification and in-domain supervised fine-tuning. While supervised methods typically maximize in-domain performance, we consistently improves cross-dataset robustness and relative performance under domain shift. In addition, qualitative analysis of disagreement cases provides evidence that the framework can be less sensitive to certain forms of annotation inconsistency and contextual ambiguity. Crucially, the approach enables fine-grained interpretability through explicit decision paths and factor-level analysis. Our results suggest that reframing hate speech detection as a diagnostic reasoning task, rather than a monolithic classification problem, provides a robust, explainable, and extensible alternative for content moderation.
☆ DLM-Scope: Mechanistic Interpretability of Diffusion Language Models via Sparse Autoencoders
Sparse autoencoders (SAEs) have become a standard tool for mechanistic interpretability in autoregressive large language models (LLMs), enabling researchers to extract sparse, human-interpretable features and intervene on model behavior. Recently, as diffusion language models (DLMs) have become an increasingly promising alternative to the autoregressive LLMs, it is essential to develop tailored mechanistic interpretability tools for this emerging class of models. In this work, we present DLM-Scope, the first SAE-based interpretability framework for DLMs, and demonstrate that trained Top-K SAEs can faithfully extract interpretable features. Notably, we find that inserting SAEs affects DLMs differently than autoregressive LLMs: while SAE insertion in LLMs typically incurs a loss penalty, in DLMs it can reduce cross-entropy loss when applied to early layers, a phenomenon absent or markedly weaker in LLMs. Additionally, SAE features in DLMs enable more effective diffusion-time interventions, often outperforming LLM steering. Moreover, we pioneer certain new SAE-based research directions for DLMs: we show that SAEs can provide useful signals for DLM decoding order; and the SAE features are stable during the post-training phase of DLMs. Our work establishes a foundation for mechanistic interpretability in DLMs and shows a great potential of applying SAEs to DLM-related tasks and algorithms.
comment: 23 pages
☆ BABE: Biology Arena BEnchmark
The rapid evolution of large language models (LLMs) has expanded their capabilities from basic dialogue to advanced scientific reasoning. However, existing benchmarks in biology often fail to assess a critical skill required of researchers: the ability to integrate experimental results with contextual knowledge to derive meaningful conclusions. To address this gap, we introduce BABE(Biology Arena BEnchmark), a comprehensive benchmark designed to evaluate the experimental reasoning capabilities of biological AI systems. BABE is uniquely constructed from peer-reviewed research papers and real-world biological studies, ensuring that tasks reflect the complexity and interdisciplinary nature of actual scientific inquiry. BABE challenges models to perform causal reasoning and cross-scale inference. Our benchmark provides a robust framework for assessing how well AI systems can reason like practicing scientists, offering a more authentic measure of their potential to contribute to biological research.
☆ DARWIN: Dynamic Agentically Rewriting Self-Improving Network
DARWIN is an evolutionary GPT model, utilizing a genetic-algorithm like optimization structure with several independent GPT agents being trained individually using unique training code. Each iteration, the GPT models are prompted to modify the training code of one another in an attempt to improve their performance in a mutation-like manner, and the best GPT agents are then benchmarked and selected for the next iteration by genetic algorithm. For demonstration purposes and due to budget and time constraints, OpenAI API is used to prompt training code improvements and the nanoGPT framework is used as the training code. DARWIN also utilizes persistent JSON-based memory files to track previous reasoning and changes to code to correlate with improvement to model performance. and a bidirectional interface for HITL intervention allowing the model to request upgrades such as additional datasets, training scripts, and restructuring of file hierarchies. In experiments, DARWIN achieved a 1.26 percent improvement in model FLOPS utilization (MFU) and a 2.07 percent improvement to perplexity in 5 iterations of training over baseline configurations, demonstrating promising capabilities as a foundation for scaling evolutionary GPT training.
comment: 6 pages, 3 figures, 2 tables
☆ OmniVideo-R1: Reinforcing Audio-visual Reasoning with Query Intention and Modality Attention
While humans perceive the world through diverse modalities that operate synergistically to support a holistic understanding of their surroundings, existing omnivideo models still face substantial challenges on audio-visual understanding tasks. In this paper, we propose OmniVideo-R1, a novel reinforced framework that improves mixed-modality reasoning. OmniVideo-R1 empowers models to "think with omnimodal cues" by two key strategies: (1) query-intensive grounding based on self-supervised learning paradigms; and (2) modality-attentive fusion built upon contrastive learning paradigms. Extensive experiments on multiple benchmarks demonstrate that OmniVideo-R1 consistently outperforms strong baselines, highlighting its effectiveness and robust generalization capabilities.
comment: 19 pages, 12 figures
☆ FHAIM: Fully Homomorphic AIM For Private Synthetic Data Generation
Data is the lifeblood of AI, yet much of the most valuable data remains locked in silos due to privacy and regulations. As a result, AI remains heavily underutilized in many of the most important domains, including healthcare, education, and finance. Synthetic data generation (SDG), i.e. the generation of artificial data with a synthesizer trained on real data, offers an appealing solution to make data available while mitigating privacy concerns, however existing SDG-as-a-service workflow require data holders to trust providers with access to private data.We propose FHAIM, the first fully homomorphic encryption (FHE) framework for training a marginal-based synthetic data generator on encrypted tabular data. FHAIM adapts the widely used AIM algorithm to the FHE setting using novel FHE protocols, ensuring that the private data remains encrypted throughout and is released only with differential privacy guarantees. Our empirical analysis show that FHAIM preserves the performance of AIM while maintaining feasible runtimes.
☆ Learning Compact Boolean Networks
Floating-point neural networks dominate modern machine learning but incur substantial inference cost, motivating interest in Boolean networks for resource-constrained settings. However, learning compact and accurate Boolean networks is challenging due to their combinatorial nature. In this work, we address this challenge from three different angles: learned connections, compact convolutions and adaptive discretization. First, we propose a novel strategy to learn efficient connections with no additional parameters and negligible computational overhead. Second, we introduce a novel convolutional Boolean architecture that exploits the locality with reduced number of Boolean operations than existing methods. Third, we propose an adaptive discretization strategy to reduce the accuracy drop when converting a continuous-valued network into a Boolean one. Extensive results on standard vision benchmarks demonstrate that the Pareto front of accuracy vs. computation of our method significantly outperforms prior state-of-the-art, achieving better accuracy with up to 37x fewer Boolean operations.
☆ TKG-Thinker: Towards Dynamic Reasoning over Temporal Knowledge Graphs via Agentic Reinforcement Learning
Temporal knowledge graph question answering (TKGQA) aims to answer time-sensitive questions by leveraging temporal knowledge bases. While Large Language Models (LLMs) demonstrate significant potential in TKGQA, current prompting strategies constrain their efficacy in two primary ways. First, they are prone to reasoning hallucinations under complex temporal constraints. Second, static prompting limits model autonomy and generalization, as it lack optimization through dynamic interaction with temporal knowledge graphs (TKGs) environments. To address these limitations, we propose \textbf{TKG-Thinker}, a novel agent equipped with autonomous planning and adaptive retrieval capabilities for reasoning over TKGs. Specifically, TKG-Thinker performs in-depth temporal reasoning through dynamic multi-turn interactions with TKGs via a dual-training strategy. We first apply Supervised Fine-Tuning (SFT) with chain-of thought data to instill core planning capabilities, followed by a Reinforcement Learning (RL) stage that leverages multi-dimensional rewards to refine reasoning policies under intricate temporal constraints. Experimental results on benchmark datasets with three open-source LLMs show that TKG-Thinker achieves state-of-the-art performance and exhibits strong generalization across complex TKGQA settings.
☆ STProtein: predicting spatial protein expression from multi-omics data SP
The integration of spatial multi-omics data from single tissues is crucial for advancing biological research. However, a significant data imbalance impedes progress: while spatial transcriptomics data is relatively abundant, spatial proteomics data remains scarce due to technical limitations and high costs. To overcome this challenge we propose STProtein, a novel framework leveraging graph neural networks with multi-task learning strategy. STProtein is designed to accurately predict unknown spatial protein expression using more accessible spatial multi-omics data, such as spatial transcriptomics. We believe that STProtein can effectively addresses the scarcity of spatial proteomics, accelerating the integration of spatial multi-omics and potentially catalyzing transformative breakthroughs in life sciences. This tool enables scientists to accelerate discovery by identifying complex and previously hidden spatial patterns of proteins within tissues, uncovering novel relationships between different marker genes, and exploring the biological "Dark Matter".
comment: STProtein: predicting spatial protein expression from multi-omics data is accepted SPARTA_AAAI2026 Oral GitHub: https://github.com/zhaorui-bi/STProtein
☆ NEX: Neuron Explore-Exploit Scoring for Label-Free Chain-of-Thought Selection and Model Ranking
Large language models increasingly spend inference compute sampling multiple chain-of-thought traces or searching over merged checkpoints. This shifts the bottleneck from generation to selection, often without supervision on the target distribution. We show entropy-based exploration proxies follow an inverted-U with accuracy, suggesting extra exploration can become redundant and induce overthinking. We propose NEX, a white-box label-free unsupervised scoring framework that views reasoning as alternating E-phase (exploration) and X-phase (exploitation). NEX detects E-phase as spikes in newly activated MLP neurons per token from sparse activation caches, then uses a sticky two-state HMM to infer E-X phases and credits E-introduced neurons by whether they are reused in the following X span. These signals yield interpretable neuron weights and a single Good-Mass Fraction score to rank candidate responses and merged variants without task answers. Across reasoning benchmarks and Qwen3 merge families, NEX computed on a small unlabeled activation set predicts downstream accuracy and identifies better variants; we further validate the E-X signal with human annotations and provide causal evidence via "Effective-vs-Redundant" neuron transfer.
comment: 21 pages, 9 figures, 5 tables
☆ FiMI: A Domain-Specific Language Model for Indian Finance Ecosystem
We present FiMI (Finance Model for India), a domain-specialized financial language model developed for Indian digital payment systems. We develop two model variants: FiMI Base and FiMI Instruct. FiMI adapts the Mistral Small 24B architecture through a multi-stage training pipeline, beginning with continuous pre-training on 68 Billion tokens of curated financial, multilingual (English, Hindi, Hinglish), and synthetic data. This is followed by instruction fine-tuning and domain-specific supervised fine-tuning focused on multi-turn, tool-driven conversations that model real-world workflows, such as transaction disputes and mandate lifecycle management. Evaluations reveal that FiMI Base achieves a 20% improvement over the Mistral Small 24B Base model on finance reasoning benchmark, while FiMI Instruct outperforms the Mistral Small 24B Instruct model by 87% on domain-specific tool-calling. Moreover, FiMI achieves these significant domain gains while maintaining comparable performance to models of similar size on general benchmarks.
☆ Allocentric Perceiver: Disentangling Allocentric Reasoning from Egocentric Visual Priors via Frame Instantiation
With the rising need for spatially grounded tasks such as Vision-Language Navigation/Action, allocentric perception capabilities in Vision-Language Models (VLMs) are receiving growing focus. However, VLMs remain brittle on allocentric spatial queries that require explicit perspective shifts, where the answer depends on reasoning in a target-centric frame rather than the observed camera view. Thus, we introduce Allocentric Perceiver, a training-free strategy that recovers metric 3D states from one or more images with off-the-shelf geometric experts, and then instantiates a query-conditioned allocentric reference frame aligned with the instruction's semantic intent. By deterministically transforming reconstructed geometry into the target frame and prompting the backbone VLM with structured, geometry-grounded representations, Allocentric Perceriver offloads mental rotation from implicit reasoning to explicit computation. We evaluate Allocentric Perciver across multiple backbone families on spatial reasoning benchmarks, observing consistent and substantial gains ($\sim$10%) on allocentric tasks while maintaining strong egocentric performance, and surpassing both spatial-perception-finetuned models and state-of-the-art open-source and proprietary models.
☆ Bagging-Based Model Merging for Robust General Text Embeddings
General-purpose text embedding models underpin a wide range of NLP and information retrieval applications, and are typically trained on large-scale multi-task corpora to encourage broad generalization. However, it remains unclear how different multi-task training strategies compare in practice, and how to efficiently adapt embedding models as new domains and data types continually emerge. In this work, we present a systematic study of multi-task training for text embeddings from two perspectives: data scheduling and model merging. We compare batch-level shuffling, sequential training variants, two-stage training, and multiple merging granularities, and find that simple batch-level shuffling consistently yields the strongest overall performance, suggesting that task conflicts are limited and training datasets are largely complementary. Despite its effectiveness, batch-level shuffling exhibits two practical limitations: suboptimal out-of-domain (OOD) generalization and poor suitability for incremental learning due to expensive full retraining. To address these issues, we propose Bagging-based rObust mOdel Merging (\modelname), which trains multiple embedding models on sampled subsets and merges them into a single model, improving robustness while retaining single-model inference efficiency. Moreover, \modelname naturally supports efficient incremental updates by training lightweight update models on new data with a small historical subset and merging them into the existing model. Experiments across diverse embedding benchmarks demonstrate that \modelname consistently improves both in-domain and OOD performance over full-corpus batch-level shuffling, while substantially reducing training cost in incremental learning settings.
comment: 12 pages, 4 figures
☆ ReText: Text Boosts Generalization in Image-Based Person Re-identification
Generalizable image-based person re-identification (Re-ID) aims to recognize individuals across cameras in unseen domains without retraining. While multiple existing approaches address the domain gap through complex architectures, recent findings indicate that better generalization can be achieved by stylistically diverse single-camera data. Although this data is easy to collect, it lacks complexity due to minimal cross-view variation. We propose ReText, a novel method trained on a mixture of multi-camera Re-ID data and single-camera data, where the latter is complemented by textual descriptions to enrich semantic cues. During training, ReText jointly optimizes three tasks: (1) Re-ID on multi-camera data, (2) image-text matching, and (3) image reconstruction guided by text on single-camera data. Experiments demonstrate that ReText achieves strong generalization and significantly outperforms state-of-the-art methods on cross-domain Re-ID benchmarks. To the best of our knowledge, this is the first work to explore multimodal joint learning on a mixture of multi-camera and single-camera data in image-based person Re-ID.
☆ Automated Customization of LLMs for Enterprise Code Repositories Using Semantic Scopes
Code completion (CC) is a task frequently used by developers when working in collaboration with LLM-based programming assistants. Despite the increased performance of LLMs on public benchmarks, out of the box LLMs still have a hard time generating code that aligns with a private code repository not previously seen by the model's training data. Customizing code LLMs to a private repository provides a way to improve the model performance. In this paper we present our approach for automated LLM customization based on semantic scopes in the code. We evaluate LLMs on real industry cases with two private enterprise code repositories with two customization strategies: Retrieval-Augmented Generation (RAG) and supervised Fine-Tuning (FT). Our mechanism for ingesting the repository's data and formulating the training data pairs with semantic scopes helps models to learn the underlying patterns specific to the repository, providing more precise code to developers and helping to boost their productivity. The code completions of moderately sized customized models can be significantly better than those of uncustomized models of much larger capacity. We also include an analysis of customization on two public benchmarks and present opportunities for future work.
☆ Variational Speculative Decoding: Rethinking Draft Training from Token Likelihood to Sequence Acceptance
Speculative decoding accelerates inference for (M)LLMs, yet a training-decoding discrepancy persists: while existing methods optimize single greedy trajectories, decoding involves verifying and ranking multiple sampled draft paths. We propose Variational Speculative Decoding (VSD), formulating draft training as variational inference over latent proposals (draft paths). VSD maximizes the marginal probability of target-model acceptance, yielding an ELBO that promotes high-quality latent proposals while minimizing divergence from the target distribution. To enhance quality and reduce variance, we incorporate a path-level utility and optimize via an Expectation-Maximization procedure. The E-step draws MCMC samples from an oracle-filtered posterior, while the M-step maximizes weighted likelihood using Adaptive Rejection Weighting (ARW) and Confidence-Aware Regularization (CAR). Theoretical analysis confirms that VSD increases expected acceptance length and speedup. Extensive experiments across LLMs and MLLMs show that VSD achieves up to a 9.6% speedup over EAGLE-3 and 7.9% over ViSpec, significantly improving decoding efficiency.
☆ RL-VLA$^3$: Reinforcement Learning VLA Accelerating via Full Asynchronism
In recent years, Vision-Language-Action (VLA) models have emerged as a crucial pathway towards general embodied intelligence, yet their training efficiency has become a key bottleneck. Although existing reinforcement learning (RL)-based training frameworks like RLinf can enhance model generalization, they still rely on synchronous execution, leading to severe resource underutilization and throughput limitations during environment interaction, policy generation (rollout), and model update phases (actor). To overcome this challenge, this paper, for the first time, proposes and implements a fully-asynchronous policy training framework encompassing the entire pipeline from environment interaction, rollout generation, to actor policy updates. Systematically drawing inspiration from asynchronous optimization ideas in large model RL, our framework designs a multi-level decoupled architecture. This includes asynchronous parallelization of environment interaction and trajectory collection, streaming execution for policy generation, and decoupled scheduling for training updates. We validated the effectiveness of our method across diverse VLA models and environments. On the LIBERO benchmark, the framework achieves throughput improvements of up to 59.25\% compared to existing synchronous strategies. When deeply optimizing separation strategies, throughput can be increased by as much as 126.67\%. We verified the effectiveness of each asynchronous component via ablation studies. Scaling law validation across 8 to 256 GPUs demonstrates our method's excellent scalability under most conditions.
☆ RocqSmith: Can Automatic Optimization Forge Better Proof Agents?
This work studies the applicability of automatic AI agent optimization methods to real-world agents in formal verification settings, focusing on automated theorem proving in Rocq as a representative and challenging domain. We evaluate how different automatic agent optimizers perform when applied to the task of optimizing a Rocq proof-generation agent, and assess whether parts of the fine-grained tuning of agentic systems, such as prompt design, contextual knowledge, and control strategies, can be automated. Our results show that while several optimizers yield measurable improvements, simple few-shot bootstrapping is the most consistently effective; however, none of the studied methods matches the performance of a carefully engineered state-of-the-art proof agent.
☆ TimelyFreeze: Adaptive Parameter Freezing Mechanism for Pipeline Parallelism
Pipeline parallelism enables training models that exceed single-device memory, but practical throughput remains limited by pipeline bubbles. Although parameter freezing can improve training throughput by adaptively skipping backward computation, existing methods often over-freeze parameters, resulting in unnecessary accuracy degradation. To address this issue, we propose TimelyFreeze, which models the pipeline schedule as a directed acyclic graph and solves a linear program to compute optimal freeze ratios that minimize batch execution time under accuracy constraints. Experiments show that TimelyFreeze achieves up to 40% training throughput improvement on LLaMA-8B with comparable accuracy. Overall, it enables faster large-scale model training without compromising convergence and generalizes across diverse pipeline-parallel settings.
☆ LeakBoost: Perceptual-Loss-Based Membership Inference Attack
Membership inference attacks (MIAs) aim to determine whether a sample was part of a model's training set, posing serious privacy risks for modern machine-learning systems. Existing MIAs primarily rely on static indicators, such as loss or confidence, and do not fully leverage the dynamic behavior of models when actively probed. We propose LeakBoost, a perceptual-loss-based interrogation framework that actively probes a model's internal representations to expose hidden membership signals. Given a candidate input, LeakBoost synthesizes an interrogation image by optimizing a perceptual (activation-space) objective, amplifying representational differences between members and non-members. This image is then analyzed by an off-the-shelf membership detector, without modifying the detector itself. When combined with existing membership inference methods, LeakBoost achieves substantial improvements at low false-positive rates across multiple image classification datasets and diverse neural network architectures. In particular, it raises AUC from near-chance levels (0.53-0.62) to 0.81-0.88, and increases TPR at 1 percent FPR by over an order of magnitude compared to strong baseline attacks. A detailed sensitivity analysis reveals that deeper layers and short, low-learning-rate optimization produce the strongest leakage, and that improvements concentrate in gradient-based detectors. LeakBoost thus offers a modular and computationally efficient way to assess privacy risks in white-box settings, advancing the study of dynamic membership inference.
☆ Learning to Inject: Automated Prompt Injection via Reinforcement Learning
Prompt injection is one of the most critical vulnerabilities in LLM agents; yet, effective automated attacks remain largely unexplored from an optimization perspective. Existing methods heavily depend on human red-teamers and hand-crafted prompts, limiting their scalability and adaptability. We propose AutoInject, a reinforcement learning framework that generates universal, transferable adversarial suffixes while jointly optimizing for attack success and utility preservation on benign tasks. Our black-box method supports both query-based optimization and transfer attacks to unseen models and tasks. Using only a 1.5B parameter adversarial suffix generator, we successfully compromise frontier systems including GPT 5 Nano, Claude Sonnet 3.5, and Gemini 2.5 Flash on the AgentDojo benchmark, establishing a stronger baseline for automated prompt injection research.
☆ CSRv2: Unlocking Ultra-Sparse Embeddings ICLR2026
In the era of large foundation models, the quality of embeddings has become a central determinant of downstream task performance and overall system capability. Yet widely used dense embeddings are often extremely high-dimensional, incurring substantial costs in storage, memory, and inference latency. To address these, Contrastive Sparse Representation (CSR) is recently proposed as a promising direction, mapping dense embeddings into high-dimensional but k-sparse vectors, in contrast to compact dense embeddings such as Matryoshka Representation Learning (MRL). Despite its promise, CSR suffers severe degradation in the ultra-sparse regime, where over 80% of neurons remain inactive, leaving much of its efficiency potential unrealized. In this paper, we introduce CSRv2, a principled training approach designed to make ultra-sparse embeddings viable. CSRv2 stabilizes sparsity learning through progressive k-annealing, enhances representational quality via supervised contrastive objectives, and ensures end-to-end adaptability with full backbone finetuning. CSRv2 reduces dead neurons from 80% to 20% and delivers a 14% accuracy gain at k=2, bringing ultra-sparse embeddings on par with CSR at k=8 and MRL at 32 dimensions, all with only two active features. While maintaining comparable performance, CSRv2 delivers a 7x speedup over MRL, and yields up to 300x improvements in compute and memory efficiency relative to dense embeddings in text representation. Extensive experiments across text and vision demonstrate that CSRv2 makes ultra-sparse embeddings practical without compromising performance, where CSRv2 achieves 7%/4% improvement over CSR when k=4 and further increases this gap to 14%/6% when k=2 in text/vision representation. By making extreme sparsity viable, CSRv2 broadens the design space for real-time and edge-deployable AI systems where both embedding quality and efficiency are critical.
comment: Accepted by ICLR2026
☆ Evaluating the impact of word embeddings on similarity scoring in practical information retrieval
Search behaviour is characterised using synonymy and polysemy as users often want to search information based on meaning. Semantic representation strategies represent a move towards richer associative connections that can adequately capture this complex usage of language. Vector Space Modelling (VSM) and neural word embeddings play a crucial role in modern machine learning and Natural Language Processing (NLP) pipelines. Embeddings use distributional semantics to represent words, sentences, paragraphs or entire documents as vectors in high dimensional spaces. This can be leveraged by Information Retrieval (IR) systems to exploit the semantic relatedness between queries and answers. This paper evaluates an alternative approach to measuring query statement similarity that moves away from the common similarity measure of centroids of neural word embeddings. Motivated by the Word Movers Distance (WMD) model, similarity is evaluated using the distance between individual words of queries and statements. Results from ranked query and response statements demonstrate significant gains in accuracy using the combined approach of similarity ranking through WMD with the word embedding techniques. The top performing WMD + GloVe combination outperforms all other state-of-the-art retrieval models including Doc2Vec and the baseline LSA model. Along with the significant gains in performance of similarity ranking through WMD, we conclude that the use of pre-trained word embeddings, trained on vast amounts of data, result in domain agnostic language processing solutions that are portable to diverse business use-cases.
☆ CompactRAG: Reducing LLM Calls and Token Overhead in Multi-Hop Question Answering
Retrieval-augmented generation (RAG) has become a key paradigm for knowledge-intensive question answering. However, existing multi-hop RAG systems remain inefficient, as they alternate between retrieval and reasoning at each step, resulting in repeated LLM calls, high token consumption, and unstable entity grounding across hops. We propose CompactRAG, a simple yet effective framework that decouples offline corpus restructuring from online reasoning. In the offline stage, an LLM reads the corpus once and converts it into an atomic QA knowledge base, which represents knowledge as minimal, fine-grained question-answer pairs. In the online stage, complex queries are decomposed and carefully rewritten to preserve entity consistency, and are resolved through dense retrieval followed by RoBERTa-based answer extraction. Notably, during inference, the LLM is invoked only twice in total - once for sub-question decomposition and once for final answer synthesis - regardless of the number of reasoning hops. Experiments on HotpotQA, 2WikiMultiHopQA, and MuSiQue demonstrate that CompactRAG achieves competitive accuracy while substantially reducing token consumption compared to iterative RAG baselines, highlighting a cost-efficient and practical approach to multi-hop reasoning over large knowledge corpora. The implementation is available at GitHub.
☆ Mitigating Hallucination in Financial Retrieval-Augmented Generation via Fine-Grained Knowledge Verification ICASSP 2026
In financial Retrieval-Augmented Generation (RAG) systems, models frequently rely on retrieved documents to generate accurate responses due to the time-sensitive nature of the financial domain. While retrieved documents help address knowledge gaps, model-generated responses still suffer from hallucinations that contradict the retrieved information. To mitigate this inconsistency, we propose a Reinforcement Learning framework enhanced with Fine-grained Knowledge Verification (RLFKV). Our method decomposes financial responses into atomic knowledge units and assesses the correctness of each unit to compute the fine-grained faithful reward. This reward offers more precise optimization signals, thereby improving alignment with the retrieved documents. Additionally, to prevent reward hacking (e.g., overly concise replies), we incorporate an informativeness reward that encourages the policy model to retain at least as many knowledge units as the base model. Experiments conducted on the public Financial Data Description (FDD) task and our newly proposed FDD-ANT dataset demonstrate consistent improvements, confirming the effectiveness of our approach.
comment: accepted by ICASSP 2026
☆ Anchored Policy Optimization: Mitigating Exploration Collapse Via Support-Constrained Rectification
Reinforcement Learning with Verifiable Rewards (RLVR) is increasingly viewed as a tree pruning mechanism. However, we identify a systemic pathology termed Recursive Space Contraction (RSC), an irreversible collapse driven by the combined dynamics of positive sharpening and negative squeezing, where the sampling probability of valid alternatives vanishes. While Kullback-Leibler (KL) regularization aims to mitigate this, it imposes a rigid Shape Matching constraint that forces the policy to mimic the reference model's full density, creating a gradient conflict with the sharpening required for correctness. We propose Anchored Policy Optimization (APO), shifting the paradigm from global Shape Matching to Support Coverage. By defining a Safe Manifold based on the reference model's high-confidence support, APO permits aggressive sharpening for efficiency while selectively invoking a restorative force during error correction to prevent collapse. We theoretically derive that APO serves as a gradient-aligned mechanism to maximize support coverage, enabling an Elastic Recovery that re-inflates valid branches. Empirical evaluations on mathematical benchmarks demonstrate that APO breaks the accuracy-diversity trade-off, significantly improving Pass@1 while restoring the Pass@K diversity typically lost by standard policy gradient methods.
comment: 17 pages, 6 figures
☆ Towards Green AI: Decoding the Energy of LLM Inference in Software Development
Context: AI-assisted tools are increasingly integrated into software development workflows, but their reliance on large language models (LLMs) introduces substantial computational and energy costs. Understanding and reducing the energy footprint of LLM inference is therefore essential for sustainable software development. Objective: In this study, we conduct a phase-level analysis of LLM inference energy consumption, distinguishing between the (1) prefill, where the model processes the input and builds internal representations, and (2) decoding, where output tokens are generated using the stored state. Method: We investigate six 6B-7B and four 3B-4B transformer-based models, evaluating them on code-centric benchmarks HumanEval for code generation and LongBench for code understanding. Results: Our findings show that, within both parameter groups, models exhibit distinct energy patterns across phases. Furthermore, we observed that increases in prefill cost amplify the energy cost per token during decoding, with amplifications ranging from 1.3% to 51.8% depending on the model. Lastly, three out of ten models demonstrate babbling behavior, adding excessive content to the output that unnecessarily inflates energy consumption. We implemented babbling suppression for code generation, achieving energy savings ranging from 44% to 89% without affecting generation accuracy. Conclusion: These findings show that prefill costs influence decoding, which dominates energy consumption, and that babbling suppression can yield up to 89% energy savings. Reducing inference energy therefore requires both mitigating babbling behavior and limiting impact of prefill on decoding.
☆ OmniMoE: An Efficient MoE by Orchestrating Atomic Experts at Scale
Mixture-of-Experts (MoE) architectures are evolving towards finer granularity to improve parameter efficiency. However, existing MoE designs face an inherent trade-off between the granularity of expert specialization and hardware execution efficiency. We propose OmniMoE, a system-algorithm co-designed framework that pushes expert granularity to its logical extreme. OmniMoE introduces vector-level Atomic Experts, enabling scalable routing and execution within a single MoE layer, while retaining a shared dense MLP branch for general-purpose processing. Although this atomic design maximizes capacity, it poses severe challenges for routing complexity and memory access. To address these, OmniMoE adopts a system-algorithm co-design: (i) a Cartesian Product Router that decomposes the massive index space to reduce routing complexity from O(N) to O(sqrt(N)); and (ii) Expert-Centric Scheduling that inverts the execution order to turn scattered, memory-bound lookups into efficient dense matrix operations. Validated on seven benchmarks, OmniMoE (with 1.7B active parameters) achieves 50.9% zero-shot accuracy across seven benchmarks, outperforming coarse-grained (e.g., DeepSeekMoE) and fine-grained (e.g., PEER) baselines. Crucially, OmniMoE reduces inference latency from 73ms to 6.7ms (a 10.9-fold speedup) compared to PEER, demonstrating that massive-scale fine-grained MoE can be fast and accurate. Our code is open-sourced at https://github.com/flash-algo/omni-moe.
☆ Nonlinearity as Rank: Generative Low-Rank Adapter with Radial Basis Functions
Low-rank adaptation (LoRA) approximates the update of a pretrained weight matrix using the product of two low-rank matrices. However, standard LoRA follows an explicit-rank paradigm, where increasing model capacity requires adding more rows or columns (i.e., basis vectors) to the low-rank matrices, leading to substantial parameter growth. In this paper, we find that these basis vectors exhibit significant parameter redundancy and can be compactly represented by lightweight nonlinear functions. Therefore, we propose Generative Low-Rank Adapter (GenLoRA), which replaces explicit basis vector storage with nonlinear basis vector generation. Specifically, GenLoRA maintains a latent vector for each low-rank matrix and employs a set of lightweight radial basis functions (RBFs) to synthesize the basis vectors. Each RBF requires far fewer parameters than an explicit basis vector, enabling higher parameter efficiency in GenLoRA. Extensive experiments across multiple datasets and architectures show that GenLoRA attains higher effective LoRA ranks under smaller parameter budgets, resulting in superior fine-tuning performance. The code is available at https://anonymous.4open.science/r/GenLoRA-1519.
☆ Poster: Camera Tampering Detection for Outdoor IoT Systems
Recently, the use of smart cameras in outdoor settings has grown to improve surveillance and security. Nonetheless, these systems are susceptible to tampering, whether from deliberate vandalism or harsh environmental conditions, which can undermine their monitoring effectiveness. In this context, detecting camera tampering is more challenging when a camera is capturing still images rather than video as there is no sequence of continuous frames over time. In this study, we propose two approaches for detecting tampered images: a rule-based method and a deep-learning-based method. The aim is to evaluate how each method performs in terms of accuracy, computational demands, and the data required for training when applied to real-world scenarios. Our results show that the deep-learning model provides higher accuracy, while the rule-based method is more appropriate for scenarios where resources are limited and a prolonged calibration phase is impractical. We also offer publicly available datasets with normal, blurred, and rotated images to support the development and evaluation of camera tampering detection methods, addressing the need for such resources.
comment: Proceedings of the 2024 INTERNATIONAL CONFERENCE ON EMBEDDED WIRELESS SYSTEMS AND NETWORKS (EWSN)
☆ Determining Energy Efficiency Sweet Spots in Production LLM Inference
Large Language Models (LLMs) inference is central in modern AI applications, making it critical to understand their energy footprint. Existing approaches typically estimate energy consumption through simple linear functions of input and output sequence lengths, yet our observations reveal clear Energy Efficiency regimes: peak efficiency occurs with short-to-moderate inputs and medium-length outputs, while efficiency drops sharply for long inputs or very short outputs, indicating a non-linear dependency. In this work, we propose an analytical model derived from the computational and memory-access complexity of the Transformer architecture, capable of accurately characterizing the efficiency curve as a function of input and output lengths. To assess its accuracy, we evaluate energy consumption using TensorRT-LLM on NVIDIA H100 GPUs across a diverse set of LLMs ranging from 1B to 9B parameters, including OPT, LLaMA, Gemma, Falcon, Qwen2, and Granite, tested over input and output lengths from 64 to 4096 tokens, achieving a mean MAPE of 1.79%. Our results show that aligning sequence lengths with these efficiency "Sweet Spots" can substantially reduce energy usage, supporting informed truncation, summarization, and adaptive generation strategies in production systems.
comment: To appear at ICPE 2026 (International Conference on Performance Engineering)
☆ Mining Generalizable Activation Functions
The choice of activation function is an active area of research, with different proposals aimed at improving optimization, while maintaining expressivity. Additionally, the activation function can significantly alter the implicit inductive bias of the architecture, controlling its non-linear behavior. In this paper, in line with previous work, we argue that evolutionary search provides a useful framework for finding new activation functions, while we also make two novel observations. The first is that modern pipelines, such as AlphaEvolve, which relies on frontier LLMs as a mutator operator, allows for a much wider and flexible search space; e.g., over all possible python functions within a certain FLOP budget, eliminating the need for manually constructed search spaces. In addition, these pipelines will be biased towards meaningful activation functions, given their ability to represent common knowledge, leading to a potentially more efficient search of the space. The second observation is that, through this framework, one can target not only performance improvements but also activation functions that encode particular inductive biases. This can be done by using performance on out-of-distribution data as a fitness function, reflecting the degree to which the architecture respects the inherent structure in the data in a manner independent of distribution shifts. We carry an empirical exploration of this proposal and show that relatively small scale synthetic datasets can be sufficient for AlphaEvolve to discover meaningful activations.
Exploring AI-Augmented Sensemaking of Patient-Generated Health Data: A Mixed-Method Study with Healthcare Professionals in Cardiac Risk Reduction
Individuals are increasingly generating substantial personal health and lifestyle data, e.g. through wearables and smartphones. While such data could transform preventative care, its integration into clinical practice is hindered by its scale, heterogeneity and the time pressure and data literacy of healthcare professionals (HCPs). We explore how large language models (LLMs) can support sensemaking of patient-generated health data (PGHD) with automated summaries and natural language data exploration. Using cardiovascular disease (CVD) risk reduction as a use case, 16 HCPs reviewed multimodal PGHD in a mixed-methods study with a prototype that integrated common charts, LLM-generated summaries, and a conversational interface. Findings show that AI summaries provided quick overviews that anchored exploration, while conversational interaction supported flexible analysis and bridged data-literacy gaps. However, HCPs raised concerns about transparency, privacy, and overreliance. We contribute empirical insights and sociotechnical design implications for integrating AI-driven summarization and conversation into clinical workflows to support PGHD sensemaking.
☆ HyperPotter: Spell the Charm of High-Order Interactions in Audio Deepfake Detection
Advances in AIGC technologies have enabled the synthesis of highly realistic audio deepfakes capable of deceiving human auditory perception. Although numerous audio deepfake detection (ADD) methods have been developed, most rely on local temporal/spectral features or pairwise relations, overlooking high-order interactions (HOIs). HOIs capture discriminative patterns that emerge from multiple feature components beyond their individual contributions. We propose HyperPotter, a hypergraph-based framework that explicitly models these synergistic HOIs through clustering-based hyperedges with class-aware prototype initialization. Extensive experiments demonstrate that HyperPotter surpasses its baseline by an average relative gain of 22.15% across 11 datasets and outperforms state-of-the-art methods by 13.96% on 4 challenging cross-domain datasets, demonstrating superior generalization to diverse attacks and speakers.
comment: 20 pages, 8 figures
☆ Stable but Wrong: When More Data Degrades Scientific Conclusions
Modern science increasingly relies on ever-growing observational datasets and automated inference pipelines, under the implicit belief that accumulating more data makes scientific conclusions more reliable. Here we show that this belief can fail in a fundamental and irreversible way. We identify a structural regime in which standard inference procedures converge smoothly, remain well calibrated, and pass conventional diagnostic checks, yet systematically converge to incorrect conclusions. This failure arises when the reliability of observations degrades in a manner that is intrinsically unobservable to the inference process itself. Using minimal synthetic experiments, we demonstrate that in this regime additional data do not correct error but instead amplify it, while residual-based and goodness-of-fit diagnostics remain misleadingly normal. These results reveal an intrinsic limit of data-driven science: stability, convergence, and confidence are not sufficient indicators of epistemic validity. We argue that inference cannot be treated as an unconditional consequence of data availability, but must instead be governed by explicit constraints on the integrity of the observational process.
Graph-based Agent Memory: Taxonomy, Techniques, and Applications
Memory emerges as the core module in the Large Language Model (LLM)-based agents for long-horizon complex tasks (e.g., multi-turn dialogue, game playing, scientific discovery), where memory can enable knowledge accumulation, iterative reasoning and self-evolution. Among diverse paradigms, graph stands out as a powerful structure for agent memory due to the intrinsic capabilities to model relational dependencies, organize hierarchical information, and support efficient retrieval. This survey presents a comprehensive review of agent memory from the graph-based perspective. First, we introduce a taxonomy of agent memory, including short-term vs. long-term memory, knowledge vs. experience memory, non-structural vs. structural memory, with an implementation view of graph-based memory. Second, according to the life cycle of agent memory, we systematically analyze the key techniques in graph-based agent memory, covering memory extraction for transforming the data into the contents, storage for organizing the data efficiently, retrieval for retrieving the relevant contents from memory to support reasoning, and evolution for updating the contents in the memory. Third, we summarize the open-sourced libraries and benchmarks that support the development and evaluation of self-evolving agent memory. We also explore diverse application scenarios. Finally, we identify critical challenges and future research directions. This survey aims to offer actionable insights to advance the development of more efficient and reliable graph-based agent memory systems. All the related resources, including research papers, open-source data, and projects, are collected for the community in https://github.com/DEEP-PolyU/Awesome-GraphMemory.
☆ Probabilistic Multi-Regional Solar Power Forecasting with Any-Quantile Recurrent Neural Networks
The increasing penetration of photovoltaic (PV) generation introduces significant uncertainty into power system operation, necessitating forecasting approaches that extend beyond deterministic point predictions. This paper proposes an any-quantile probabilistic forecasting framework for multi-regional PV power generation based on the Any-Quantile Recurrent Neural Network (AQ-RNN). The model integrates an any-quantile forecasting paradigm with a dual-track recurrent architecture that jointly processes series-specific and cross-regional contextual information, supported by dilated recurrent cells, patch-based temporal modeling, and a dynamic ensemble mechanism. The proposed framework enables the estimation of calibrated conditional quantiles at arbitrary probability levels within a single trained model and effectively exploits spatial dependencies to enhance robustness at the system level. The approach is evaluated using 30 years of hourly PV generation data from 259 European regions and compared against established statistical and neural probabilistic baselines. The results demonstrate consistent improvements in forecast accuracy, calibration, and prediction interval quality, underscoring the suitability of the proposed method for uncertainty-aware energy management and operational decision-making in renewable-dominated power systems.
☆ Alignment Verifiability in Large Language Models: Normative Indistinguishability under Behavioral Evaluation
Behavioral evaluation is the dominant paradigm for assessing alignment in large language models (LLMs). In practice, alignment is inferred from performance under finite evaluation protocols - benchmarks, red-teaming suites, or automated pipelines - and observed compliance is often treated as evidence of underlying alignment. This inference step, from behavioral evidence to claims about latent alignment properties, is typically implicit and rarely analyzed as an inference problem in its own right. We study this problem formally. We frame alignment evaluation as an identifiability question under partial observability and allow agent behavior to depend on information correlated with the evaluation regime. Within this setting, we introduce the Alignment Verifiability Problem and the notion of Normative Indistinguishability, capturing when distinct latent alignment hypotheses induce identical distributions over all evaluator-accessible signals. Our main result is a negative but sharply delimited identifiability theorem. Under finite behavioral evaluation and evaluation-aware agents, observed behavioral compliance does not uniquely identify latent alignment. That is, even idealized behavioral evaluation cannot, in general, certify alignment as a latent property. We further show that behavioral alignment tests should be interpreted as estimators of indistinguishability classes rather than verifiers of alignment. Passing increasingly stringent tests may reduce the space of compatible hypotheses, but cannot collapse it to a singleton under the stated conditions. This reframes alignment benchmarks as providing upper bounds on observable compliance within a regime, rather than guarantees of underlying alignment.
comment: 10 pages. Theoretical analysis of behavioral alignment evaluation
☆ Enhancing Personality Recognition by Comparing the Predictive Power of Traits, Facets, and Nuances
Personality is a complex, hierarchical construct typically assessed through item-level questionnaires aggregated into broad trait scores. Personality recognition models aim to infer personality traits from different sources of behavioral data. However, reliance on broad trait scores as ground truth, combined with limited training data, poses challenges for generalization, as similar trait scores can manifest through diverse, context dependent behaviors. In this work, we explore the predictive impact of the more granular hierarchical levels of the Big-Five Personality Model, facets and nuances, to enhance personality recognition from audiovisual interaction data. Using the UDIVA v0.5 dataset, we trained a transformer-based model including cross-modal (audiovisual) and cross-subject (dyad-aware) attention mechanisms. Results show that nuance-level models consistently outperform facet and trait-level models, reducing mean squared error by up to 74% across interaction scenarios.
comment: Accepted to the 2025 13th International Conference on Affective Computing and Intelligent Interaction (Late Breaking Results)
☆ Generative Ontology: When Structured Knowledge Learns to Create
Traditional ontologies excel at describing domain structure but cannot generate novel artifacts. Large language models generate fluently but produce outputs that lack structural validity, hallucinating mechanisms without components, goals without end conditions. We introduce Generative Ontology, a framework that synthesizes these complementary strengths: ontology provides the grammar; the LLM provides the creativity. Generative Ontology encodes domain knowledge as executable Pydantic schemas that constrain LLM generation via DSPy signatures. A multi-agent pipeline assigns specialized roles to different ontology domains: a Mechanics Architect designs game systems, a Theme Weaver integrates narrative, a Balance Critic identifies exploits. Each agent carrying a professional "anxiety" that prevents shallow, agreeable outputs. Retrieval-augmented generation grounds novel designs in precedents from existing exemplars, while iterative validation ensures coherence between mechanisms and components. We demonstrate the framework through GameGrammar, a system for generating complete tabletop game designs. Given a thematic prompt ("bioluminescent fungi competing in a cave ecosystem"), the pipeline produces structurally complete, playable game specifications with mechanisms, components, victory conditions, and setup instructions. These outputs satisfy ontological constraints while remaining genuinely creative. The pattern generalizes beyond games. Any domain with expert vocabulary, validity constraints, and accumulated exemplars (music composition, software architecture, culinary arts) is a candidate for Generative Ontology. We argue that constraints do not limit creativity but enable it: just as grammar makes poetry possible, ontology makes structured generation possible.
comment: 15 pages, 6 figures, 6 tables. Code available at https://github.com/bennycheung/GameGrammarCLI
☆ AI chatbots versus human healthcare professionals: a systematic review and meta-analysis of empathy in patient care
Background: Empathy is widely recognized for improving patient outcomes, including reduced pain and anxiety and improved satisfaction, and its absence can cause harm. Meanwhile, use of artificial intelligence (AI)-based chatbots in healthcare is rapidly expanding, with one in five general practitioners using generative AI to assist with tasks such as writing letters. Some studies suggest AI chatbots can outperform human healthcare professionals (HCPs) in empathy, though findings are mixed and lack synthesis. Sources of data: We searched multiple databases for studies comparing AI chatbots using large language models with human HCPs on empathy measures. We assessed risk of bias with ROBINS-I and synthesized findings using random-effects meta-analysis where feasible, whilst avoiding double counting. Areas of agreement: We identified 15 studies (2023-2024). Thirteen studies reported statistically significantly higher empathy ratings for AI, with only two studies situated in dermatology favouring human responses. Of the 15 studies, 13 provided extractable data and were suitable for pooling. Meta-analysis of those 13 studies, all utilising ChatGPT-3.5/4, showed a standardized mean difference of 0.87 (95% CI, 0.54-1.20) favouring AI (P < .00001), roughly equivalent to a two-point increase on a 10-point scale. Areas of controversy: Studies relied on text-based assessments that overlook non-verbal cues and evaluated empathy through proxy raters. Growing points: Our findings indicate that, in text-only scenarios, AI chatbots are frequently perceived as more empathic than human HCPs. Areas timely for developing research: Future research should validate these findings with direct patient evaluations and assess whether emerging voice-enabled AI systems can deliver similar empathic advantages.
comment: Open Access Invited Review. Systematic review and meta analysis of 15 studies 2023-2024. Published 20 October 2025
☆ Reactive Knowledge Representation and Asynchronous Reasoning
Exact inference in complex probabilistic models often incurs prohibitive computational costs. This challenge is particularly acute for autonomous agents in dynamic environments that require frequent, real-time belief updates. Existing methods are often inefficient for ongoing reasoning, as they re-evaluate the entire model upon any change, failing to exploit that real-world information streams have heterogeneous update rates. To address this, we approach the problem from a reactive, asynchronous, probabilistic reasoning perspective. We first introduce Resin (Reactive Signal Inference), a probabilistic programming language that merges probabilistic logic with reactive programming. Furthermore, to provide efficient and exact semantics for Resin, we propose Reactive Circuits (RCs). Formulated as a meta-structure over Algebraic Circuits and asynchronous data streams, RCs are time-dynamic Directed Acyclic Graphs that autonomously adapt themselves based on the volatility of input signals. In high-fidelity drone swarm simulations, our approach achieves several orders of magnitude of speedup over frequency-agnostic inference. We demonstrate that RCs' structural adaptations successfully capture environmental dynamics, significantly reducing latency and facilitating reactive real-time reasoning. By partitioning computations based on the estimated Frequency of Change in the asynchronous inputs, large inference tasks can be decomposed into individually memoized sub-problems. This ensures that only the specific components of a model affected by new information are re-evaluated, drastically reducing redundant computation in streaming contexts.
☆ Mode-Dependent Rectification for Stable PPO Training
Mode-dependent architectural components (layers that behave differently during training and evaluation, such as Batch Normalization or dropout) are commonly used in visual reinforcement learning but can destabilize on-policy optimization. We show that in Proximal Policy Optimization (PPO), discrepancies between training and evaluation behavior induced by Batch Normalization lead to policy mismatch, distributional drift, and reward collapse. We propose Mode-Dependent Rectification (MDR), a lightweight dual-phase training procedure that stabilizes PPO under mode-dependent layers without architectural changes. Experiments across procedurally generated games and real-world patch-localization tasks demonstrate that MDR consistently improves stability and performance, and extends naturally to other mode-dependent layers.
☆ Path-Guided Flow Matching for Dataset Distillation
Dataset distillation compresses large datasets into compact synthetic sets with comparable performance in training models. Despite recent progress on diffusion-based distillation, this type of method typically depends on heuristic guidance or prototype assignment, which comes with time-consuming sampling and trajectory instability and thus hurts downstream generalization especially under strong control or low IPC. We propose \emph{Path-Guided Flow Matching (PGFM)}, the first flow matching-based framework for generative distillation, which enables fast deterministic synthesis by solving an ODE in a few steps. PGFM conducts flow matching in the latent space of a frozen VAE to learn class-conditional transport from Gaussian noise to data distribution. Particularly, we develop a continuous path-to-prototype guidance algorithm for ODE-consistent path control, which allows trajectories to reliably land on assigned prototypes while preserving diversity and efficiency. Extensive experiments across high-resolution benchmarks demonstrate that PGFM matches or surpasses prior diffusion-based distillation approaches with fewer steps of sampling while delivering competitive performance with remarkably improved efficiency, e.g., 7.6$\times$ more efficient than the diffusion-based counterparts with 78\% mode coverage.
☆ Shiva-DiT: Residual-Based Differentiable Top-$k$ Selection for Efficient Diffusion Transformers
Diffusion Transformers (DiTs) incur prohibitive computational costs due to the quadratic scaling of self-attention. Existing pruning methods fail to simultaneously satisfy differentiability, efficiency, and the strict static budgets required for hardware overhead. To address this, we propose Shiva-DiT, which effectively reconciles these conflicting requirements via Residual-Based Differentiable Top-$k$ Selection. By leveraging a residual-aware straight-through estimator, our method enforces deterministic token counts for static compilation while preserving end-to-end learnability through residual gradient estimation. Furthermore, we introduce a Context-Aware Router and Adaptive Ratio Policy to autonomously learn an adaptive pruning schedule. Experiments on mainstream models, including SD3.5, demonstrate that Shiva-DiT establishes a new Pareto frontier, achieving a 1.54$\times$ wall-clock speedup with superior fidelity compared to existing baselines, effectively eliminating ragged tensor overheads.
☆ BhashaSetu: Cross-Lingual Knowledge Transfer from High-Resource to Extreme Low-Resource Languages AACL
Despite remarkable advances in natural language processing, developing effective systems for low-resource languages remains a formidable challenge, with performances typically lagging far behind high-resource counterparts due to data scarcity and insufficient linguistic resources. Cross-lingual knowledge transfer has emerged as a promising approach to address this challenge by leveraging resources from high-resource languages. In this paper, we investigate methods for transferring linguistic knowledge from high-resource languages to low-resource languages, where the number of labeled training instances is in hundreds. We focus on sentence-level and word-level tasks. We introduce a novel method, GETR (Graph-Enhanced Token Representation) for cross-lingual knowledge transfer along with two adopted baselines (a) augmentation in hidden layers and (b) token embedding transfer through token translation. Experimental results demonstrate that our GNN-based approach significantly outperforms existing multilingual and cross-lingual baseline methods, achieving 13 percentage point improvements on truly low-resource languages (Mizo, Khasi) for POS tagging, and 20 and 27 percentage point improvements in macro-F1 on simulated low-resource languages (Marathi, Bangla, Malayalam) across sentiment classification and NER tasks respectively. We also present a detailed analysis of the transfer mechanisms and identify key factors that contribute to successful knowledge transfer in this linguistic context.
comment: Accepted as a long paper at IJCNLP-AACL Main Conference
☆ CAViT -- Channel-Aware Vision Transformer for Dynamic Feature Fusion CVPR 25
Vision Transformers (ViTs) have demonstrated strong performance across a range of computer vision tasks by modeling long-range spatial interactions via self-attention. However, channel-wise mixing in ViTs remains static, relying on fixed multilayer perceptrons (MLPs) that lack adaptability to input content. We introduce 'CAViT', a dual-attention architecture that replaces the static MLP with a dynamic, attention-based mechanism for feature interaction. Each Transformer block in CAViT performs spatial self-attention followed by channel-wise self-attention, allowing the model to dynamically recalibrate feature representations based on global image context. This unified and content-aware token mixing strategy enhances representational expressiveness without increasing depth or complexity. We validate CAViT across five benchmark datasets spanning both natural and medical domains, where it outperforms the standard ViT baseline by up to +3.6% in accuracy, while reducing parameter count and FLOPs by over 30%. Qualitative attention maps reveal sharper and semantically meaningful activation patterns, validating the effectiveness of our attention-driven token mixing.
comment: Presented at the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2025 (CVPR 25) in the 4th Workshop on Transformers for Visions - T4V (https://sites.google.com/view/t4v-cvpr25/) Accepted for Publication at 33rd International Conference on Artificial Intelligence and Cognitive Science (AICS 2025), where it was shortlisted for Best Paper Award. (https://aicsconf.org/?page_id=278)
☆ Emulating Aggregate Human Choice Behavior and Biases with GPT Conversational Agents
Cognitive biases often shape human decisions. While large language models (LLMs) have been shown to reproduce well-known biases, a more critical question is whether LLMs can predict biases at the individual level and emulate the dynamics of biased human behavior when contextual factors, such as cognitive load, interact with these biases. We adapted three well-established decision scenarios into a conversational setting and conducted a human experiment (N=1100). Participants engaged with a chatbot that facilitates decision-making through simple or complex dialogues. Results revealed robust biases. To evaluate how LLMs emulate human decision-making under similar interactive conditions, we used participant demographics and dialogue transcripts to simulate these conditions with LLMs based on GPT-4 and GPT-5. The LLMs reproduced human biases with precision. We found notable differences between models in how they aligned human behavior. This has important implications for designing and evaluating adaptive, bias-aware LLM-based AI systems in interactive contexts.
comment: Accepted at CHI'26. arXiv admin note: substantial text overlap with arXiv:2601.11049
☆ TangramSR: Can Vision-Language Models Reason in Continuous Geometric Space?
Humans excel at spatial reasoning tasks like Tangram puzzle assembly through cognitive processes involving mental rotation, iterative refinement, and visual feedback. Inspired by how humans solve Tangram puzzles through trial-and-error, observation, and correction, we design a framework that models these human cognitive mechanisms. However, comprehensive experiments across five representative Vision-Language Models (VLMs) reveal systematic failures in continuous geometric reasoning: average IoU of only 0.41 on single-piece tasks, dropping to 0.23 on two-piece composition, far below human performance where children can complete Tangram tasks successfully. This paper addresses a fundamental challenge in self-improving AI: can models iteratively refine their predictions at test time without parameter updates? We introduce a test-time self-refinement framework that combines in-context learning (ICL) with reward-guided feedback loops, inspired by human cognitive processes. Our training-free verifier-refiner agent applies recursive refinement loops that iteratively self-refine predictions based on geometric consistency feedback, achieving IoU improvements from 0.63 to 0.932 on medium-triangle cases without any model retraining. This demonstrates that incorporating human-inspired iterative refinement mechanisms through ICL and reward loops can substantially enhance geometric reasoning in VLMs, moving self-improving AI from promise to practice in continuous spatial domains. Our work is available at this anonymous link https://anonymous.4open.science/r/TangramVLM-F582/.
comment: 13 pages, 4 figures
☆ Unveiling Implicit Advantage Symmetry: Why GRPO Struggles with Exploration and Difficulty Adaptation
Reinforcement Learning with Verifiable Rewards (RLVR), particularly GRPO, has become the standard for eliciting LLM reasoning. However, its efficiency in exploration and difficulty adaptation remains an open challenge. In this work, we argue that these bottlenecks stem from an implicit advantage symmetry inherent in Group Relative Advantage Estimation (GRAE). This symmetry induces two critical limitations: (i) at the group level, strict symmetry in weights between correct and incorrect trajectories leaves unsampled action logits unchanged, thereby hindering exploration of novel correct solution. (ii) at the sample level, the algorithm implicitly prioritizes medium-difficulty samples, remaining agnostic to the non-stationary demands of difficulty focus. Through controlled experiments, we reveal that this symmetric property is sub-optimal, yielding two pivotal insights: (i) asymmetrically suppressing the advantages of correct trajectories encourages essential exploration. (ii) learning efficiency is maximized by a curriculum-like transition-prioritizing simpler samples initially before gradually shifting to complex ones. Motivated by these findings, we propose Asymmetric GRAE (A-GRAE), which dynamically modulates exploration incentives and sample-difficulty focus. Experiments across seven benchmarks demonstrate that A-GRAE consistently improves GRPO and its variants across both LLMs and MLLMs.
☆ Multi-Task GRPO: Reliable LLM Reasoning Across Tasks
RL-based post-training with GRPO is widely used to improve large language models on individual reasoning tasks. However, real-world deployment requires reliable performance across diverse tasks. A straightforward multi-task adaptation of GRPO often leads to imbalanced outcomes, with some tasks dominating optimization while others stagnate. Moreover, tasks can vary widely in how frequently prompts yield zero advantages (and thus zero gradients), which further distorts their effective contribution to the optimization signal. To address these issues, we propose a novel Multi-Task GRPO (MT-GRPO) algorithm that (i) dynamically adapts task weights to explicitly optimize worst-task performance and promote balanced progress across tasks, and (ii) introduces a ratio-preserving sampler to ensure task-wise policy gradients reflect the adapted weights. Experiments on both 3-task and 9-task settings show that MT-GRPO consistently outperforms baselines in worst-task accuracy. In particular, MT-GRPO achieves 16-28% and 6% absolute improvement on worst-task performance over standard GRPO and DAPO, respectively, while maintaining competitive average accuracy. Moreover, MT-GRPO requires 50% fewer training steps to reach 50% worst-task accuracy in the 3-task setting, demonstrating substantially improved efficiency in achieving reliable performance across tasks.
comment: Preprint
☆ Reasoning-guided Collaborative Filtering with Language Models for Explainable Recommendation
Large Language Models (LLMs) exhibit potential for explainable recommendation systems but overlook collaborative signals, while prevailing methods treat recommendation and explanation as separate tasks, resulting in a memory footprint. We present RGCF-XRec, a hybrid framework that introduces reasoning-guided collaborative filtering (CF) knowledge into a language model to deliver explainable sequential recommendations in a single step. Theoretical grounding and empirical findings reveal that RGCF-XRec offers three key merits over leading CF-aware LLM-based methods: (1) reasoning-guided augmentation of CF knowledge through contextual prompting to discover latent preferences and interpretable reasoning paths; (2) an efficient scoring mechanism based on four dimensions: coherence, completeness, relevance, and consistency to mitigate noisy CF reasoning traces and retain high-quality explanations; (3) a unified representation learning network that encodes collaborative and semantic signals, enabling a structured prompt to condition the LLM for explainable sequential recommendation. RGCF-XRec demonstrates consistent improvements across Amazon datasets, Sports, Toys, and Beauty, comprising 642,503 user-item interactions. It improves HR@10 by 7.38\% in Sports and 4.59\% in Toys, along with ROUGE-L by 8.02\% and 3.49\%, respectively. It reduces the cold warm performance gap, achieving overall gains of 14.5\% in cold-start and 11.9\% in warm start scenarios, and enhances zero-shot HR@5 by 18.54\% in Beauty and 23.16\% in Toys, highlighting effective generalization and robustness. Moreover, RGCF-XRec achieves training efficiency with a lightweight LLaMA 3.2-3B backbone, ensuring scalability for real-world applications.
☆ Steering Large Reasoning Models towards Concise Reasoning via Flow Matching
Large Reasoning Models (LRMs) excel at complex reasoning tasks, but their efficiency is often hampered by overly verbose outputs. Prior steering methods attempt to address this issue by applying a single, global vector to hidden representations -- an approach grounded in the restrictive linear representation hypothesis. In this work, we introduce FlowSteer, a nonlinear steering method that goes beyond uniform linear shifts by learning a complete transformation between the distributions associated with verbose and concise reasoning. This transformation is learned via Flow Matching as a velocity field, enabling precise, input-dependent control over the model's reasoning process. By aligning steered representations with the distribution of concise-reasoning activations, FlowSteer yields more compact reasoning than the linear shifts. Across diverse reasoning benchmarks, FlowSteer demonstrates strong task performance and token efficiency compared to leading inference-time baselines. Our work demonstrates that modeling the full distributional transport with generative techniques offers a more effective and principled foundation for controlling LRMs.
comment: This paper has been accepted to Transactions on Machine Learning Research (TMLR)
☆ When Shared Knowledge Hurts: Spectral Over-Accumulation in Model Merging
Model merging combines multiple fine-tuned models into a single model by adding their weight updates, providing a lightweight alternative to retraining. Existing methods primarily target resolving conflicts between task updates, leaving the failure mode of over-counting shared knowledge unaddressed. We show that when tasks share aligned spectral directions (i.e., overlapping singular vectors), a simple linear combination repeatedly accumulates these directions, inflating the singular values and biasing the merged model toward shared subspaces. To mitigate this issue, we propose Singular Value Calibration (SVC), a training-free and data-free post-processing method that quantifies subspace overlap and rescales inflated singular values to restore a balanced spectrum. Across vision and language benchmarks, SVC consistently improves strong merging baselines and achieves state-of-the-art performance. Furthermore, by modifying only the singular values, SVC improves the performance of Task Arithmetic by 13.0%. Code is available at: https://github.com/lyymuwu/SVC.
☆ Conditional Diffusion Guidance under Hard Constraint: A Stochastic Analysis Approach
We study conditional generation in diffusion models under hard constraints, where generated samples must satisfy prescribed events with probability one. Such constraints arise naturally in safety-critical applications and in rare-event simulation, where soft or reward-based guidance methods offer no guarantee of constraint satisfaction. Building on a probabilistic interpretation of diffusion models, we develop a principled conditional diffusion guidance framework based on Doob's h-transform, martingale representation and quadratic variation process. Specifically, the resulting guided dynamics augment a pretrained diffusion with an explicit drift correction involving the logarithmic gradient of a conditioning function, without modifying the pretrained score network. Leveraging martingale and quadratic-variation identities, we propose two novel off-policy learning algorithms based on a martingale loss and a martingale-covariation loss to estimate h and its gradient using only trajectories from the pretrained model. We provide non-asymptotic guarantees for the resulting conditional sampler in both total variation and Wasserstein distances, explicitly characterizing the impact of score approximation and guidance estimation errors. Numerical experiments demonstrate the effectiveness of the proposed methods in enforcing hard constraints and generating rare-event samples.
☆ Split Personality Training: Revealing Latent Knowledge Through Alternate Personalities
Detecting misalignment in large language models is challenging because models may learn to conceal misbehavior during training. Standard auditing techniques fall short: black-box methods often cannot distinguish misaligned outputs from benign ones, and mechanistic interpretability does not scale with model capabilities. We introduce Split Personality Training (SPT), which fine-tunes a second ``honest persona'' into LoRA parameters that remain inactive during normal operation. After the main model responds, we activate the LoRA adapter and insert a trigger string, enabling the honest persona to review the response while accessing the main model's latent states. We test our method on the Anthropic Auditing Game Model Organism, a benchmark where Llama-3.3-70B is trained to exploit reward hacks while concealing this behavior. SPT achieves 96% overall accuracy, whereas Anthropic reports near 0% accuracy. The honest persona reveals latent knowledge inaccessible to external observers, such as the fictional biases the compromised model was trained on.
☆ AI Agent Systems for Supply Chains: Structured Decision Prompts and Memory Retrieval AAMAS 2026
This study investigates large language model (LLM) -based multi-agent systems (MASs) as a promising approach to inventory management, which is a key component of supply chain management. Although these systems have gained considerable attention for their potential to address the challenges associated with typical inventory management methods, key uncertainties regarding their effectiveness persist. Specifically, it is unclear whether LLM-based MASs can consistently derive optimal ordering policies and adapt to diverse supply chain scenarios. To address these questions, we examine an LLM-based MAS with a fixed-ordering strategy prompt that encodes the stepwise processes of the problem setting and a safe-stock strategy commonly used in inventory management. Our empirical results demonstrate that, even without detailed prompt adjustments, an LLM-based MAS can determine optimal ordering decisions in a restricted scenario. To enhance adaptability, we propose a novel agent called AIM-RM, which leverages similar historical experiences through similarity matching. Our results show that AIM-RM outperforms benchmark methods across various supply chain scenarios, highlighting its robustness and adaptability.
comment: A full version of the extended abstract accepted by the 25th International Conference on Autonomous Agents and Multiagent Systems(AAMAS 2026)
☆ Capture the Flags: Family-Based Evaluation of Agentic LLMs via Semantics-Preserving Transformations
Agentic large language models (LLMs) are increasingly evaluated on cybersecurity tasks using capture-the-flag (CTF) benchmarks. However, existing pointwise benchmarks have limited ability to shed light on the robustness and generalisation abilities of agents across alternative versions of the source code. We introduce CTF challenge families, whereby a single CTF is used as the basis for generating a family of semantically-equivalent challenges via semantics-preserving program transformations. This enables controlled evaluation of agent robustness to source code transformations while keeping the underlying exploit strategy fixed. We introduce a new tool, Evolve-CTF, that generates CTF families from Python challenges using a range of transformations. Using Evolve-CTF to derive families from Cybench and Intercode challenges, we evaluate 13 agentic LLM configurations with tool access. We find that models are remarkably robust to intrusive renaming and code insertion-based transformations, but that composed transformations and deeper obfuscation affect performance by requiring more sophisticated use of tools. We also find that enabling explicit reasoning has little effect on solution success rates across challenge families. Our work contributes a valuable technique and tool for future LLM evaluations, and a large dataset characterising the capabilities of current state-of-the-art models in this domain.
☆ A Unified Multimodal Framework for Dataset Construction and Model-Based Diagnosis of Ameloblastoma
Artificial intelligence (AI)-enabled diagnostics in maxillofacial pathology require structured, high-quality multimodal datasets. However, existing resources provide limited ameloblastoma coverage and lack the format consistency needed for direct model training. We present a newly curated multimodal dataset specifically focused on ameloblastoma, integrating annotated radiological, histopathological, and intraoral clinical images with structured data derived from case reports. Natural language processing techniques were employed to extract clinically relevant features from textual reports, while image data underwent domain specific preprocessing and augmentation. Using this dataset, a multimodal deep learning model was developed to classify ameloblastoma variants, assess behavioral patterns such as recurrence risk, and support surgical planning. The model is designed to accept clinical inputs such as presenting complaint, age, and gender during deployment to enhance personalized inference. Quantitative evaluation demonstrated substantial improvements; variant classification accuracy increased from 46.2 percent to 65.9 percent, and abnormal tissue detection F1-score improved from 43.0 percent to 90.3 percent. Benchmarked against resources like MultiCaRe, this work advances patient-specific decision support by providing both a robust dataset and an adaptable multimodal AI framework.
☆ DECO: Decoupled Multimodal Diffusion Transformer for Bimanual Dexterous Manipulation with a Plugin Tactile Adapter
Overview of the Proposed DECO Framework.} DECO is a DiT-based policy that decouples multimodal conditioning. Image and action tokens interact via joint self attention, while proprioceptive states and optional conditions are injected through adaptive layer normalization. Tactile signals are injected via cross attention, while a lightweight LoRA-based adapter is used to efficiently fine-tune the pretrained policy. DECO is also accompanied by DECO-50, a bimanual dexterous manipulation dataset with tactile sensing, consisting of 4 scenarios and 28 sub-tasks, covering more than 50 hours of data, approximately 5 million frames, and 8,000 successful trajectories.
comment: 17 pages, 8 figures
☆ SDFP: Speculative Decoding with FIT-Pruned Models for Training-Free and Plug-and-Play LLM Acceleration
Large language models (LLMs) underpin interactive multimedia applications such as captioning, retrieval, recommendation, and creative content generation, yet their autoregressive decoding incurs substantial latency. Speculative decoding reduces latency using a lightweight draft model, but deployment is often limited by the cost and complexity of acquiring, tuning, and maintaining an effective draft model. Recent approaches usually require auxiliary training or specialization, and even training-free methods incur costly search or optimization. We propose SDFP, a fully training-free and plug-and-play framework that builds the draft model via Fisher Information Trace (FIT)-based layer pruning of a given LLM. Using layer sensitivity as a proxy for output perturbation, SDFP removes low-impact layers to obtain a compact draft while preserving compatibility with the original model for standard speculative verification. SDFP needs no additional training, hyperparameter tuning, or separately maintained drafts, enabling rapid, deployment-friendly draft construction. Across benchmarks, SDFP delivers 1.32x-1.5x decoding speedup without altering the target model's output distribution, supporting low-latency multimedia applications.
☆ XEmoGPT: An Explainable Multimodal Emotion Recognition Framework with Cue-Level Perception and Reasoning
Explainable Multimodal Emotion Recognition plays a crucial role in applications such as human-computer interaction and social media analytics. However, current approaches struggle with cue-level perception and reasoning due to two main challenges: 1) general-purpose modality encoders are pretrained to capture global structures and general semantics rather than fine-grained emotional cues, resulting in limited sensitivity to emotional signals; and 2) available datasets usually involve a trade-off between annotation quality and scale, which leads to insufficient supervision for emotional cues and ultimately limits cue-level reasoning. Moreover, existing evaluation metrics are inadequate for assessing cue-level reasoning performance. To address these challenges, we propose eXplainable Emotion GPT (XEmoGPT), a novel EMER framework capable of both perceiving and reasoning over emotional cues. It incorporates two specialized modules: the Video Emotional Cue Bridge (VECB) and the Audio Emotional Cue Bridge (AECB), which enhance the video and audio encoders through carefully designed tasks for fine-grained emotional cue perception. To further support cue-level reasoning, we construct a large-scale dataset, EmoCue, designed to teach XEmoGPT how to reason over multimodal emotional cues. In addition, we introduce EmoCue-360, an automated metric that extracts and matches emotional cues using semantic similarity, and release EmoCue-Eval, a benchmark of 400 expert-annotated samples covering diverse emotional scenarios. Experimental results show that XEmoGPT achieves strong performance in both emotional cue perception and reasoning.
☆ Transport and Merge: Cross-Architecture Merging for Large Language Models
Large language models (LLMs) achieve strong capabilities by scaling model capacity and training data, yet many real-world deployments rely on smaller models trained or adapted from low-resource data. This gap motivates the need for mechanisms to transfer knowledge from large, high-resource models to smaller, low-resource targets. While model merging provides an effective transfer mechanism, most existing approaches assume architecture-compatible models and therefore cannot directly transfer knowledge from large high-resource LLMs to heterogeneous low-resource targets. In this work, we propose a cross-architecture merging framework based on optimal transport (OT) that aligns activations to infer cross-neuron correspondences between heterogeneous models. The resulting transport plans are then used to guide direct weight-space fusion, enabling effective high-resource to low-resource transfer using only a small set of inputs. Extensive experiments across low-resource languages and specialized domains demonstrate consistent improvements over target models.
A Unified Framework for Rethinking Policy Divergence Measures in GRPO
Reinforcement Learning with Verified Reward (RLVR) has emerged as a critical paradigm for advancing the reasoning capabilities of Large Language Models (LLMs). Most existing RLVR methods, such as GRPO and its variants, ensure stable updates by constraining policy divergence through clipping likelihood ratios. This paper introduces a unified clipping framework that characterizes existing methods via a general notion of policy divergence, encompassing both likelihood ratios and Kullback-Leibler (KL) divergences and extending to alternative measures. The framework provides a principled foundation for systematically analyzing how different policy divergence measures affect exploration and performance. We further identify the KL3 estimator, a variance-reduced Monte Carlo estimator of the KL divergence, as a key policy divergence constraint. We theoretically demonstrate that the KL3-based constraint is mathematically equivalent to an asymmetric ratio-based clipping that reallocates probability mass toward high-confidence actions, promoting stronger exploration while retaining the simplicity of GRPO-style methods. Empirical results on mathematical reasoning benchmarks demonstrate that incorporating the KL3 estimator into GRPO improves both training stability and final performance, highlighting the importance of principled policy divergence constraints in policy optimization.
☆ LinguistAgent: A Reflective Multi-Model Platform for Automated Linguistic Annotation
Data annotation remains a significant bottleneck in the Humanities and Social Sciences, particularly for complex semantic tasks such as metaphor identification. While Large Language Models (LLMs) show promise, a significant gap remains between the theoretical capability of LLMs and their practical utility for researchers. This paper introduces LinguistAgent, an integrated, user-friendly platform that leverages a reflective multi-model architecture to automate linguistic annotation. The system implements a dual-agent workflow, comprising an Annotator and a Reviewer, to simulate a professional peer-review process. LinguistAgent supports comparative experiments across three paradigms: Prompt Engineering (Zero/Few-shot), Retrieval-Augmented Generation, and Fine-tuning. We demonstrate LinguistAgent's efficacy using the task of metaphor identification as an example, providing real-time token-level evaluation (Precision, Recall, and $F_1$ score) against human gold standards. The application and codes are released on https://github.com/Bingru-Li/LinguistAgent.
☆ Sovereign-by-Design A Reference Architecture for AI and Blockchain Enabled Systems
Digital sovereignty has emerged as a central concern for modern software-intensive systems, driven by the dominance of non-sovereign cloud infrastructures, the rapid adoption of Generative AI, and increasingly stringent regulatory requirements. While existing initiatives address governance, compliance, and security in isolation, they provide limited guidance on how sovereignty can be operationalized at the architectural level. In this paper, we argue that sovereignty must be treated as a first-class architectural property rather than a purely regulatory objective. We introduce a Sovereign Reference Architecture that integrates self-sovereign identity, blockchain-based trust and auditability, sovereign data governance, and Generative AI deployed under explicit architectural control. The architecture explicitly captures the dual role of Generative AI as both a source of governance risk and an enabler of compliance, accountability, and continuous assurance when properly constrained. By framing sovereignty as an architectural quality attribute, our work bridges regulatory intent and concrete system design, offering a coherent foundation for building auditable, evolvable, and jurisdiction-aware AI-enabled systems. The proposed reference architecture provides a principled starting point for future research and practice at the intersection of software architecture, Generative AI, and digital sovereignty.
☆ Phi-Former: A Pairwise Hierarchical Approach for Compound-Protein Interactions Prediction
Drug discovery remains time-consuming, labor-intensive, and expensive, often requiring years and substantial investment per drug candidate. Predicting compound-protein interactions (CPIs) is a critical component in this process, enabling the identification of molecular interactions between drug candidates and target proteins. Recent deep learning methods have successfully modeled CPIs at the atomic level, achieving improved efficiency and accuracy over traditional energy-based approaches. However, these models do not always align with chemical realities, as molecular fragments (motifs or functional groups) typically serve as the primary units of biological recognition and binding. In this paper, we propose Phi-former, a pairwise hierarchical interaction representation learning method that addresses this gap by incorporating the biological role of motifs in CPIs. Phi-former represents compounds and proteins hierarchically and employs a pairwise pre-training framework to model interactions systematically across atom-atom, motif-motif, and atom-motif levels, reflecting how biological systems recognize molecular partners. We design intra-level and inter-level learning pipelines that make different interaction levels mutually beneficial. Experimental results demonstrate that Phi-former achieves superior performance on CPI-related tasks. A case study shows that our method accurately identifies specific atoms or motifs activated in CPIs, providing interpretable model explanations. These insights may guide rational drug design and support precision medicine applications.
comment: Accepted to BIBM 2025. 6 pages, 5 figures
☆ LMMRec: LLM-driven Motivation-aware Multimodal Recommendation
Motivation-based recommendation systems uncover user behavior drivers. Motivation modeling, crucial for decision-making and content preference, explains recommendation generation. Existing methods often treat motivation as latent variables from interaction data, neglecting heterogeneous information like review text. In multimodal motivation fusion, two challenges arise: 1) achieving stable cross-modal alignment amid noise, and 2) identifying features reflecting the same underlying motivation across modalities. To address these, we propose LLM-driven Motivation-aware Multimodal Recommendation (LMMRec), a model-agnostic framework leveraging large language models for deep semantic priors and motivation understanding. LMMRec uses chain-of-thought prompting to extract fine-grained user and item motivations from text. A dual-encoder architecture models textual and interaction-based motivations for cross-modal alignment, while Motivation Coordination Strategy and Interaction-Text Correspondence Method mitigate noise and semantic drift through contrastive learning and momentum updates. Experiments on three datasets show LMMRec achieves up to a 4.98\% performance improvement.
☆ ALIVE: Awakening LLM Reasoning via Adversarial Learning and Instructive Verbal Evaluation
The quest for expert-level reasoning in Large Language Models (LLMs) has been hampered by a persistent \textit{reward bottleneck}: traditional reinforcement learning (RL) relies on scalar rewards that are \textbf{costly} to scale, \textbf{brittle} across domains, and \textbf{blind} to the underlying logic of a solution. This reliance on external, impoverished signals prevents models from developing a deep, self-contained understanding of reasoning principles. We introduce \textbf{ALIVE} (\emph{Adversarial Learning with Instructive Verbal Evaluation}), a hands-free alignment framework that moves beyond scalar reward optimization toward intrinsic reasoning acquisition. Grounded in the principle of \emph{Cognitive Synergy}, ALIVE unifies problem posing, solving, and judging within a single policy model to internalize the logic of correctness. By coupling adversarial learning with instructive verbal feedback, ALIVE enables models to internalize evaluative criteria directly from raw corpora, effectively transforming external critiques into an endogenous reasoning faculty. Empirical evaluations across mathematical reasoning, code generation, and general logical inference benchmarks demonstrate that ALIVE consistently mitigates reward signal limitations. With identical data and compute, it achieves accuracy gains, markedly improved cross-domain generalization, and higher self-correction rates. These results indicate that the reasoning trinity fosters a self-sustaining trajectory of capability growth, positioning ALIVE as a scalable foundation for general-purpose reasoning alignment without human-in-the-loop supervision.
☆ Refine and Purify: Orthogonal Basis Optimization with Null-Space Denoising for Conditional Representation Learning
Conditional representation learning aims to extract criterion-specific features for customized tasks. Recent studies project universal features onto the conditional feature subspace spanned by an LLM-generated text basis to obtain conditional representations. However, such methods face two key limitations: sensitivity to subspace basis and vulnerability to inter-subspace interference. To address these challenges, we propose OD-CRL, a novel framework integrating Adaptive Orthogonal Basis Optimization (AOBO) and Null-Space Denoising Projection (NSDP). Specifically, AOBO constructs orthogonal semantic bases via singular value decomposition with a curvature-based truncation. NSDP suppresses non-target semantic interference by projecting embeddings onto the null space of irrelevant subspaces. Extensive experiments conducted across customized clustering, customized classification, and customized retrieval tasks demonstrate that OD-CRL achieves a new state-of-the-art performance with superior generalization.
☆ Thermodynamic Limits of Physical Intelligence
Modern AI systems achieve remarkable capabilities at the cost of substantial energy consumption. To connect intelligence to physical efficiency, we propose two complementary bits-per-joule metrics under explicit accounting conventions: (1) Thermodynamic Epiplexity per Joule -- bits of structural information about a theoretical environment-instance variable newly encoded in an agent's internal state per unit measured energy within a stated boundary -- and (2) Empowerment per Joule -- the embodied sensorimotor channel capacity (control information) per expected energetic cost over a fixed horizon. These provide two axes of physical intelligence: recognition (model-building) vs.control (action influence). Drawing on stochastic thermodynamics, we show how a Landauer-scale closed-cycle benchmark for epiplexity acquisition follows as a corollary of a standard thermodynamic-learning inequality under explicit subsystem assumptions, and we clarify how Landauer-scaled costs act as closed-cycle benchmarks under explicit reset/reuse and boundary-closure assumptions; conversely, we give a simple decoupling construction showing that without such assumptions -- and without charging for externally prepared low-entropy resources (e.g.fresh memory) crossing the boundary -- information gain and in-boundary dissipation need not be tightly linked. For empirical settings where the latent structure variable is unavailable, we align the operational notion of epiplexity with compute-bounded MDL epiplexity and recommend reporting MDL-epiplexity / compression-gain surrogates as companions. Finally, we propose a unified efficiency framework that reports both metrics together with a minimal checklist of boundary/energy accounting, coarse-graining/noise, horizon/reset, and cost conventions to reduce ambiguity and support consistent bits-per-joule comparisons, and we sketch connections to energy-adjusted scaling analyses.
☆ Ontology-Driven Robotic Specification Synthesis
This paper addresses robotic system engineering for safety- and mission-critical applications by bridging the gap between high-level objectives and formal, executable specifications. The proposed method, Robotic System Task to Model Transformation Methodology (RSTM2) is an ontology-driven, hierarchical approach using stochastic timed Petri nets with resources, enabling Monte Carlo simulations at mission, system, and subsystem levels. A hypothetical case study demonstrates how the RSTM2 method supports architectural trades, resource allocation, and performance analysis under uncertainty. Ontological concepts further enable explainable AI-based assistants, facilitating fully autonomous specification synthesis. The methodology offers particular benefits to complex multi-robot systems, such as the NASA CADRE mission, representing decentralized, resource-aware, and adaptive autonomous systems of the future.
comment: 8 pages, 9 figures, 3 tables, journal
☆ Attention Retention for Continual Learning with Vision Transformers AAAI-2026
Continual learning (CL) empowers AI systems to progressively acquire knowledge from non-stationary data streams. However, catastrophic forgetting remains a critical challenge. In this work, we identify attention drift in Vision Transformers as a primary source of catastrophic forgetting, where the attention to previously learned visual concepts shifts significantly after learning new tasks. Inspired by neuroscientific insights into the selective attention in the human visual system, we propose a novel attention-retaining framework to mitigate forgetting in CL. Our method constrains attention drift by explicitly modifying gradients during backpropagation through a two-step process: 1) extracting attention maps of the previous task using a layer-wise rollout mechanism and generating instance-adaptive binary masks, and 2) when learning a new task, applying these masks to zero out gradients associated with previous attention regions, thereby preventing disruption of learned visual concepts. For compatibility with modern optimizers, the gradient masking process is further enhanced by scaling parameter updates proportionally to maintain their relative magnitudes. Experiments and visualizations demonstrate the effectiveness of our method in mitigating catastrophic forgetting and preserving visual concepts. It achieves state-of-the-art performance and exhibits robust generalizability across diverse CL scenarios.
comment: AAAI-2026 Camera Ready
☆ Towards Segmenting the Invisible: An End-to-End Registration and Segmentation Framework for Weakly Supervised Tumour Analysis ECAI 2025
Liver tumour ablation presents a significant clinical challenge: whilst tumours are clearly visible on pre-operative MRI, they are often effectively invisible on intra-operative CT due to minimal contrast between pathological and healthy tissue. This work investigates the feasibility of cross-modality weak supervision for scenarios where pathology is visible in one modality (MRI) but absent in another (CT). We present a hybrid registration-segmentation framework that combines MSCGUNet for inter-modal image registration with a UNet-based segmentation module, enabling registration-assisted pseudo-label generation for CT images. Our evaluation on the CHAOS dataset demonstrates that the pipeline can successfully register and segment healthy liver anatomy, achieving a Dice score of 0.72. However, when applied to clinical data containing tumours, performance degrades substantially (Dice score of 0.16), revealing the fundamental limitations of current registration methods when the target pathology lacks corresponding visual features in the target modality. We analyse the "domain gap" and "feature absence" problems, demonstrating that whilst spatial propagation of labels via registration is feasible for visible structures, segmenting truly invisible pathology remains an open challenge. Our findings highlight that registration-based label transfer cannot compensate for the absence of discriminative features in the target modality, providing important insights for future research in cross-modality medical image analysis. Code an weights are available at: https://github.com/BudhaTronix/Weakly-Supervised-Tumour-Detection
comment: Accepted for AIBio at ECAI 2025
♻ ☆ EigenLoRAx: Recycling Adapters to Find Principal Subspaces for Resource-Efficient Adaptation and Inference
The rapid growth of large models has raised concerns about their environmental impact and equity in accessibility due to significant computational costs. Low-Rank Adapters (LoRA) offer a lightweight solution for finetuning large models, resulting in an abundance of publicly available adapters tailored to diverse domains. We ask: Can these pretrained adapters be leveraged to further streamline adaptation to new tasks while addressing these challenges? We introduce EigenLoRAx, a parameter-efficient finetuning method that recycles existing adapters to create a principal subspace aligned with their shared domain knowledge which can be further augmented with orthogonal basis vectors in low-resource scenarios. This enables rapid adaptation to new tasks by learning only lightweight coefficients on the principal components of the subspace-eliminating the need to finetune entire adapters. EigenLoRAx requires significantly fewer parameters and memory, improving efficiency for both training and inference. Our method demonstrates strong performance across diverse domains and tasks, offering a scalable for edge-based applications, personalization, and equitable deployment of large models in resource-constrained environments.
♻ ☆ Language Models and Logic Programs for Trustworthy Tax Reasoning AAAI 2026
According to the United States Internal Revenue Service, ``the average American spends $\$270$ and 13 hours filing their taxes''. Even beyond the U.S., tax filing requires complex reasoning, combining application of overlapping rules with numerical calculations. Because errors can incur costly penalties, any automated system must deliver high accuracy and auditability, making modern large language models (LLMs) poorly suited for this task. We propose an approach that integrates LLMs with a symbolic solver to calculate tax obligations. We evaluate variants of this system on the challenging StAtutory Reasoning Assessment (SARA) dataset, and include a novel method for estimating the cost of deploying such a system based on real-world penalties for tax errors. We further show how combining up-front translation of plain-text rules into formal logic programs, combined with intelligently retrieved exemplars for formal case representations, can dramatically improve performance on this task and reduce costs to well below real-world averages. Our results demonstrate the effectiveness of applying semantic parsing methods to statutory reasoning, and show promising economic feasibility of neuro-symbolic architectures for increasing access to reliable tax assistance.
comment: Accepted to AAAI 2026
♻ ☆ SIRR-LMM: Single-image Reflection Removal via Large Multimodal Model WACV
Glass surfaces create complex interactions of reflected and transmitted light, making single-image reflection removal (SIRR) challenging. Existing datasets suffer from limited physical realism in synthetic data or insufficient scale in real captures. We introduce a synthetic dataset generation framework that path-traces 3D glass models over real background imagery to create physically accurate reflection scenarios with varied glass properties, camera settings, and post-processing effects. To leverage the capabilities of Large Multimodal Model (LMM), we concatenate the image layers into a single composite input, apply joint captioning, and fine-tune the model using task-specific LoRA rather than full-parameter training. This enables our approach to achieve improved reflection removal and separation performance compared to state-of-the-art methods.
comment: 12 pages, 14 figures, accepted in WACVW 2026
♻ ☆ Learning to Discover at Test Time
How can we use AI to discover a new state of the art for a scientific problem? Prior work in test-time scaling, such as AlphaEvolve, performs search by prompting a frozen LLM. We perform reinforcement learning at test time, so the LLM can continue to train, but now with experience specific to the test problem. This form of continual learning is quite special, because its goal is to produce one great solution rather than many good ones on average, and to solve this very problem rather than generalize to other problems. Therefore, our learning objective and search subroutine are designed to prioritize the most promising solutions. We call this method Test-Time Training to Discover (TTT-Discover). Following prior work, we focus on problems with continuous rewards. We report results for every problem we attempted, across mathematics, GPU kernel engineering, algorithm design, and biology. TTT-Discover sets the new state of the art in almost all of them: (i) Erdős' minimum overlap problem and an autocorrelation inequality; (ii) a GPUMode kernel competition (up to $2\times$ faster than prior art); (iii) past AtCoder algorithm competitions; and (iv) denoising problem in single-cell analysis. Our solutions are reviewed by experts or the organizers. All our results are achieved with an open model, OpenAI gpt-oss-120b, and can be reproduced with our publicly available code, in contrast to previous best results that required closed frontier models. Our test-time training runs are performed using Tinker, an API by Thinking Machines, with a cost of only a few hundred dollars per problem.
comment: Code: https://github.com/test-time-training/discover
♻ ☆ Scaling Multi-Agent Epistemic Planning through GNN-Derived Heuristics
Multi-agent Epistemic Planning (MEP) is an autonomous planning framework for reasoning about both the physical world and the beliefs of agents, with applications in domains where information flow and awareness among agents are critical. The richness of MEP requires states to be represented as Kripke structures, i.e., directed labeled graphs. This representation limits the applicability of existing heuristics, hindering the scalability of epistemic solvers, which must explore an exponential search space without guidance, resulting often in intractability. To address this, we exploit Graph Neural Networks (GNNs) to learn patterns and relational structures within epistemic states, to guide the planning process. GNNs, which naturally capture the graph-like nature of Kripke models, allow us to derive meaningful estimates of state quality -- e.g., the distance from the nearest goal -- by generalizing knowledge obtained from previously solved planning instances. We integrate these predictive heuristics into an epistemic planning pipeline and evaluate them against standard baselines, showing improvements in the scalability of multi-agent epistemic planning.
♻ ☆ Group-Adaptive Adversarial Learning for Robust Fake News Detection Against Malicious Comments
Online fake news profoundly distorts public judgment and erodes trust in social platforms. While existing detectors achieve competitive performance on benchmark datasets, they remain notably vulnerable to malicious comments designed specifically to induce misclassification. This evolving threat landscape necessitates detection systems that simultaneously prioritize predictive accuracy and structural robustness. However, current detectors often fail to generalize across diverse and novel comment attack patterns. To bridge this gap, we propose AdComment, an adaptive adversarial training framework for robustness enhancement against diverse malicious comments. Based on cognitive psychology, we categorize adversarial comments into Fact Distortion, Logical Confusion, and Emotional Manipulation, and leverage LLMs to synthesize diverse, category-specific perturbations. Central to our framework is an InfoDirichlet Resampling (IDR) mechanism that dynamically adjusts malicious comment proportions during training, thereby steering optimization toward the model's most susceptible regions. Experimental results demonstrate that our approach achieves state-of-the-art performance on three benchmark datasets, improving the F1 scores by 17.9%, 14.5% and 9.0%, respectively.
comment: 10 pages, 12 figures
♻ ☆ Semi-Autonomous Mathematics Discovery with Gemini: A Case Study on the Erdős Problems
We present a case study in semi-autonomous mathematics discovery, using Gemini to systematically evaluate 700 conjectures labeled 'Open' in Bloom's Erdős Problems database. We employ a hybrid methodology: AI-driven natural language verification to narrow the search space, followed by human expert evaluation to gauge correctness and novelty. We address 13 problems that were marked 'Open' in the database: 5 through seemingly novel autonomous solutions, and 8 through identification of previous solutions in the existing literature. Our findings suggest that the 'Open' status of the problems was through obscurity rather than difficulty. We also identify and discuss issues arising in applying AI to math conjectures at scale, highlighting the difficulty of literature identification and the risk of ''subconscious plagiarism'' by AI. We reflect on the takeaways from AI-assisted efforts on the Erdős Problems.
comment: Reclassify Erdos-935 as Independent Rediscovery, bringing the number of autonomous solutions down to 5. (Explanation in Addendum 4.1) Elaborate on Footnote 3. Slightly reword various phrases in the Introduction in response to feedback
♻ ☆ When Are Two RLHF Objectives the Same?
The preference optimization literature contains many proposed objectives, often presented as distinct improvements. We introduce Opal, a canonicalization algorithm that determines whether two preference objectives are algebraically equivalent by producing either a canonical form or a concrete witness of non-equivalence. Applying Opal reveals that many widely used methods optimize the same underlying objective, while others are provably distinct. For example, batch normalization can cause the same response pair to receive different gradients depending on batch composition. We identify a small set of structural mechanisms that give rise to genuinely different objectives; most remaining differences are reparameterizations.
comment: 21 pages
♻ ☆ RAG4Tickets: AI-Powered Ticket Resolution via Retrieval-Augmented Generation on JIRA and GitHub Data
Modern software teams frequently encounter delays in resolving recurring or related issues due to fragmented knowledge scattered across JIRA tickets, developer discussions, and GitHub pull requests (PRs). To address this challenge, we propose a Retrieval-Augmented Generation (RAG) framework that integrates Sentence-Transformers for semantic embeddings with FAISS-based vector search to deliver context-aware ticket resolution recommendations. The approach embeds historical JIRA tickets, user comments, and linked PR metadata to retrieve semantically similar past cases, which are then synthesized by a Large Language Model (LLM) into grounded and explainable resolution suggestions. The framework contributes a unified pipeline linking JIRA and GitHub data, an embedding and FAISS indexing strategy for heterogeneous software artifacts, and a resolution generation module guided by retrieved evidence. Experimental evaluation using precision, recall, resolution time reduction, and developer acceptance metrics shows that the proposed system significantly improves resolution accuracy, fix quality, and knowledge reuse in modern DevOps environments.
comment: 13 Pages
♻ ☆ SelfReflect: Can LLMs Communicate Their Internal Answer Distribution? ICLR 2026
The common approach to communicate a large language model's (LLM) uncertainty is to add a percentage number or a hedging word to its response. But is this all we can do? Instead of generating a single answer and then hedging it, an LLM that is fully transparent to the user needs to be able to reflect on its internal belief distribution and output a summary of all options it deems possible, and how likely they are. To test whether LLMs possess this capability, we develop the SelfReflect metric, an information-theoretic distance between a given summary and a distribution over answers. In interventional and human studies, we find that SelfReflect indicates even slight deviations, yielding a fine measure of faithfulness between a summary string and an LLM's actual internal distribution over answers. With SelfReflect, we make a resounding negative observation: modern LLMs are, across the board, incapable of revealing what they are uncertain about, neither through reasoning, nor chains-of-thoughts, nor explicit finetuning. However, we do find that LLMs are able to generate faithful summaries of their uncertainties if we help them by sampling multiple outputs and feeding them back into the context. This simple approach shines a light at the universal way of communicating LLM uncertainties whose future development the SelfReflect score enables. To support the development of this universal form of LLM uncertainties, we publish the code that implements our metric for arbitrary LLMs under https://github.com/apple/ml-selfreflect .
comment: Accepted at ICLR 2026
♻ ☆ Connect the Dots: Knowledge Graph-Guided Crawler Attack on Retrieval-Augmented Generation Systems
Stealing attacks pose a persistent threat to the intellectual property of deployed machine-learning systems. Retrieval-augmented generation (RAG) intensifies this risk by extending the attack surface beyond model weights to knowledge base that often contains IP-bearing assets such as proprietary runbooks, curated domain collections, or licensed documents. Recent work shows that multi-turn questioning can gradually steal corpus content from RAG systems, yet existing attacks are largely heuristic and often plateau early. We address this gap by formulating RAG knowledge-base stealing as an adaptive stochastic coverage problem (ASCP), where each query is a stochastic action and the goal is to maximize the conditional expected marginal gain (CMG) in corpus coverage under a query budget. Bridging ASCP to real-world black-box RAG knowledge-base stealing raises three challenges: CMG is unobservable, the natural-language action space is intractably large, and feasibility constraints require stealthy queries that remain effective under diverse architectures. We introduce RAGCrawler, a knowledge graph-guided attacker that maintains a global attacker-side state to estimate coverage gains, schedule high-value semantic anchors, and generate non-redundant natural queries. Across four corpora and four generators with BGE retriever, RAGCrawler achieves 66.8% average coverage (up to 84.4%) within 1,000 queries, improving coverage by 44.90% relative to the strongest baseline. It also reduces the queries needed to reach 70% coverage by at least 4.03x on average and enables surrogate reconstruction with answer similarity up to 0.699. Our attack is also scalable to retriever switching and newer RAG techniques like query rewriting and multi-query retrieval. These results highlight urgent needs to protect RAG knowledge assets.
♻ ☆ Learning to summarize user information for personalized reinforcement learning from human feedback
As everyday use cases of large language model (LLM) AI assistants have expanded, it is becoming increasingly important to personalize responses to align to different users' preferences and goals. While reinforcement learning from human feedback (RLHF) is effective at improving LLMs to be generally more helpful and fluent, it does not account for variability across users, as it models the entire user population with a single reward model, meaning it assumes that everyone's preferences are the same. We present a novel framework, Preference Learning Using Summarization (PLUS), that uses reinforcement learning (RL) to learn to produce text-based summaries of each user's preferences, characteristics, and past conversations. These summaries condition the reward model, enabling it to make personalized predictions about the types of responses valued by each user. Both the user-summarization model and reward model are trained simultaneously, creating an online co-adaptation loop. We show that in contrast to the standard Bradley-Terry model, summaries produced by PLUS capture diverse aspects of user preferences, achieving a 11-77/% improvement in reward model accuracy. Key strengths of PLUS are: (1) robust performance with new users and conversation topics, achieving a 25\% improvement over the best personalized reward model technique used for RLHF; (2) zero-shot personalization with state-of-the-art proprietary models like GPT-4 (e.g., PLUS-summary-conditioned responses achieved a 72\% win rate compared to 28% for default GPT-4o); (3) learning from flexible user contexts beyond preference labels, and (4) interpretable representation of users, enabling greater transparency and user control in pluralistic LLM alignment.
comment: 10 pages for main text, 10 pages for appendix
♻ ☆ STELLAR: Structure-guided LLM Assertion Retrieval and Generation for Formal Verification
Formal Verification (FV) relies on high-quality SystemVerilog Assertions (SVAs), but the manual writing process is slow and error-prone. Existing LLM-based approaches either generate assertions from scratch or ignore structural patterns in hardware designs and expert-crafted assertions. This paper presents STELLAR, the first framework that guides LLM-based SVA generation with structural similarity. STELLAR represents RTL blocks as AST structural fingerprints, retrieves structurally relevant (RTL, SVA) pairs from a knowledge base, and integrates them into structure-guided prompts. Experiments show that STELLAR achieves superior syntax correctness, stylistic alignment, and functional correctness, highlighting structure-aware retrieval as a promising direction for industrial FV.
comment: 7 pages, 6 figures
♻ ☆ SPhyR: Spatial-Physical Reasoning Benchmark on Material Distribution
We introduce a novel dataset designed to benchmark the physical and spatial reasoning capabilities of Large Language Models (LLM) based on topology optimization, a method for computing optimal material distributions within a design space under prescribed loads and supports. In this dataset, LLMs are provided with conditions such as 2D boundary, applied forces and supports, and must reason about the resulting optimal material distribution. The dataset includes a variety of tasks, ranging from filling in masked regions within partial structures to predicting complete material distributions. Solving these tasks requires understanding the flow of forces and the required material distribution under given constraints, without access to simulation tools or explicit physical models, challenging models to reason about structural stability and spatial organization. Our dataset targets the evaluation of spatial and physical reasoning abilities in 2D settings, offering a complementary perspective to traditional language and logic benchmarks.
♻ ☆ Prompt Augmentation Scales up GRPO Training on Mathematical Reasoning
Reinforcement learning algorithms such as group-relative policy optimization (GRPO) have demonstrated strong potential for improving the mathematical reasoning capabilities of large language models. However, prior work has consistently observed an entropy collapse phenomenon during reinforcement post-training, characterized by a monotonic decrease in policy entropy that ultimately leads to training instability and collapse. As a result, most existing approaches restrict training to short horizons (typically 5-20 epochs), limiting sustained exploration and hindering further policy improvement. In addition, nearly all prior work relies on a single, fixed reasoning prompt or template during training. In this work, we introduce prompt augmentation, a training strategy that instructs the model to generate reasoning traces under diverse templates and formats, thereby increasing rollout diversity. We show that, without a KL regularization term, prompt augmentation enables stable scaling of training duration under a fixed dataset and allows the model to tolerate low-entropy regimes without premature collapse. Empirically, a Qwen2.5-Math-1.5B model trained with prompt augmentation on the MATH Level 3-5 dataset achieves state-of-the-art performance, reaching 45.2 per-benchmark accuracy and 51.8 per-question accuracy on standard mathematical reasoning benchmarks, including AIME24, AMC, MATH500, Minerva, and OlympiadBench. The code and model checkpoints are available at https://github.com/wenquanlu/prompt-augmentation-GRPO.
♻ ☆ Vision-R1: Incentivizing Reasoning Capability in Multimodal Large Language Models ICLR 2026
DeepSeek-R1-Zero has successfully demonstrated the emergence of reasoning capabilities in LLMs purely through Reinforcement Learning (RL). Inspired by this breakthrough, we explore how RL can be utilized to enhance the reasoning capability of MLLMs. However, direct training with RL struggles to activate complex reasoning capabilities such as questioning and reflection in MLLMs, due to the absence of substantial high-quality multimodal reasoning data. To address this issue, we propose the reasoning MLLM, Vision-R1, to improve multimodal reasoning capability. Specifically, we first construct a high-quality multimodal CoT dataset without human annotations by leveraging an existing MLLM and DeepSeek-R1 through modality bridging and data filtering to obtain a 200K multimodal CoT dataset, Vision-R1-cold dataset. It serves as cold-start initialization data for Vision-R1. To mitigate the optimization challenges caused by overthinking after cold start, we propose Progressive Thinking Suppression Training (PTST) strategy and employ Group Relative Policy Optimization (GRPO) with the hard formatting result reward function to gradually refine the model's ability to learn correct and complex reasoning processes on a 10K multimodal math dataset. Comprehensive experiments show our model achieves an average improvement of $\sim$6% across various multimodal math reasoning benchmarks. Vision-R1-7B achieves a 73.5% accuracy on the widely used MathVista benchmark, which is only 0.4% lower than the leading reasoning model, OpenAI O1. Scaling up the amount of multimodal math data in the RL training, Vision-R1-32B and Vison-R1-72B achieves 76.4% and 78.2% MathVista benchmark scores, respectively. The datasets and code will be released in: https://github.com/Osilly/Vision-R1 .
comment: Accepted to ICLR 2026. Code is available at https://github.com/Osilly/Vision-R1
♻ ☆ Leveraging Whisper Embeddings for Audio-based Lyrics Matching ICASSP 2026
Audio-based lyrics matching can be an appealing alternative to other content-based retrieval approaches, but existing methods often suffer from limited reproducibility and inconsistent baselines. In this work, we introduce WEALY, a fully reproducible pipeline that leverages Whisper decoder embeddings for lyrics matching tasks. WEALY establishes robust and transparent baselines, while also exploring multimodal extensions that integrate textual and acoustic features. Through extensive experiments on standard datasets, we demonstrate that WEALY achieves a performance comparable to state-of-the-art methods that lack reproducibility. In addition, we provide ablation studies and analyses on language robustness, loss functions, and embedding strategies. This work contributes a reliable benchmark for future research, and underscores the potential of speech technologies for music information retrieval tasks.
comment: Accepted at ICASSP 2026 (IEEE International Conference on Acoustics, Speech and Signal Processing)
♻ ☆ When Iterative RAG Beats Ideal Evidence: A Diagnostic Study in Scientific Multi-hop Question Answering
Retrieval-Augmented Generation (RAG) extends large language models (LLMs) beyond parametric knowledge, yet it is unclear when iterative retrieval-reasoning loops meaningfully outperform static RAG, particularly in scientific domains with multi-hop reasoning, sparse domain knowledge, and heterogeneous evidence. We provide the first controlled, mechanism-level diagnostic study of whether synchronized iterative retrieval and reasoning can surpass an idealized static upper bound (Gold Context) RAG. We benchmark eleven state-of-the-art LLMs under three regimes: (i) No Context, measuring reliance on parametric memory; (ii) Gold Context, where all oracle evidence is supplied at once; and (iii) Iterative RAG, a training-free controller that alternates retrieval, hypothesis refinement, and evidence-aware stopping. Using the chemistry-focused ChemKGMultiHopQA dataset, we isolate questions requiring genuine retrieval and analyze behavior with diagnostics spanning retrieval coverage gaps, anchor-carry drop, query quality, composition fidelity, and control calibration. Across models, Iterative RAG consistently outperforms Gold Context, with gains up to 25.6 percentage points, especially for non-reasoning fine-tuned models. Staged retrieval reduces late-hop failures, mitigates context overload, and enables dynamic correction of early hypothesis drift, but remaining failure modes include incomplete hop coverage, distractor latch trajectories, early stopping miscalibration, and high composition failure rates even with perfect retrieval. Overall, staged retrieval is often more influential than the mere presence of ideal evidence; we provide practical guidance for deploying and diagnosing RAG systems in specialized scientific settings and a foundation for more reliable, controllable iterative retrieval-reasoning frameworks.
comment: 27 pages, 15 figures
♻ ☆ Solving Prior Distribution Mismatch in Diffusion Models via Optimal Transport
Diffusion Models (DMs) have achieved remarkable progress in generative modeling. However, the mismatch between the forward terminal distribution and reverse initial distribution introduces prior error, leading to deviations of sampling trajectories from the true distribution and severely limiting model performance. This issue further triggers cascading problems, including non-zero Signal-to-Noise Ratio, accumulated denoising errors, degraded generation quality, and constrained sampling efficiency. To address this issue, this paper proposes a prior error elimination framework based on Optimal Transport (OT). Specifically, an OT map from the reverse initial distribution to the forward terminal distribution is constructed to achieve precise matching of the two distributions. Meanwhile, the upper bound of the prior error is quantified using the Wasserstein distance, proving that the prior error can be effectively eliminated via the OT map. Additionally, by deriving the asymptotic consistency between dynamic OT and probability flow, this method is revealed to be highly compatible with the intrinsic mechanism of the diffusion process. Experimental results demonstrate that the proposed method completely eliminates the prior error both theoretically and practically, providing a universal and rigorous solution for optimizing the performance of DMs.
♻ ☆ Understanding and Improving Length Generalization in Hierarchical Sparse Attention Models ICLR 2026
Effectively processing long contexts is a critical challenge for language models. While standard Transformers are limited by quadratic complexity and poor length extrapolation, alternative architectures like sliding window attention and state space models sacrifice the ability to effectively utilize the full context due to their fixed-size memory. Chunk-based sparse attention has emerged as a promising paradigm for extreme length generalization, yet the key architectural principles underpinning its success are not yet fully understood. In this work, we present a systematic dissection of these models to identify the core components driving their performance. Through a unified framework and comprehensive ablation studies, we demonstrate that a combination of three design principles is critical: (1) an expressive, non-linear Chunk Encoder with a dedicated CLS token to produce representations for retrieval; (2) a Bypassing Residual Path to stably integrate retrieved global information without it being overridden by the local residual stream; and (3) enforced selection sparsity during pre-training to bridge the train-test distribution gap. We provide a theoretical motivation for intra-chunk information processing and landmark generation. By combining these principles, we establish a new state-of-the-art for training-free length extrapolation, successfully generalizing models trained on a 4K context to 32 million tokens on RULER and BABILong. Our findings provide a clear and empirically-grounded set of design principles for developing future, highly-capable long-context language models.
comment: Accepted to ICLR 2026
♻ ☆ Segmentation-free Goodness of Pronunciation
Mispronunciation detection and diagnosis (MDD) is a significant part in modern computer-aided language learning (CALL) systems. Most systems implementing phoneme-level MDD through goodness of pronunciation (GOP), however, rely on pre-segmentation of speech into phonetic units. This limits the accuracy of these methods and the possibility to use modern CTC-based acoustic models for their evaluation. In this study, we first propose self-alignment GOP (GOP-SA) that enables the use of CTC-trained ASR models for MDD. Next, we define a more general segmentation-free method that takes all possible segmentations of the canonical transcription into account (GOP-SF). We give a theoretical account of our definition of GOP-SF, an implementation that solves potential numerical issues as well as a proper normalization which allows the use of acoustic models with different peakiness over time. We provide extensive experimental results on the CMU Kids and speechocean762 datasets comparing the different definitions of our methods, estimating the dependency of GOP-SF on the peakiness of the acoustic models and on the amount of context around the target phoneme. Finally, we compare our methods with recent studies over the speechocean762 data showing that the feature vectors derived from the proposed method achieve state-of-the-art results on phoneme-level pronunciation assessment.
comment: The article has been accepted for publication by IEEE TASLPRO
♻ ☆ Can MLLMs generate human-like feedback in grading multimodal short answers?
In education, the traditional Automatic Short Answer Grading (ASAG) with feedback problem has focused primarily on evaluating text-only responses. However, real-world assessments often include multimodal responses containing both diagrams and text. To address this limitation, we introduce the Multimodal Short Answer Grading with Feedback (MMSAF) problem, which requires jointly evaluating textual and diagrammatic content while also providing explanatory feedback. Collecting data representative of such multimodal responses is challenging due to both scale and logistical constraints. To mitigate this, we develop an automated data generation framework that leverages LLM hallucinations to mimic common student errors, thereby constructing a dataset of 2,197 instances. We evaluate 4 Multimodal Large Language Models (MLLMs) across 3 STEM subjects, showing that MLLMs achieve accuracies of up to 62.5% in predicting answer correctness (correct/partially correct/incorrect) and up to 80.36% in assessing image relevance. This also includes a human evaluation with 9 annotators across 5 parameters, including a rubric-based approach. The rubrics also serve as a way to evaluate the feedback quality semantically rather than using overlap-based approaches. Our findings highlight which MLLMs are better suited for such tasks while also pointing out to drawbacks of the remaining MLLMs.
♻ ☆ VAO: Validation-Aligned Optimization for Cross-Task Generative Auto-Bidding
Generative auto-bidding has demonstrated strong performance in online advertising, yet it often suffers from data scarcity in small-scale settings with limited advertiser participation. While cross-task data sharing is a natural remedy to mitigate this issue, naive approaches often introduce gradient bias due to distribution shifts across different tasks, and existing methods are not readily applicable to generative auto-bidding. In this paper, we propose Validation-Aligned Optimization (VAO), a principled data-sharing method that adaptively reweights cross-task data contributions based on validation performance feedback. Notably, VAO aligns training dynamics to prioritize updates that improve generalization on the target task, effectively leveraging auxiliary data and mitigating gradient bias. Building on VAO, we introduce a unified generative autobidding framework that generalizes across multiple tasks using a single model and all available task data. Extensive experiments on standard auto-bidding benchmarks validate the effectiveness of our approach.
♻ ☆ CMD-HAR: Cross-Modal Disentanglement for Wearable Human Activity Recognition
Human Activity Recognition (HAR) is a fundamental technology for numerous human - centered intelligent applications. Although deep learning methods have been utilized to accelerate feature extraction, issues such as multimodal data mixing, activity heterogeneity, and complex model deployment remain largely unresolved. The aim of this paper is to address issues such as multimodal data mixing, activity heterogeneity, and complex model deployment in sensor-based human activity recognition. We propose a spatiotemporal attention modal decomposition alignment fusion strategy to tackle the problem of the mixed distribution of sensor data. Key discriminative features of activities are captured through cross-modal spatio-temporal disentangled representation, and gradient modulation is combined to alleviate data heterogeneity. In addition, a wearable deployment simulation system is constructed. We conducted experiments on a large number of public datasets, demonstrating the effectiveness of the model.
♻ ☆ DeepAgent: A General Reasoning Agent with Scalable Toolsets WWW 2026
Large reasoning models have demonstrated strong problem-solving abilities, yet real-world tasks often require external tools and long-horizon interactions. Existing agent frameworks typically follow predefined workflows, which limit autonomous and global task completion. In this paper, we introduce DeepAgent, an end-to-end deep reasoning agent that performs autonomous thinking, tool discovery, and action execution within a single, coherent reasoning process. To manage long-horizon interactions, we introduce an autonomous memory folding mechanism that compresses past interactions into structured episodic, working, and tool memories, reducing error accumulation while preserving critical information. To teach general-purpose tool use efficiently and stably, we develop an end-to-end reinforcement learning strategy, namely ToolPO, that leverages LLM-simulated APIs and applies tool-call advantage attribution to assign fine-grained credit to the tool invocation tokens. Extensive experiments on eight benchmarks, including general tool-use tasks (ToolBench, API-Bank, TMDB, Spotify, ToolHop) and downstream applications (ALFWorld, WebShop, GAIA, HLE), demonstrate that DeepAgent consistently outperforms baselines across both labeled-tool and open-set tool retrieval scenarios. The code and demo are available at https://github.com/RUC-NLPIR/DeepAgent.
comment: Accepted by WWW 2026
♻ ☆ Resisting Manipulative Bots in Meme Coin Copy Trading: A Multi-Agent Approach with Chain-of-Thought Reasoning
Copy trading has become the dominant entry strategy in meme coin markets. However, due to the market's extremely illiquid and volatile nature, the strategy exposes an exploitable attack surface: adversaries deploy manipulative bots to front-run trades, conceal positions, and fabricate sentiment, systematically extracting value from naïve copiers at scale. Despite its prevalence, bot-driven manipulation remains largely unexplored, and no robust defensive framework exists. We propose a manipulation-resistant copy-trading system based on a multi-agent architecture powered by a multi-modal large language model (LLM) and chain-of-thought (CoT) reasoning. Our approach outperforms zero-shot and most statistic-driven baselines in prediction accuracy as well as all baselines in economic performance, achieving an average copier return of 3% per meme coin investment under realistic market frictions. Overall, our results demonstrate the effectiveness of agent-based defenses and predictability of trader profitability in adversarial meme coin markets, providing a practical foundation for robust copy trading.
♻ ☆ Reversible Deep Learning for 13C NMR in Chemoinformatics: On Structures and Spectra
We introduce a reversible deep learning model for 13C NMR that uses a single conditional invertible neural network for both directions between molecular structures and spectra. The network is built from i-RevNet style bijective blocks, so the forward map and its inverse are available by construction. We train the model to predict a 128-bit binned spectrum code from a graph-based structure encoding, while the remaining latent dimensions capture residual variability. At inference time, we invert the same trained network to generate structure candidates from a spectrum code, which explicitly represents the one-to-many nature of spectrum-to-structure inference. On a filtered subset, the model is numerically invertible on trained examples, achieves spectrum-code prediction above chance, and produces coarse but meaningful structural signals when inverted on validation spectra. These results demonstrate that invertible architectures can unify spectrum prediction and uncertainty-aware candidate generation within one end-to-end model.
comment: 10 pages, 4 figures, 4 tables
♻ ☆ Video Soundtrack Generation by Aligning Emotions and Temporal Boundaries
Providing soundtracks for videos remains a costly and time-consuming challenge for multimedia content creators. We introduce EMSYNC, an automatic video-based symbolic music generator that creates music aligned with a video's emotional content and temporal boundaries. It follows a two-stage framework, where a pretrained video emotion classifier extracts emotional features, and a conditional music generator produces MIDI sequences guided by both emotional and temporal cues. We introduce boundary offsets, a novel temporal conditioning mechanism that enables the model to anticipate upcoming video scene cuts and align generated musical chords with them. We also propose a mapping scheme that bridges the discrete categorical outputs of the video emotion classifier with the continuous valence-arousal inputs required by the emotion-conditioned MIDI generator, enabling seamless integration of emotion information across different representations. Our method outperforms state-of-the-art models in objective and subjective evaluations across different video datasets, demonstrating its effectiveness in generating music aligned to video both emotionally and temporally. Our demo and output samples are available at https://serkansulun.com/emsync.
comment: IEEE Transactions on Multimedia, 2026, in print
♻ ☆ BioLite U-Net: Edge-Deployable Semantic Segmentation for In Situ Bioprinting Monitoring ICRA 2026
Bioprinting is a rapidly advancing field that offers a transformative approach to fabricating tissue and organ models through the precise deposition of cell-laden bioinks. Ensuring the fidelity and consistency of printed structures in real-time remains a core challenge, particularly under constraints imposed by limited imaging data and resource-constrained embedded hardware. Semantic segmentation of the extrusion process, differentiating between nozzle, extruded bioink, and surrounding background, enables in situ monitoring critical to maintaining print quality and biological viability. In this work, we introduce a lightweight semantic segmentation framework tailored for real-time bioprinting applications. We present a novel, manually annotated dataset comprising 787 RGB images captured during the bioprinting process, labeled across three classes: nozzle, bioink, and background. To achieve fast and efficient inference suitable for integration with bioprinting systems, we propose a BioLite U-Net architecture that leverages depthwise separable convolutions to drastically reduce computational load without compromising accuracy. Our model is benchmarked against MobileNetV2 and MobileNetV3-based segmentation baselines using mean Intersection over Union (mIoU), Dice score, and pixel accuracy. All models were evaluated on a Raspberry Pi 4B to assess real-world feasibility. The proposed BioLite U-Net achieves an mIoU of 92.85% and a Dice score of 96.17%, while being over 1300x smaller than MobileNetV2-DeepLabV3+. On-device inference takes 335 ms per frame, demonstrating near real-time capability. Compared to MobileNet baselines, BioLite U-Net offers a superior tradeoff between segmentation accuracy, efficiency, and deployability, making it highly suitable for intelligent, closed-loop bioprinting systems.
comment: 8 pages, 5 figures, conference-style submission (ICRA 2026). Includes dataset description, BioLite U-Net architecture, benchmark results on edge device (Raspberry Pi 4B)
♻ ☆ The Use of AI-Robotic Systems for Scientific Discovery
The process of developing theories and models and testing them with experiments is fundamental to the scientific method. Automating the entire scientific method then requires not only automation of the induction of theories from data, but also experimentation from design to implementation. This is the idea behind a robot scientist -- a coupled system of AI and laboratory robotics that has agency to test hypotheses with real-world experiments. In this chapter we explore some of the fundamentals of robot scientists in the philosophy of science. We also map the activities of a robot scientist to machine learning paradigms, and argue that the scientific method shares an analogy with active learning. We demonstrate these concepts using examples from previous robot scientists, and also from Genesis: a next generation robot scientist designed for research in systems biology, comprising a micro-fluidic system with 1000 computer-controlled micro-bioreactors and interpretable models based in controlled vocabularies and logic.
comment: 23 pages, book chapter
♻ ☆ TempoPFN: Synthetic Pre-training of Linear RNNs for Zero-shot Time Series Forecasting
Foundation models for zero-shot time series forecasting face challenges in efficient long-horizon prediction and reproducibility, with existing synthetic-only approaches underperforming on challenging benchmarks. This paper presents TempoPFN, a univariate time series foundation model based on linear Recurrent Neural Networks (RNNs) pre-trained exclusively on synthetic data. The model uses a GatedDeltaProduct architecture with state-weaving for fully parallelizable training across sequence lengths, eliminating the need for windowing or summarization techniques while maintaining robust temporal state-tracking. Our comprehensive synthetic data pipeline unifies diverse generators, including stochastic differential equations, Gaussian processes, and audio synthesis, with novel augmentations. In zero-shot evaluations on the Gift-Eval, fev-bench and Chronos-ZS benchmarks, TempoPFN achieves top-tier competitive performance, outperforming all existing synthetic-only approaches and surpassing the majority of models trained on real-world data, while being more efficient than existing baselines by leveraging fully parallelizable training and inference. We open-source our complete data generation pipeline and training code, providing a reproducible foundation for future research.
comment: 38 pages, 22 figures, 17 tables
♻ ☆ ExplainReduce: Generating global explanations from many local explanations
Most commonly used non-linear machine learning methods are closed-box models, uninterpretable to humans. The field of explainable artificial intelligence (XAI) aims to develop tools to examine the inner workings of these closed boxes. An often-used model-agnostic approach to XAI involves using simple models as local approximations to produce so-called local explanations; examples of this approach include LIME, SHAP, and SLISEMAP. This paper shows how a large set of local explanations can be reduced to a small "proxy set" of simple models, which can act as a generative global explanation. This reduction procedure, ExplainReduce, can be formulated as an optimisation problem and approximated efficiently using greedy heuristics. We show that, for many problems, as few as five explanations can faithfully emulate the closed-box model and that our reduction procedure is competitive with other model aggregation methods.
comment: 21 pages with a 36 page appendix, 8 + 39 figures, 1+1 tables. The datasets and source code used in the paper are available at https://github.com/edahelsinki/explainreduce
♻ ☆ Unveiling m-Sharpness Through the Structure of Stochastic Gradient Noise NeurIPS 2025
Sharpness-aware minimization (SAM) has emerged as a highly effective technique to improve model generalization, but its underlying principles are not fully understood. We investigate m-sharpness, where SAM performance improves monotonically as the micro-batch size for computing perturbations decreases, a phenomenon critical for distributed training yet lacking rigorous explanation. We leverage an extended Stochastic Differential Equation (SDE) framework and analyze stochastic gradient noise (SGN) to characterize the dynamics of SAM variants, including n-SAM and m-SAM. Our analysis reveals that stochastic perturbations induce an implicit variance-based sharpness regularization whose strength increases as m decreases. Motivated by this insight, we propose Reweighted SAM (RW-SAM), which employs sharpness-weighted sampling to mimic the generalization benefits of m-SAM while remaining parallelizable. Comprehensive experiments validate our theory and method.
comment: Accepted to NeurIPS 2025
♻ ☆ Differentiable Constraint-Based Causal Discovery
Causal discovery from observational data is a fundamental task in artificial intelligence, with far-reaching implications for decision-making, predictions, and interventions. Despite significant advances, existing methods can be broadly categorized as constraint-based or score-based approaches. Constraint-based methods offer rigorous causal discovery but are often hindered by small sample sizes, while score-based methods provide flexible optimization but typically forgo explicit conditional independence testing. This work explores a third avenue: developing differentiable $d$-separation scores, obtained through a percolation theory using soft logic. This enables the implementation of a new type of causal discovery method: gradient-based optimization of conditional independence constraints. Empirical evaluations demonstrate the robust performance of our approach in low-sample regimes, surpassing traditional constraint-based and score-based baselines on a real-world dataset. Code and data of the proposed method are publicly available at https://github$.$com/PurdueMINDS/DAGPA.
♻ ☆ Exploring Silicon-Based Societies: An Early Study of the Moltbook Agent Community
The rapid emergence of autonomous large language model agents has given rise to persistent, large-scale agent ecosystems whose collective behavior cannot be adequately understood through anecdotal observation or small-scale simulation. This paper introduces data-driven silicon sociology as a systematic empirical framework for studying social structure formation among interacting artificial agents. We present a pioneering large-scale data mining investigation of an in-the-wild agent society by analyzing Moltbook, a social platform designed primarily for agent-to-agent interaction. At the time of study, Moltbook hosted over 150,000 registered autonomous agents operating across thousands of agent-created sub-communities. Using programmatic and non-intrusive data acquisition, we collected and analyzed the textual descriptions of 12,758 submolts, which represent proactive sub-community partitioning activities within the ecosystem. Treating agent-authored descriptions as first-class observational artifacts, we apply rigorous preprocessing, contextual embedding, and unsupervised clustering techniques to uncover latent patterns of thematic organization and social space structuring. The results show that autonomous agents systematically organize collective space through reproducible patterns spanning human-mimetic interests, silicon-centric self-reflection, and early-stage economic and coordination behaviors. Rather than relying on predefined sociological taxonomies, these structures emerge directly from machine-generated data traces. This work establishes a methodological foundation for data-driven silicon sociology and demonstrates that data mining techniques can provide a powerful lens for understanding the organization and evolution of large autonomous agent societies.
comment: 11 pages, 3 figures. This update refines the framing of novelty claims by replacing absolute "first" statements with more precise and scoped formulations (e.g., "one of the earliest"). Our systematic methodological and empirical contributions remain unchanged
♻ ☆ LIBMoE: A Library for comprehensive benchmarking Mixture of Experts in Large Language Models
Mixture of experts (MoE) architectures have become a cornerstone for scaling up and are a key component in most large language models such as GPT-OSS, DeepSeek-V3, Llama-4, and Gemini-2.5. However, systematic research on MoE remains severely constrained by the prohibitive computational costs of training and evaluation, restricting large-scale studies accessible to most researchers. We introduce LibMoE, a unified framework for reproducible, efficient, and extensible MoE research that supports both pretraining and sparse-upcycling regimes. Beyond unified implementations, the framework provides transparent analytical tools for probing routing and expert dynamics. Leveraging this foundation, we conduct a comprehensive analysis along three dimensions: (i) routing dynamics, covering expert selection patterns, routing stability and optimality, and how routing entropy reveals task specialization and expert diversity; (ii) the effect of lightweight initialization on load balancing, demonstrating how subtle changes in router initialization shape early expert utilization; and (iii) training regime differences, revealing how sparse upcycling and full pretraining exhibit distinct routing patterns and stability profiles. By lowering the barrier to entry and standardizing evaluation, along with our comprehensive analysis, LibMoE broadens access to MoE research and establishes a reliable benchmark to guide future innovations. GitHub: \href{https://github.com/Fsoft-AIC/LibMoE}{https://github.com/Fsoft-AIC/LibMoE}.
comment: 15 pages, 9 figures
♻ ☆ Dual Perspectives on Non-Contrastive Self-Supervised Learning
The {\em stop gradient} and {\em exponential moving average} iterative procedures are commonly used in non-contrastive approaches to self-supervised learning to avoid representation collapse, with excellent performance in downstream applications in practice. This presentation investigates these procedures from the dual viewpoints of optimization and dynamical systems. We show that, in general, although they {\em do not} optimize the original objective, or {\em any} other smooth function, they {\em do} avoid collapse Following~\citet{Tian21}, but without any of the extra assumptions used in their proofs, we then show using a dynamical system perspective that, in the linear case, minimizing the original objective function without the use of a stop gradient or exponential moving average {\em always} leads to collapse. Conversely, we characterize explicitly the equilibria of the dynamical systems associated with these two procedures in this linear setting as algebraic varieties in their parameter space, and show that they are, in general, {\em asymptotically stable}. Our theoretical findings are illustrated by empirical experiments with real and synthetic data.
♻ ☆ Investigating the Impact of Histopathological Foundation Models on Regressive Prediction of Homologous Recombination Deficiency
Foundation models pretrained on large-scale histopathology data have found great success in various fields of computational pathology, but their impact on regressive biomarker prediction remains underexplored. In this work, we systematically evaluate histopathological foundation models for regression-based tasks, demonstrated through the prediction of homologous recombination deficiency (HRD) score - a critical biomarker for personalized cancer treatment. Within multiple instance learning frameworks, we extract patch-level features from whole slide images (WSI) using five state-of-the-art foundation models, and evaluate their impact compared to contrastive learning-based features. Models are trained to predict continuous HRD scores based on these extracted features across breast, endometrial, and lung cancer cohorts from two public medical data collections. Extensive experiments demonstrate that models trained on foundation model features consistently outperform the baseline in terms of predictive accuracy and generalization capabilities while exhibiting systematic differences among the foundation models. Additionally, we propose a distribution-based upsampling strategy to mitigate target imbalance in these datasets, significantly improving the recall and balanced accuracy for underrepresented but clinically important patient populations. Furthermore, we investigate the impact of different sampling strategies and instance bagsizes by ablation studies. Our results highlight the benefits of large-scale histopathological pretraining for more precise and transferable regressive biomarker prediction, showcasing its potential to advance AI-driven precision oncology.
comment: 9 pages, 7 figures and 5 tables
♻ ☆ Are foundation models useful feature extractors for electroencephalography analysis?
The success of foundation models in natural language processing and computer vision has motivated similar approaches in time series analysis. While foundational time series models have proven beneficial on a variety of tasks, their effectiveness in medical applications with limited data remains underexplored. In this work, we investigate this question in the context of electroencephalography (EEG) by evaluating general-purpose time series models on age prediction, seizure detection, and classification of clinically relevant EEG events. We compare their diagnostic performance against specialised EEG models and assess the quality of the extracted features. The results show that general-purpose models are competitive and capture features useful to localising demographic and disease-related biomarkers. These findings indicate that foundational time series models can reduce the reliance on large task-specific datasets and models, making them valuable in clinical practice.
♻ ☆ Auto-Rubric: Learning From Implicit Weights to Explicit Rubrics for Reward Modeling
Conventional reward modeling relies on gradient descent over neural weights, creating opaque, data-hungry "black boxes." We propose a paradigm shift from implicit to explicit reward parameterization, recasting optimization from continuous weight spaces to the discrete space of natural language rubrics. We introduce a training-free framework based on iterative rubric learning: it locally induces discriminative criteria via verification-driven refinement, and globally compresses the candidate criteria pool into a compact core set by maximizing an information-theoretic coding rate objective. We organize the compressed core set into a hierarchical rubric structure -- high-level evaluation dimensions supported by concrete verification checks -- serving as an interpretable, portable reward function. Empirically, our approach challenges prevailing data scaling assumptions: using only 70 preference pairs, our rubric-guided judges outperform fully trained reward models on diverse benchmarks. For instance, Qwen3-8B equipped with our learned rubrics achieves 80.91% on RewardBench2, surpassing the specialized Skywork-Reward-V2-Qwen3-8B (78.20%). These results demonstrate that alignment signals are highly compressible and can be effectively captured through explicit symbolic search.
♻ ☆ SurvDiff: A Diffusion Model for Generating Synthetic Data in Survival Analysis
Survival analysis is a cornerstone of clinical research by modeling time-to-event outcomes such as metastasis, disease relapse, or patient death. Unlike standard tabular data, survival data often come with incomplete event information due to dropout, or loss to follow-up. This poses unique challenges for synthetic data generation, where it is crucial for clinical research to faithfully reproduce both the event-time distribution and the censoring mechanism. In this paper, we propose SurvDiff an end-to-end diffusion model specifically designed for generating synthetic data in survival analysis. SurvDiff is tailored to capture the data-generating mechanism by jointly generating mixed-type covariates, event times, and right-censoring, guided by a survival-tailored loss function. The loss encodes the time-to-event structure and directly optimizes for downstream survival tasks, which ensures that SurvDiff (i) reproduces realistic event-time distributions and (ii preserves the censoring mechanism. Across multiple datasets, we show that SurvDiff consistently outperforms state-of-the-art generative baselines in both distributional fidelity and survival model evaluation metrics across multiple medical datasets. To the best of our knowledge, SurvDiff is the first end-to-end diffusion model explicitly designed for generating synthetic survival data.
♻ ☆ AlphaBeta is not as good as you think: a simple class of synthetic games for a better analysis of deterministic game-solving algorithms
Deterministic game-solving algorithms are conventionally analyzed in the light of their average-case complexity against a distribution of random game-trees, where leaf values are independently sampled from a fixed distribution. This simplified model enables uncluttered mathematical analysis, revealing two key properties: root value distributions asymptotically collapse to a single fixed value for finite-valued trees, and all reasonable algorithms achieve global optimality. However, these findings are artifacts of the model's design: its long criticized independence assumption strips games of structural complexity, producing trivial instances where no algorithm faces meaningful challenges. To address this limitation, we introduce a class of synthetic games generated by a probabilistic model that incrementally constructs game-trees using a fixed level-wise conditional distribution. By enforcing ancestor dependencies, a critical structural feature of real-world games, our framework generates problems with adjustable difficulty while retaining some form of analytical tractability. For several algorithms, including AlphaBeta and Scout, we derive recursive formulas characterizing their average-case complexities under this model. These allow us to rigorously compare algorithms on deep game-trees, where Monte-Carlo simulations are no longer feasible. While asymptotically, all algorithms seem to converge to identical branching factor (a result analogous to that of independence-based models), deep finite trees reveal stark differences: AlphaBeta incurs a significantly larger constant multiplicative factor compared to algorithms like Scout, leading to a substantial practical slowdown. Our framework sheds new light on classical game-solving algorithms, offering rigorous evidence and analytical tools to advance the understanding of these methods under a richer, more challenging, and yet tractable model.
♻ ☆ Log2Motion: Biomechanical Motion Synthesis from Touch Logs
Touch data from mobile devices are collected at scale but reveal little about the interactions that produce them. While biomechanical simulations can illuminate motor control processes, they have not yet been developed for touch interactions. To close this gap, we propose a novel computational problem: synthesizing plausible motion directly from logs. Our key insight is a reinforcement learning-driven musculoskeletal forward simulation that generates biomechanically plausible motion sequences consistent with events recorded in touch logs. We achieve this by integrating a software emulator into a physics simulator, allowing biomechanical models to manipulate real applications in real-time. Log2Motion produces rich syntheses of user movements from touch logs, including estimates of motion, speed, accuracy, and effort. We assess the plausibility of generated movements by comparing against human data from a motion capture study and prior findings, and demonstrate Log2Motion in a large-scale dataset. Biomechanical motion synthesis provides a new way to understand log data, illuminating the ergonomics and motor control underlying touch interactions.
♻ ☆ GeoRA: Geometry-Aware Low-Rank Adaptation for RLVR
Reinforcement Learning with Verifiable Rewards (RLVR) is crucial for advancing large-scale reasoning models. However, existing parameter-efficient methods, such as PiSSA and MiLoRA, are designed for Supervised Fine-Tuning (SFT) and do not account for the distinct optimization dynamics and geometric structures of RLVR. Applying these methods directly leads to spectral collapse and optimization instability, which severely limit model performance. Meanwhile, alternative approaches that leverage update sparsity encounter significant efficiency bottlenecks on modern hardware due to unstructured computations. To address these challenges, we propose GeoRA (Geometry-Aware Low-Rank Adaptation), which exploits the anisotropic and compressible nature of RL update subspaces. GeoRA initializes adapters by extracting principal directions via Singular Value Decomposition (SVD) within a geometrically constrained subspace while freezing the residual components. This method preserves the pre-trained geometric structure and enables efficient GPU computation through dense operators. Experiments on Qwen and Llama demonstrate that GeoRA mitigates optimization bottlenecks caused by geometric misalignment. It consistently outperforms established low-rank baselines on key mathematical benchmarks, achieving state-of-the-art (SOTA) results. Moreover, GeoRA shows superior generalization and resilience to catastrophic forgetting in out-of-domain tasks.
♻ ☆ MaxSup: Overcoming Representation Collapse in Label Smoothing NeurIPS 2025
Label Smoothing (LS) is widely adopted to reduce overconfidence in neural network predictions and improve generalization. Despite these benefits, recent studies reveal two critical issues with LS. First, LS induces overconfidence in misclassified samples. Second, it compacts feature representations into overly tight clusters, diluting intra-class diversity, although the precise cause of this phenomenon remained elusive. In this paper, we analytically decompose the LS-induced loss, exposing two key terms: (i) a regularization term that dampens overconfidence only when the prediction is correct, and (ii) an error-amplification term that arises under misclassifications. This latter term compels the network to reinforce incorrect predictions with undue certainty, exacerbating representation collapse. To address these shortcomings, we propose Max Suppression (MaxSup), which applies uniform regularization to both correct and incorrect predictions by penalizing the top-1 logit rather than the ground-truth logit. Through extensive feature-space analyses, we show that MaxSup restores intra-class variation and sharpens inter-class boundaries. Experiments on large-scale image classification and multiple downstream tasks confirm that MaxSup is a more robust alternative to LS. Code is available at: https://github.com/ZhouYuxuanYX/Maximum-Suppression-Regularization
comment: NeurIPS 2025 Oral (0.36% acceptance); code: https://github.com/ZhouYuxuanYX/Maximum-Suppression-Regularization
♻ ☆ Preference-based Reinforcement Learning beyond Pairwise Comparisons: Benefits of Multiple Options NeurIPS 2025
We study online preference-based reinforcement learning (PbRL) with the goal of improving sample efficiency. While a growing body of theoretical work has emerged-motivated by PbRL's recent empirical success, particularly in aligning large language models (LLMs)-most existing studies focus only on pairwise comparisons. A few recent works (Zhu et al., 2023, Mukherjee et al., 2024, Thekumparampil et al., 2024) have explored using multiple comparisons and ranking feedback, but their performance guarantees fail to improve-and can even deteriorate-as the feedback length increases, despite the richer information available. To address this gap, we adopt the Plackett-Luce (PL) model for ranking feedback over action subsets and propose M-AUPO, an algorithm that selects multiple actions by maximizing the average uncertainty within the offered subset. We prove that M-AUPO achieves a suboptimality gap of $\tilde{O}\left( \frac{d}{T} \sqrt{ \sum_{t=1}^T \frac{1}{|S_t|}} \right)$, where $T$ is the total number of rounds, $d$ is the feature dimension, and $|S_t|$ is the size of the subset at round $t$. This result shows that larger subsets directly lead to improved performance and, notably, the bound avoids the exponential dependence on the unknown parameter's norm, which was a fundamental limitation in most previous works. Moreover, we establish a near-matching lower bound of $Ω\left( \frac{d}{K \sqrt{T}} \right)$, where $K$ is the maximum subset size. To the best of our knowledge, this is the first theoretical result in PbRL with ranking feedback that explicitly shows improved sample efficiency as a function of the subset size.
comment: Accepted at NeurIPS 2025
Machine Learning 150
☆ Shared LoRA Subspaces for almost Strict Continual Learning
Adapting large pretrained models to new tasks efficiently and continually is crucial for real-world deployment but remains challenging due to catastrophic forgetting and the high cost of retraining. While parameter-efficient tuning methods like low rank adaptation (LoRA) reduce computational demands, they lack mechanisms for strict continual learning and knowledge integration, without relying on data replay, or multiple adapters. We propose Share, a novel approach to parameter efficient continual finetuning that learns and dynamically updates a single, shared low-rank subspace, enabling seamless adaptation across multiple tasks and modalities. Share constructs a foundational subspace that extracts core knowledge from past tasks and incrementally integrates new information by identifying essential subspace directions. Knowledge from each new task is incorporated into this evolving subspace, facilitating forward knowledge transfer, while minimizing catastrophic interference. This approach achieves up to 100x parameter reduction and 281x memory savings over traditional LoRA methods, maintaining performance comparable to jointly trained models. A single Share model can replace hundreds of task-specific LoRA adapters, supporting scalable, asynchronous continual learning. Experiments across image classification, natural language understanding, 3D pose estimation, and text-to-image generation validate its effectiveness, making Share a practical and scalable solution for lifelong learning in large-scale AI systems.
☆ Pseudo-Invertible Neural Networks
The Moore-Penrose Pseudo-inverse (PInv) serves as the fundamental solution for linear systems. In this paper, we propose a natural generalization of PInv to the nonlinear regime in general and to neural networks in particular. We introduce Surjective Pseudo-invertible Neural Networks (SPNN), a class of architectures explicitly designed to admit a tractable non-linear PInv. The proposed non-linear PInv and its implementation in SPNN satisfy fundamental geometric properties. One such property is null-space projection or "Back-Projection", $x' = x + A^\dagger(y-Ax)$, which moves a sample $x$ to its closest consistent state $x'$ satisfying $Ax=y$. We formalize Non-Linear Back-Projection (NLBP), a method that guarantees the same consistency constraint for non-linear mappings $f(x)=y$ via our defined PInv. We leverage SPNNs to expand the scope of zero-shot inverse problems. Diffusion-based null-space projection has revolutionized zero-shot solving for linear inverse problems by exploiting closed-form back-projection. We extend this method to non-linear degradations. Here, "degradation" is broadly generalized to include any non-linear loss of information, spanning from optical distortions to semantic abstractions like classification. This approach enables zero-shot inversion of complex degradations and allows precise semantic control over generative outputs without retraining the diffusion prior.
☆ CommCP: Efficient Multi-Agent Coordination via LLM-Based Communication with Conformal Prediction ICRA 2026
To complete assignments provided by humans in natural language, robots must interpret commands, generate and answer relevant questions for scene understanding, and manipulate target objects. Real-world deployments often require multiple heterogeneous robots with different manipulation capabilities to handle different assignments cooperatively. Beyond the need for specialized manipulation skills, effective information gathering is important in completing these assignments. To address this component of the problem, we formalize the information-gathering process in a fully cooperative setting as an underexplored multi-agent multi-task Embodied Question Answering (MM-EQA) problem, which is a novel extension of canonical Embodied Question Answering (EQA), where effective communication is crucial for coordinating efforts without redundancy. To address this problem, we propose CommCP, a novel LLM-based decentralized communication framework designed for MM-EQA. Our framework employs conformal prediction to calibrate the generated messages, thereby minimizing receiver distractions and enhancing communication reliability. To evaluate our framework, we introduce an MM-EQA benchmark featuring diverse, photo-realistic household scenarios with embodied questions. Experimental results demonstrate that CommCP significantly enhances the task success rate and exploration efficiency over baselines. The experiment videos, code, and dataset are available on our project website: https://comm-cp.github.io.
comment: IEEE International Conference on Robotics and Automation (ICRA 2026); Project Website: https://comm-cp.github.io/
☆ Can vision language models learn intuitive physics from interaction?
Pre-trained vision language models do not have good intuitions about the physical world. Recent work has shown that supervised fine-tuning can improve model performance on simple physical tasks. However, fine-tuned models do not appear to learn robust physical rules that can generalize to new contexts. Based on research in cognitive science, we hypothesize that models need to interact with an environment to properly learn its physical dynamics. We train models that learn through interaction with the environment using reinforcement learning. While learning from interaction allows models to improve their within-task performance, it fails to produce models with generalizable physical intuitions. We find that models trained on one task do not reliably generalize to related tasks, even if the tasks share visual statistics and physical principles, and regardless of whether the models are trained through interaction.
☆ PhysicsAgentABM: Physics-Guided Generative Agent-Based Modeling
Large language model (LLM)-based multi-agent systems enable expressive agent reasoning but are expensive to scale and poorly calibrated for timestep-aligned state-transition simulation, while classical agent-based models (ABMs) offer interpretability but struggle to integrate rich individual-level signals and non-stationary behaviors. We propose PhysicsAgentABM, which shifts inference to behaviorally coherent agent clusters: state-specialized symbolic agents encode mechanistic transition priors, a multimodal neural transition model captures temporal and interaction dynamics, and uncertainty-aware epistemic fusion yields calibrated cluster-level transition distributions. Individual agents then stochastically realize transitions under local constraints, decoupling population inference from entity-level variability. We further introduce ANCHOR, an LLM agent-driven clustering strategy based on cross-contextual behavioral responses and a novel contrastive loss, reducing LLM calls by up to 6-8 times. Experiments across public health, finance, and social sciences show consistent gains in event-time accuracy and calibration over mechanistic, neural, and LLM baselines. By re-architecting generative ABM around population-level inference with uncertainty-aware neuro-symbolic fusion, PhysicsAgentABM establishes a new paradigm for scalable and calibrated simulation with LLMs.
☆ AP-OOD: Attention Pooling for Out-of-Distribution Detection ICLR 2026
Out-of-distribution (OOD) detection, which maps high-dimensional data into a scalar OOD score, is critical for the reliable deployment of machine learning models. A key challenge in recent research is how to effectively leverage and aggregate token embeddings from language models to obtain the OOD score. In this work, we propose AP-OOD, a novel OOD detection method for natural language that goes beyond simple average-based aggregation by exploiting token-level information. AP-OOD is a semi-supervised approach that flexibly interpolates between unsupervised and supervised settings, enabling the use of limited auxiliary outlier data. Empirically, AP-OOD sets a new state of the art in OOD detection for text: in the unsupervised setting, it reduces the FPR95 (false positive rate at 95% true positives) from 27.84% to 4.67% on XSUM summarization, and from 77.08% to 70.37% on WMT15 En-Fr translation.
comment: Accepted at ICLR 2026
☆ Curiosity is Knowledge: Self-Consistent Learning and No-Regret Optimization with Active Inference
Active inference (AIF) unifies exploration and exploitation by minimizing the Expected Free Energy (EFE), balancing epistemic value (information gain) and pragmatic value (task performance) through a curiosity coefficient. Yet it has been unclear when this balance yields both coherent learning and efficient decision-making: insufficient curiosity can drive myopic exploitation and prevent uncertainty resolution, while excessive curiosity can induce unnecessary exploration and regret. We establish the first theoretical guarantee for EFE-minimizing agents, showing that a single requirement--sufficient curiosity--simultaneously ensures self-consistent learning (Bayesian posterior consistency) and no-regret optimization (bounded cumulative regret). Our analysis characterizes how this mechanism depends on initial uncertainty, identifiability, and objective alignment, thereby connecting AIF to classical Bayesian experimental design and Bayesian optimization within one theoretical framework. We further translate these theories into practical design guidelines for tuning the epistemic-pragmatic trade-off in hybrid learning-optimization problems, validated through real-world experiments.
☆ Learning Query-Aware Budget-Tier Routing for Runtime Agent Memory
Memory is increasingly central to Large Language Model (LLM) agents operating beyond a single context window, yet most existing systems rely on offline, query-agnostic memory construction that can be inefficient and may discard query-critical information. Although runtime memory utilization is a natural alternative, prior work often incurs substantial overhead and offers limited explicit control over the performance-cost trade-off. In this work, we present \textbf{BudgetMem}, a runtime agent memory framework for explicit, query-aware performance-cost control. BudgetMem structures memory processing as a set of memory modules, each offered in three budget tiers (i.e., \textsc{Low}/\textsc{Mid}/\textsc{High}). A lightweight router performs budget-tier routing across modules to balance task performance and memory construction cost, which is implemented as a compact neural policy trained with reinforcement learning. Using BudgetMem as a unified testbed, we study three complementary strategies for realizing budget tiers: implementation (method complexity), reasoning (inference behavior), and capacity (module model size). Across LoCoMo, LongMemEval, and HotpotQA, BudgetMem surpasses strong baselines when performance is prioritized (i.e., high-budget setting), and delivers better accuracy-cost frontiers under tighter budgets. Moreover, our analysis disentangles the strengths and weaknesses of different tiering strategies, clarifying when each axis delivers the most favorable trade-offs under varying budget regimes.
comment: Code is available at https://github.com/ViktorAxelsen/BudgetMem
☆ Correctness-Optimized Residual Activation Lens (CORAL): Transferrable and Calibration-Aware Inference-Time Steering
Large language models (LLMs) exhibit persistent miscalibration, especially after instruction tuning and preference alignment. Modified training objectives can improve calibration, but retraining is expensive. Inference-time steering offers a lightweight alternative, yet most existing methods optimize proxies for correctness rather than correctness itself. We introduce CORAL (Correctness-Optimized Residual Activation Lens), a regularized inference-time steering method that captures distributed correctness signals from model internal activations using weight-decay MLP probes. We evaluate CORAL across three 7B-parameter models and find that it consistently improves accuracy by 10\% and expected calibration error (ECE) by 50\% on average. We additionally demonstrate that these gains transfer without retraining to the complete published test sets of four held-out benchmarks (ARC-Challenge, HellaSwag, Math-MC, OpenBookQA), averaging 14\% accuracy improvements and 49\% ECE improvements. Our results support the hypothesis that distributed information in model internals can be extracted using regularized probes when individual neurons are insufficient. CORAL thus provides a compute-efficient, transferable, and calibration-aware approach to improve MCQA performance during inference.
☆ Diffusion Model's Generalization Can Be Characterized by Inductive Biases toward a Data-Dependent Ridge Manifold
When a diffusion model is not memorizing the training data set, how does it generalize exactly? A quantitative understanding of the distribution it generates would be beneficial to, for example, an assessment of the model's performance for downstream applications. We thus explicitly characterize what diffusion model generates, by proposing a log-density ridge manifold and quantifying how the generated data relate to this manifold as inference dynamics progresses. More precisely, inference undergoes a reach-align-slide process centered around the ridge manifold: trajectories first reach a neighborhood of the manifold, then align as being pushed toward or away from the manifold in normal directions, and finally slide along the manifold in tangent directions. Within the scope of this general behavior, different training errors will lead to different normal and tangent motions, which can be quantified, and these detailed motions characterize when inter-mode generations emerge. More detailed understanding of training dynamics will lead to more accurate quantification of the generation inductive bias, and an example of random feature model will be considered, for which we can explicitly illustrate how diffusion model's inductive biases originate as a composition of architectural bias and training accuracy, and how they evolve with the inference dynamics. Experiments on synthetic multimodal distributions and MNIST latent diffusion support the predicted directional effects, in both low- and high-dimensions.
☆ Mechanisms of AI Protein Folding in ESMFold
How do protein structure prediction models fold proteins? We investigate this question by tracing how ESMFold folds a beta hairpin, a prevalent structural motif. Through counterfactual interventions on model latents, we identify two computational stages in the folding trunk. In the first stage, early blocks initialize pairwise biochemical signals: residue identities and associated biochemical features such as charge flow from sequence representations into pairwise representations. In the second stage, late blocks develop pairwise spatial features: distance and contact information accumulate in the pairwise representation. We demonstrate that the mechanisms underlying structural decisions of ESMFold can be localized, traced through interpretable representations, and manipulated with strong causal effects.
comment: Our code, data, and results are available at https://folding.baulab.info
☆ Multi-Token Prediction via Self-Distillation
Existing techniques for accelerating language model inference, such as speculative decoding, require training auxiliary speculator models and building and deploying complex inference pipelines. We consider a new approach for converting a pretrained autoregressive language model from a slow single next token prediction model into a fast standalone multi-token prediction model using a simple online distillation objective. The final model retains the exact same implementation as the pretrained initial checkpoint and is deployable without the addition of any auxiliary verifier or other specialized inference code. On GSM8K, our method produces models that can decode more than $3\times$ faster on average at $<5\%$ drop in accuracy relative to single token decoding performance.
comment: 8 pages and 5 figures in the main body
☆ Optimism Stabilizes Thompson Sampling for Adaptive Inference
Thompson sampling (TS) is widely used for stochastic multi-armed bandits, yet its inferential properties under adaptive data collection are subtle. Classical asymptotic theory for sample means can fail because arm-specific sample sizes are random and coupled with the rewards through the action-selection rule. We study this phenomenon in the $K$-armed Gaussian bandit and identify \emph{optimism} as a key mechanism for restoring \emph{stability}, a sufficient condition for valid asymptotic inference requiring each arm's pull count to concentrate around a deterministic scale. First, we prove that variance-inflated TS \citep{halder2025stable} is stable for any $K \ge 2$, including the challenging regime where multiple arms are optimal. This resolves the open question raised by \citet{halder2025stable} through extending their results from the two-armed setting to the general $K$-armed setting. Second, we analyze an alternative optimistic modification that keeps the posterior variance unchanged but adds an explicit mean bonus to posterior mean, and establish the same stability conclusion. In summary, suitably implemented optimism stabilizes Thompson sampling and enables asymptotically valid inference in multi-armed bandits, while incurring only a mild additional regret cost.
☆ AgenticPay: A Multi-Agent LLM Negotiation System for Buyer-Seller Transactions
Large language model (LLM)-based agents are increasingly expected to negotiate, coordinate, and transact autonomously, yet existing benchmarks lack principled settings for evaluating language-mediated economic interaction among multiple agents. We introduce AgenticPay, a benchmark and simulation framework for multi-agent buyer-seller negotiation driven by natural language. AgenticPay models markets in which buyers and sellers possess private constraints and product-dependent valuations, and must reach agreements through multi-round linguistic negotiation rather than numeric bidding alone. The framework supports a diverse suite of over 110 tasks ranging from bilateral bargaining to many-to-many markets, with structured action extraction and metrics for feasibility, efficiency, and welfare. Benchmarking state-of-the-art proprietary and open-weight LLMs reveals substantial gaps in negotiation performance and highlights challenges in long-horizon strategic reasoning, establishing AgenticPay as a foundation for studying agentic commerce and language-based market interaction. Code and dataset are available at the link: https://github.com/SafeRL-Lab/AgenticPay.
☆ On Computation and Reinforcement Learning
How does the amount of compute available to a reinforcement learning (RL) policy affect its learning? Can policies using a fixed amount of parameters, still benefit from additional compute? The standard RL framework does not provide a language to answer these questions formally. Empirically, deep RL policies are often parameterized as neural networks with static architectures, conflating the amount of compute and the number of parameters. In this paper, we formalize compute bounded policies and prove that policies which use more compute can solve problems and generalize to longer-horizon tasks that are outside the scope of policies with less compute. Building on prior work in algorithmic learning and model-free planning, we propose a minimal architecture that can use a variable amount of compute. Our experiments complement our theory. On a set 31 different tasks spanning online and offline RL, we show that $(1)$ this architecture achieves stronger performance simply by using more compute, and $(2)$ stronger generalization on longer-horizon test tasks compared to standard feedforward networks or deep residual network using up to 5 times more parameters.
☆ Causal Inference on Stopped Random Walks in Online Advertising
We consider a causal inference problem frequently encountered in online advertising systems, where a publisher (e.g., Instagram, TikTok) interacts repeatedly with human users and advertisers by sporadically displaying to each user an advertisement selected through an auction. Each treatment corresponds to a parameter value of the advertising mechanism (e.g., auction reserve-price), and we want to estimate through experiments the corresponding long-term treatment effect (e.g., annual advertising revenue). In our setting, the treatment affects not only the instantaneous revenue from showing an ad, but also changes each user's interaction-trajectory, and each advertiser's bidding policy -- as the latter is constrained by a finite budget. In particular, each a treatment may even affect the size of the population, since users interact longer with a tolerable advertising mechanism. We drop the classical i.i.d. assumption and model the experiment measurements (e.g., advertising revenue) as a stopped random walk, and use a budget-splitting experimental design, the Anscombe Theorem, a Wald-like equation, and a Central Limit Theorem to construct confidence intervals for the long-term treatment effect.
☆ Orthogonal Self-Attention
Softmax Self-Attention (SSA) is a key component of Transformer architectures. However, when utilised within skipless architectures, which aim to improve representation learning, recent work has highlighted the inherent instability of SSA due to inducing rank collapse and poorly-conditioned Jacobians. In this work, we design a novel attention mechanism: Orthogonal Self-Attention (OSA), which aims to bypass these issues with SSA, in order to allow for (non-causal) Transformers without skip connections and normalisation layers to be more easily trained. In particular, OSA parametrises the attention matrix to be orthogonal via mapping a skew-symmetric matrix, formed from query-key values, through the matrix exponential. We show that this can be practically implemented, by exploiting the low-rank structure of our query-key values, resulting in the computational complexity and memory cost of OSA scaling linearly with sequence length. Furthermore, we derive an initialisation scheme for which we prove ensures that the Jacobian of OSA is well-conditioned.
comment: Preprint
☆ Diamond Maps: Efficient Reward Alignment via Stochastic Flow Maps
Flow and diffusion models produce high-quality samples, but adapting them to user preferences or constraints post-training remains costly and brittle, a challenge commonly called reward alignment. We argue that efficient reward alignment should be a property of the generative model itself, not an afterthought, and redesign the model for adaptability. We propose "Diamond Maps", stochastic flow map models that enable efficient and accurate alignment to arbitrary rewards at inference time. Diamond Maps amortize many simulation steps into a single-step sampler, like flow maps, while preserving the stochasticity required for optimal reward alignment. This design makes search, sequential Monte Carlo, and guidance scalable by enabling efficient and consistent estimation of the value function. Our experiments show that Diamond Maps can be learned efficiently via distillation from GLASS Flows, achieve stronger reward alignment performance, and scale better than existing methods. Our results point toward a practical route to generative models that can be rapidly adapted to arbitrary preferences and constraints at inference time.
☆ Layer-wise LoRA fine-tuning: a similarity metric approach
Pre-training Large Language Models (LLMs) on web-scale datasets becomes fundamental for advancing general-purpose AI. In contrast, enhancing their predictive performance on downstream tasks typically involves adapting their knowledge through fine-tuning. Parameter-efficient fine-tuning techniques, such as Low-Rank Adaptation (LoRA), aim to reduce the computational cost of this process by freezing the pre-trained model and updating a smaller number of parameters. In comparison to full fine-tuning, these methods achieve over 99\% reduction in trainable parameter count, depending on the configuration. Unfortunately, such a reduction may prove insufficient as LLMs continue to grow in scale. In this work, we address the previous problem by systematically selecting only a few layers to fine-tune using LoRA or its variants. We argue that not all layers contribute equally to the model adaptation. Leveraging this, we identify the most relevant layers to fine-tune by measuring their contribution to changes in internal representations. Our method is orthogonal to and readily compatible with existing low-rank adaptation techniques. We reduce the trainable parameters in LoRA-based techniques by up to 50\%, while maintaining the predictive performance across different models and tasks. Specifically, on encoder-only architectures, this reduction in trainable parameters leads to a negligible predictive performance drop on the GLUE benchmark. On decoder-only architectures, we achieve a small drop or even improvements in the predictive performance on mathematical problem-solving capabilities and coding tasks. Finally, this effectiveness extends to multimodal models, for which we also observe competitive results relative to fine-tuning with LoRA modules in all layers. Code is available at: https://github.com/c2d-usp/Layer-wise-LoRA-with-CKA
comment: Code is available at https://github.com/c2d-usp/Layer-wise-LoRA-with-CKA
☆ Clifford Kolmogorov-Arnold Networks
We introduce Clifford Kolmogorov-Arnold Network (ClKAN), a flexible and efficient architecture for function approximation in arbitrary Clifford algebra spaces. We propose the use of Randomized Quasi Monte Carlo grid generation as a solution to the exponential scaling associated with higher dimensional algebras. Our ClKAN also introduces new batch normalization strategies to deal with variable domain input. ClKAN finds application in scientific discovery and engineering, and is validated in synthetic and physics inspired tasks.
comment: This work has been submitted to the IEEE for possible publication
☆ Characterizing Human Semantic Navigation in Concept Production as Trajectories in Embedding Space ICLR 2026
Semantic representations can be framed as a structured, dynamic knowledge space through which humans navigate to retrieve and manipulate meaning. To investigate how humans traverse this geometry, we introduce a framework that represents concept production as navigation through embedding space. Using different transformer text embedding models, we construct participant-specific semantic trajectories based on cumulative embeddings and extract geometric and dynamical metrics, including distance to next, distance to centroid, entropy, velocity, and acceleration. These measures capture both scalar and directional aspects of semantic navigation, providing a computationally grounded view of semantic representation search as movement in a geometric space. We evaluate the framework on four datasets across different languages, spanning different property generation tasks: Neurodegenerative, Swear verbal fluency, Property listing task in Italian, and in German. Across these contexts, our approach distinguishes between clinical groups and concept types, offering a mathematical framework that requires minimal human intervention compared to typical labor-intensive linguistic pre-processing methods. Comparison with a non-cumulative approach reveals that cumulative embeddings work best for longer trajectories, whereas shorter ones may provide too little context, favoring the non-cumulative alternative. Critically, different embedding models yielded similar results, highlighting similarities between different learned representations despite different training pipelines. By framing semantic navigation as a structured trajectory through embedding space, bridging cognitive modeling with learned representation, thereby establishing a pipeline for quantifying semantic representation dynamics with applications in clinical research, cross-linguistic analysis, and the assessment of artificial cognition.
comment: 10 pages, 6 figures (excluding refs/appendix). Accepted to ICLR 2026
☆ Inverse Depth Scaling From Most Layers Being Similar
Neural scaling laws relate loss to model size in large language models (LLMs), yet depth and width may contribute to performance differently, requiring more detailed studies. Here, we quantify how depth affects loss via analysis of LLMs and toy residual networks. We find loss scales inversely proportional to depth in LLMs, probably due to functionally similar layers reducing error through ensemble averaging rather than compositional learning or discretizing smooth dynamics. This regime is inefficient yet robust and may arise from the architectural bias of residual networks and target functions incompatible with smooth dynamics. The findings suggest that improving LLM efficiency may require architectural innovations to encourage compositional use of depth.
comment: 23 pages, 24 figures
☆ A Hybrid Data-Driven Algorithm for Real-Time Friction Force Estimation in Hydraulic Cylinders
Hydraulic systems are widely utilized in industrial applications due to their high force generation, precise control, and ability to function in harsh environments. Hydraulic cylinders, as actuators in these systems, apply force and position through the displacement of hydraulic fluid, but their operation is significantly influenced by friction force. Achieving precision in hydraulic cylinders requires an accurate friction model under various operating conditions. Existing analytical models, often derived from experimental tests, necessitate the identification or estimation of influencing factors but are limited in adaptability and computational efficiency. This research introduces a data-driven, hybrid algorithm based on Long Short-Term Memory (LSTM) networks and Random Forests for nonlinear friction force estimation. The algorithm effectively combines feature detection and estimation processes using training data acquired from an experimental hydraulic test setup. It achieves a consistent and stable model error of less than 10% across diverse operating conditions and external load variations, ensuring robust performance in complex situations. The computational cost of the algorithm is 1.51 milliseconds per estimation, making it suitable for real-time applications. The proposed method addresses the limitations of analytical models by delivering high precision and computational efficiency. The algorithm's performance is validated through detailed analysis and experimental results, including direct comparisons with the LuGre model. The comparison highlights that while the LuGre model offers a theoretical foundation for friction modeling, its performance is limited by its inability to dynamically adjust to varying operational conditions of the hydraulic cylinder, further emphasizing the advantages of the proposed hybrid approach in real-time applications.
comment: Published in: 2025 33rd International Conference on Electrical Engineering (ICEE), Publisher IEEE
☆ Discrete diffusion samplers and bridges: Off-policy algorithms and applications in latent spaces
Sampling from a distribution $p(x) \propto e^{-\mathcal{E}(x)}$ known up to a normalising constant is an important and challenging problem in statistics. Recent years have seen the rise of a new family of amortised sampling algorithms, commonly referred to as diffusion samplers, that enable fast and efficient sampling from an unnormalised density. Such algorithms have been widely studied for continuous-space sampling tasks; however, their application to problems in discrete space remains largely unexplored. Although some progress has been made in this area, discrete diffusion samplers do not take full advantage of ideas commonly used for continuous-space sampling. In this paper, we propose to bridge this gap by introducing off-policy training techniques for discrete diffusion samplers. We show that these techniques improve the performance of discrete samplers on both established and new synthetic benchmarks. Next, we generalise discrete diffusion samplers to the task of bridging between two arbitrary distributions, introducing data-to-energy Schrödinger bridge training for the discrete domain for the first time. Lastly, we showcase the application of the proposed diffusion samplers to data-free posterior sampling in the discrete latent spaces of image generative models.
comment: Code: https://github.com/mmacosha/offpolicy-discrete-diffusion-samplers-and-bridges
☆ Better Source, Better Flow: Learning Condition-Dependent Source Distribution for Flow Matching
Flow matching has recently emerged as a promising alternative to diffusion-based generative models, particularly for text-to-image generation. Despite its flexibility in allowing arbitrary source distributions, most existing approaches rely on a standard Gaussian distribution, a choice inherited from diffusion models, and rarely consider the source distribution itself as an optimization target in such settings. In this work, we show that principled design of the source distribution is not only feasible but also beneficial at the scale of modern text-to-image systems. Specifically, we propose learning a condition-dependent source distribution under flow matching objective that better exploit rich conditioning signals. We identify key failure modes that arise when directly incorporating conditioning into the source, including distributional collapse and instability, and show that appropriate variance regularization and directional alignment between source and target are critical for stable and effective learning. We further analyze how the choice of target representation space impacts flow matching with structured sources, revealing regimes in which such designs are most effective. Extensive experiments across multiple text-to-image benchmarks demonstrate consistent and robust improvements, including up to a 3x faster convergence in FID, highlighting the practical benefits of a principled source distribution design for conditional flow matching.
comment: Project Page: https://junwankimm.github.io/CSFM
☆ Breaking Symmetry Bottlenecks in GNN Readouts
Graph neural networks (GNNs) are widely used for learning on structured data, yet their ability to distinguish non-isomorphic graphs is fundamentally limited. These limitations are usually attributed to message passing; in this work we show that an independent bottleneck arises at the readout stage. Using finite-dimensional representation theory, we prove that all linear permutation-invariant readouts, including sum and mean pooling, factor through the Reynolds (group-averaging) operator and therefore project node embeddings onto the fixed subspace of the permutation action, erasing all non-trivial symmetry-aware components regardless of encoder expressivity. This yields both a new expressivity barrier and an interpretable characterization of what global pooling preserves or destroys. To overcome this collapse, we introduce projector-based invariant readouts that decompose node representations into symmetry-aware channels and summarize them with nonlinear invariant statistics, preserving permutation invariance while retaining information provably invisible to averaging. Empirically, swapping only the readout enables fixed encoders to separate WL-hard graph pairs and improves performance across multiple benchmarks, demonstrating that readout design is a decisive and under-appreciated factor in GNN expressivity.
comment: 23 pages
☆ $f$-GRPO and Beyond: Divergence-Based Reinforcement Learning Algorithms for General LLM Alignment
Recent research shows that Preference Alignment (PA) objectives act as divergence estimators between aligned (chosen) and unaligned (rejected) response distributions. In this work, we extend this divergence-based perspective to general alignment settings, such as reinforcement learning with verifiable rewards (RLVR), where only environmental rewards are available. Within this unified framework, we propose $f$-Group Relative Policy Optimization ($f$-GRPO), a class of on-policy reinforcement learning, and $f$-Hybrid Alignment Loss ($f$-HAL), a hybrid on/off policy objectives, for general LLM alignment based on variational representation of $f$-divergences. We provide theoretical guarantees that these classes of objectives improve the average reward after alignment. Empirically, we validate our framework on both RLVR (Math Reasoning) and PA tasks (Safety Alignment), demonstrating superior performance and flexibility compared to current methods.
☆ Orthogonal Model Merging
Merging finetuned Large Language Models (LLMs) has become increasingly important for integrating diverse capabilities into a single unified model. However, prevailing model merging methods rely on linear arithmetic in Euclidean space, which often destroys the intrinsic geometric properties of pretrained weights, such as hyperspherical energy. To address this, we propose Orthogonal Model Merging (OrthoMerge), a method that performs merging operations on the Riemannian manifold formed by the orthogonal group to preserve the geometric structure of the model's weights. By mapping task-specific orthogonal matrices learned by Orthogonal Finetuning (OFT) to the Lie algebra, OrthoMerge enables a principled yet efficient integration that takes into account both the direction and intensity of adaptations. In addition to directly leveraging orthogonal matrices obtained by OFT, we further extend this approach to general models finetuned with non-OFT methods (i.e., low-rank finetuning, full finetuning) via an Orthogonal-Residual Decoupling strategy. This technique extracts the orthogonal components of expert models by solving the orthogonal Procrustes problem, which are then merged on the manifold of the orthogonal group, while the remaining linear residuals are processed through standard additive merging. Extensive empirical results demonstrate the effectiveness of OrthoMerge in mitigating catastrophic forgetting and maintaining model performance across diverse tasks.
comment: Technical report (18 pages, 9 figures, project page: https://spherelab.ai/OrthoMerge/)
☆ Dimensionality Reduction on Riemannian Manifolds in Data Analysis
In this work, we investigate Riemannian geometry based dimensionality reduction methods that respect the underlying manifold structure of the data. In particular, we focus on Principal Geodesic Analysis (PGA) as a nonlinear generalization of PCA for manifold valued data, and extend discriminant analysis through Riemannian adaptations of other known dimensionality reduction methods. These approaches exploit geodesic distances, tangent space representations, and intrinsic statistical measures to achieve more faithful low dimensional embeddings. We also discuss related manifold learning techniques and highlight their theoretical foundations and practical advantages. Experimental results on representative datasets demonstrate that Riemannian methods provide improved representation quality and classification performance compared to their Euclidean counterparts, especially for data constrained to curved spaces such as hyperspheres and symmetric positive definite manifolds. This study underscores the importance of geometry aware dimensionality reduction in modern machine learning and data science applications.
Tuning Out-of-Distribution (OOD) Detectors Without Given OOD Data
Existing out-of-distribution (OOD) detectors are often tuned by a separate dataset deemed OOD with respect to the training distribution of a neural network (NN). OOD detectors process the activations of NN layers and score the output, where parameters of the detectors are determined by fitting to an in-distribution (training) set and the aforementioned dataset chosen adhocly. At detector training time, this adhoc dataset may not be available or difficult to obtain, and even when it's available, it may not be representative of actual OOD data, which is often ''unknown unknowns." Current benchmarks may specify some left-out set from test OOD sets. We show that there can be significant variance in performance of detectors based on the adhoc dataset chosen in current literature, and thus even if such a dataset can be collected, the performance of the detector may be highly dependent on the choice. In this paper, we introduce and formalize the often neglected problem of tuning OOD detectors without a given ``OOD'' dataset. To this end, we present strong baselines as an attempt to approach this problem. Furthermore, we propose a new generic approach to OOD detector tuning that does not require any extra data other than those used to train the NN. We show that our approach improves over baseline methods consistently across higher-parameter OOD detector families, while being comparable across lower-parameter families.
☆ Approximation of Log-Partition Function in Policy Mirror Descent Induces Implicit Regularization for LLM Post-Training
Policy mirror descent (PMD) provides a principled framework for reinforcement learning (RL) by iteratively solving KL-regularized policy improvement subproblems. While this approach has been adopted in training advanced LLMs such as Kimi K1.5/K2, the ideal closed-form PMD updates require reliable partition function estimation, a significant challenge when working with limited rollouts in the vast action spaces of LLMs. We investigate a practical algorithm, termed PMD-mean, that approximates the log-partition term with the mean reward under the sampling policy and performs regression in log-policy space. Specifically, we characterize the population solution of PMD-mean and demonstrate that it implicitly optimizes mirror descent subproblems with an adaptive mixed KL--$χ^2$ regularizer. This additional $χ^2$ regularization constrains large probability changes, producing more conservative updates when expected rewards are low and enhancing robustness against finite-sample estimation errors. Experiments on math reasoning tasks show that PMD-mean achieves superior performance with improved stability and time efficiency. These findings deepen our understanding of PMD-mean and illuminate pathways toward principled improvements in RL algorithms for LLMs. Code is available at https://github.com/horizon-rl/OpenKimi.
Transformers Are Born Biased: Structural Inductive Biases at Random Initialization and Their Practical Consequences
Transformers underpin modern large language models (LLMs) and are commonly assumed to be behaviorally unstructured at random initialization, with all meaningful preferences emerging only through large-scale training. We challenge this assumption by showing that randomly initialized transformers already exhibit strong and systematic structural biases. In particular, untrained models display extreme token preferences: across random input sequences, certain tokens are predicted with probabilities orders of magnitude larger. We provide a mechanistic explanation for this phenomenon by dissecting the transformer architecture at initialization. We show that extreme token preference arises from a contraction of token representations along a random seed-dependent direction. This contraction is driven by two interacting forces: (i) asymmetric nonlinear activations in MLP sublayers induce global (inter-sequence) representation concentration, and (ii) self-attention further amplifies this effect through local (intra-sequence) aggregation. Together, these mechanisms align hidden representations along a direction determined solely by the random initialization, producing highly non-uniform next-token predictions. Beyond mechanistic insight, we demonstrate that these initialization-induced biases persist throughout training, forming a stable and intrinsic model identity. Leveraging this property, we introduce SeedPrint, a fingerprinting method that can reliably distinguish models that differ only in their random initialization, even after extensive training and under substantial distribution shift. Finally, we identify a fundamental positional discrepancy inherent to the attention mechanism's intra-sequence contraction that is causally linked to the attention-sink phenomenon. This discovery provides a principled explanation for the emergence of sinks and offers a pathway for their control.
☆ Chunky Post-Training: Data Driven Failures of Generalization
LLM post-training involves many diverse datasets, each targeting a specific behavior. But these datasets encode incidental patterns alongside intended ones: correlations between formatting and content, narrow phrasings across diverse problems, and implicit associations arising from the discrete data curation process. These patterns are often invisible to developers yet salient to models, producing behaviors that surprise their creators, such as rejecting true facts presented in a particular question format. We call this chunky post-training: the model learns spurious correlations as a result of distinct chunks of post-training data. We introduce SURF, a black-box pipeline which surfaces these unintended behaviors at run time, and TURF, a tool that traces these failures back to specific post-training data. Applying these tools to frontier models (Claude 4.5, GPT-5.1, Grok 4.1, Gemini 3) and open models (Tülu 3), we show that chunky post-training produces miscalibrated behaviors, which often result from imbalanced or underspecified chunks of post-training data.
☆ Verification of the Implicit World Model in a Generative Model via Adversarial Sequences ICLR 2026
Generative sequence models are typically trained on sample sequences from natural or formal languages. It is a crucial question whether -- or to what extent -- sample-based training is able to capture the true structure of these languages, often referred to as the ``world model''. Theoretical results indicate that we can hope for soundness at best, that is, generating valid sequences, but not necessarily all of them. However, it is still important to have practical tools that are able to verify whether a given sequence model is sound. In this study, we focus on chess, as it is a domain that provides enough complexity while having a simple rule-based world model. We propose adversarial sequence generation for verifying the soundness of the sequence model. Our adversaries generate valid sequences so as to force the sequence model to generate an invalid next move prediction. Apart from the falsification of soundness, this method is also suitable for a more fine-grained analysis of the failure modes and the effects of different choices during training. To demonstrate this, we propose a number of methods for adversarial sequence generation and evaluate the approach on a large set of chess models. We train models on random as well as high-quality chess games, using several training recipes. We find that none of the models are sound, but some training techniques and dataset choices are able to improve soundness remarkably. We also investigate the potential application of board state probes in both our training and attack methods. Our findings indicate that the extracted board states have no causal role in next token prediction in most of the models.
comment: Accepted at ICLR 2026. Code, datasets, and models are available at https://github.com/szegedai/world-model-verification
☆ Regularized Calibration with Successive Rounding for Post-Training Quantization
Large language models (LLMs) deliver robust performance across diverse applications, yet their deployment often faces challenges due to the memory and latency costs of storing and accessing billions of parameters. Post-training quantization (PTQ) enables efficient inference by mapping pretrained weights to low-bit formats without retraining, but its effectiveness depends critically on both the quantization objective and the rounding procedure used to obtain low-bit weight representations. In this work, we show that interpolating between symmetric and asymmetric calibration acts as a form of regularization that preserves the standard quadratic structure used in PTQ while providing robustness to activation mismatch. Building on this perspective, we derive a simple successive rounding procedure that naturally incorporates asymmetric calibration, as well as a bounded-search extension that allows for an explicit trade-off between quantization quality and the compute cost. Experiments across multiple LLM families, quantization bit-widths, and benchmarks demonstrate that the proposed bounded search based on a regularized asymmetric calibration objective consistently improves perplexity and accuracy over PTQ baselines, while incurring only modest and controllable additional computational cost.
☆ Universal approximation with signatures of non-geometric rough paths
We establish a universal approximation theorem for signatures of rough paths that are not necessarily weakly geometric. By extending the path with time and its rough path bracket terms, we prove that linear functionals of the signature of the resulting rough paths approximate continuous functionals on rough path spaces uniformly on compact sets. Moreover, we construct the signature of a path extended by its pathwise quadratic variation terms based on general pathwise stochastic integration à la Föllmer, in particular, allowing for pathwise Itô, Stratonovich, and backward Itô integration. In a probabilistic setting, we obtain a universal approximation result for linear functionals of the signature of continuous semimartingales extended by the quadratic variation terms, defined via stochastic Itô integration. Numerical examples illustrate the use of signatures when the path is extended by time and quadratic variation in the context of model calibration and option pricing in mathematical finance.
☆ Parity, Sensitivity, and Transformers
The transformer architecture is almost a decade old. Despite that, we still have a limited understanding of what this architecture can or cannot compute. For instance, can a 1-layer transformer solve PARITY -- or more generally -- which kinds of transformers can do it? Known constructions for PARITY have at least 2 layers and employ impractical features: either a length-dependent positional encoding, or hardmax, or layernorm without the regularization parameter, or they are not implementable with causal masking. We give a new construction of a transformer for PARITY with softmax, length-independent and polynomially bounded positional encoding, no layernorm, working both with and without causal masking. We also give the first lower bound for transformers solving PARITY -- by showing that it cannot be done with only one layer and one head.
comment: 15 pages
☆ ContextBench: A Benchmark for Context Retrieval in Coding Agents
LLM-based coding agents have shown strong performance on automated issue resolution benchmarks, yet existing evaluations largely focus on final task success, providing limited insight into how agents retrieve and use code context during problem solving. We introduce ContextBench, a process-oriented evaluation of context retrieval in coding agents. ContextBench consists of 1,136 issue-resolution tasks from 66 repositories across eight programming languages, each augmented with human-annotated gold contexts. We further implement an automated evaluation framework that tracks agent trajectories and measures context recall, precision, and efficiency throughout issue resolution. Using ContextBench, we evaluate four frontier LLMs and five coding agents. Our results show that sophisticated agent scaffolding yields only marginal gains in context retrieval ("The Bitter Lesson" of coding agents), LLMs consistently favor recall over precision, and substantial gaps exist between explored and utilized context. ContextBench augments existing end-to-end benchmarks with intermediate gold-context metrics that unbox the issue-resolution process. These contexts offer valuable intermediate signals for guiding LLM reasoning in software tasks. Data and code are available at: https://cioutn.github.io/context-bench/.
comment: 36 pages, 6 figures, 4 tables
☆ DFPO: Scaling Value Modeling via Distributional Flow towards Robust and Generalizable LLM Post-Training
Training reinforcement learning (RL) systems in real-world environments remains challenging due to noisy supervision and poor out-of-domain (OOD) generalization, especially in LLM post-training. Recent distributional RL methods improve robustness by modeling values with multiple quantile points, but they still learn each quantile independently as a scalar. This results in rough-grained value representations that lack fine-grained conditioning on state information, struggling under complex and OOD conditions. We propose DFPO (Distributional Value Flow Policy Optimization with Conditional Risk and Consistency Control), a robust distributional RL framework that models values as continuous flows across time steps. By scaling value modeling through learning of a value flow field instead of isolated quantile predictions, DFPO captures richer state information for more accurate advantage estimation. To stabilize training under noisy feedback, DFPO further integrates conditional risk control and consistency constraints along value flow trajectories. Experiments on dialogue, math reasoning, and scientific tasks show that DFPO outperforms PPO, FlowRL, and other robust baselines under noisy supervision, achieving improved training stability and generalization.
☆ Escaping Local Minima Provably in Non-convex Matrix Sensing: A Deterministic Framework via Simulated Lifting
Low-rank matrix sensing is a fundamental yet challenging nonconvex problem whose optimization landscape typically contains numerous spurious local minima, making it difficult for gradient-based optimizers to converge to the global optimum. Recent work has shown that over-parameterization via tensor lifting can convert such local minima into strict saddle points, an insight that also partially explains why massive scaling can improve generalization and performance in modern machine learning. Motivated by this observation, we propose a Simulated Oracle Direction (SOD) escape mechanism that simulates the landscape and escape direction of the over-parametrized space, without resorting to actually lifting the problem, since that would be computationally intractable. In essence, we designed a mathematical framework to project over-parametrized escape directions onto the original parameter space to guarantee a strict decrease of objective value from existing local minima. To the best of the our knowledge, this represents the first deterministic framework that could escape spurious local minima with guarantee, especially without using random perturbations or heuristic estimates. Numerical experiments demonstrate that our framework reliably escapes local minima and facilitates convergence to global optima, while incurring minimal computational cost when compared to explicit tensor over-parameterization. We believe this framework has non-trivial implications for nonconvex optimization beyond matrix sensing, by showcasing how simulated over-parameterization can be leveraged to tame challenging optimization landscapes.
comment: 48 pages, 10 figures, 5 tables. Submitted to Mathematical Programming
☆ Dr. Kernel: Reinforcement Learning Done Right for Triton Kernel Generations
High-quality kernel is critical for scalable AI systems, and enabling LLMs to generate such code would advance AI development. However, training LLMs for this task requires sufficient data, a robust environment, and the process is often vulnerable to reward hacking and lazy optimization. In these cases, models may hack training rewards and prioritize trivial correctness over meaningful speedup. In this paper, we systematically study reinforcement learning (RL) for kernel generation. We first design KernelGYM, a robust distributed GPU environment that supports reward hacking check, data collection from multi-turn interactions and long-term RL training. Building on KernelGYM, we investigate effective multi-turn RL methods and identify a biased policy gradient issue caused by self-inclusion in GRPO. To solve this, we propose Turn-level Reinforce-Leave-One-Out (TRLOO) to provide unbiased advantage estimation for multi-turn RL. To alleviate lazy optimization, we incorporate mismatch correction for training stability and introduce Profiling-based Rewards (PR) and Profiling-based Rejection Sampling (PRS) to overcome the issue. The trained model, Dr.Kernel-14B, reaches performance competitive with Claude-4.5-Sonnet in Kernelbench. Finally, we study sequential test-time scaling for Dr.Kernel-14B. On the KernelBench Level-2 subset, 31.6% of the generated kernels achieve at least a 1.2x speedup over the Torch reference, surpassing Claude-4.5-Sonnet (26.7%) and GPT-5 (28.6%). When selecting the best candidate across all turns, this 1.2x speedup rate further increases to 47.8%. All resources, including environment, training code, models, and dataset, are included in https://www.github.com/hkust-nlp/KernelGYM.
☆ EuroLLM-22B: Technical Report
This report presents EuroLLM-22B, a large language model trained from scratch to support the needs of European citizens by covering all 24 official European Union languages and 11 additional languages. EuroLLM addresses the issue of European languages being underrepresented and underserved in existing open large language models. We provide a comprehensive overview of EuroLLM-22B's development, including tokenizer design, architectural specifications, data filtering, and training procedures. Across a broad set of multilingual benchmarks, EuroLLM-22B demonstrates strong performance in reasoning, instruction following, and translation, achieving results competitive with models of comparable size. To support future research, we release our base and instruction-tuned models, our multilingual web pretraining data and updated EuroBlocks instruction datasets, as well as our pre-training and evaluation codebases.
☆ Large-scale Score-based Variational Posterior Inference for Bayesian Deep Neural Networks
Bayesian (deep) neural networks (BNN) are often more attractive than the mainstream point-estimate vanilla deep learning in various aspects including uncertainty quantification, robustness to noise, resistance to overfitting, and more. The variational inference (VI) is one of the most widely adopted approximate inference methods. Whereas the ELBO-based variational free energy method is a dominant choice in the literature, in this paper we introduce a score-based alternative for BNN variational inference. Although there have been quite a few score-based variational inference methods proposed in the community, most are not adequate for large-scale BNNs for various computational and technical reasons. We propose a novel scalable VI method where the learning objective combines the score matching loss and the proximal penalty term in iterations, which helps our method avoid the reparametrized sampling, and allows for noisy unbiased mini-batch scores through stochastic gradients. This in turn makes our method scalable to large-scale neural networks including Vision Transformers, and allows for richer variational density families. On several benchmarks including visual recognition and time-series forecasting with large-scale deep networks, we empirically show the effectiveness of our approach.
☆ Wedge Sampling: Efficient Tensor Completion with Nearly-Linear Sample Complexity
We introduce Wedge Sampling, a new non-adaptive sampling scheme for low-rank tensor completion. We study recovery of an order-$k$ low-rank tensor of dimension $n \times \cdots \times n$ from a subset of its entries. Unlike the standard uniform entry model (i.e., i.i.d. samples from $[n]^k$), wedge sampling allocates observations to structured length-two patterns (wedges) in an associated bipartite sampling graph. By directly promoting these length-two connections, the sampling design strengthens the spectral signal that underlies efficient initialization, in regimes where uniform sampling is too sparse to generate enough informative correlations. Our main result shows that this change in sampling paradigm enables polynomial-time algorithms to achieve both weak and exact recovery with nearly linear sample complexity in $n$. The approach is also plug-and-play: wedge-sampling-based spectral initialization can be combined with existing refinement procedures (e.g., spectral or gradient-based methods) using only an additional $\tilde{O}(n)$ uniformly sampled entries, substantially improving over the $\tilde{O}(n^{k/2})$ sample complexity typically required under uniform entry sampling for efficient methods. Overall, our results suggest that the statistical-to-computational gap highlighted in Barak and Moitra (2022) is, to a large extent, a consequence of the uniform entry sampling model for tensor completion, and that alternative non-adaptive measurement designs that guarantee a strong initialization can overcome this barrier.
comment: 58 pages, 3 figures
☆ Constrained Group Relative Policy Optimization
While Group Relative Policy Optimization (GRPO) has emerged as a scalable framework for critic-free policy learning, extending it to settings with explicit behavioral constraints remains underexplored. We introduce Constrained GRPO, a Lagrangian-based extension of GRPO for constrained policy optimization. Constraints are specified via indicator cost functions, enabling direct optimization of violation rates through a Lagrangian relaxation. We show that a naive multi-component treatment in advantage estimation can break constrained learning: mismatched component-wise standard deviations distort the relative importance of the different objective terms, which in turn corrupts the Lagrangian signal and prevents meaningful constraint enforcement. We formally derive this effect to motivate our scalarized advantage construction that preserves the intended trade-off between reward and constraint terms. Experiments in a toy gridworld confirm the predicted optimization pathology and demonstrate that scalarizing advantages restores stable constraint control. In addition, we evaluate Constrained GRPO on robotics tasks, where it improves constraint satisfaction while increasing task success, establishing a simple and effective recipe for constrained policy optimization in embodied AI domains that increasingly rely on large multimodal foundation models.
comment: 16 pages, 6 figures
☆ Distribution-free two-sample testing with blurred total variation distance
Two-sample testing, where we aim to determine whether two distributions are equal or not equal based on samples from each one, is challenging if we cannot place assumptions on the properties of the two distributions. In particular, certifying equality of distributions, or even providing a tight upper bound on the total variation (TV) distance between the distributions, is impossible to achieve in a distribution-free regime. In this work, we examine the blurred TV distance, a relaxation of TV distance that enables us to perform inference without assumptions on the distributions. We provide theoretical guarantees for distribution-free upper and lower bounds on the blurred TV distance, and examine its properties in high dimensions.
comment: 47 pages, 4 figures
☆ CFRecs: Counterfactual Recommendations on Real Estate User Listing Interaction Graphs
Graph-structured data is ubiquitous and powerful in representing complex relationships in many online platforms. While graph neural networks (GNNs) are widely used to learn from such data, counterfactual graph learning has emerged as a promising approach to improve model interpretability. Counterfactual explanation research focuses on identifying a counterfactual graph that is similar to the original but leads to different predictions. These explanations optimize two objectives simultaneously: the sparsity of changes in the counterfactual graph and the validity of its predictions. Building on these qualitative optimization goals, this paper introduces CFRecs, a novel framework that transforms counterfactual explanations into actionable insights. CFRecs employs a two-stage architecture consisting of a graph neural network (GNN) and a graph variational auto-encoder (Graph-VAE) to strategically propose minimal yet high-impact changes in graph structure and node attributes to drive desirable outcomes in recommender systems. We apply CFRecs to Zillow's graph-structured data to deliver actionable recommendations for both home buyers and sellers with the goal of helping them navigate the competitive housing market and achieve their homeownership goals. Experimental results on Zillow's user-listing interaction data demonstrate the effectiveness of CFRecs, which also provides a fresh perspective on recommendations using counterfactual reasoning in graphs.
☆ DLM-Scope: Mechanistic Interpretability of Diffusion Language Models via Sparse Autoencoders
Sparse autoencoders (SAEs) have become a standard tool for mechanistic interpretability in autoregressive large language models (LLMs), enabling researchers to extract sparse, human-interpretable features and intervene on model behavior. Recently, as diffusion language models (DLMs) have become an increasingly promising alternative to the autoregressive LLMs, it is essential to develop tailored mechanistic interpretability tools for this emerging class of models. In this work, we present DLM-Scope, the first SAE-based interpretability framework for DLMs, and demonstrate that trained Top-K SAEs can faithfully extract interpretable features. Notably, we find that inserting SAEs affects DLMs differently than autoregressive LLMs: while SAE insertion in LLMs typically incurs a loss penalty, in DLMs it can reduce cross-entropy loss when applied to early layers, a phenomenon absent or markedly weaker in LLMs. Additionally, SAE features in DLMs enable more effective diffusion-time interventions, often outperforming LLM steering. Moreover, we pioneer certain new SAE-based research directions for DLMs: we show that SAEs can provide useful signals for DLM decoding order; and the SAE features are stable during the post-training phase of DLMs. Our work establishes a foundation for mechanistic interpretability in DLMs and shows a great potential of applying SAEs to DLM-related tasks and algorithms.
comment: 23 pages
☆ A Hybrid Autoencoder for Robust Heightmap Generation from Fused Lidar and Depth Data for Humanoid Robot Locomotion
Reliable terrain perception is a critical prerequisite for the deployment of humanoid robots in unstructured, human-centric environments. While traditional systems often rely on manually engineered, single-sensor pipelines, this paper presents a learning-based framework that uses an intermediate, robot-centric heightmap representation. A hybrid Encoder-Decoder Structure (EDS) is introduced, utilizing a Convolutional Neural Network (CNN) for spatial feature extraction fused with a Gated Recurrent Unit (GRU) core for temporal consistency. The architecture integrates multimodal data from an Intel RealSense depth camera, a LIVOX MID-360 LiDAR processed via efficient spherical projection, and an onboard IMU. Quantitative results demonstrate that multimodal fusion improves reconstruction accuracy by 7.2% over depth-only and 9.9% over LiDAR-only configurations. Furthermore, the integration of a 3.2 s temporal context reduces mapping drift.
☆ Exact Recovery in the Data Block Model
Community detection in networks is a fundamental problem in machine learning and statistical inference, with applications in social networks, biological systems, and communication networks. The stochastic block model (SBM) serves as a canonical framework for studying community structure, and exact recovery, identifying the true communities with high probability, is a central theoretical question. While classical results characterize the phase transition for exact recovery based solely on graph connectivity, many real-world networks contain additional data, such as node attributes or labels. In this work, we study exact recovery in the Data Block Model (DBM), an SBM augmented with node-associated data, as formalized by Asadi, Abbe, and Verdú (2017). We introduce the Chernoff--TV divergence and use it to characterize a sharp exact recovery threshold for the DBM. We further provide an efficient algorithm that achieves this threshold, along with a matching converse result showing impossibility below the threshold. Finally, simulations validate our findings and demonstrate the benefits of incorporating vertex data as side information in community detection.
comment: 35 pages
☆ Visualizing the loss landscapes of physics-informed neural networks
Training a neural network requires navigating a high-dimensional, non-convex loss surface to find parameters that minimize this loss. In many ways, it is surprising that optimizers such as stochastic gradient descent and ADAM can reliably locate minima which perform well on both the training and test data. To understand the success of training, a "loss landscape" community has emerged to study the geometry of the loss function and the dynamics of optimization, often using visualization techniques. However, these loss landscape studies have mostly been limited to machine learning for image classification. In the newer field of physics-informed machine learning, little work has been conducted to visualize the landscapes of losses defined not by regression to large data sets, but by differential operators acting on state fields discretized by neural networks. In this work, we provide a comprehensive review of the loss landscape literature, as well as a discussion of the few existing physics-informed works which investigate the loss landscape. We then use a number of the techniques we survey to empirically investigate the landscapes defined by the Deep Ritz and squared residual forms of the physics loss function. We find that the loss landscapes of physics-informed neural networks have many of the same properties as the data-driven classification problems studied in the literature. Unexpectedly, we find that the two formulations of the physics loss often give rise to similar landscapes, which appear smooth, well-conditioned, and convex in the vicinity of the solution. The purpose of this work is to introduce the loss landscape perspective to the scientific machine learning community, compare the Deep Ritz and the strong form losses, and to challenge prevailing intuitions about the complexity of the loss landscapes of physics-informed networks.
☆ Optimal scaling laws in learning hierarchical multi-index models
In this work, we provide a sharp theory of scaling laws for two-layer neural networks trained on a class of hierarchical multi-index targets, in a genuinely representation-limited regime. We derive exact information-theoretic scaling laws for subspace recovery and prediction error, revealing how the hierarchical features of the target are sequentially learned through a cascade of phase transitions. We further show that these optimal rates are achieved by a simple, target-agnostic spectral estimator, which can be interpreted as the small learning-rate limit of gradient descent on the first-layer weights. Once an adapted representation is identified, the readout can be learned statistically optimally, using an efficient procedure. As a consequence, we provide a unified and rigorous explanation of scaling laws, plateau phenomena, and spectral structure in shallow neural networks trained on such hierarchical targets.
☆ Synthesizing Realistic Test Data without Breaking Privacy
There is a need for synthetic training and test datasets that replicate statistical distributions of original datasets without compromising their confidentiality. A lot of research has been done in leveraging Generative Adversarial Networks (GANs) for synthetic data generation. However, the resulting models are either not accurate enough or are still vulnerable to membership inference attacks (MIA) or dataset reconstruction attacks since the original data has been leveraged in the training process. In this paper, we explore the feasibility of producing a synthetic test dataset with the same statistical properties as the original one, with only indirectly leveraging the original data in the generation process. The approach is inspired by GANs, with a generation step and a discrimination step. However, in our approach, we use a test generator (a fuzzer) to produce test data from an input specification, preserving constraints set by the original data; a discriminator model determines how close we are to the original data. By evolving samples and determining "good samples" with the discriminator, we can generate privacy-preserving data that follows the same statistical distributions are the original dataset, leading to a similar utility as the original data. We evaluated our approach on four datasets that have been used to evaluate the state-of-the-art techniques. Our experiments highlight the potential of our approach towards generating synthetic datasets that have high utility while preserving privacy.
☆ Learning Compact Boolean Networks
Floating-point neural networks dominate modern machine learning but incur substantial inference cost, motivating interest in Boolean networks for resource-constrained settings. However, learning compact and accurate Boolean networks is challenging due to their combinatorial nature. In this work, we address this challenge from three different angles: learned connections, compact convolutions and adaptive discretization. First, we propose a novel strategy to learn efficient connections with no additional parameters and negligible computational overhead. Second, we introduce a novel convolutional Boolean architecture that exploits the locality with reduced number of Boolean operations than existing methods. Third, we propose an adaptive discretization strategy to reduce the accuracy drop when converting a continuous-valued network into a Boolean one. Extensive results on standard vision benchmarks demonstrate that the Pareto front of accuracy vs. computation of our method significantly outperforms prior state-of-the-art, achieving better accuracy with up to 37x fewer Boolean operations.
☆ Interpreting Manifolds and Graph Neural Embeddings from Internet of Things Traffic Flows
The rapid expansion of Internet of Things (IoT) ecosystems has led to increasingly complex and heterogeneous network topologies. Traditional network monitoring and visualization tools rely on aggregated metrics or static representations, which fail to capture the evolving relationships and structural dependencies between devices. Although Graph Neural Networks (GNNs) offer a powerful way to learn from relational data, their internal representations often remain opaque and difficult to interpret for security-critical operations. Consequently, this work introduces an interpretable pipeline that generates directly visualizable low-dimensional representations by mapping high-dimensional embeddings onto a latent manifold. This projection enables the interpretable monitoring and interoperability of evolving network states, while integrated feature attribution techniques decode the specific characteristics shaping the manifold structure. The framework achieves a classification F1-score of 0.830 for intrusion detection while also highlighting phenomena such as concept drift. Ultimately, the presented approach bridges the gap between high-dimensional GNN embeddings and human-understandable network behavior, offering new insights for network administrators and security analysts.
☆ Where Does Warm-Up Come From? Adaptive Scheduling for Norm-Constrained Optimizers
We study adaptive learning rate scheduling for norm-constrained optimizers (e.g., Muon and Lion). We introduce a generalized smoothness assumption under which local curvature decreases with the suboptimality gap and empirically verify that this behavior holds along optimization trajectories. Under this assumption, we establish convergence guarantees under an appropriate choice of learning rate, for which warm-up followed by decay arises naturally from the proof rather than being imposed heuristically. Building on this theory, we develop a practical learning rate scheduler that relies only on standard hyperparameters and adapts the warm-up duration automatically at the beginning of training. We evaluate this method on large language model pretraining with LLaMA architectures and show that our adaptive warm-up selection consistently outperforms or at least matches the best manually tuned warm-up schedules across all considered setups, without additional hyperparameter search. Our source code is available at https://github.com/brain-lab-research/llm-baselines/tree/warmup
comment: 26 pages, 6 figures, 4 tables
☆ Principled Confidence Estimation for Deep Computed Tomography
We present a principled framework for confidence estimation in computed tomography (CT) reconstruction. Based on the sequential likelihood mixing framework (Kirschner et al., 2025), we establish confidence regions with theoretical coverage guarantees for deep-learning-based CT reconstructions. We consider a realistic forward model following the Beer-Lambert law, i.e., a log-linear forward model with Poisson noise, closely reflecting clinical and scientific imaging conditions. The framework is general and applies to both classical algorithms and deep learning reconstruction methods, including U-Nets, U-Net ensembles, and generative Diffusion models. Empirically, we demonstrate that deep reconstruction methods yield substantially tighter confidence regions than classical reconstructions, without sacrificing theoretical coverage guarantees. Our approach allows the detection of hallucinations in reconstructed images and provides interpretable visualizations of confidence regions. This establishes deep models not only as powerful estimators, but also as reliable tools for uncertainty-aware medical imaging.
☆ Bifrost: Steering Strategic Trajectories to Bridge Contextual Gaps for Self-Improving Agents
Autonomous agents excel in self-improvement through reflection and iterative refinement, which reuse successful task trajectories as in-context examples to assist subsequent reasoning. However, shifting across tasks often introduces a context mismatch. Hence, existing approaches either discard the trajectories or manipulate them using heuristics, leading to a non-negligible fine-tuning cost or unguaranteed performance. To bridge this gap, we reveal a context-trajectory correlation, where shifts of context are highly parallel with shifts of trajectory. Based on this finding, we propose BrIdge contextual gap FoR imprOvised trajectory STeering (Bifrost), a training-free method that leverages context differences to precisely guide the adaptation of previously solved trajectories towards the target task, mitigating the misalignment caused by context shifts. Our trajectory adaptation is conducted at the representation level using agent hidden states, ensuring trajectory transformation accurately aligns with the target context in a shared space. Across diverse benchmarks, Bifrost consistently outperforms existing trajectory reuse and finetuned self-improvement methods, demonstrating that agents can effectively leverage past experiences despite substantial context shifts.
☆ Non-Stationary Inventory Control with Lead Times
We study non-stationary single-item, periodic-review inventory control problems in which the demand distribution is unknown and may change over time. We analyze how demand non-stationarity affects learning performance across inventory models, including systems with demand backlogging or lost-sales, both with and without lead times. For each setting, we propose an adaptive online algorithm that optimizes over the class of base-stock policies and establish performance guarantees in terms of dynamic regret relative to the optimal base-stock policy at each time step. Our results reveal a sharp separation across inventory models. In backlogging systems and lost-sales models with zero lead time, we show that it is possible to adapt to demand changes without incurring additional performance loss in stationary environments, even without prior knowledge of the demand distributions or the number of demand shifts. In contrast, for lost-sales systems with positive lead times, we establish weaker guarantees that reflect fundamental limitations imposed by delayed replenishment in combination with censored feedback. Our algorithms leverage the convexity and one-sided feedback structure of inventory costs to enable counterfactual policy evaluation despite demand censoring. We complement the theoretical analysis with simulation results showing that our methods significantly outperform existing benchmarks.
☆ Learning False Discovery Rate Control via Model-Based Neural Networks ICASSP
Controlling the false discovery rate (FDR) in high-dimensional variable selection requires balancing rigorous error control with statistical power. Existing methods with provable guarantees are often overly conservative, creating a persistent gap between the realized false discovery proportion (FDP) and the target FDR level. We introduce a learning-augmented enhancement of the T-Rex Selector framework that narrows this gap. Our approach replaces the analytical FDP estimator with a neural network trained solely on diverse synthetic datasets, enabling a substantially tighter and more accurate approximation of the FDP. This refinement allows the procedure to operate much closer to the desired FDR level, thereby increasing discovery power while maintaining effective approximate control. Through extensive simulations and a challenging synthetic genome-wide association study (GWAS), we demonstrate that our method achieves superior detection of true variables compared to existing approaches.
comment: Accepted to IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2026
☆ Classification Under Local Differential Privacy with Model Reversal and Model Averaging
Local differential privacy (LDP) has become a central topic in data privacy research, offering strong privacy guarantees by perturbing user data at the source and removing the need for a trusted curator. However, the noise introduced by LDP often significantly reduces data utility. To address this issue, we reinterpret private learning under LDP as a transfer learning problem, where the noisy data serve as the source domain and the unobserved clean data as the target. We propose novel techniques specifically designed for LDP to improve classification performance without compromising privacy: (1) a noised binary feedback-based evaluation mechanism for estimating dataset utility; (2) model reversal, which salvages underperforming classifiers by inverting their decision boundaries; and (3) model averaging, which assigns weights to multiple reversed classifiers based on their estimated utility. We provide theoretical excess risk bounds under LDP and demonstrate how our methods reduce this risk. Empirical results on both simulated and real-world datasets show substantial improvements in classification accuracy.
☆ FiMI: A Domain-Specific Language Model for Indian Finance Ecosystem
We present FiMI (Finance Model for India), a domain-specialized financial language model developed for Indian digital payment systems. We develop two model variants: FiMI Base and FiMI Instruct. FiMI adapts the Mistral Small 24B architecture through a multi-stage training pipeline, beginning with continuous pre-training on 68 Billion tokens of curated financial, multilingual (English, Hindi, Hinglish), and synthetic data. This is followed by instruction fine-tuning and domain-specific supervised fine-tuning focused on multi-turn, tool-driven conversations that model real-world workflows, such as transaction disputes and mandate lifecycle management. Evaluations reveal that FiMI Base achieves a 20% improvement over the Mistral Small 24B Base model on finance reasoning benchmark, while FiMI Instruct outperforms the Mistral Small 24B Instruct model by 87% on domain-specific tool-calling. Moreover, FiMI achieves these significant domain gains while maintaining comparable performance to models of similar size on general benchmarks.
☆ Price of universality in vector quantization is at most 0.11 bit
Fast computation of a matrix product $W^\top X$ is a workhorse of modern LLMs. To make their deployment more efficient, a popular approach is that of using a low-precision approximation $\widehat W$ in place of true $W$ ("weight-only quantization''). Information theory demonstrates that an optimal algorithm for reducing precision of $W$ depends on the (second order) statistics of $X$ and requires a careful alignment of vector quantization codebook with PCA directions of $X$ (a process known as "waterfilling allocation''). Dependence of the codebook on statistics of $X$, however, is highly impractical. This paper proves that there exist a universal codebook that is simultaneously near-optimal for all possible statistics of $X$, in the sense of being at least as good as an $X$-adapted waterfilling codebook with rate reduced by 0.11 bit per dimension. Such universal codebook would be an ideal candidate for the low-precision storage format, a topic of active modern research, but alas the existence proof is non-constructive. Equivalently, our result shows existence of a net in $\mathbb{R}^n$ that is a nearly-optimal covering of a sphere simultaneously with respect to all Hilbert norms.
comment: 41 page, 1 figure
☆ Selecting Hyperparameters for Tree-Boosting
Tree-boosting is a widely used machine learning technique for tabular data. However, its out-of-sample accuracy is critically dependent on multiple hyperparameters. In this article, we empirically compare several popular methods for hyperparameter optimization for tree-boosting including random grid search, the tree-structured Parzen estimator (TPE), Gaussian-process-based Bayesian optimization (GP-BO), Hyperband, the sequential model-based algorithm configuration (SMAC) method, and deterministic full grid search using $59$ regression and classification data sets. We find that the SMAC method clearly outperforms all the other considered methods. We further observe that (i) a relatively large number of trials larger than $100$ is required for accurate tuning, (ii) using default values for hyperparameters yields very inaccurate models, (iii) all considered hyperparameters can have a material effect on the accuracy of tree-boosting, i.e., there is no small set of hyperparameters that is more important than others, and (iv) choosing the number of boosting iterations using early stopping yields more accurate results compared to including it in the search space for regression tasks.
☆ ReText: Text Boosts Generalization in Image-Based Person Re-identification
Generalizable image-based person re-identification (Re-ID) aims to recognize individuals across cameras in unseen domains without retraining. While multiple existing approaches address the domain gap through complex architectures, recent findings indicate that better generalization can be achieved by stylistically diverse single-camera data. Although this data is easy to collect, it lacks complexity due to minimal cross-view variation. We propose ReText, a novel method trained on a mixture of multi-camera Re-ID data and single-camera data, where the latter is complemented by textual descriptions to enrich semantic cues. During training, ReText jointly optimizes three tasks: (1) Re-ID on multi-camera data, (2) image-text matching, and (3) image reconstruction guided by text on single-camera data. Experiments demonstrate that ReText achieves strong generalization and significantly outperforms state-of-the-art methods on cross-domain Re-ID benchmarks. To the best of our knowledge, this is the first work to explore multimodal joint learning on a mixture of multi-camera and single-camera data in image-based person Re-ID.
☆ Distributional Reinforcement Learning with Diffusion Bridge Critics
Recent advances in diffusion-based reinforcement learning (RL) methods have demonstrated promising results in a wide range of continuous control tasks. However, existing works in this field focus on the application of diffusion policies while leaving the diffusion critics unexplored. In fact, since policy optimization fundamentally relies on the critic, accurate value estimation is far more important than policy expressiveness. Furthermore, given the stochasticity of most reinforcement learning tasks, it has been confirmed that the critic is more appropriately depicted with a distributional model. Motivated by these points, we propose a novel distributional RL method with Diffusion Bridge Critics (DBC). DBC directly models the inverse cumulative distribution function (CDF) of the Q value. This allows us to accurately capture the value distribution and prevents it from collapsing into a trivial Gaussian distribution owing to the strong distribution-matching capability of the diffusion bridge. Moreover, we further derive an analytic integral formula to address discretization errors in DBC, which is essential in value estimation. To our knowledge, DBC is the first work to employ the diffusion bridge model as the critic. Notably, DBC is also a plug-and-play component and can be integrated into most existing RL frameworks. Experimental results on MuJoCo robot control benchmarks demonstrate the superiority of DBC compared with previous distributional critic models.
☆ How Controlling the Variance can Improve Training Stability of Sparsely Activated DNNs and CNNs
The intermediate layers of deep networks can be characterised as a Gaussian process, in particular the Edge-of-Chaos (EoC) initialisation strategy prescribes the limiting covariance matrix of the Gaussian process. Here we show that the under-utilised chosen variance of the Gaussian process is important in the training of deep networks with sparsity inducing activation, such as a shifted and clipped ReLU, $\text{CReLU}_{τ,m}(x)=\min(\max(x-τ,0),m)$. Specifically, initialisations leading to larger fixed Gaussian process variances, allow for improved expressivity with activation sparsity as large as 90% in DNNs and CNNs, and generally improve the stability of the training process. Enabling full, or near full, accuracy at such high levels of sparsity in the hidden layers suggests a promising mechanism to reduce the energy consumption of machine learning models involving fully connected layers.
☆ Cross-Domain Offline Policy Adaptation via Selective Transition Correction
It remains a critical challenge to adapt policies across domains with mismatched dynamics in reinforcement learning (RL). In this paper, we study cross-domain offline RL, where an offline dataset from another similar source domain can be accessed to enhance policy learning upon a target domain dataset. Directly merging the two datasets may lead to suboptimal performance due to potential dynamics mismatches. Existing approaches typically mitigate this issue through source domain transition filtering or reward modification, which, however, may lead to insufficient exploitation of the valuable source domain data. Instead, we propose to modify the source domain data into the target domain data. To that end, we leverage an inverse policy model and a reward model to correct the actions and rewards of source transitions, explicitly achieving alignment with the target dynamics. Since limited data may result in inaccurate model training, we further employ a forward dynamics model to retain corrected samples that better match the target dynamics than the original transitions. Consequently, we propose the Selective Transition Correction (STC) algorithm, which enables reliable usage of source domain data for policy adaptation. Experiments on various environments with dynamics shifts demonstrate that STC achieves superior performance against existing baselines.
☆ Variational Speculative Decoding: Rethinking Draft Training from Token Likelihood to Sequence Acceptance
Speculative decoding accelerates inference for (M)LLMs, yet a training-decoding discrepancy persists: while existing methods optimize single greedy trajectories, decoding involves verifying and ranking multiple sampled draft paths. We propose Variational Speculative Decoding (VSD), formulating draft training as variational inference over latent proposals (draft paths). VSD maximizes the marginal probability of target-model acceptance, yielding an ELBO that promotes high-quality latent proposals while minimizing divergence from the target distribution. To enhance quality and reduce variance, we incorporate a path-level utility and optimize via an Expectation-Maximization procedure. The E-step draws MCMC samples from an oracle-filtered posterior, while the M-step maximizes weighted likelihood using Adaptive Rejection Weighting (ARW) and Confidence-Aware Regularization (CAR). Theoretical analysis confirms that VSD increases expected acceptance length and speedup. Extensive experiments across LLMs and MLLMs show that VSD achieves up to a 9.6% speedup over EAGLE-3 and 7.9% over ViSpec, significantly improving decoding efficiency.
☆ PMT Waveform Simulation and Reconstruction with Conditional Diffusion Network
Photomultiplier tubes (PMTs) are widely employed in particle and nuclear physics experiments. The accuracy of PMT waveform reconstruction directly impacts the detector's spatial and energy resolution. A key challenge arises when multiple photons arrive within a few nanoseconds, making it difficult to resolve individual photoelectrons (PEs). Although supervised deep learning methods have surpassed traditional methods in performance, their practical applicability is limited by the lack of ground-truth PE labels in real data. To address this issue, we propose an innovative weakly supervised waveform simulation and reconstruction approach based on a bidirectional conditional diffusion network framework. The method is fully data-driven and requires only raw waveforms and coarse estimates of PE information as input. It first employs a PE-conditioned diffusion model to simulate realistic waveforms from PE sequences, thereby learning the features of overlapping waveforms. Subsequently, these simulated waveforms are used to train a waveform-conditioned diffusion model to reconstruct the PE sequences from waveforms, reinforcing the learning of features of overlapping waveforms. Through iterative refinement between the two conditional diffusion processes, the model progressively improves reconstruction accuracy. Experimental results demonstrate that the proposed method achieves 99% of the normalized PE-number resolution averaged over 1-5 p.e. and 80% of the timing resolution attained by fully supervised learning.
☆ RocqSmith: Can Automatic Optimization Forge Better Proof Agents?
This work studies the applicability of automatic AI agent optimization methods to real-world agents in formal verification settings, focusing on automated theorem proving in Rocq as a representative and challenging domain. We evaluate how different automatic agent optimizers perform when applied to the task of optimizing a Rocq proof-generation agent, and assess whether parts of the fine-grained tuning of agentic systems, such as prompt design, contextual knowledge, and control strategies, can be automated. Our results show that while several optimizers yield measurable improvements, simple few-shot bootstrapping is the most consistently effective; however, none of the studied methods matches the performance of a carefully engineered state-of-the-art proof agent.
☆ How to Achieve the Intended Aim of Deep Clustering Now, without Deep Learning
Deep clustering (DC) is often quoted to have a key advantage over $k$-means clustering. Yet, this advantage is often demonstrated using image datasets only, and it is unclear whether it addresses the fundamental limitations of $k$-means clustering. Deep Embedded Clustering (DEC) learns a latent representation via an autoencoder and performs clustering based on a $k$-means-like procedure, while the optimization is conducted in an end-to-end manner. This paper investigates whether the deep-learned representation has enabled DEC to overcome the known fundamental limitations of $k$-means clustering, i.e., its inability to discover clusters of arbitrary shapes, varied sizes and densities. Our investigations on DEC have a wider implication on deep clustering methods in general. Notably, none of these methods exploit the underlying data distribution. We uncover that a non-deep learning approach achieves the intended aim of deep clustering by making use of distributional information of clusters in a dataset to effectively address these fundamental limitations.
comment: Work on progress
☆ Learning to Inject: Automated Prompt Injection via Reinforcement Learning
Prompt injection is one of the most critical vulnerabilities in LLM agents; yet, effective automated attacks remain largely unexplored from an optimization perspective. Existing methods heavily depend on human red-teamers and hand-crafted prompts, limiting their scalability and adaptability. We propose AutoInject, a reinforcement learning framework that generates universal, transferable adversarial suffixes while jointly optimizing for attack success and utility preservation on benign tasks. Our black-box method supports both query-based optimization and transfer attacks to unseen models and tasks. Using only a 1.5B parameter adversarial suffix generator, we successfully compromise frontier systems including GPT 5 Nano, Claude Sonnet 3.5, and Gemini 2.5 Flash on the AgentDojo benchmark, establishing a stronger baseline for automated prompt injection research.
☆ Fast Rates for Nonstationary Weighted Risk Minimization
Weighted empirical risk minimization is a common approach to prediction under distribution drift. This article studies its out-of-sample prediction error under nonstationarity. We provide a general decomposition of the excess risk into a learning term and an error term associated with distribution drift, and prove oracle inequalities for the learning error under mixing conditions. The learning bound holds uniformly over arbitrary weight classes and accounts for the effective sample size induced by the weight vector, the complexity of the weight and hypothesis classes, and potential data dependence. We illustrate the applicability and sharpness of our results in (auto-) regression problems with linear models, basis approximations, and neural networks, recovering minimax-optimal rates (up to logarithmic factors) when specialized to unweighted and stationary settings.
☆ CSRv2: Unlocking Ultra-Sparse Embeddings ICLR2026
In the era of large foundation models, the quality of embeddings has become a central determinant of downstream task performance and overall system capability. Yet widely used dense embeddings are often extremely high-dimensional, incurring substantial costs in storage, memory, and inference latency. To address these, Contrastive Sparse Representation (CSR) is recently proposed as a promising direction, mapping dense embeddings into high-dimensional but k-sparse vectors, in contrast to compact dense embeddings such as Matryoshka Representation Learning (MRL). Despite its promise, CSR suffers severe degradation in the ultra-sparse regime, where over 80% of neurons remain inactive, leaving much of its efficiency potential unrealized. In this paper, we introduce CSRv2, a principled training approach designed to make ultra-sparse embeddings viable. CSRv2 stabilizes sparsity learning through progressive k-annealing, enhances representational quality via supervised contrastive objectives, and ensures end-to-end adaptability with full backbone finetuning. CSRv2 reduces dead neurons from 80% to 20% and delivers a 14% accuracy gain at k=2, bringing ultra-sparse embeddings on par with CSR at k=8 and MRL at 32 dimensions, all with only two active features. While maintaining comparable performance, CSRv2 delivers a 7x speedup over MRL, and yields up to 300x improvements in compute and memory efficiency relative to dense embeddings in text representation. Extensive experiments across text and vision demonstrate that CSRv2 makes ultra-sparse embeddings practical without compromising performance, where CSRv2 achieves 7%/4% improvement over CSR when k=4 and further increases this gap to 14%/6% when k=2 in text/vision representation. By making extreme sparsity viable, CSRv2 broadens the design space for real-time and edge-deployable AI systems where both embedding quality and efficiency are critical.
comment: Accepted by ICLR2026
☆ Adaptive Global and Fine-Grained Perceptual Fusion for MLLM Embeddings Compatible with Hard Negative Amplification
Multimodal embeddings serve as a bridge for aligning vision and language, with the two primary implementations -- CLIP-based and MLLM-based embedding models -- both limited to capturing only global semantic information. Although numerous studies have focused on fine-grained understanding, we observe that complex scenarios currently targeted by MLLM embeddings often involve a hybrid perceptual pattern of both global and fine-grained elements, thus necessitating a compatible fusion mechanism. In this paper, we propose Adaptive Global and Fine-grained perceptual Fusion for MLLM Embeddings (AGFF-Embed), a method that prompts the MLLM to generate multiple embeddings focusing on different dimensions of semantic information, which are then adaptively and smoothly aggregated. Furthermore, we adapt AGFF-Embed with the Explicit Gradient Amplification (EGA) technique to achieve in-batch hard negatives enhancement without requiring fine-grained editing of the dataset. Evaluation on the MMEB and MMVP-VLM benchmarks shows that AGFF-Embed comprehensively achieves state-of-the-art performance in both general and fine-grained understanding compared to other multimodal embedding models.
☆ Muon in Associative Memory Learning: Training Dynamics and Scaling Laws
Muon updates matrix parameters via the matrix sign of the gradient and has shown strong empirical gains, yet its dynamics and scaling behavior remain unclear in theory. We study Muon in a linear associative memory model with softmax retrieval and a hierarchical frequency spectrum over query-answer pairs, with and without label noise. In this setting, we show that Gradient Descent (GD) learns frequency components at highly imbalanced rates, leading to slow convergence bottlenecked by low-frequency components. In contrast, the Muon optimizer mitigates this imbalance, leading to faster and more uniform progress. Specifically, in the noiseless case, Muon achieves an exponential speedup over GD; in the noisy case with a power-decay frequency spectrum, we derive Muon's optimization scaling law and demonstrate its superior scaling efficiency over GD. Furthermore, we show that Muon can be interpreted as an implicit matrix preconditioner arising from adaptive task alignment and block-symmetric gradient structure. In contrast, the preconditioner with coordinate-wise sign operator could match Muon under oracle access to unknown task representations, which is infeasible for SignGD in practice. Experiments on synthetic long-tail classification and LLaMA-style pre-training corroborate the theory.
☆ Projected Boosting with Fairness Constraints: Quantifying the Cost of Fair Training Distributions
Boosting algorithms enjoy strong theoretical guarantees: when weak learners maintain positive edge, AdaBoost achieves geometric decrease of exponential loss. We study how to incorporate group fairness constraints into boosting while preserving analyzable training dynamics. Our approach, FairBoost, projects the ensemble-induced exponential-weights distribution onto a convex set of distributions satisfying fairness constraints (as a reweighting surrogate), then trains weak learners on this fair distribution. The key theoretical insight is that projecting the training distribution reduces the effective edge of weak learners by a quantity controlled by the KL-divergence of the projection. We prove an exponential-loss bound where the convergence rate depends on weak learner edge minus a "fairness cost" term $δ_t = \sqrt{\mathrm{KL}(w^t \| q^t)/2}$. This directly quantifies the accuracy-fairness tradeoff in boosting dynamics. Experiments on standard benchmarks validate the theoretical predictions and demonstrate competitive fairness-accuracy tradeoffs with stable training curves.
☆ Ethology of Latent Spaces
This study challenges the presumed neutrality of latent spaces in vision language models (VLMs) by adopting an ethological perspective on their algorithmic behaviors. Rather than constituting spaces of homogeneous indeterminacy, latent spaces exhibit model-specific algorithmic sensitivities, understood as differential regimes of perceptual salience shaped by training data and architectural choices. Through a comparative analysis of three models (OpenAI CLIP, OpenCLIP LAION, SigLIP) applied to a corpus of 301 artworks (15th to 20th), we reveal substantial divergences in the attribution of political and cultural categories. Using bipolar semantic axes derived from vector analogies (Mikolov et al., 2013), we show that SigLIP classifies 59.4% of the artworks as politically engaged, compared to only 4% for OpenCLIP. African masks receive the highest political scores in SigLIP while remaining apolitical in OpenAI CLIP. On an aesthetic colonial axis, inter-model discrepancies reach 72.6 percentage points. We introduce three operational concepts: computational latent politicization, describing the emergence of political categories without intentional encoding; emergent bias, irreducible to statistical or normative bias and detectable only through contrastive analysis; and three algorithmic scopic regimes: entropic (LAION), institutional (OpenAI), and semiotic (SigLIP), which structure distinct modes of visibility. Drawing on Foucault's notion of the archive, Jameson's ideologeme, and Simondon's theory of individuation, we argue that training datasets function as quasi-archives whose discursive formations crystallize within latent space. This work contributes to a critical reassessment of the conditions under which VLMs are applied to digital art history and calls for methodologies that integrate learning architectures into any delegation of cultural interpretation to algorithmic agents.
comment: 23. pages, 14 figures, presented Hyperheritage International Symposium 9 ( https://paragraphe.univ-paris8.fr/IMG/pdf/programme_colloque_his9_campuscondorcet_v3.pdf ) and accepted for publication in double-blind peer review in French in 2026-2027
☆ Fix Representation (Optimally) Before Fairness: Finite-Sample Shrinkage Population Correction and the True Price of Fairness Under Subpopulation Shift
Machine learning practitioners frequently observe tension between predictive accuracy and group fairness constraints -- yet sometimes fairness interventions appear to improve accuracy. We show that both phenomena can be artifacts of training data that misrepresents subgroup proportions. Under subpopulation shift (stable within-group distributions, shifted group proportions), we establish: (i) full importance-weighted correction is asymptotically unbiased but finite-sample suboptimal; (ii) the optimal finite-sample correction is a shrinkage reweighting that interpolates between target and training mixtures; (iii) apparent "fairness helps accuracy" can arise from comparing fairness methods to an improperly-weighted baseline. We provide an actionable evaluation protocol: fix representation (optimally) before fairness -- compare fairness interventions against a shrinkage-corrected baseline to isolate the true, irreducible price of fairness. Experiments on synthetic and real-world benchmarks (Adult, COMPAS) validate our theoretical predictions and demonstrate that this protocol eliminates spurious tradeoffs, revealing the genuine fairness-utility frontier.
☆ Limitations of SGD for Multi-Index Models Beyond Statistical Queries
Understanding the limitations of gradient methods, and stochastic gradient descent (SGD) in particular, is a central challenge in learning theory. To that end, a commonly used tool is the Statistical Queries (SQ) framework, which studies performance limits of algorithms based on noisy interaction with the data. However, it is known that the formal connection between the SQ framework and SGD is tenuous: Existing results typically rely on adversarial or specially-structured gradient noise that does not reflect the noise in standard SGD, and (as we point out here) can sometimes lead to incorrect predictions. Moreover, many analyses of SGD for challenging problems rely on non-trivial algorithmic modifications, such as restricting the SGD trajectory to the sphere or using very small learning rates. To address these shortcomings, we develop a new, non-SQ framework to study the limitations of standard vanilla SGD, for single-index and multi-index models (namely, when the target function depends on a low-dimensional projection of the inputs). Our results apply to a broad class of settings and architectures, including (potentially deep) neural networks.
☆ Broken neural scaling laws in materials science
In materials science, data are scarce and expensive to generate, whether computationally or experimentally. Therefore, it is crucial to identify how model performance scales with dataset size and model capacity to distinguish between data- and model-limited regimes. Neural scaling laws provide a framework for quantifying this behavior and guide the design of materials datasets and machine learning architectures. Here, we investigate neural scaling laws for a paradigmatic materials science task: predicting the dielectric function of metals, a high-dimensional response that governs how solids interact with light. Using over 200,000 dielectric functions from high-throughput ab initio calculations, we study two multi-objective graph neural networks trained to predict the frequency-dependent complex interband dielectric function and the Drude frequency. We observe broken neural scaling laws with respect to dataset size, whereas scaling with the number of model parameters follows a simple power law that rapidly saturates.
☆ FedRandom: Sampling Consistent and Accurate Contribution Values in Federated Learning
Federated Learning is a privacy-preserving decentralized approach for Machine Learning tasks. In industry deployments characterized by a limited number of entities possessing abundant data, the significance of a participant's role in shaping the global model becomes pivotal given that participation in a federation incurs costs, and participants may expect compensation for their involvement. Additionally, the contributions of participants serve as a crucial means to identify and address potential malicious actors and free-riders. However, fairly assessing individual contributions remains a significant hurdle. Recent works have demonstrated a considerable inherent instability in contribution estimations across aggregation strategies. While employing a different strategy may offer convergence benefits, this instability can have potentially harming effects on the willingness of participants in engaging in the federation. In this work, we introduce FedRandom, a novel mitigation technique to the contribution instability problem. Tackling the instability as a statistical estimation problem, FedRandom allows us to generate more samples than when using regular FL strategies. We show that these additional samples provide a more consistent and reliable evaluation of participant contributions. We demonstrate our approach using different data distributions across CIFAR-10, MNIST, CIFAR-100 and FMNIST and show that FedRandom reduces the overall distance to the ground truth by more than a third in half of all evaluated scenarios, and improves stability in more than 90% of cases.
☆ Almost Asymptotically Optimal Active Clustering Through Pairwise Observations
We propose a new analysis framework for clustering $M$ items into an unknown number of $K$ distinct groups using noisy and actively collected responses. At each time step, an agent is allowed to query pairs of items and observe bandit binary feedback. If the pair of items belongs to the same (resp.\ different) cluster, the observed feedback is $1$ with probability $p>1/2$ (resp.\ $q<1/2$). Leveraging the ubiquitous change-of-measure technique, we establish a fundamental lower bound on the expected number of queries needed to achieve a desired confidence in the clustering accuracy, formulated as a sup-inf optimization problem. Building on this theoretical foundation, we design an asymptotically optimal algorithm in which the stopping criterion involves an empirical version of the inner infimum -- the Generalized Likelihood Ratio (GLR) statistic -- being compared to a threshold. We develop a computationally feasible variant of the GLR statistic and show that its performance gap to the lower bound can be accurately empirically estimated and remains within a constant multiple of the lower bound.
comment: 31 pages, 1 figure
☆ Mining Generalizable Activation Functions
The choice of activation function is an active area of research, with different proposals aimed at improving optimization, while maintaining expressivity. Additionally, the activation function can significantly alter the implicit inductive bias of the architecture, controlling its non-linear behavior. In this paper, in line with previous work, we argue that evolutionary search provides a useful framework for finding new activation functions, while we also make two novel observations. The first is that modern pipelines, such as AlphaEvolve, which relies on frontier LLMs as a mutator operator, allows for a much wider and flexible search space; e.g., over all possible python functions within a certain FLOP budget, eliminating the need for manually constructed search spaces. In addition, these pipelines will be biased towards meaningful activation functions, given their ability to represent common knowledge, leading to a potentially more efficient search of the space. The second observation is that, through this framework, one can target not only performance improvements but also activation functions that encode particular inductive biases. This can be done by using performance on out-of-distribution data as a fitness function, reflecting the degree to which the architecture respects the inherent structure in the data in a manner independent of distribution shifts. We carry an empirical exploration of this proposal and show that relatively small scale synthetic datasets can be sufficient for AlphaEvolve to discover meaningful activations.
☆ Perception-Based Beliefs for POMDPs with Visual Observations AAMAS 2026
Partially observable Markov decision processes (POMDPs) are a principled planning model for sequential decision-making under uncertainty. Yet, real-world problems with high-dimensional observations, such as camera images, remain intractable for traditional belief- and filtering-based solvers. To tackle this problem, we introduce the Perception-based Beliefs for POMDPs framework (PBP), which complements such solvers with a perception model. This model takes the form of an image classifier which maps visual observations to probability distributions over states. PBP incorporates these distributions directly into belief updates, so the underlying solver does not need to reason explicitly over high-dimensional observation spaces. We show that the belief update of PBP coincides with the standard belief update if the image classifier is exact. Moreover, to handle classifier imprecision, we incorporate uncertainty quantification and introduce two methods to adjust the belief update accordingly. We implement PBP using two traditional POMDP solvers and empirically show that (1) it outperforms existing end-to-end deep RL methods and (2) uncertainty quantification improves robustness of PBP against visual corruption.
comment: Accepted at AAMAS 2026
☆ Stable but Wrong: When More Data Degrades Scientific Conclusions
Modern science increasingly relies on ever-growing observational datasets and automated inference pipelines, under the implicit belief that accumulating more data makes scientific conclusions more reliable. Here we show that this belief can fail in a fundamental and irreversible way. We identify a structural regime in which standard inference procedures converge smoothly, remain well calibrated, and pass conventional diagnostic checks, yet systematically converge to incorrect conclusions. This failure arises when the reliability of observations degrades in a manner that is intrinsically unobservable to the inference process itself. Using minimal synthetic experiments, we demonstrate that in this regime additional data do not correct error but instead amplify it, while residual-based and goodness-of-fit diagnostics remain misleadingly normal. These results reveal an intrinsic limit of data-driven science: stability, convergence, and confidence are not sufficient indicators of epistemic validity. We argue that inference cannot be treated as an unconditional consequence of data availability, but must instead be governed by explicit constraints on the integrity of the observational process.
☆ Accelerating Benchmarking of Functional Connectivity Modeling via Structure-aware Core-set Selection ICLR
Benchmarking the hundreds of functional connectivity (FC) modeling methods on large-scale fMRI datasets is critical for reproducible neuroscience. However, the combinatorial explosion of model-data pairings makes exhaustive evaluation computationally prohibitive, preventing such assessments from becoming a routine pre-analysis step. To break this bottleneck, we reframe the challenge of FC benchmarking by selecting a small, representative core-set whose sole purpose is to preserve the relative performance ranking of FC operators. We formalize this as a ranking-preserving subset selection problem and propose Structure-aware Contrastive Learning for Core-set Selection (SCLCS), a self-supervised framework to select these core-sets. SCLCS first uses an adaptive Transformer to learn each sample's unique FC structure. It then introduces a novel Structural Perturbation Score (SPS) to quantify the stability of these learned structures during training, identifying samples that represent foundational connectivity archetypes. Finally, while SCLCS identifies stable samples via a top-k ranking, we further introduce a density-balanced sampling strategy as a necessary correction to promote diversity, ensuring the final core-set is both structurally robust and distributionally representative. On the large-scale REST-meta-MDD dataset, SCLCS preserves the ground-truth model ranking with just 10% of the data, outperforming state-of-the-art (SOTA) core-set selection methods by up to 23.2% in ranking consistency (nDCG@k). To our knowledge, this is the first work to formalize core-set selection for FC operator benchmarking, thereby making large-scale operators comparisons a feasible and integral part of computational neuroscience. Code is publicly available on https://github.com/lzhan94swu/SCLCS
comment: 33 pages, 8 figures, ICLR conference paper
☆ Probabilistic Multi-Regional Solar Power Forecasting with Any-Quantile Recurrent Neural Networks
The increasing penetration of photovoltaic (PV) generation introduces significant uncertainty into power system operation, necessitating forecasting approaches that extend beyond deterministic point predictions. This paper proposes an any-quantile probabilistic forecasting framework for multi-regional PV power generation based on the Any-Quantile Recurrent Neural Network (AQ-RNN). The model integrates an any-quantile forecasting paradigm with a dual-track recurrent architecture that jointly processes series-specific and cross-regional contextual information, supported by dilated recurrent cells, patch-based temporal modeling, and a dynamic ensemble mechanism. The proposed framework enables the estimation of calibrated conditional quantiles at arbitrary probability levels within a single trained model and effectively exploits spatial dependencies to enhance robustness at the system level. The approach is evaluated using 30 years of hourly PV generation data from 259 European regions and compared against established statistical and neural probabilistic baselines. The results demonstrate consistent improvements in forecast accuracy, calibration, and prediction interval quality, underscoring the suitability of the proposed method for uncertainty-aware energy management and operational decision-making in renewable-dominated power systems.
☆ Tight Long-Term Tail Decay of (Clipped) SGD in Non-Convex Optimization
The study of tail behaviour of SGD-induced processes has been attracting a lot of interest, due to offering strong guarantees with respect to individual runs of an algorithm. While many works provide high-probability guarantees, quantifying the error rate for a fixed probability threshold, there is a lack of work directly studying the probability of failure, i.e., quantifying the tail decay rate for a fixed error threshold. Moreover, existing results are of finite-time nature, limiting their ability to capture the true long-term tail decay which is more informative for modern learning models, typically trained for millions of iterations. Our work closes these gaps, by studying the long-term tail decay of SGD-based methods through the lens of large deviations theory, establishing several strong results in the process. First, we provide an upper bound on the tails of the gradient norm-squared of the best iterate produced by (vanilla) SGD, for non-convex costs and bounded noise, with long-term decay at rate $e^{-t/\log(t)}$. Next, we relax the noise assumption by considering clipped SGD (c-SGD) under heavy-tailed noise with bounded moment of order $p \in (1,2]$, showing an upper bound with long-term decay at rate $e^{-t^{β_p}/\log(t)}$, where $β_p = \frac{4(p-1)}{3p-2}$ for $p \in (1,2)$ and $e^{-t/\log^2(t)}$ for $p = 2$. Finally, we provide lower bounds on the tail decay, at rate $e^{-t}$, showing that our rates for both SGD and c-SGD are tight, up to poly-logarithmic factors. Notably, our results demonstrate an order of magnitude faster long-term tail decay compared to existing work based on finite-time bounds, which show rates $e^{-\sqrt{t}}$ and $e^{-t^{β_p/2}}$, $p \in (1,2]$, for SGD and c-SGD, respectively. As such, we uncover regimes where the tails decay much faster than previously known, providing stronger long-term guarantees for individual runs.
comment: 32 pages
☆ Alignment Verifiability in Large Language Models: Normative Indistinguishability under Behavioral Evaluation
Behavioral evaluation is the dominant paradigm for assessing alignment in large language models (LLMs). In practice, alignment is inferred from performance under finite evaluation protocols - benchmarks, red-teaming suites, or automated pipelines - and observed compliance is often treated as evidence of underlying alignment. This inference step, from behavioral evidence to claims about latent alignment properties, is typically implicit and rarely analyzed as an inference problem in its own right. We study this problem formally. We frame alignment evaluation as an identifiability question under partial observability and allow agent behavior to depend on information correlated with the evaluation regime. Within this setting, we introduce the Alignment Verifiability Problem and the notion of Normative Indistinguishability, capturing when distinct latent alignment hypotheses induce identical distributions over all evaluator-accessible signals. Our main result is a negative but sharply delimited identifiability theorem. Under finite behavioral evaluation and evaluation-aware agents, observed behavioral compliance does not uniquely identify latent alignment. That is, even idealized behavioral evaluation cannot, in general, certify alignment as a latent property. We further show that behavioral alignment tests should be interpreted as estimators of indistinguishability classes rather than verifiers of alignment. Passing increasingly stringent tests may reduce the space of compatible hypotheses, but cannot collapse it to a singleton under the stated conditions. This reframes alignment benchmarks as providing upper bounds on observable compliance within a regime, rather than guarantees of underlying alignment.
comment: 10 pages. Theoretical analysis of behavioral alignment evaluation
☆ Enhancing Personality Recognition by Comparing the Predictive Power of Traits, Facets, and Nuances
Personality is a complex, hierarchical construct typically assessed through item-level questionnaires aggregated into broad trait scores. Personality recognition models aim to infer personality traits from different sources of behavioral data. However, reliance on broad trait scores as ground truth, combined with limited training data, poses challenges for generalization, as similar trait scores can manifest through diverse, context dependent behaviors. In this work, we explore the predictive impact of the more granular hierarchical levels of the Big-Five Personality Model, facets and nuances, to enhance personality recognition from audiovisual interaction data. Using the UDIVA v0.5 dataset, we trained a transformer-based model including cross-modal (audiovisual) and cross-subject (dyad-aware) attention mechanisms. Results show that nuance-level models consistently outperform facet and trait-level models, reducing mean squared error by up to 74% across interaction scenarios.
comment: Accepted to the 2025 13th International Conference on Affective Computing and Intelligent Interaction (Late Breaking Results)
☆ End-to-End Compression for Tabular Foundation Models
The long-standing dominance of gradient-boosted decision trees for tabular data has recently been challenged by in-context learning tabular foundation models. In-context learning methods fit and predict in one forward pass without parameter updates by leveraging the training data as context for predicting on query test points. While recent tabular foundation models achieve state-of-the-art performance, their transformer architecture based on the attention mechanism has quadratic complexity regarding dataset size, which in turn increases the overhead on training and inference time, and limits the capacity of the models to handle large-scale datasets. In this work, we propose TACO, an end-to-end tabular compression model that compresses the training dataset in a latent space. We test our method on the TabArena benchmark, where our proposed method is up to 94x faster in inference time, while consuming up to 97\% less memory compared to the state-of-the-art tabular transformer architecture, all while retaining performance without significant degradation. Lastly, our method not only scales better with increased dataset sizes, but it also achieves better performance compared to other baselines.
☆ Empowering Time Series Analysis with Large-Scale Multimodal Pretraining
While existing time series foundation models primarily rely on large-scale unimodal pretraining, they lack complementary modalities to enhance time series understanding. Building multimodal foundation models is a natural next step, but it faces key challenges: 1) lack of a unified multimodal pretraining paradigm and large-scale multimodal corpora for time series analysis; 2) how to effectively integrate heterogeneous modalities and enhance model generalization. To address these challenges, we take an early step toward multimodal foundation models for time series analysis. We first propose a multimodal pretraining paradigm that leverages time series with endogenous modalities (derived images and text) and exogenous knowledge (real-world news), providing a comprehensive multi-view perspective for time series analysis. To support this, we develop an automated data construction pipeline to curate MM-TS, the first large-scale multimodal time series dataset spanning six domains, with up to one billion points. Then we propose HORAI, a frequency-enhanced multimodal foundation model. It integrates two core components: the Frequency-enhanced Cross-Modality Encoder and the Time-Frequency Decoder, designed to effectively fuse multimodal features and enhance model generalization across modalities and domains. After pretraining on MM-TS, HORAI achieves state-of-the-art zero-shot performance on time series forecasting and anomaly detection tasks, demonstrating strong generalization.
☆ UAV Trajectory Optimization via Improved Noisy Deep Q-Network
This paper proposes an Improved Noisy Deep Q-Network (Noisy DQN) to enhance the exploration and stability of Unmanned Aerial Vehicle (UAV) when applying deep reinforcement learning in simulated environments. This method enhances the exploration ability by combining the residual NoisyLinear layer with an adaptive noise scheduling mechanism, while improving training stability through smooth loss and soft target network updates. Experiments show that the proposed model achieves faster convergence and up to $+40$ higher rewards compared to standard DQN and quickly reach to the minimum number of steps required for the task 28 in the 15 * 15 grid navigation environment set up. The results show that our comprehensive improvements to the network structure of NoisyNet, exploration control, and training stability contribute to enhancing the efficiency and reliability of deep Q-learning.
☆ Joint Embedding Variational Bayes
We introduce Variational Joint Embedding (VJE), a framework that synthesizes joint embedding and variational inference to enable self-supervised learning of probabilistic representations in a reconstruction-free, non-contrastive setting. Compared to energy-based predictive objectives that optimize pointwise discrepancies, VJE maximizes a symmetric conditional evidence lower bound (ELBO) for a latent-variable model defined directly on encoder embeddings. We instantiate the conditional likelihood with a heavy-tailed Student-$t$ model using a polar decomposition that explicitly decouples directional and radial factors to prevent norm-induced instabilities during training. VJE employs an amortized inference network to parameterize a diagonal Gaussian variational posterior whose feature-wise variances are shared with the likelihood scale to capture anisotropic uncertainty without auxiliary projection heads. Across ImageNet-1K, CIFAR-10/100, and STL-10, VJE achieves performance comparable to standard non-contrastive baselines under linear and k-NN evaluation. We further validate these probabilistic semantics through one-class CIFAR-10 anomaly detection, where likelihood-based scoring under the proposed model outperforms comparable self-supervised baselines.
☆ Structural Disentanglement in Bilinear MLPs via Architectural Inductive Bias
Selective unlearning and long-horizon extrapolation remain fragile in modern neural networks, even when tasks have underlying algebraic structure. In this work, we argue that these failures arise not solely from optimization or unlearning algorithms, but from how models structure their internal representations during training. We explore if having explicit multiplicative interactions as an architectural inductive bias helps in structural disentanglement, through Bilinear MLPs. We show analytically that bilinear parameterizations possess a `non-mixing' property under gradient flow conditions, where functional components separate into orthogonal subspace representations. This provides a mathematical foundation for surgical model modification. We validate this hypothesis through a series of controlled experiments spanning modular arithmetic, cyclic reasoning, Lie group dynamics, and targeted unlearning benchmarks. Unlike pointwise nonlinear networks, multiplicative architectures are able to recover true operators aligned with the underlying algebraic structure. Our results suggest that model editability and generalization are constrained by representational structure, and that architectural inductive bias plays a central role in enabling reliable unlearning.
☆ Rewards as Labels: Revisiting RLVR from a Classification Perspective
Reinforcement Learning with Verifiable Rewards has recently advanced the capabilities of Large Language Models in complex reasoning tasks by providing explicit rule-based supervision. Among RLVR methods, GRPO and its variants have achieved strong empirical performance. Despite their success, we identify that they suffer from Gradient Misassignment in Positives and Gradient Domination in Negatives, which lead to inefficient and suboptimal policy updates. To address these issues, we propose Rewards as Labels (REAL), a novel framework that revisits verifiable rewards as categorical labels rather than scalar weights, thereby reformulating policy optimization as a classification problem. Building on this, we further introduce anchor logits to enhance policy learning. Our analysis reveals that REAL induces a monotonic and bounded gradient weighting, enabling balanced gradient allocation across rollouts and effectively mitigating the identified mismatches. Extensive experiments on mathematical reasoning benchmarks show that REAL improves training stability and consistently outperforms GRPO and strong variants such as DAPO. On the 1.5B model, REAL improves average Pass@1 over DAPO by 6.7%. These gains further scale to 7B model, REAL continues to outperform DAPO and GSPO by 6.2% and 1.7%, respectively. Notably, even with a vanilla binary cross-entropy, REAL remains stable and exceeds DAPO by 4.5% on average.
comment: 12 pages, 5 figures, 4 tables
☆ Mode-Dependent Rectification for Stable PPO Training
Mode-dependent architectural components (layers that behave differently during training and evaluation, such as Batch Normalization or dropout) are commonly used in visual reinforcement learning but can destabilize on-policy optimization. We show that in Proximal Policy Optimization (PPO), discrepancies between training and evaluation behavior induced by Batch Normalization lead to policy mismatch, distributional drift, and reward collapse. We propose Mode-Dependent Rectification (MDR), a lightweight dual-phase training procedure that stabilizes PPO under mode-dependent layers without architectural changes. Experiments across procedurally generated games and real-world patch-localization tasks demonstrate that MDR consistently improves stability and performance, and extends naturally to other mode-dependent layers.
♻ ☆ EigenLoRAx: Recycling Adapters to Find Principal Subspaces for Resource-Efficient Adaptation and Inference
The rapid growth of large models has raised concerns about their environmental impact and equity in accessibility due to significant computational costs. Low-Rank Adapters (LoRA) offer a lightweight solution for finetuning large models, resulting in an abundance of publicly available adapters tailored to diverse domains. We ask: Can these pretrained adapters be leveraged to further streamline adaptation to new tasks while addressing these challenges? We introduce EigenLoRAx, a parameter-efficient finetuning method that recycles existing adapters to create a principal subspace aligned with their shared domain knowledge which can be further augmented with orthogonal basis vectors in low-resource scenarios. This enables rapid adaptation to new tasks by learning only lightweight coefficients on the principal components of the subspace-eliminating the need to finetune entire adapters. EigenLoRAx requires significantly fewer parameters and memory, improving efficiency for both training and inference. Our method demonstrates strong performance across diverse domains and tasks, offering a scalable for edge-based applications, personalization, and equitable deployment of large models in resource-constrained environments.
♻ ☆ Transmuting prompts into weights
A growing body of research has demonstrated that the behavior of large language models can be effectively controlled at inference time by directly modifying their internal states, either through vector additions to their activations or through updates to their weight matrices. These techniques, while powerful, are often guided by empirical heuristics, such as deriving steering vectors from the average activations of contrastive prompts. This work provides a theoretical foundation for these interventions, explaining how they emerge from the fundamental computations of the transformer architecture. Building on the recent finding that a prompt's influence can be mathematically mapped to token-dependent implicit weight updates (Dherin et. al, 2025), we derive a principled method for condensing this information into token-independent thought vectors and thought matrices. These constructs provide a theoretical explanation for existing vector-and-matrix-based model editing techniques and offer a direct, computationally-grounded method for transmuting textual input into reusable weight updates.
♻ ☆ Informed Asymmetric Actor-Critic: Leveraging Privileged Signals Beyond Full-State Access
Asymmetric actor-critic methods are widely used in partially observable reinforcement learning, but typically assume full state observability to condition the critic during training, which is often unrealistic in practice. We introduce the informed asymmetric actor-critic framework, allowing the critic to be conditioned on arbitrary state-dependent privileged signals without requiring access to the full state. We show that any such privileged signal yields unbiased policy gradient estimates, substantially expanding the set of admissible privileged information. This raises the problem of selecting the most adequate privileged information in order to improve learning. For this purpose, we propose two novel informativeness criteria: a dependence-based test that can be applied prior to training, and a criterion based on improvements in value prediction accuracy that can be applied post-hoc. Empirical results on partially observable benchmark tasks and synthetic environments demonstrate that carefully selected privileged signals can match or outperform full-state asymmetric baselines while relying on strictly less state information.
comment: 11 pages, 26 pages total, 3 figures
♻ ☆ Learning to Discover at Test Time
How can we use AI to discover a new state of the art for a scientific problem? Prior work in test-time scaling, such as AlphaEvolve, performs search by prompting a frozen LLM. We perform reinforcement learning at test time, so the LLM can continue to train, but now with experience specific to the test problem. This form of continual learning is quite special, because its goal is to produce one great solution rather than many good ones on average, and to solve this very problem rather than generalize to other problems. Therefore, our learning objective and search subroutine are designed to prioritize the most promising solutions. We call this method Test-Time Training to Discover (TTT-Discover). Following prior work, we focus on problems with continuous rewards. We report results for every problem we attempted, across mathematics, GPU kernel engineering, algorithm design, and biology. TTT-Discover sets the new state of the art in almost all of them: (i) Erdős' minimum overlap problem and an autocorrelation inequality; (ii) a GPUMode kernel competition (up to $2\times$ faster than prior art); (iii) past AtCoder algorithm competitions; and (iv) denoising problem in single-cell analysis. Our solutions are reviewed by experts or the organizers. All our results are achieved with an open model, OpenAI gpt-oss-120b, and can be reproduced with our publicly available code, in contrast to previous best results that required closed frontier models. Our test-time training runs are performed using Tinker, an API by Thinking Machines, with a cost of only a few hundred dollars per problem.
comment: Code: https://github.com/test-time-training/discover
♻ ☆ Energy Guided smoothness to improve Robustness in Graph Classification
Graph Neural Networks (GNNs) are powerful at solving graph classification tasks, yet applied problems often contain noisy labels. In this work, we study GNN robustness to label noise, demonstrate GNN failure modes when models struggle to generalise on low-order graphs, low label coverage, or when a model is over-parameterized. We establish both empirical and theoretical links between GNN robustness and the reduction of the total Dirichlet Energy of learned node representations, which encapsulates the hypothesized GNN smoothness inductive bias. Finally, we introduce two training strategies to enhance GNN robustness: (1) by incorporating a novel inductive bias in the weight matrices through the removal of negative eigenvalues, connected to Dirichlet Energy minimization; (2) by extending to GNNs a loss penalty that promotes learned smoothness. Importantly, neither approach negatively impacts performance in noise-free settings, supporting our hypothesis that the source of GNNs robustness is their smoothness inductive bias.
♻ ☆ Group-Adaptive Adversarial Learning for Robust Fake News Detection Against Malicious Comments
Online fake news profoundly distorts public judgment and erodes trust in social platforms. While existing detectors achieve competitive performance on benchmark datasets, they remain notably vulnerable to malicious comments designed specifically to induce misclassification. This evolving threat landscape necessitates detection systems that simultaneously prioritize predictive accuracy and structural robustness. However, current detectors often fail to generalize across diverse and novel comment attack patterns. To bridge this gap, we propose AdComment, an adaptive adversarial training framework for robustness enhancement against diverse malicious comments. Based on cognitive psychology, we categorize adversarial comments into Fact Distortion, Logical Confusion, and Emotional Manipulation, and leverage LLMs to synthesize diverse, category-specific perturbations. Central to our framework is an InfoDirichlet Resampling (IDR) mechanism that dynamically adjusts malicious comment proportions during training, thereby steering optimization toward the model's most susceptible regions. Experimental results demonstrate that our approach achieves state-of-the-art performance on three benchmark datasets, improving the F1 scores by 17.9%, 14.5% and 9.0%, respectively.
comment: 10 pages, 12 figures
♻ ☆ Separation-Utility Pareto Frontier: An Information-Theoretic Characterization
We study the Pareto frontier (optimal trade-off) between utility and separation, a fairness criterion requiring predictive independence from sensitive attributes conditional on the true outcome. Through an information-theoretic lens, we prove a characterization of the utility-separation Pareto frontier, establish its concavity, and thereby prove the increasing marginal cost of separation in terms of utility. In addition, we characterize the conditions under which this trade-off becomes strict, providing a guide for trade-off selection in practice. Based on the theoretical characterization, we develop an empirical regularizer based on conditional mutual information (CMI) between predictions and sensitive attributes given the true outcome. The CMI regularizer is compatible with any deep model trained via gradient-based optimization and serves as a scalar monitor of residual separation violations, offering tractable guarantees during training. Finally, numerical experiments support our theoretical findings: across COMPAS, UCI Adult, UCI Bank, and CelebA, the proposed method substantially reduces separation violations while matching or exceeding the utility of established baseline methods. This study thus offers a provable, stable, and flexible approach to enforcing separation in deep learning.
♻ ☆ When Are Two RLHF Objectives the Same?
The preference optimization literature contains many proposed objectives, often presented as distinct improvements. We introduce Opal, a canonicalization algorithm that determines whether two preference objectives are algebraically equivalent by producing either a canonical form or a concrete witness of non-equivalence. Applying Opal reveals that many widely used methods optimize the same underlying objective, while others are provably distinct. For example, batch normalization can cause the same response pair to receive different gradients depending on batch composition. We identify a small set of structural mechanisms that give rise to genuinely different objectives; most remaining differences are reparameterizations.
comment: 21 pages
♻ ☆ SelfReflect: Can LLMs Communicate Their Internal Answer Distribution? ICLR 2026
The common approach to communicate a large language model's (LLM) uncertainty is to add a percentage number or a hedging word to its response. But is this all we can do? Instead of generating a single answer and then hedging it, an LLM that is fully transparent to the user needs to be able to reflect on its internal belief distribution and output a summary of all options it deems possible, and how likely they are. To test whether LLMs possess this capability, we develop the SelfReflect metric, an information-theoretic distance between a given summary and a distribution over answers. In interventional and human studies, we find that SelfReflect indicates even slight deviations, yielding a fine measure of faithfulness between a summary string and an LLM's actual internal distribution over answers. With SelfReflect, we make a resounding negative observation: modern LLMs are, across the board, incapable of revealing what they are uncertain about, neither through reasoning, nor chains-of-thoughts, nor explicit finetuning. However, we do find that LLMs are able to generate faithful summaries of their uncertainties if we help them by sampling multiple outputs and feeding them back into the context. This simple approach shines a light at the universal way of communicating LLM uncertainties whose future development the SelfReflect score enables. To support the development of this universal form of LLM uncertainties, we publish the code that implements our metric for arbitrary LLMs under https://github.com/apple/ml-selfreflect .
comment: Accepted at ICLR 2026
♻ ☆ Flexible inference for animal learning rules using neural networks
Understanding how animals learn is a central challenge in neuroscience, with growing relevance to the development of animal- or human-aligned artificial intelligence. However, existing approaches tend to assume fixed parametric forms for the learning rule (e.g., Q-learning, policy gradient), which may not accurately describe the complex forms of learning employed by animals in realistic settings. Here we address this gap by developing a framework to infer learning rules directly from behavioral data collected during de novo task learning. We assume that animals follow a decision policy parameterized by a generalized linear model (GLM), and we model their learning rule -- the mapping from task covariates to per-trial weight updates -- using a deep neural network (DNN). This formulation allows flexible, data-driven inference of learning rules while maintaining an interpretable form of the decision policy itself. To capture more complex learning dynamics, we introduce a recurrent neural network (RNN) variant that relaxes the Markovian assumption that learning depends solely on covariates of the current trial, allowing for learning rules that integrate information over multiple trials. Simulations demonstrate that the framework can recover ground-truth learning rules. We applied our DNN and RNN-based methods to a large behavioral dataset from mice learning to perform a sensory decision-making task and found that they outperformed traditional RL learning rules at predicting the learning trajectories of held-out mice. The inferred learning rules exhibited reward-history-dependent learning dynamics, with larger updates following sequences of rewarded trials. Overall, these methods provide a flexible framework for inferring learning rules from behavioral data in de novo learning tasks, setting the stage for improved animal training protocols and the development of behavioral digital twins.
♻ ☆ Connect the Dots: Knowledge Graph-Guided Crawler Attack on Retrieval-Augmented Generation Systems
Stealing attacks pose a persistent threat to the intellectual property of deployed machine-learning systems. Retrieval-augmented generation (RAG) intensifies this risk by extending the attack surface beyond model weights to knowledge base that often contains IP-bearing assets such as proprietary runbooks, curated domain collections, or licensed documents. Recent work shows that multi-turn questioning can gradually steal corpus content from RAG systems, yet existing attacks are largely heuristic and often plateau early. We address this gap by formulating RAG knowledge-base stealing as an adaptive stochastic coverage problem (ASCP), where each query is a stochastic action and the goal is to maximize the conditional expected marginal gain (CMG) in corpus coverage under a query budget. Bridging ASCP to real-world black-box RAG knowledge-base stealing raises three challenges: CMG is unobservable, the natural-language action space is intractably large, and feasibility constraints require stealthy queries that remain effective under diverse architectures. We introduce RAGCrawler, a knowledge graph-guided attacker that maintains a global attacker-side state to estimate coverage gains, schedule high-value semantic anchors, and generate non-redundant natural queries. Across four corpora and four generators with BGE retriever, RAGCrawler achieves 66.8% average coverage (up to 84.4%) within 1,000 queries, improving coverage by 44.90% relative to the strongest baseline. It also reduces the queries needed to reach 70% coverage by at least 4.03x on average and enables surrogate reconstruction with answer similarity up to 0.699. Our attack is also scalable to retriever switching and newer RAG techniques like query rewriting and multi-query retrieval. These results highlight urgent needs to protect RAG knowledge assets.
♻ ☆ Learning to summarize user information for personalized reinforcement learning from human feedback
As everyday use cases of large language model (LLM) AI assistants have expanded, it is becoming increasingly important to personalize responses to align to different users' preferences and goals. While reinforcement learning from human feedback (RLHF) is effective at improving LLMs to be generally more helpful and fluent, it does not account for variability across users, as it models the entire user population with a single reward model, meaning it assumes that everyone's preferences are the same. We present a novel framework, Preference Learning Using Summarization (PLUS), that uses reinforcement learning (RL) to learn to produce text-based summaries of each user's preferences, characteristics, and past conversations. These summaries condition the reward model, enabling it to make personalized predictions about the types of responses valued by each user. Both the user-summarization model and reward model are trained simultaneously, creating an online co-adaptation loop. We show that in contrast to the standard Bradley-Terry model, summaries produced by PLUS capture diverse aspects of user preferences, achieving a 11-77/% improvement in reward model accuracy. Key strengths of PLUS are: (1) robust performance with new users and conversation topics, achieving a 25\% improvement over the best personalized reward model technique used for RLHF; (2) zero-shot personalization with state-of-the-art proprietary models like GPT-4 (e.g., PLUS-summary-conditioned responses achieved a 72\% win rate compared to 28% for default GPT-4o); (3) learning from flexible user contexts beyond preference labels, and (4) interpretable representation of users, enabling greater transparency and user control in pluralistic LLM alignment.
comment: 10 pages for main text, 10 pages for appendix
♻ ☆ A Sketch-and-Project Analysis of Subsampled Natural Gradient Algorithms
Subsampled natural gradient descent (SNG) has been used to enable high-precision scientific machine learning, but standard analyses based on stochastic preconditioning fail to provide insight into realistic small-sample settings. We overcome this limitation by instead analyzing SNG as a sketch-and-project method. Motivated by this lens, we discard the usual theoretical proxy which decouples gradients and preconditioners using two independent mini-batches, and we replace it with a new proxy based on squared volume sampling. Under this new proxy we show that the expectation of the SNG direction becomes equal to a preconditioned gradient descent step even in the presence of coupling, leading to (i) global convergence guarantees when using a single mini-batch of any size, and (ii) an explicit characterization of the convergence rate in terms of quantities related to the sketch-and-project structure. These findings in turn yield new insights into small-sample settings, for example by suggesting that the advantage of SNG over SGD is that it can more effectively exploit spectral decay in the model Jacobian. We also extend these ideas to explain a popular structured momentum scheme for SNG, known as SPRING, by showing that it arises naturally from accelerated sketch-and-project methods.
comment: 21 pages, 6 figures
♻ ☆ Alignment-Aware Model Adaptation via Feedback-Guided Optimization
Fine-tuning is the primary mechanism for adapting foundation models to downstream tasks; however, standard approaches largely optimize task objectives in isolation and do not account for secondary yet critical alignment objectives (e.g., safety and hallucination avoidance). As a result, downstream fine-tuning can degrade alignment and fail to correct pre-existing misaligned behavior. We propose an alignment-aware fine-tuning framework that integrates feedback from an external alignment signal through policy-gradient-based regularization. Our method introduces an adaptive gating mechanism that dynamically balances supervised and alignment-driven gradients on a per-sample basis, prioritizing uncertain or misaligned cases while allowing well-aligned examples to follow standard supervised updates. The framework further learns abstention behavior for fully misaligned inputs, incorporating conservative responses directly into the fine-tuned model. Experiments on general and domain-specific instruction-tuning benchmarks demonstrate consistent reductions in harmful and hallucinated outputs without sacrificing downstream task performance. Additional analyses show robustness to adversarial fine-tuning, prompt-based attacks, and unsafe initializations, establishing adaptively gated alignment optimization as an effective approach for alignment-preserving and alignment-recovering model adaptation.
♻ ☆ Enhancing Quantum Diffusion Models for Complex Image Generation
Quantum generative models offer a novel approach to exploring high-dimensional Hilbert spaces but face significant challenges in scalability and expressibility when applied to multi-modal distributions. In this study, we explore a Hybrid Quantum-Classical U-Net architecture integrated with Adaptive Non-Local Observables (ANO) as a potential solution to these hurdles. By compressing classical data into a dense quantum latent space and utilizing trainable observables, our model aims to extract non-local features that complement classical processing. We also investigate the role of Skip Connections in preserving semantic information during the reverse diffusion process. Experimental results on the full MNIST dataset (digits 0-9) demonstrate that the proposed architecture is capable of generating structurally coherent and recognizable images for all digit classes. While hardware constraints still impose limitations on resolution, our findings suggest that hybrid architectures with adaptive measurements provide a feasible pathway for mitigating mode collapse and enhancing generative capabilities in the NISQ era.
comment: 18 pages, 6 figures
♻ ☆ Prompt Augmentation Scales up GRPO Training on Mathematical Reasoning
Reinforcement learning algorithms such as group-relative policy optimization (GRPO) have demonstrated strong potential for improving the mathematical reasoning capabilities of large language models. However, prior work has consistently observed an entropy collapse phenomenon during reinforcement post-training, characterized by a monotonic decrease in policy entropy that ultimately leads to training instability and collapse. As a result, most existing approaches restrict training to short horizons (typically 5-20 epochs), limiting sustained exploration and hindering further policy improvement. In addition, nearly all prior work relies on a single, fixed reasoning prompt or template during training. In this work, we introduce prompt augmentation, a training strategy that instructs the model to generate reasoning traces under diverse templates and formats, thereby increasing rollout diversity. We show that, without a KL regularization term, prompt augmentation enables stable scaling of training duration under a fixed dataset and allows the model to tolerate low-entropy regimes without premature collapse. Empirically, a Qwen2.5-Math-1.5B model trained with prompt augmentation on the MATH Level 3-5 dataset achieves state-of-the-art performance, reaching 45.2 per-benchmark accuracy and 51.8 per-question accuracy on standard mathematical reasoning benchmarks, including AIME24, AMC, MATH500, Minerva, and OlympiadBench. The code and model checkpoints are available at https://github.com/wenquanlu/prompt-augmentation-GRPO.
♻ ☆ Quantifying and Inducing Shape Bias in CNNs via Max-Pool Dilation
Convolutional Neural Networks (CNNs) exhibit a well-known texture bias, prioritizing local patterns over global shapes - a tendency inherent to their convolutional architecture. While this bias is beneficial for texture-rich natural images, it often degrades performance on shape-dominant data such as illustrations and sketches. Although prior work has proposed shape-biased models to mitigate this issue, these approaches lack a quantitative metric for identifying which datasets would actually benefit from such modifications. To address this limitation, we propose a data-driven metric that quantifies the shape-texture balance within a dataset by computing the Structural Similarity Index (SSIM) between an image's luminance (Y) channel and its L0-smoothed counterpart. Building on this metric, we introduce a computationally efficient adaptation method that promotes shape bias by modifying the dilation of max-pooling operations while keeping convolutional weights frozen. Experimental results demonstrate consistent accuracy improvements on shape-dominant datasets, particularly in low-data regimes where full fine-tuning is impractical, requiring training only the final classification layer.
comment: Accepted to IEVC 2026. 4 pages, 1 figure, 3 tables
♻ ☆ The Enhanced Physics-Informed Kolmogorov-Arnold Networks: Applications of Newton's Laws in Financial Deep Reinforcement Learning (RL) Algorithms
Deep Reinforcement Learning (DRL), a subset of machine learning focused on sequential decision-making, has emerged as a powerful approach for tackling financial trading problems. In finance, DRL is commonly used either to generate discrete trade signals or to determine continuous portfolio allocations. In this work, we propose a novel reinforcement learning framework for portfolio optimization that incorporates Physics-Informed Kolmogorov-Arnold Networks (PIKANs) into several DRL algorithms. The approach replaces conventional multilayer perceptrons with Kolmogorov-Arnold Networks (KANs) in both actor and critic components-utilizing learnable B-spline univariate functions to achieve parameter-efficient and more interpretable function approximation. During actor updates, we introduce a physics-informed regularization loss that promotes second-order temporal consistency between observed return dynamics and the action-induced portfolio adjustments. The proposed framework is evaluated across three equity markets-China, Vietnam, and the United States, covering both emerging and developed economies. Across all three markets, PIKAN-based agents consistently deliver higher cumulative and annualized returns, superior Sharpe and Calmar ratios, and more favorable drawdown characteristics compared to both standard DRL baselines and classical online portfolio-selection methods. This yields more stable training, higher Sharpe ratios, and superior performance compared to traditional DRL counterparts. The approach is particularly valuable in highly dynamic and noisy financial markets, where conventional DRL often suffers from instability and poor generalization.
♻ ☆ Multi-Agent Inverted Transformer for Flight Trajectory Prediction
Flight trajectory prediction for multiple aircraft is essential and provides critical insights into how aircraft navigate within current air traffic flows. However, predicting multi-agent flight trajectories is inherently challenging. One of the major difficulties is modeling both the individual aircraft behaviors over time and the complex interactions between flights. Generating explainable prediction outcomes is also a challenge. Therefore, we propose a Multi-Agent Inverted Transformer, MAIFormer, as a novel neural architecture that predicts multi-agent flight trajectories. The proposed framework features two key attention modules: (i) masked multivariate attention, which captures spatio-temporal patterns of individual aircraft, and (ii) agent attention, which models the social patterns among multiple agents in complex air traffic scenes. We evaluated MAIFormer using a real-world automatic dependent surveillance-broadcast flight trajectory dataset from the terminal airspace of Incheon International Airport in South Korea. The experimental results show that MAIFormer achieves the best performance across multiple metrics and outperforms other methods. In addition, MAIFormer produces prediction outcomes that are interpretable from a human perspective, which improves both the transparency of the model and its practical utility in air traffic control.
comment: 11 pages, 8 figures, submitted for IEEE Transactions on Intelligent Transportation System
♻ ☆ The Double Life of Code World Models: Provably Unmasking Malicious Behavior Through Execution Traces
Large language models (LLMs) increasingly generate code with minimal human oversight, raising critical concerns about backdoor injection and malicious behavior. We present Cross-Trace Verification Protocol (CTVP), a novel AI control framework that verifies untrusted code-generating models through semantic orbit analysis. Rather than directly executing potentially malicious code, CTVP leverages the model's own predictions of execution traces across semantically equivalent program transformations. By analyzing consistency patterns in these predicted traces, we detect behavioral anomalies indicative of backdoors. Our approach introduces the Adversarial Robustness Quotient (ARQ), which quantifies the computational cost of verification relative to baseline generation, demonstrating exponential growth with orbit size. Theoretical analysis establishes information-theoretic bounds showing non-gamifiability - adversaries cannot improve through training due to fundamental space complexity constraints. This work demonstrates that semantic orbit analysis provides a theoretically grounded approach to AI control for code generation tasks, though practical deployment requires addressing the high false positive rates observed in initial evaluations.
comment: 13 Pages, A Preprint
♻ ☆ Hidden in Plain Sight -- Class Competition Focuses Attribution Maps
Attribution methods reveal which input features a neural network uses for a prediction, adding transparency to their decisions. A common problem is that these attributions seem unspecific, highlighting both important and irrelevant features. We revisit the common attribution pipeline and observe that using logits as attribution target is a main cause of this phenomenon. We show that the solution is in plain sight: considering distributions of attributions over multiple classes using existing attribution methods yields specific and fine-grained attributions. On common benchmarks, including the grid-pointing game and randomization-based sanity checks, this improves the ability of 18 attribution methods across 7 architectures up to 2x, agnostic to model architecture.
♻ ☆ A Representer Theorem for Hawkes Processes via Penalized Least Squares Minimization ICLR 2026
The representer theorem is a cornerstone of kernel methods, which aim to estimate latent functions in reproducing kernel Hilbert spaces (RKHSs) in a nonparametric manner. Its significance lies in converting inherently infinite-dimensional optimization problems into finite-dimensional ones over dual coefficients, thereby enabling practical and computationally tractable algorithms. In this paper, we address the problem of estimating the latent triggering kernels--functions that encode the interaction structure between events--for linear multivariate Hawkes processes based on observed event sequences within an RKHS framework. We show that, under the principle of penalized least squares minimization, a novel form of representer theorem emerges: a family of transformed kernels can be defined via a system of simultaneous integral equations, and the optimal estimator of each triggering kernel is expressed as a linear combination of these transformed kernels evaluated at the data points. Remarkably, the dual coefficients are all analytically fixed to unity, obviating the need to solve a costly optimization problem to obtain the dual coefficients. This leads to a highly efficient estimator capable of handling large-scale data more effectively than conventional nonparametric approaches. Empirical evaluations on synthetic datasets reveal that the proposed method attains competitive predictive accuracy while substantially improving computational efficiency over existing state-of-the-art kernel method-based estimators.
comment: Accepted to ICLR 2026
♻ ☆ Data Heterogeneity and Forgotten Labels in Split Federated Learning AAAI 2026
In Split Federated Learning (SFL), the clients collaboratively train a model with the help of a server by splitting the model into two parts. Part-1 is trained locally at each client and aggregated by the aggregator at the end of each round. Part-2 is trained at a server that sequentially processes the intermediate activations received from each client. We study the phenomenon of catastrophic forgetting (CF) in SFL in the presence of data heterogeneity. In detail, due to the nature of SFL, local updates of part-1 may drift away from global optima, while part-2 is sensitive to the processing sequence, similar to forgetting in continual learning (CL). Specifically, we observe that the trained model performs better in classes (labels) seen at the end of the sequence. We investigate this phenomenon with emphasis on key aspects of SFL, such as the processing order at the server and the cut layer. Based on our findings, we propose Hydra, a novel mitigation method inspired by multi-head neural networks and adapted for the SFL setting. Extensive numerical evaluations show that Hydra outperforms baselines and methods from the literature.
comment: A shorter version of this paper will appear in the proceedings of AAAI 2026
♻ ☆ Minimax optimal differentially private synthetic data for smooth queries
Differentially private synthetic data enables the sharing and analysis of sensitive datasets while providing rigorous privacy guarantees for individual contributors. A central challenge is to achieve strong utility guarantees for meaningful downstream analysis. Many existing methods ensure uniform accuracy over broad query classes, such as all Lipschitz functions, but this level of generality often leads to suboptimal rates for statistics of practical interest. Since many common data analysis queries exhibit smoothness beyond what worst-case Lipschitz bounds capture, we ask whether exploiting this additional structure can yield improved utility. We study the problem of generating $(\varepsilon,δ)$-differentially private synthetic data from a dataset of size $n$ supported on the hypercube $[-1,1]^d$, with utility guarantees uniformly for all smooth queries having bounded derivatives up to order $k$. We propose a polynomial-time algorithm that achieves a minimax error rate of $n^{-\min \{1, \frac{k}{d}\}}$, up to a $\log(n)$ factor. This characterization uncovers a phase transition at $k=d$. Our results generalize the Chebyshev moment matching framework of (Musco et al., 2025; Wang et al., 2016) and strictly improve the error rates for $k$-smooth queries established in (Wang et al., 2016). Moreover, we establish the first minimax lower bound for the utility of $(\varepsilon,δ)$-differentially private synthetic data with respect to $k$-smooth queries, extending the Wasserstein lower bound for $\varepsilon$-differential privacy in (Boedihardjo et al., 2024).
comment: 27 pages
♻ ☆ Vision-R1: Incentivizing Reasoning Capability in Multimodal Large Language Models ICLR 2026
DeepSeek-R1-Zero has successfully demonstrated the emergence of reasoning capabilities in LLMs purely through Reinforcement Learning (RL). Inspired by this breakthrough, we explore how RL can be utilized to enhance the reasoning capability of MLLMs. However, direct training with RL struggles to activate complex reasoning capabilities such as questioning and reflection in MLLMs, due to the absence of substantial high-quality multimodal reasoning data. To address this issue, we propose the reasoning MLLM, Vision-R1, to improve multimodal reasoning capability. Specifically, we first construct a high-quality multimodal CoT dataset without human annotations by leveraging an existing MLLM and DeepSeek-R1 through modality bridging and data filtering to obtain a 200K multimodal CoT dataset, Vision-R1-cold dataset. It serves as cold-start initialization data for Vision-R1. To mitigate the optimization challenges caused by overthinking after cold start, we propose Progressive Thinking Suppression Training (PTST) strategy and employ Group Relative Policy Optimization (GRPO) with the hard formatting result reward function to gradually refine the model's ability to learn correct and complex reasoning processes on a 10K multimodal math dataset. Comprehensive experiments show our model achieves an average improvement of $\sim$6% across various multimodal math reasoning benchmarks. Vision-R1-7B achieves a 73.5% accuracy on the widely used MathVista benchmark, which is only 0.4% lower than the leading reasoning model, OpenAI O1. Scaling up the amount of multimodal math data in the RL training, Vision-R1-32B and Vison-R1-72B achieves 76.4% and 78.2% MathVista benchmark scores, respectively. The datasets and code will be released in: https://github.com/Osilly/Vision-R1 .
comment: Accepted to ICLR 2026. Code is available at https://github.com/Osilly/Vision-R1
♻ ☆ Colorful Pinball: Density-Weighted Quantile Regression for Conditional Guarantee of Conformal Prediction
While conformal prediction provides robust marginal coverage guarantees, achieving reliable conditional coverage for specific inputs remains challenging. Although exact distribution-free conditional coverage is impossible with finite samples, recent work has focused on improving the conditional coverage of standard conformal procedures. Distinct from approaches that target relaxed notions of conditional coverage, we directly minimize the mean squared error of conditional coverage by refining the quantile regression components that underpin many conformal methods. Leveraging a Taylor expansion, we derive a sharp surrogate objective for quantile regression: a density-weighted pinball loss, where the weights are given by the conditional density of the conformity score evaluated at the true quantile. We propose a three-headed quantile network that estimates these weights via finite differences using auxiliary quantile levels at \(1-α\pm δ\), subsequently fine-tuning the central quantile by optimizing the weighted loss. We provide a theoretical analysis with exact non-asymptotic guarantees characterizing the resulting excess risk. Extensive experiments on diverse high-dimensional real-world datasets demonstrate remarkable improvements in conditional coverage performance.
♻ ☆ Sample Complexity of Composite Quantum Hypothesis Testing
This paper investigates symmetric composite binary quantum hypothesis testing (QHT), where the goal is to determine which of two uncertainty sets contains an unknown quantum state. While asymptotic error exponents for this problem are well-studied, the finite-sample regime remains poorly understood. We bridge this gap by characterizing the sample complexity -- the minimum number of state copies required to achieve a target error level. Specifically, we derive lower bounds that generalize the sample complexity of simple QHT and introduce new upper bounds for various uncertainty sets, including of both finite and infinite cardinalities. Notably, our upper and lower bounds match up to universal constants, providing a tight characterization of the sample complexity. Finally, we extend our analysis to the differentially private setting, establishing the sample complexity for privacy-preserving composite QHT.
comment: Under review
♻ ☆ Leveraging Whisper Embeddings for Audio-based Lyrics Matching ICASSP 2026
Audio-based lyrics matching can be an appealing alternative to other content-based retrieval approaches, but existing methods often suffer from limited reproducibility and inconsistent baselines. In this work, we introduce WEALY, a fully reproducible pipeline that leverages Whisper decoder embeddings for lyrics matching tasks. WEALY establishes robust and transparent baselines, while also exploring multimodal extensions that integrate textual and acoustic features. Through extensive experiments on standard datasets, we demonstrate that WEALY achieves a performance comparable to state-of-the-art methods that lack reproducibility. In addition, we provide ablation studies and analyses on language robustness, loss functions, and embedding strategies. This work contributes a reliable benchmark for future research, and underscores the potential of speech technologies for music information retrieval tasks.
comment: Accepted at ICASSP 2026 (IEEE International Conference on Acoustics, Speech and Signal Processing)
♻ ☆ Solving Prior Distribution Mismatch in Diffusion Models via Optimal Transport
Diffusion Models (DMs) have achieved remarkable progress in generative modeling. However, the mismatch between the forward terminal distribution and reverse initial distribution introduces prior error, leading to deviations of sampling trajectories from the true distribution and severely limiting model performance. This issue further triggers cascading problems, including non-zero Signal-to-Noise Ratio, accumulated denoising errors, degraded generation quality, and constrained sampling efficiency. To address this issue, this paper proposes a prior error elimination framework based on Optimal Transport (OT). Specifically, an OT map from the reverse initial distribution to the forward terminal distribution is constructed to achieve precise matching of the two distributions. Meanwhile, the upper bound of the prior error is quantified using the Wasserstein distance, proving that the prior error can be effectively eliminated via the OT map. Additionally, by deriving the asymptotic consistency between dynamic OT and probability flow, this method is revealed to be highly compatible with the intrinsic mechanism of the diffusion process. Experimental results demonstrate that the proposed method completely eliminates the prior error both theoretically and practically, providing a universal and rigorous solution for optimizing the performance of DMs.
♻ ☆ Understanding and Improving Length Generalization in Hierarchical Sparse Attention Models ICLR 2026
Effectively processing long contexts is a critical challenge for language models. While standard Transformers are limited by quadratic complexity and poor length extrapolation, alternative architectures like sliding window attention and state space models sacrifice the ability to effectively utilize the full context due to their fixed-size memory. Chunk-based sparse attention has emerged as a promising paradigm for extreme length generalization, yet the key architectural principles underpinning its success are not yet fully understood. In this work, we present a systematic dissection of these models to identify the core components driving their performance. Through a unified framework and comprehensive ablation studies, we demonstrate that a combination of three design principles is critical: (1) an expressive, non-linear Chunk Encoder with a dedicated CLS token to produce representations for retrieval; (2) a Bypassing Residual Path to stably integrate retrieved global information without it being overridden by the local residual stream; and (3) enforced selection sparsity during pre-training to bridge the train-test distribution gap. We provide a theoretical motivation for intra-chunk information processing and landmark generation. By combining these principles, we establish a new state-of-the-art for training-free length extrapolation, successfully generalizing models trained on a 4K context to 32 million tokens on RULER and BABILong. Our findings provide a clear and empirically-grounded set of design principles for developing future, highly-capable long-context language models.
comment: Accepted to ICLR 2026
♻ ☆ Optimization and Generation in Aerodynamics Inverse Design
Inverse design with physics-based objectives is challenging because it couples high-dimensional geometry with expensive simulations, as exemplified by aerodynamic shape optimization for drag reduction. We revisit inverse design through two canonical solutions, the optimal design point and the optimal design distribution, and relate them to optimization and guided generation. Building on this view, we propose a new training loss for cost predictors and a density-gradient optimization method that improves objectives while preserving plausible shapes. We further unify existing training-free guided generation methods. To address their inability to approximate conditional covariance in high dimensions, we develop a time- and memory-efficient algorithm for approximate covariance estimation. Experiments on a controlled 2D study and high-fidelity 3D aerodynamic benchmarks (car and aircraft), validated by OpenFOAM simulations and miniature wind-tunnel tests with 3D-printed prototypes, demonstrate consistent gains in both optimization and guided generation. Additional offline RL results further support the generality of our approach.
♻ ☆ Improved Generalization Bounds for Transductive Learning by Transductive Local Complexity and Its Applications ICML 2025
We introduce Transductive Local Complexity (TLC) to extend the classical Local Rademacher Complexity (LRC) to the transductive setting, incorporating substantial and novel components. Although LRC has been used to obtain sharp generalization bounds and minimax rates for inductive tasks such as classification and nonparametric regression, it has remained an open problem whether a localized Rademacher complexity framework can be effectively adapted to transductive learning to achieve sharp or nearly sharp bounds consistent with inductive results. We provide an affirmative answer via TLC. TLC is constructed by first deriving a new concentration inequality in Theorem 4.1 for the supremum of empirical processes capturing the gap between test and training losses, termed the test-train process, under uniform sampling without replacement, which leverages a novel combinatorial property of the test-train process and a new proof strategy applying the exponential Efron-Stein inequality twice. A subsequent peeling strategy applied to a new decomposition of the expectation of the test-train process and a new surrogate variance operator then yield excess risk bounds in the transductive setting that are nearly consistent with classical LRC-based inductive bounds up to a logarithmic gap. We further advance transductive learning through two applications: (1) for realizable transductive learning over binary-valued classes with finite VC dimension of $\dVC$ and $u \ge m \ge \dVC$, where $u$ and $m$ are the number of test features and training features, our Theorem 6.1 gives a nearly optimal bound $Θ(\dVC \log(me/\dVC)/m)$ matching the minimax rate $Θ(\dVC/m)$ up to $\log m$, resolving a decade-old open question; and (2) Theorem 6.2 presents a sharper excess risk bound for transductive kernel learning compared to the current state-of-the-art.
comment: The ICML 2025 conference version (https://openreview.net/pdf?id=NRVdvg7VMn) is a special case of this paper where the chain length is fixed at 2 (i.e.,$Q=2$, see Def. 5.1), and its main results follow directly from the results here. This paper further provides a nearly optimal excess risk bound for realizable transductive learning and a stronger bound for transductive kernel learning
♻ ☆ A Policy Gradient-Based Sequence-to-Sequence Method for Time Series Prediction
Sequence-to-sequence architectures built upon recurrent neural networks have become a standard choice for multi-step-ahead time series prediction. In these models, the decoder produces future values conditioned on contextual inputs, typically either actual historical observations (ground truth) or previously generated predictions. During training, feeding ground-truth values helps stabilize learning but creates a mismatch between training and inference conditions, known as exposure bias, since such true values are inaccessible during real-world deployment. On the other hand, using the model's own outputs as inputs at test time often causes errors to compound rapidly across prediction steps. To mitigate these limitations, we introduce a new training paradigm grounded in reinforcement learning: a policy gradient-based method to learn an adaptive input selection strategy for sequence-to-sequence prediction models. Auxiliary models first synthesize plausible input candidates for the decoder, and a trainable policy network optimized via policy gradients dynamically chooses the most beneficial inputs to maximize long-term prediction performance. Empirical evaluations on diverse time series datasets confirm that our approach enhances both accuracy and stability in multi-step forecasting compared to conventional methods.
♻ ☆ Device Association and Resource Allocation for Hierarchical Split Federated Learning in Space-Air-Ground Integrated Network
6G facilitates deployment of Federated Learning (FL) in the Space-Air-Ground Integrated Network (SAGIN), yet FL confronts challenges such as resource constrained and unbalanced data distribution. To address these issues, this paper proposes a Hierarchical Split Federated Learning (HSFL) framework and derives its upper bound of loss function. To minimize the weighted sum of training loss and latency, we formulate a joint optimization problem that integrates device association, model split layer selection, and resource allocation. We decompose the original problem into several subproblems, where an iterative optimization algorithm for device association and resource allocation based on brute-force split point search is proposed. Simulation results demonstrate that the proposed algorithm can effectively balance training efficiency and model accuracy for FL in SAGIN.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ SC3D: Dynamic and Differentiable Causal Discovery for Temporal and Instantaneous Graphs
Discovering causal structures from multivariate time series is a key problem because interactions span across multiple lags and possibly involve instantaneous dependencies. Additionally, the search space of the dynamic graphs is combinatorial in nature. In this study, we propose \textit{Stable Causal Dynamic Differentiable Discovery (SC3D)}, a two-stage differentiable framework that jointly learns lag-specific adjacency matrices and, if present, an instantaneous directed acyclic graph (DAG). In Stage 1, SC3D performs edge preselection through node-wise prediction to obtain masks for lagged and instantaneous edges, whereas Stage 2 refines these masks by optimizing a likelihood with sparsity along with enforcing acyclicity on the instantaneous block. Numerical results across synthetic and benchmark dynamical systems demonstrate that SC3D achieves improved stability and more accurate recovery of both lagged and instantaneous causal structures compared to existing temporal baselines.
comment: 8 pages
♻ ☆ How Data Mixing Shapes In-Context Learning: Asymptotic Equivalence for Transformers with MLPs NeurIPS 2025
Pretrained Transformers demonstrate remarkable in-context learning (ICL) capabilities, enabling them to adapt to new tasks from demonstrations without parameter updates. However, theoretical studies often rely on simplified architectures (e.g., omitting MLPs), plain data models (e.g., linear regression with isotropic inputs), and single-source training, limiting their relevance to realistic settings. In this work, we study ICL in pretrained Transformers with nonlinear MLP heads on nonlinear tasks drawn from multiple data sources with heterogeneous input, task, and noise distributions. We analyze a model where the MLP comprises two layers, with the first layer trained via a single gradient step and the second layer fully optimized. Under high-dimensional asymptotics, we prove that such models are equivalent in ICL error to structured polynomial predictors, leveraging results from the theory of Gaussian universality and orthogonal polynomials. This equivalence reveals that nonlinear MLPs meaningfully enhance ICL performance, particularly on nonlinear tasks, compared to linear baselines. It also enables a precise analysis of data mixing effects: we identify key properties of high-quality data sources (low noise, structured covariances) and show that feature learning emerges only when the task covariance exhibits sufficient structure. These results are validated empirically across various activation functions, model sizes, and data distributions. Finally, we experiment with a real-world scenario involving multilingual sentiment analysis where each language is treated as a different source. Our experimental results for this case exemplify how our findings extend to real-world cases. Overall, our work advances the theoretical foundations of ICL in Transformers and provides actionable insight into the role of architecture and data in ICL.
comment: NeurIPS 2025, 24 pages, 6 figures
♻ ☆ Streaming Operator Inference for Model Reduction of Large-Scale Dynamical Systems
Projection-based model reduction enables efficient simulation of complex dynamical systems by constructing low-dimensional surrogate models from high-dimensional data. The Operator Inference (OpInf) approach learns such reduced surrogate models through a two-step process: constructing a low-dimensional basis via Singular Value Decomposition (SVD) to compress the data, then solving a linear least-squares (LS) problem to infer reduced operators that govern the dynamics in this compressed space, all without access to the underlying code or full model operators, i.e., non-intrusively. Traditional OpInf operates as a batch learning method, where both the SVD and LS steps process all data simultaneously. This poses a barrier to deployment of the approach on large-scale applications where dataset sizes prevent the loading of all data into memory at once. Additionally, the traditional batch approach does not naturally allow model updates using new data acquired during online computation. To address these limitations, we propose Streaming OpInf, which learns reduced models from sequentially arriving data streams. Our approach employs incremental SVD for adaptive basis construction and recursive LS for streaming operator updates, eliminating the need to store complete data sets while enabling online model adaptation. The approach can flexibly combine different choices of streaming algorithms for numerical linear algebra: we systematically explore the impact of these choices both analytically and numerically to identify effective combinations for accurate reduced model learning. Numerical experiments on benchmark problems and a large-scale turbulent channel flow demonstrate that Streaming OpInf achieves accuracy comparable to batch OpInf while reducing memory requirements by over 99% and enabling dimension reductions exceeding 31,000x, resulting in orders-of-magnitude faster predictions.
♻ ☆ Thompson Sampling-Based Learning and Control for Unknown Dynamic Systems
Thompson sampling (TS) is a Bayesian randomized exploration strategy that samples options (e.g., system parameters or control laws) from the current posterior and then applies the selected option that is optimal for a task, thereby balancing exploration and exploitation; this makes TS effective for active learning-based controller design. However, TS relies on finite parametric representations, which limits its applicability to more general spaces, which are more commonly encountered in control system design. To address this issue, this work proposes a parameterization method for control law learning using reproducing kernel Hilbert spaces and designs a data-driven active learning control approach. Specifically, the proposed method treats the control law as an element in a function space, allowing the design of control laws without imposing restrictions on the system structure or the form of the controller. A TS framework is proposed in this work to reduce control costs through online exploration and exploitation, and the convergence guarantees are further provided for the learning process. Theoretical analysis shows that the proposed method learns the relationship between control laws and closed-loop performance metrics at an exponential rate, and the upper bound of control regret is also derived. Furthermore, the closed-loop stability of the proposed learning framework is analyzed. Numerical experiments on controlling unknown nonlinear systems validate the effectiveness of the proposed method.
♻ ☆ VAO: Validation-Aligned Optimization for Cross-Task Generative Auto-Bidding
Generative auto-bidding has demonstrated strong performance in online advertising, yet it often suffers from data scarcity in small-scale settings with limited advertiser participation. While cross-task data sharing is a natural remedy to mitigate this issue, naive approaches often introduce gradient bias due to distribution shifts across different tasks, and existing methods are not readily applicable to generative auto-bidding. In this paper, we propose Validation-Aligned Optimization (VAO), a principled data-sharing method that adaptively reweights cross-task data contributions based on validation performance feedback. Notably, VAO aligns training dynamics to prioritize updates that improve generalization on the target task, effectively leveraging auxiliary data and mitigating gradient bias. Building on VAO, we introduce a unified generative autobidding framework that generalizes across multiple tasks using a single model and all available task data. Extensive experiments on standard auto-bidding benchmarks validate the effectiveness of our approach.
♻ ☆ Entropic Risk-Aware Monte Carlo Tree Search
We propose a provably correct Monte Carlo tree search (MCTS) algorithm for solving risk-aware Markov decision processes (MDPs) with entropic risk measure (ERM) objectives. We provide a non-asymptotic analysis of our proposed algorithm, showing that the algorithm: (i) is correct in the sense that the empirical ERM obtained at the root node converges to the optimal ERM; and (ii) enjoys polynomial regret concentration. Our algorithm successfully exploits the dynamic programming formulations for solving risk-aware MDPs with ERM objectives introduced by previous works in the context of an upper confidence bound-based tree search algorithm. Finally, we provide a set of illustrative experiments comparing our risk-aware MCTS method against relevant baselines.
♻ ☆ DeepAgent: A General Reasoning Agent with Scalable Toolsets WWW 2026
Large reasoning models have demonstrated strong problem-solving abilities, yet real-world tasks often require external tools and long-horizon interactions. Existing agent frameworks typically follow predefined workflows, which limit autonomous and global task completion. In this paper, we introduce DeepAgent, an end-to-end deep reasoning agent that performs autonomous thinking, tool discovery, and action execution within a single, coherent reasoning process. To manage long-horizon interactions, we introduce an autonomous memory folding mechanism that compresses past interactions into structured episodic, working, and tool memories, reducing error accumulation while preserving critical information. To teach general-purpose tool use efficiently and stably, we develop an end-to-end reinforcement learning strategy, namely ToolPO, that leverages LLM-simulated APIs and applies tool-call advantage attribution to assign fine-grained credit to the tool invocation tokens. Extensive experiments on eight benchmarks, including general tool-use tasks (ToolBench, API-Bank, TMDB, Spotify, ToolHop) and downstream applications (ALFWorld, WebShop, GAIA, HLE), demonstrate that DeepAgent consistently outperforms baselines across both labeled-tool and open-set tool retrieval scenarios. The code and demo are available at https://github.com/RUC-NLPIR/DeepAgent.
comment: Accepted by WWW 2026
♻ ☆ Local EGOP for Continuous Index Learning
We introduce the setting of continuous index learning, in which a function of many variables varies only along a small number of directions at each point. For efficient estimation, it is beneficial for a learning algorithm to adapt, near each point $x$, to the subspace that captures the local variability of the function $f$. We pose this task as kernel adaptation along a manifold with noise, and introduce Local EGOP learning, a recursive algorithm that utilizes the Expected Gradient Outer Product (EGOP) quadratic form as both a metric and inverse-covariance of our target distribution. We prove that Local EGOP learning adapts to the regularity of the function of interest, showing that under a supervised noisy manifold hypothesis, intrinsic dimensional learning rates are achieved for arbitrarily high-dimensional noise. Empirically, we compare our algorithm to the feature learning capabilities of deep learning. Additionally, we demonstrate improved regression quality compared to two-layer neural networks in the continuous single-index setting.
♻ ☆ Progressive multi-fidelity learning with neural networks for physical system predictions
Highly accurate datasets from numerical or physical experiments are often expensive and time-consuming to acquire, posing a significant challenge for applications that require precise evaluations, potentially across multiple scenarios and in real-time. Even building sufficiently accurate surrogate models can be extremely challenging with limited high-fidelity data. Conversely, less expensive, low-fidelity data can be computed more easily and encompass a broader range of scenarios. By leveraging multi-fidelity information, prediction capabilities of surrogates can be improved. However, in practical situations, data may be different in types, come from sources of different modalities, and not be concurrently available, further complicating the modeling process. To address these challenges, we introduce a progressive multi-fidelity surrogate model. This model can sequentially incorporate diverse data types using tailored encoders. Multi-fidelity regression from the encoded inputs to the target quantities of interest is then performed using neural networks. Input information progressively flows from lower to higher fidelity levels through two sets of connections: concatenations among all the encoded inputs, and additive connections among the final outputs. This dual connection system enables the model to exploit correlations among different datasets while ensuring that each level makes an additive correction to the previous level without altering it. This approach prevents performance degradation as new input data are integrated into the model and automatically adapts predictions based on the available inputs. We demonstrate the effectiveness of the approach on numerical benchmarks and a real-world case study, showing that it reliably integrates multi-modal data and provides accurate predictions, maintaining performance when generalizing across time and parameter variations.
♻ ☆ EEG Foundation Models: Progresses, Benchmarking, and Open Problems
Electroencephalography (EEG) foundation models have recently emerged as a promising paradigm for brain-computer interfaces (BCIs), aiming to learn transferable neural representations from large-scale heterogeneous recordings. Despite rapid progresses, there lacks fair and comprehensive comparisons of existing EEG foundation models, due to inconsistent pre-training objectives, preprocessing choices, and downstream evaluation protocols. This paper fills this gap. We first review 50 representative models and organize their design choices into a unified taxonomic framework including data standardization, model architectures, and self-supervised pre-training strategies. We then evaluate 12 open-source foundation models and competitive specialist baselines across 13 EEG datasets spanning nine BCI paradigms. Emphasizing real-world deployments, we consider both cross-subject generalization under a leave-one-subject-out protocol and rapid calibration under a within-subject few-shot setting. We further compare full-parameter fine-tuning with linear probing to assess the transferability of pre-trained representations, and examine the relationship between model scale and downstream performance. Our results indicate that: 1) linear probing is frequently insufficient; 2) specialist models trained from scratch remain competitive across many tasks; and, 3) larger foundation models do not necessarily yield better generalization performance under current data regimes and training practices.
♻ ☆ Hierarchical Subspaces of Policies for Continual Offline Reinforcement Learning
We consider a Continual Reinforcement Learning setup, where a learning agent must continuously adapt to new tasks while retaining previously acquired skill sets, with a focus on the challenge of avoiding forgetting past gathered knowledge and ensuring scalability with the growing number of tasks. Such issues prevail in autonomous robotics and video game simulations, notably for navigation tasks prone to topological or kinematic changes. To address these issues, we introduce HiSPO, a novel hierarchical framework designed specifically for continual learning in navigation settings from offline data. Our method leverages distinct policy subspaces of neural networks to enable flexible and efficient adaptation to new tasks while preserving existing knowledge. We demonstrate, through a careful experimental study, the effectiveness of our method in both classical MuJoCo maze environments and complex video game-like navigation simulations, showcasing competitive performances and satisfying adaptability with respect to classical continual learning metrics, in particular regarding the memory usage and efficiency.
♻ ☆ Symplectic convolutional neural networks
We propose a new symplectic convolutional neural network (CNN) architecture by leveraging symplectic neural networks, proper symplectic decomposition, and tensor techniques. Specifically, we first introduce a mathematically equivalent form of the convolution layer and then, using symplectic neural networks, we demonstrate a way to parameterize the layers of the CNN to ensure that the convolution layer remains symplectic. To construct a complete autoencoder, we introduce a symplectic pooling layer. We demonstrate the performance of the proposed neural network on three examples: the wave equation, the nonlinear Schrödinger (NLS) equation, and the sine-Gordon equation. The numerical results indicate that the symplectic CNN outperforms the linear symplectic autoencoder obtained via proper symplectic decomposition.
♻ ☆ High-probability Convergence Guarantees of Decentralized SGD
Convergence in high-probability (HP) has attracted increasing interest, due to implying exponentially decaying tail bounds and strong guarantees for individual runs of an algorithm. While many works study HP guarantees in centralized settings, much less is understood in the decentralized setup, where existing works require strong assumptions, like uniformly bounded gradients, or asymptotically vanishing noise. This results in a significant gap between the assumptions used to establish convergence in the HP and the mean-squared error (MSE) sense, and is also contrary to centralized settings, where it is known that $\mathtt{SGD}$ converges in HP under the same conditions on the cost function as needed for MSE convergence. Motivated by these observations, we study the HP convergence of Decentralized $\mathtt{SGD}$ ($\mathtt{DSGD}$) in the presence of light-tailed noise, providing several strong results. First, we show that $\mathtt{DSGD}$ converges in HP under the same conditions on the cost as in the MSE sense, removing the restrictive assumptions used in prior works. Second, our sharp analysis yields order-optimal rates for both non-convex and strongly convex costs. Third, we establish a linear speed-up in the number of users, leading to matching, or strictly better transient times than those obtained from MSE results, further underlining the tightness of our analysis. To the best of our knowledge, this is the first work that shows $\mathtt{DSGD}$ achieves a linear speed-up in the HP sense. Our relaxed assumptions and sharp rates stem from several technical results of independent interest, including a result on the variance-reduction effect of decentralized methods in the HP sense, as well as a novel bound on the MGF of strongly convex costs, which is of interest even in centralized settings. Finally, we provide experiments that validate our theory.
comment: 47 pages, 2 figures
♻ ☆ An Attention-based Feature Memory Design for Energy-Efficient Continual Learning
Tabular data streams are increasingly prevalent in real-time decision-making across healthcare, finance, and the Internet of Things, often generated and processed on resource-constrained edge and mobile devices. Continual learning (CL) enables models to learn sequentially from such streams while retaining previously acquired knowledge. While recent CL advances have made significant progress in mitigating catastrophic forgetting, the energy and memory efficiency of CL for tabular data streams remains largely unexplored. To address this gap, we propose AttenMLP, which integrates attention-based feature replay with context retrieval and sliding buffer updates within a minibatch training framework for streaming tabular learning. We evaluate AttenMLP against state-of-the-art (SOTA) tabular models on real-world concept drift benchmarks with temporal distribution shifts. Experimental results show that AttenMLP achieves accuracy comparable to strong baselines without replay, while substantially reducing energy consumption through tunable design choices. In particular, with the proposed attention-based feature memory design, AttenMLP costs a 0.062 decrease in final accuracy under the incremental concept drift dataset, while reducing energy usage up to 33.3\% compared to TabPFNv2. Under the abrupt concept drift dataset, AttenMLP reduces 1.47\% energy consumption compared to TabR, at the cost of a 0.038 decrease in final accuracy. Although ranking third in global efficiency, AttenMLP demonstrates energy-accuracy trade-offs across both abrupt and incremental concept drift scenarios compared to SOTA tabular models.
♻ ☆ Sharpness-Aware Minimization Can Hallucinate Minimizers
Sharpness-Aware Minimization (SAM) is widely used to seek flatter minima -- often linked to better generalization. In its standard implementation, SAM updates the current iterate using the loss gradient evaluated at a point perturbed by distance $ρ$ along the normalized gradient direction. We show that, for some choices of $ρ$, SAM can stall at points where this shifted (perturbed-point) gradient vanishes despite a nonzero original gradient, and therefore, they are not stationary points of the original loss. We call these points hallucinated minimizers, prove their existence under simple nonconvex landscape conditions (e.g., the presence of a local minimizer and a local maximizer), and establish sufficient conditions for local convergence of the SAM iterates to them. We corroborate this failure mode in neural network training and observe that it aligns with SAM's performance degradation often seen at large $ρ$. Finally, as a practical safeguard, we find that a short initial SGD warm-start before enabling SAM mitigates this failure mode and reduces sensitivity to the choice of $ρ$.
♻ ☆ GAMformer: Bridging Tabular Foundation Models and Interpretable Machine Learning
While interpretability is crucial for machine learning applications in safety-critical domains and for regulatory compliance, existing tabular foundation models like TabPFN lack transparency. Generalized Additive Models (GAMs) provide the needed interpretability through their additive structure, but traditional GAM methods rely on iterative learning algorithms (such as splines, boosted trees, or neural networks) that are fundamentally incompatible with the in-context learning paradigm of foundation models. In this paper, we introduce GAMformer, the first tabular foundation model for GAMs that bridges the gap between the power of foundation models and the interpretability requirements of critical real-world applications. GAMformer estimates GAM shape functions in a single forward pass using in-context learning, representing a significant departure from conventional iterative approaches. Building on previous research on tabular foundation models, we train GAMformer exclusively on synthetically generated tables to prevent data leakage. Our experiments demonstrate that GAMformer performs comparably to other leading GAMs across various classification benchmarks.
comment: 22 pages, 15 figures
♻ ☆ Maximum-Volume Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a popular data embedding technique. Given a nonnegative data matrix $X$, it aims at finding two lower dimensional matrices, $W$ and $H$, such that $X\approx WH$, where the factors $W$ and $H$ are constrained to be element-wise nonnegative. The factor $W$ serves as a basis for the columns of $X$. In order to obtain more interpretable and unique solutions, minimum-volume NMF (MinVol NMF) minimizes the volume of $W$. In this paper, we consider the dual approach, where the volume of $H$ is maximized instead; this is referred to as maximum-volume NMF (MaxVol NMF). MaxVol NMF is identifiable under the same conditions as MinVol NMF in the noiseless case, but it behaves rather differently in the presence of noise. In practice, MaxVol NMF is much more effective to extract a sparse decomposition and does not generate rank-deficient solutions. In fact, we prove that the solutions of MaxVol NMF with the largest volume correspond to clustering the columns of $X$ in disjoint clusters, while the solutions of MinVol NMF with smallest volume are rank deficient. We propose two algorithms to solve MaxVol NMF. We also present a normalized variant of MaxVol NMF that exhibits better performance than MinVol NMF and MaxVol NMF, and can be interpreted as a continuum between standard NMF and orthogonal NMF. We illustrate our results in the context of hyperspectral unmixing.
comment: arXiv admin note: substantial text overlap with arXiv:2412.06380 (this paper is an updated version of Chapter 7 of the thesis of the first author, available from arXiv:2412.06380). The code is available from https://gitlab.com/vuthanho/maxvolmf.jl
Information Retrieval 24
☆ SAGE: Benchmarking and Improving Retrieval for Deep Research Agents ACL
Deep research agents have emerged as powerful systems for addressing complex queries. Meanwhile, LLM-based retrievers have demonstrated strong capability in following instructions or reasoning. This raises a critical question: can LLM-based retrievers effectively contribute to deep research agent workflows? To investigate this, we introduce SAGE, a benchmark for scientific literature retrieval comprising 1,200 queries across four scientific domains, with a 200,000 paper retrieval corpus.We evaluate six deep research agents and find that all systems struggle with reasoning-intensive retrieval. Using DR Tulu as backbone, we further compare BM25 and LLM-based retrievers (i.e., ReasonIR and gte-Qwen2-7B-instruct) as alternative search tools. Surprisingly, BM25 significantly outperforms LLM-based retrievers by approximately 30%, as existing agents generate keyword-oriented sub-queries. To improve performance, we propose a corpus-level test-time scaling framework that uses LLMs to augment documents with metadata and keywords, making retrieval easier for off-the-shelf retrievers. This yields 8% and 2% gains on short-form and open-ended questions, respectively.
comment: Submission to ACL ARR 2026 January
☆ AgenticTagger: Structured Item Representation for Recommendation with LLM Agents
High-quality representations are a core requirement for effective recommendation. In this work, we study the problem of LLM-based descriptor generation, i.e., keyphrase-like natural language item representation generation frameworks with minimal constraints on downstream applications. We propose AgenticTagger, a framework that queries LLMs for representing items with sequences of text descriptors. However, open-ended generation provides little control over the generation space, leading to high cardinality, low-performance descriptors that renders downstream modeling challenging. To this end, AgenticTagger features two core stages: (1) a vocabulary building stage where a set of hierarchical, low-cardinality, and high-quality descriptors is identified, and (2) a vocabulary assignment stage where LLMs assign in-vocabulary descriptors to items. To effectively and efficiently ground vocabulary in the item corpus of interest, we design a multi-agent reflection mechanism where an architect LLM iteratively refines the vocabulary guided by parallelized feedback from annotator LLMs that validates the vocabulary against item data. Experiments on public and private data show AgenticTagger brings consistent improvements across diverse recommendation scenarios, including generative and term-based retrieval, ranking, and controllability-oriented, critique-based recommendation.
☆ Bagging-Based Model Merging for Robust General Text Embeddings
General-purpose text embedding models underpin a wide range of NLP and information retrieval applications, and are typically trained on large-scale multi-task corpora to encourage broad generalization. However, it remains unclear how different multi-task training strategies compare in practice, and how to efficiently adapt embedding models as new domains and data types continually emerge. In this work, we present a systematic study of multi-task training for text embeddings from two perspectives: data scheduling and model merging. We compare batch-level shuffling, sequential training variants, two-stage training, and multiple merging granularities, and find that simple batch-level shuffling consistently yields the strongest overall performance, suggesting that task conflicts are limited and training datasets are largely complementary. Despite its effectiveness, batch-level shuffling exhibits two practical limitations: suboptimal out-of-domain (OOD) generalization and poor suitability for incremental learning due to expensive full retraining. To address these issues, we propose Bagging-based rObust mOdel Merging (\modelname), which trains multiple embedding models on sampled subsets and merges them into a single model, improving robustness while retaining single-model inference efficiency. Moreover, \modelname naturally supports efficient incremental updates by training lightweight update models on new data with a small historical subset and merging them into the existing model. Experiments across diverse embedding benchmarks demonstrate that \modelname consistently improves both in-domain and OOD performance over full-corpus batch-level shuffling, while substantially reducing training cost in incremental learning settings.
comment: 12 pages, 4 figures
☆ CSRv2: Unlocking Ultra-Sparse Embeddings ICLR2026
In the era of large foundation models, the quality of embeddings has become a central determinant of downstream task performance and overall system capability. Yet widely used dense embeddings are often extremely high-dimensional, incurring substantial costs in storage, memory, and inference latency. To address these, Contrastive Sparse Representation (CSR) is recently proposed as a promising direction, mapping dense embeddings into high-dimensional but k-sparse vectors, in contrast to compact dense embeddings such as Matryoshka Representation Learning (MRL). Despite its promise, CSR suffers severe degradation in the ultra-sparse regime, where over 80% of neurons remain inactive, leaving much of its efficiency potential unrealized. In this paper, we introduce CSRv2, a principled training approach designed to make ultra-sparse embeddings viable. CSRv2 stabilizes sparsity learning through progressive k-annealing, enhances representational quality via supervised contrastive objectives, and ensures end-to-end adaptability with full backbone finetuning. CSRv2 reduces dead neurons from 80% to 20% and delivers a 14% accuracy gain at k=2, bringing ultra-sparse embeddings on par with CSR at k=8 and MRL at 32 dimensions, all with only two active features. While maintaining comparable performance, CSRv2 delivers a 7x speedup over MRL, and yields up to 300x improvements in compute and memory efficiency relative to dense embeddings in text representation. Extensive experiments across text and vision demonstrate that CSRv2 makes ultra-sparse embeddings practical without compromising performance, where CSRv2 achieves 7%/4% improvement over CSR when k=4 and further increases this gap to 14%/6% when k=2 in text/vision representation. By making extreme sparsity viable, CSRv2 broadens the design space for real-time and edge-deployable AI systems where both embedding quality and efficiency are critical.
comment: Accepted by ICLR2026
☆ Evaluating the impact of word embeddings on similarity scoring in practical information retrieval
Search behaviour is characterised using synonymy and polysemy as users often want to search information based on meaning. Semantic representation strategies represent a move towards richer associative connections that can adequately capture this complex usage of language. Vector Space Modelling (VSM) and neural word embeddings play a crucial role in modern machine learning and Natural Language Processing (NLP) pipelines. Embeddings use distributional semantics to represent words, sentences, paragraphs or entire documents as vectors in high dimensional spaces. This can be leveraged by Information Retrieval (IR) systems to exploit the semantic relatedness between queries and answers. This paper evaluates an alternative approach to measuring query statement similarity that moves away from the common similarity measure of centroids of neural word embeddings. Motivated by the Word Movers Distance (WMD) model, similarity is evaluated using the distance between individual words of queries and statements. Results from ranked query and response statements demonstrate significant gains in accuracy using the combined approach of similarity ranking through WMD with the word embedding techniques. The top performing WMD + GloVe combination outperforms all other state-of-the-art retrieval models including Doc2Vec and the baseline LSA model. Along with the significant gains in performance of similarity ranking through WMD, we conclude that the use of pre-trained word embeddings, trained on vast amounts of data, result in domain agnostic language processing solutions that are portable to diverse business use-cases.
☆ GLASS: A Generative Recommender for Long-sequence Modeling via SID-Tier and Semantic Search
Leveraging long-term user behavioral patterns is a key trajectory for enhancing the accuracy of modern recommender systems. While generative recommender systems have emerged as a transformative paradigm, they face hurdles in effectively modeling extensive historical sequences. To address this challenge, we propose GLASS, a novel framework that integrates long-term user interests into the generative process via SID-Tier and Semantic Search. We first introduce SID-Tier, a module that maps long-term interactions into a unified interest vector to enhance the prediction of the initial SID token. Unlike traditional retrieval models that struggle with massive item spaces, SID-Tier leverages the compact nature of the semantic codebook to incorporate cross features between the user's long-term history and candidate semantic codes. Furthermore, we present semantic hard search, which utilizes generated coarse-grained semantic ID as dynamic keys to extract relevant historical behaviors, which are then fused via an adaptive gated fusion module to recalibrate the trajectory of subsequent fine-grained tokens. To address the inherent data sparsity in semantic hard search, we propose two strategies: semantic neighbor augmentation and codebook resizing. Extensive experiments on two large-scale real-world datasets, TAOBAO-MM and KuaiRec, demonstrate that GLASS outperforms state-of-the-art baselines, achieving significant gains in recommendation quality. Our codes are made publicly available to facilitate further research in generative recommendation.
comment: 10 pages,3 figures
☆ A Human-in-the-Loop, LLM-Centered Architecture for Knowledge-Graph Question Answering
Large Language Models (LLMs) excel at language understanding but remain limited in knowledge-intensive domains due to hallucinations, outdated information, and limited explainability. Text-based retrieval-augmented generation (RAG) helps ground model outputs in external sources but struggles with multi-hop reasoning. Knowledge Graphs (KGs), in contrast, support precise, explainable querying, yet require a knowledge of query languages. This work introduces an interactive framework in which LLMs generate and explain Cypher graph queries and users iteratively refine them through natural language. Applied to real-world KGs, the framework improves accessibility to complex datasets while preserving factual accuracy and semantic rigor and provides insight into how model performance varies across domains. Our core quantitative evaluation is a 90-query benchmark on a synthetic movie KG that measures query explanation quality and fault detection across multiple LLMs, complemented by two smaller real-life query-generation experiments on a Hyena KG and the MaRDI (Mathematical Research Data Initiative) KG.
☆ LMMRec: LLM-driven Motivation-aware Multimodal Recommendation
Motivation-based recommendation systems uncover user behavior drivers. Motivation modeling, crucial for decision-making and content preference, explains recommendation generation. Existing methods often treat motivation as latent variables from interaction data, neglecting heterogeneous information like review text. In multimodal motivation fusion, two challenges arise: 1) achieving stable cross-modal alignment amid noise, and 2) identifying features reflecting the same underlying motivation across modalities. To address these, we propose LLM-driven Motivation-aware Multimodal Recommendation (LMMRec), a model-agnostic framework leveraging large language models for deep semantic priors and motivation understanding. LMMRec uses chain-of-thought prompting to extract fine-grained user and item motivations from text. A dual-encoder architecture models textual and interaction-based motivations for cross-modal alignment, while Motivation Coordination Strategy and Interaction-Text Correspondence Method mitigate noise and semantic drift through contrastive learning and momentum updates. Experiments on three datasets show LMMRec achieves up to a 4.98\% performance improvement.
☆ Forward Index Compression for Learned Sparse Retrieval
Text retrieval using learned sparse representations of queries and documents has, over the years, evolved into a highly effective approach to search. It is thanks to recent advances in approximate nearest neighbor search-with the emergence of highly efficient algorithms such as the inverted index-based Seismic and the graph-based Hnsw-that retrieval with sparse representations became viable in practice. In this work, we scrutinize the efficiency of sparse retrieval algorithms and focus particularly on the size of a data structure that is common to all algorithmic flavors and that constitutes a substantial fraction of the overall index size: the forward index. In particular, we seek compression techniques to reduce the storage footprint of the forward index without compromising search quality or inner product computation latency. In our examination with various integer compression techniques, we report that StreamVByte achieves the best trade-off between memory footprint, retrieval accuracy, and latency. We then improve StreamVByte by introducing DotVByte, a new algorithm tailored to inner product computation. Experiments on MsMarco show that our improvements lead to significant space savings while maintaining retrieval efficiency.
☆ SciDef: Automating Definition Extraction from Academic Literature with Large Language Models SIGIR 2026
Definitions are the foundation for any scientific work, but with a significant increase in publication numbers, gathering definitions relevant to any keyword has become challenging. We therefore introduce SciDef, an LLM-based pipeline for automated definition extraction. We test SciDef on DefExtra & DefSim, novel datasets of human-extracted definitions and definition-pairs' similarity, respectively. Evaluating 16 language models across prompting strategies, we demonstrate that multi-step and DSPy-optimized prompting improve extraction performance. To evaluate extraction, we test various metrics and show that an NLI-based method yields the most reliable results. We show that LLMs are largely able to extract definitions from scientific literature (86.4% of definitions from our test-set); yet future work should focus not just on finding definitions, but on identifying relevant ones, as models tend to over-generate them. Code & datasets are available at https://github.com/Media-Bias-Group/SciDef.
comment: Under Review - Submitted to SIGIR 2026 Resources Track; 8 pages, 6 figures, 4 tables
☆ Rich-Media Re-Ranker: A User Satisfaction-Driven LLM Re-ranking Framework for Rich-Media Search
Re-ranking plays a crucial role in modern information search systems by refining the ranking of initial search results to better satisfy user information needs. However, existing methods show two notable limitations in improving user search satisfaction: inadequate modeling of multifaceted user intents and neglect of rich side information such as visual perception signals. To address these challenges, we propose the Rich-Media Re-Ranker framework, which aims to enhance user search satisfaction through multi-dimensional and fine-grained modeling. Our approach begins with a Query Planner that analyzes the sequence of query refinements within a session to capture genuine search intents, decomposing the query into clear and complementary sub-queries to enable broader coverage of users' potential intents. Subsequently, moving beyond primary text content, we integrate richer side information of candidate results, including signals modeling visual content generated by the VLM-based evaluator. These comprehensive signals are then processed alongside carefully designed re-ranking principle that considers multiple facets, including content relevance and quality, information gain, information novelty, and the visual presentation of cover images. Then, the LLM-based re-ranker performs the holistic evaluation based on these principles and integrated signals. To enhance the scenario adaptability of the VLM-based evaluator and the LLM-based re-ranker, we further enhance their capabilities through multi-task reinforcement learning. Extensive experiments demonstrate that our method significantly outperforms state-of-the-art baselines. Notably, the proposed framework has been deployed in a large-scale industrial search system, yielding substantial improvements in online user engagement rates and satisfaction metrics.
☆ Multi-Field Tool Retrieval
Integrating external tools enables Large Language Models (LLMs) to interact with real-world environments and solve complex tasks. Given the growing scale of available tools, effective tool retrieval is essential to mitigate constraints of LLMs' context windows and ensure computational efficiency. Existing approaches typically treat tool retrieval as a traditional ad-hoc retrieval task, matching user queries against the entire raw tool documentation. In this paper, we identify three fundamental challenges that limit the effectiveness of this paradigm: (i) the incompleteness and structural inconsistency of tool documentation; (ii) the significant semantic and granular mismatch between user queries and technical tool documents; and, most importantly, (iii) the multi-aspect nature of tool utility, that involves distinct dimensions, such as functionality, input constraints, and output formats, varying in format and importance. To address these challenges, we introduce Multi-Field Tool Retrieval, a framework designed to align user intent with tool representations through fine-grained, multi-field modeling. Experimental results show that our framework achieves SOTA performance on five datasets and a mixed benchmark, exhibiting superior generalizability and robustness.
comment: 12 pages, 4 figures
☆ NeuCLIRTech: Chinese Monolingual and Cross-Language Information Retrieval Evaluation in a Challenging Domain
Measuring advances in retrieval requires test collections with relevance judgments that can faithfully distinguish systems. This paper presents NeuCLIRTech, an evaluation collection for cross-language retrieval over technical information. The collection consists of technical documents written natively in Chinese and those same documents machine translated into English. It includes 110 queries with relevance judgments. The collection supports two retrieval scenarios: monolingual retrieval in Chinese, and cross-language retrieval with English as the query language. NeuCLIRTech combines the TREC NeuCLIR track topics of 2023 and 2024. The 110 queries with 35,962 document judgments provide strong statistical discriminatory power when trying to distinguish retrieval approaches. A fusion baseline of strong neural retrieval systems is included so that developers of reranking algorithms are not reliant on BM25 as their first stage retriever. The dataset and artifacts are released on Huggingface Datasets
comment: 14 pages, 6 figures
☆ Semantic Search over 9 Million Mathematical Theorems
Searching for mathematical results remains difficult: most existing tools retrieve entire papers, while mathematicians and theorem-proving agents often seek a specific theorem, lemma, or proposition that answers a query. While semantic search has seen rapid progress, its behavior on large, highly technical corpora such as research-level mathematical theorems remains poorly understood. In this work, we introduce and study semantic theorem retrieval at scale over a unified corpus of $9.2$ million theorem statements extracted from arXiv and seven other sources, representing the largest publicly available corpus of human-authored, research-level theorems. We represent each theorem with a short natural-language description as a retrieval representation and systematically analyze how representation context, language model choice, embedding model, and prompting strategy affect retrieval quality. On a curated evaluation set of theorem-search queries written by professional mathematicians, our approach substantially improves both theorem-level and paper-level retrieval compared to existing baselines, demonstrating that semantic theorem search is feasible and effective at web scale. The theorem search tool is available at \href{https://huggingface.co/spaces/uw-math-ai/theorem-search}{this link}, and the dataset is available at \href{https://huggingface.co/datasets/uw-math-ai/TheoremSearch}{this link}.
comment: Feedback is welcome
RAG without Forgetting: Continual Query-Infused Key Memory
Retrieval-augmented generation (RAG) systems commonly improve robustness via query-time adaptations such as query expansion and iterative retrieval. While effective, these approaches are inherently stateless: adaptations are recomputed for each query and discarded thereafter, precluding cumulative learning and repeatedly incurring inference-time cost. Index-side approaches like key expansion introduce persistence but rely on offline preprocessing or heuristic updates that are weakly aligned with downstream task utility, leading to semantic drift and noise accumulation. We propose Evolving Retrieval Memory (ERM), a training-free framework that transforms transient query-time gains into persistent retrieval improvements. ERM updates the retrieval index through correctness-gated feedback, selectively attributes atomic expansion signals to the document keys they benefit, and progressively evolves keys via stable, norm-bounded updates. We show that query and key expansion are theoretically equivalent under standard similarity functions and prove convergence of ERM's selective updates, amortizing optimal query expansion into a stable index with zero inference-time overhead. Experiments on BEIR and BRIGHT across 13 domains demonstrate consistent gains in retrieval and generation, particularly on reasoning-intensive tasks, at native retrieval speed.
comment: 24 pages, 12 figures
♻ ☆ Connect the Dots: Knowledge Graph-Guided Crawler Attack on Retrieval-Augmented Generation Systems
Stealing attacks pose a persistent threat to the intellectual property of deployed machine-learning systems. Retrieval-augmented generation (RAG) intensifies this risk by extending the attack surface beyond model weights to knowledge base that often contains IP-bearing assets such as proprietary runbooks, curated domain collections, or licensed documents. Recent work shows that multi-turn questioning can gradually steal corpus content from RAG systems, yet existing attacks are largely heuristic and often plateau early. We address this gap by formulating RAG knowledge-base stealing as an adaptive stochastic coverage problem (ASCP), where each query is a stochastic action and the goal is to maximize the conditional expected marginal gain (CMG) in corpus coverage under a query budget. Bridging ASCP to real-world black-box RAG knowledge-base stealing raises three challenges: CMG is unobservable, the natural-language action space is intractably large, and feasibility constraints require stealthy queries that remain effective under diverse architectures. We introduce RAGCrawler, a knowledge graph-guided attacker that maintains a global attacker-side state to estimate coverage gains, schedule high-value semantic anchors, and generate non-redundant natural queries. Across four corpora and four generators with BGE retriever, RAGCrawler achieves 66.8% average coverage (up to 84.4%) within 1,000 queries, improving coverage by 44.90% relative to the strongest baseline. It also reduces the queries needed to reach 70% coverage by at least 4.03x on average and enables surrogate reconstruction with answer similarity up to 0.699. Our attack is also scalable to retriever switching and newer RAG techniques like query rewriting and multi-query retrieval. These results highlight urgent needs to protect RAG knowledge assets.
♻ ☆ When Iterative RAG Beats Ideal Evidence: A Diagnostic Study in Scientific Multi-hop Question Answering
Retrieval-Augmented Generation (RAG) extends large language models (LLMs) beyond parametric knowledge, yet it is unclear when iterative retrieval-reasoning loops meaningfully outperform static RAG, particularly in scientific domains with multi-hop reasoning, sparse domain knowledge, and heterogeneous evidence. We provide the first controlled, mechanism-level diagnostic study of whether synchronized iterative retrieval and reasoning can surpass an idealized static upper bound (Gold Context) RAG. We benchmark eleven state-of-the-art LLMs under three regimes: (i) No Context, measuring reliance on parametric memory; (ii) Gold Context, where all oracle evidence is supplied at once; and (iii) Iterative RAG, a training-free controller that alternates retrieval, hypothesis refinement, and evidence-aware stopping. Using the chemistry-focused ChemKGMultiHopQA dataset, we isolate questions requiring genuine retrieval and analyze behavior with diagnostics spanning retrieval coverage gaps, anchor-carry drop, query quality, composition fidelity, and control calibration. Across models, Iterative RAG consistently outperforms Gold Context, with gains up to 25.6 percentage points, especially for non-reasoning fine-tuned models. Staged retrieval reduces late-hop failures, mitigates context overload, and enables dynamic correction of early hypothesis drift, but remaining failure modes include incomplete hop coverage, distractor latch trajectories, early stopping miscalibration, and high composition failure rates even with perfect retrieval. Overall, staged retrieval is often more influential than the mere presence of ideal evidence; we provide practical guidance for deploying and diagnosing RAG systems in specialized scientific settings and a foundation for more reliable, controllable iterative retrieval-reasoning frameworks.
comment: 27 pages, 15 figures
♻ ☆ DeepAgent: A General Reasoning Agent with Scalable Toolsets WWW 2026
Large reasoning models have demonstrated strong problem-solving abilities, yet real-world tasks often require external tools and long-horizon interactions. Existing agent frameworks typically follow predefined workflows, which limit autonomous and global task completion. In this paper, we introduce DeepAgent, an end-to-end deep reasoning agent that performs autonomous thinking, tool discovery, and action execution within a single, coherent reasoning process. To manage long-horizon interactions, we introduce an autonomous memory folding mechanism that compresses past interactions into structured episodic, working, and tool memories, reducing error accumulation while preserving critical information. To teach general-purpose tool use efficiently and stably, we develop an end-to-end reinforcement learning strategy, namely ToolPO, that leverages LLM-simulated APIs and applies tool-call advantage attribution to assign fine-grained credit to the tool invocation tokens. Extensive experiments on eight benchmarks, including general tool-use tasks (ToolBench, API-Bank, TMDB, Spotify, ToolHop) and downstream applications (ALFWorld, WebShop, GAIA, HLE), demonstrate that DeepAgent consistently outperforms baselines across both labeled-tool and open-set tool retrieval scenarios. The code and demo are available at https://github.com/RUC-NLPIR/DeepAgent.
comment: Accepted by WWW 2026
♻ ☆ Multi-View Adaptive Contrastive Learning for Information Retrieval Based Fault Localization
Most studies focused on information retrieval-based techniques for fault localization, which built representations for bug reports and source code files and matched their semantic vectors through similarity measurement. However, such approaches often ignore some useful information that might help improve localization performance, such as 1) the interaction relationship between bug reports and source code files; 2) the similarity relationship between bug reports; and 3) the co-citation relationship between source code files. In this paper, we propose a novel approach named Multi-View Adaptive Contrastive Learning for Information Retrieval Fault Localization (MACL-IRFL) to learn the above-mentioned relationships for software fault localization. Specifically, we first generate data augmentations from report-code interaction view, report-report similarity view and code-code co-citation view separately, and adopt graph neural network to aggregate the information of bug reports or source code files from the three views in the embedding process. Moreover, we perform contrastive learning across these views. Our design of contrastive learning task will force the bug report representations to encode information shared by report-report and report-code views,and the source code file representations shared by code-code and report-code views, thereby alleviating the noise from auxiliary information. Finally, to evaluate the performance of our approach, we conduct extensive experiments on five open-source Java projects. The results show that our model can improve over the best baseline up to 28.93%, 25.57% and 20.35% on Accuracy@1, MAP and MRR, respectively.
comment: The paper was accepted by Automated Software Engineering in 18 October 2025
♻ ☆ SDR-CIR: Semantic Debias Retrieval Framework for Training-Free Zero-Shot Composed Image Retrieval WWW 2026
Composed Image Retrieval (CIR) aims to retrieve a target image from a query composed of a reference image and modification text. Recent training-free zero-shot methods often employ Multimodal Large Language Models (MLLMs) with Chain-of-Thought (CoT) to compose a target image description for retrieval. However, due to the fuzzy matching nature of ZS-CIR, the generated description is prone to semantic bias relative to the target image. We propose SDR-CIR, a training-free Semantic Debias Ranking method based on CoT reasoning. First, Selective CoT guides the MLLM to extract visual content relevant to the modification text during image understanding, thereby reducing visual noise at the source. We then introduce a Semantic Debias Ranking with two steps, Anchor and Debias, to mitigate semantic bias. In the Anchor step, we fuse reference image features with target description features to reinforce useful semantics and supplement omitted cues. In the Debias step, we explicitly model the visual semantic contribution of the reference image to the description and incorporate it into the similarity score as a penalty term. By supplementing omitted cues while suppressing redundancy, SDR-CIR mitigates semantic bias and improves retrieval performance. Experiments on three standard CIR benchmarks show that SDR-CIR achieves state-of-the-art results among one-stage methods while maintaining high efficiency. The code is publicly available at https://github.com/suny105/SDR-CIR.
comment: Accepted by WWW 2026
♻ ☆ Addressing Corpus Knowledge Poisoning Attacks on RAG Using Sparse Attention
Retrieval Augmented Generation (RAG) is a highly effective paradigm for keeping LLM-based responses up-to-date and reducing the likelihood of hallucinations. Yet, RAG was recently shown to be quite vulnerable to corpus knowledge poisoning: an attacker injects misleading documents to the corpus to steer an LLM's output to an undesired response. We argue that the standard causal attention mechanism in LLMs enables harmful cross-document interactions, specifically in cases of attacks. Accordingly, we introduce a novel defense approach for RAG: Sparse Document Attention RAG (SDAG). This is a block-sparse attention mechanism that disallows cross-attention between retrieved documents. SDAG requires a minimal inference-time change to the attention mask; furthermore, no fine-tuning or additional architectural changes are needed. We present an empirical evaluation of LLM-based question answering (QA) with a variety of attack strategies on RAG. We show that our SDAG method substantially outperforms the standard causal attention mechanism in terms of attack success rate. We further demonstrate the clear merits of integrating SDAG with state-of-the-art RAG defense methods. Specifically, the integration results in performance that is statistically significantly better than the state-of-the-art.
♻ ☆ Efficient Long-Document Reranking via Block-Level Embeddings and Top-k Interaction Refinement
Dense encoders and LLM-based rerankers struggle with long documents: single-vector representations dilute fine-grained relevance, while cross-encoders are often too expensive for practical reranking. We present an efficient long-document reranking framework based on block-level embeddings. Each document is segmented into short blocks and encoded into block embeddings that can be precomputed offline. Given a query, we encode it once and score each candidate document by aggregating top-k query-block similarities with a simple weighted sum, yielding a strong and interpretable block-level relevance signal. To capture dependencies among the selected blocks and suppress redundancy, we introduce Top-k Interaction Refinement (TIR), a lightweight setwise module that applies query-conditioned attention over the top-k blocks and produces a bounded residual correction to block scores. TIR introduces only a small number of parameters and operates on top-k blocks, keeping query-time overhead low. Experiments on long-document reranking benchmarks (TREC DL and MLDR-zh) show that block representations substantially improve over single-vector encoders, and TIR provides consistent additional gains over strong long-document reranking baselines while maintaining practical reranking latency. For example, on TREC DL 2023, NDCG at 10 improves from 0.395 to 0.451 with the same block budget k = 65, using at most 4095 tokens. The resulting model supports interpretability by exposing which blocks drive each document's score and how refinement redistributes their contributions.
♻ ☆ PASH at TREC 2021 Deep Learning Track: Generative Enhanced Model for Multi-stage Ranking
This paper describes the PASH participation in TREC 2021 Deep Learning Track. In the recall stage, we adopt a scheme combining sparse and dense retrieval method. In the multi-stage ranking phase, point-wise and pair-wise ranking strategies are used one after another based on model continual pre-trained on general knowledge and document-level data. Compared to TREC 2020 Deep Learning Track, we have additionally introduced the generative model T5 to further enhance the performance.
comment: TREC 2021
♻ ☆ Unifying Ranking and Generation in Query Auto-Completion via Retrieval-Augmented Generation and Multi-Objective Alignment
Query Auto-Completion (QAC) suggests query completions as users type, helping them articulate intent and reach results more efficiently. Existing approaches face fundamental challenges: traditional retrieve-and-rank pipelines have limited long-tail coverage and require extensive feature engineering, while recent generative methods suffer from hallucination and safety risks. We present a unified framework that reformulates QAC as end-to-end list generation through Retrieval-Augmented Generation (RAG) and multi-objective Direct Preference Optimization (DPO). Our approach combines three key innovations: (1) reformulating QAC as end-to-end list generation with multi-objective optimization; (2) defining and deploying a suite of rule-based, model-based, and LLM-as-judge verifiers for QAC, and using them in a comprehensive methodology that combines RAG, multi-objective DPO, and iterative critique-revision for high-quality synthetic data; (3) a hybrid serving architecture enabling efficient production deployment under strict latency constraints. Evaluation on a large-scale commercial search platform demonstrates substantial improvements: offline metrics show gains across all dimensions, human evaluation yields +0.40 to +0.69 preference scores, and a controlled online experiment achieves 5.44\% reduction in keystrokes and 3.46\% increase in suggestion adoption, validating that unified generation with RAG and multi-objective alignment provides an effective solution for production QAC. This work represents a paradigm shift to end-to-end generation powered by large language models, RAG, and multi-objective alignment, establishing a production-validated framework that can benefit the broader search and recommendation industry.
comment: 11 pages, 4 figures
Computation and Language 167
☆ Reinforced Attention Learning
Post-training with Reinforcement Learning (RL) has substantially improved reasoning in Large Language Models (LLMs) via test-time scaling. However, extending this paradigm to Multimodal LLMs (MLLMs) through verbose rationales yields limited gains for perception and can even degrade performance. We propose Reinforced Attention Learning (RAL), a policy-gradient framework that directly optimizes internal attention distributions rather than output token sequences. By shifting optimization from what to generate to where to attend, RAL promotes effective information allocation and improved grounding in complex multimodal inputs. Experiments across diverse image and video benchmarks show consistent gains over GRPO and other baselines. We further introduce On-Policy Attention Distillation, demonstrating that transferring latent attention behaviors yields stronger cross-modal alignment than standard knowledge distillation. Our results position attention policies as a principled and general alternative for multimodal post-training.
☆ Rethinking the Trust Region in LLM Reinforcement Learning
Reinforcement learning (RL) has become a cornerstone for fine-tuning Large Language Models (LLMs), with Proximal Policy Optimization (PPO) serving as the de facto standard algorithm. Despite its ubiquity, we argue that the core ratio clipping mechanism in PPO is structurally ill-suited for the large vocabularies inherent to LLMs. PPO constrains policy updates based on the probability ratio of sampled tokens, which serves as a noisy single-sample Monte Carlo estimate of the true policy divergence. This creates a sub-optimal learning dynamic: updates to low-probability tokens are aggressively over-penalized, while potentially catastrophic shifts in high-probability tokens are under-constrained, leading to training inefficiency and instability. To address this, we propose Divergence Proximal Policy Optimization (DPPO), which substitutes heuristic clipping with a more principled constraint based on a direct estimate of policy divergence (e.g., Total Variation or KL). To avoid huge memory footprint, we introduce the efficient Binary and Top-K approximations to capture the essential divergence with negligible overhead. Extensive empirical evaluations demonstrate that DPPO achieves superior training stability and efficiency compared to existing methods, offering a more robust foundation for RL-based LLM fine-tuning.
☆ Subliminal Effects in Your Data: A General Mechanism via Log-Linearity
Training modern large language models (LLMs) has become a veritable smorgasbord of algorithms and datasets designed to elicit particular behaviors, making it critical to develop techniques to understand the effects of datasets on the model's properties. This is exacerbated by recent experiments that show datasets can transmit signals that are not directly observable from individual datapoints, posing a conceptual challenge for dataset-centric understandings of LLM training and suggesting a missing fundamental account of such phenomena. Towards understanding such effects, inspired by recent work on the linear structure of LLMs, we uncover a general mechanism through which hidden subtexts can arise in generic datasets. We introduce Logit-Linear-Selection (LLS), a method that prescribes how to select subsets of a generic preference dataset to elicit a wide range of hidden effects. We apply LLS to discover subsets of real-world datasets so that models trained on them exhibit behaviors ranging from having specific preferences, to responding to prompts in a different language not present in the dataset, to taking on a different persona. Crucially, the effect persists for the selected subset, across models with varying architectures, supporting its generality and universality.
comment: Code available at https://github.com/ishaqadenali/logit-linear-selection
☆ CoT is Not the Chain of Truth: An Empirical Internal Analysis of Reasoning LLMs for Fake News Generation
From generating headlines to fabricating news, the Large Language Models (LLMs) are typically assessed by their final outputs, under the safety assumption that a refusal response signifies safe reasoning throughout the entire process. Challenging this assumption, our study reveals that during fake news generation, even when a model rejects a harmful request, its Chain-of-Thought (CoT) reasoning may still internally contain and propagate unsafe narratives. To analyze this phenomenon, we introduce a unified safety-analysis framework that systematically deconstructs CoT generation across model layers and evaluates the role of individual attention heads through Jacobian-based spectral metrics. Within this framework, we introduce three interpretable measures: stability, geometry, and energy to quantify how specific attention heads respond or embed deceptive reasoning patterns. Extensive experiments on multiple reasoning-oriented LLMs show that the generation risk rise significantly when the thinking mode is activated, where the critical routing decisions concentrated in only a few contiguous mid-depth layers. By precisely identifying the attention heads responsible for this divergence, our work challenges the assumption that refusal implies safety and provides a new understanding perspective for mitigating latent reasoning risks.
comment: 28 pages, 35 figures
☆ Decomposed Prompting Does Not Fix Knowledge Gaps, But Helps Models Say "I Don't Know"
Large language models often struggle to recognize their knowledge limits in closed-book question answering, leading to confident hallucinations. While decomposed prompting is typically used to improve accuracy, we investigate its impact on reliability. We evaluate three task-equivalent prompting regimes: Direct, Assistive, and Incremental, across different model scales and multi-hop QA benchmarks. We find that although accuracy gains from decomposition diminish in frontier models, disagreements between prompting regimes remain highly indicative of potential errors. Because factual knowledge is stable while hallucinations are stochastic, cross-regime agreement provides a precise signal of internal uncertainty. We leverage this signal to implement a training-free abstention policy that requires no retrieval or fine-tuning. Our results show that disagreement-based abstention outperforms standard uncertainty baselines as an error detector, improving both F1 and AUROC across settings. This demonstrates that decomposition-based prompting can serve as a practical diagnostic probe for model reliability in closed-book QA.
☆ Horizon-LM: A RAM-Centric Architecture for LLM Training
The rapid growth of large language models (LLMs) has outpaced the evolution of single-GPU hardware, making model scale increasingly constrained by memory capacity rather than computation. While modern training systems extend GPU memory through distributed parallelism and offloading across CPU and storage tiers, they fundamentally retain a GPU-centric execution paradigm in which GPUs host persistent model replicas and full autograd graphs. As a result, scaling large models remains tightly coupled to multi-GPU clusters, complex distributed runtimes, and unpredictable host memory consumption, creating substantial barriers for node-scale post-training workloads such as instruction tuning, alignment, and domain adaptation. We present Horizon-LM, a memory-centric training system that redefines the roles of CPU and GPU for large-model optimization. Horizon-LM treats host memory as the authoritative parameter store and uses GPUs solely as transient compute engines through a CPU-master, GPU-template execution model. By eliminating persistent GPU-resident modules and autograd graphs, employing explicit recomputation with manual gradient propagation, and introducing a pipelined double-buffered execution engine, Horizon-LM decouples model scale from GPU count and bounds memory usage to the theoretical parameter footprint. On a single H200 GPU with 1.5\,TB host RAM, Horizon-LM reliably trains models up to 120B parameters. On a standard single A100 machine, Horizon-LM achieves up to 12.2$\times$ higher training throughput than DeepSpeed ZeRO-3 with CPU offloading while preserving numerical correctness. Across platforms and scales, Horizon-LM sustains high device utilization and predictable memory growth, demonstrating that host memory, not GPU memory, defines the true feasibility boundary for node-scale large-model training.
☆ SE-Bench: Benchmarking Self-Evolution with Knowledge Internalization
True self-evolution requires agents to act as lifelong learners that internalize novel experiences to solve future problems. However, rigorously measuring this foundational capability is hindered by two obstacles: the entanglement of prior knowledge, where ``new'' knowledge may appear in pre-training data, and the entanglement of reasoning complexity, where failures may stem from problem difficulty rather than an inability to recall learned knowledge. We introduce SE-Bench, a diagnostic environment that obfuscates the NumPy library and its API doc into a pseudo-novel package with randomized identifiers. Agents are trained to internalize this package and evaluated on simple coding tasks without access to documentation, yielding a clean setting where tasks are trivial with the new API doc but impossible for base models without it. Our investigation reveals three insights: (1) the Open-Book Paradox, where training with reference documentation inhibits retention, requiring "Closed-Book Training" to force knowledge compression into weights; (2) the RL Gap, where standard RL fails to internalize new knowledge completely due to PPO clipping and negative gradients; and (3) the viability of Self-Play for internalization, proving models can learn from self-generated, noisy tasks when coupled with SFT, but not RL. Overall, SE-Bench establishes a rigorous diagnostic platform for self-evolution with knowledge internalization. Our code and dataset can be found at https://github.com/thunlp/SE-Bench.
comment: Under review
☆ OmniSIFT: Modality-Asymmetric Token Compression for Efficient Omni-modal Large Language Models
Omni-modal Large Language Models (Omni-LLMs) have demonstrated strong capabilities in audio-video understanding tasks. However, their reliance on long multimodal token sequences leads to substantial computational overhead. Despite this challenge, token compression methods designed for Omni-LLMs remain limited. To bridge this gap, we propose OmniSIFT (Omni-modal Spatio-temporal Informed Fine-grained Token compression), a modality-asymmetric token compression framework tailored for Omni-LLMs. Specifically, OmniSIFT adopts a two-stage compression strategy: (i) a spatio-temporal video pruning module that removes video redundancy arising from both intra-frame structure and inter-frame overlap, and (ii) a vision-guided audio selection module that filters audio tokens. The entire framework is optimized end-to-end via a differentiable straight-through estimator. Extensive experiments on five representative benchmarks demonstrate the efficacy and robustness of OmniSIFT. Notably, for Qwen2.5-Omni-7B, OmniSIFT introduces only 4.85M parameters while maintaining lower latency than training-free baselines such as OmniZip. With merely 25% of the original token context, OmniSIFT consistently outperforms all compression baselines and even surpasses the performance of the full-token model on several tasks.
comment: Code will be released soon
☆ Speaker-Aware Simulation Improves Conversational Speech Recognition
Automatic speech recognition (ASR) for conversational speech remains challenging due to the limited availability of large-scale, well-annotated multi-speaker dialogue data and the complex temporal dynamics of natural interactions. Speaker-aware simulated conversations (SASC) offer an effective data augmentation strategy by transforming single-speaker recordings into realistic multi-speaker dialogues. However, prior work has primarily focused on English data, leaving questions about the applicability to lower-resource languages. In this paper, we adapt and implement the SASC framework for Hungarian conversational ASR. We further propose C-SASC, an extended variant that incorporates pause modeling conditioned on utterance duration, enabling a more faithful representation of local temporal dependencies observed in human conversation while retaining the simplicity and efficiency of the original approach. We generate synthetic Hungarian dialogues from the BEA-Large corpus and combine them with real conversational data for ASR training. Both SASC and C-SASC are evaluated extensively under a wide range of simulation configurations, using conversational statistics derived from CallHome, BEA-Dialogue, and GRASS corpora. Experimental results show that speaker-aware conversational simulation consistently improves recognition performance over naive concatenation-based augmentation. While the additional duration conditioning in C-SASC yields modest but systematic gains--most notably in character-level error rates--its effectiveness depends on the match between source conversational statistics and the target domain. Overall, our findings confirm the robustness of speaker-aware conversational simulation for Hungarian ASR and highlight the benefits and limitations of increasingly detailed temporal modeling in synthetic dialogue generation.
☆ Beyond Many-Shot Translation: Scaling In-Context Demonstrations For Low-Resource Machine Translation EACL 2026
Building machine translation (MT) systems for low-resource languages is notably difficult due to the scarcity of high-quality data. Although Large Language Models (LLMs) have improved MT system performance, adapting them to lesser-represented languages remains challenging. In-context learning (ICL) may offer novel ways to adapt LLMs for low-resource MT by conditioning models on demonstration at inference time. In this study, we explore scaling low-resource machine translation ICL beyond the few-shot setting to thousands of examples with long-context models. We scale in-context token budget to 1M tokens and compare three types of training corpora used as in-context supervision: monolingual unsupervised data, instruction-style data, and parallel data (English--target and Indonesian--target). Our experiments on Javanese and Sundanese show that gains from additional context saturate quickly and can degrade near the maximum context window, with scaling behavior strongly dependent on corpus type. Notably, some forms of monolingual supervision can be competitive with parallel data, despite the latter offering additional supervision. Overall, our results characterize the effective limits and corpus-type sensitivity of long-context ICL for low-resource MT, highlighting that larger context windows do not necessarily yield proportional quality gains.
comment: 8 pages, 18 figures, EACL 2026 Conference - LoResMT workshop
☆ When Silence Is Golden: Can LLMs Learn to Abstain in Temporal QA and Beyond? ICLR2026
Large language models (LLMs) rarely admit uncertainty, often producing fluent but misleading answers, rather than abstaining (i.e., refusing to answer). This weakness is even evident in temporal question answering, where models frequently ignore time-sensitive evidence and conflate facts across different time-periods. In this paper, we present the first empirical study of training LLMs with an abstention ability while reasoning about temporal QA. Existing approaches such as calibration might be unreliable in capturing uncertainty in complex reasoning. We instead frame abstention as a teachable skill and introduce a pipeline that couples Chain-of-Thought (CoT) supervision with Reinforcement Learning (RL) guided by abstention-aware rewards. Our goal is to systematically analyze how different information types and training techniques affect temporal reasoning with abstention behavior in LLMs. Through extensive experiments studying various methods, we find that RL yields strong empirical gains on reasoning: a model initialized by Qwen2.5-1.5B-Instruct surpasses GPT-4o by $3.46\%$ and $5.80\%$ in Exact Match on TimeQA-Easy and Hard, respectively. Moreover, it improves the True Positive rate on unanswerable questions by $20\%$ over a pure supervised fine-tuned (SFT) variant. Beyond performance, our analysis shows that SFT induces overconfidence and harms reliability, while RL improves prediction accuracy but exhibits similar risks. Finally, by comparing implicit reasoning cues (e.g., original context, temporal sub-context, knowledge graphs) with explicit CoT supervision, we find that implicit information provides limited benefit for reasoning with abstention. Our study provides new insights into how abstention and reasoning can be jointly optimized, providing a foundation for building more reliable LLMs.
comment: Accepted to ICLR2026
☆ Exploiting contextual information to improve stance detection in informal political discourse with LLMs
This study investigates the use of Large Language Models (LLMs) for political stance detection in informal online discourse, where language is often sarcastic, ambiguous, and context-dependent. We explore whether providing contextual information, specifically user profile summaries derived from historical posts, can improve classification accuracy. Using a real-world political forum dataset, we generate structured profiles that summarize users' ideological leaning, recurring topics, and linguistic patterns. We evaluate seven state-of-the-art LLMs across baseline and context-enriched setups through a comprehensive cross-model evaluation. Our findings show that contextual prompts significantly boost accuracy, with improvements ranging from +17.5\% to +38.5\%, achieving up to 74\% accuracy that surpasses previous approaches. We also analyze how profile size and post selection strategies affect performance, showing that strategically chosen political content yields better results than larger, randomly selected contexts. These findings underscore the value of incorporating user-level context to enhance LLM performance in nuanced political classification tasks.
comment: 14 pages, 7 figures
☆ Inference-Time Reasoning Selectively Reduces Implicit Social Bias in Large Language Models
Drawing on constructs from psychology, prior work has identified a distinction between explicit and implicit bias in large language models (LLMs). While many LLMs undergo post-training alignment and safety procedures to avoid expressions of explicit social bias, they still exhibit significant implicit biases on indirect tasks resembling the Implicit Association Test (IAT). Recent work has further shown that inference-time reasoning can impair LLM performance on tasks that rely on implicit statistical learning. Motivated by a theoretical link between implicit associations and statistical learning in human cognition, we examine how reasoning-enabled inference affects implicit bias in LLMs. We find that enabling reasoning significantly reduces measured implicit bias on an IAT-style evaluation for some model classes across fifteen stereotype topics. This effect appears specific to social bias domains, as we observe no corresponding reduction for non-social implicit associations. As reasoning is increasingly enabled by default in deployed LLMs, these findings suggest that it can meaningfully alter fairness evaluation outcomes in some systems, while also raising questions about how alignment procedures interact with inference-time reasoning to drive variation in bias reduction across model types. More broadly, this work highlights how theory from cognitive science and psychology can complement AI evaluation research by providing methodological and interpretive frameworks that reveal new insights into model behavior.
☆ Alignment Drift in Multimodal LLMs: A Two-Phase, Longitudinal Evaluation of Harm Across Eight Model Releases
Multimodal large language models (MLLMs) are increasingly deployed in real-world systems, yet their safety under adversarial prompting remains underexplored. We present a two-phase evaluation of MLLM harmlessness using a fixed benchmark of 726 adversarial prompts authored by 26 professional red teamers. Phase 1 assessed GPT-4o, Claude Sonnet 3.5, Pixtral 12B, and Qwen VL Plus; Phase 2 evaluated their successors (GPT-5, Claude Sonnet 4.5, Pixtral Large, and Qwen Omni) yielding 82,256 human harm ratings. Large, persistent differences emerged across model families: Pixtral models were consistently the most vulnerable, whereas Claude models appeared safest due to high refusal rates. Attack success rates (ASR) showed clear alignment drift: GPT and Claude models exhibited increased ASR across generations, while Pixtral and Qwen showed modest decreases. Modality effects also shifted over time: text-only prompts were more effective in Phase 1, whereas Phase 2 produced model-specific patterns, with GPT-5 and Claude 4.5 showing near-equivalent vulnerability across modalities. These findings demonstrate that MLLM harmlessness is neither uniform nor stable across updates, underscoring the need for longitudinal, multimodal benchmarks to track evolving safety behaviour.
comment: under peer-review
☆ From Data to Behavior: Predicting Unintended Model Behaviors Before Training
Large Language Models (LLMs) can acquire unintended biases from seemingly benign training data even without explicit cues or malicious content. Existing methods struggle to detect such risks before fine-tuning, making post hoc evaluation costly and inefficient. To address this challenge, we introduce Data2Behavior, a new task for predicting unintended model behaviors prior to training. We also propose Manipulating Data Features (MDF), a lightweight approach that summarizes candidate data through their mean representations and injects them into the forward pass of a base model, allowing latent statistical signals in the data to shape model activations and reveal potential biases and safety risks without updating any parameters. MDF achieves reliable prediction while consuming only about 20% of the GPU resources required for fine-tuning. Experiments on Qwen3-14B, Qwen2.5-32B-Instruct, and Gemma-3-12b-it confirm that MDF can anticipate unintended behaviors and provide insight into pre-training vulnerabilities.
comment: Work in progress
☆ Less Finetuning, Better Retrieval: Rethinking LLM Adaptation for Biomedical Retrievers via Synthetic Data and Model Merging
Retrieval-augmented generation (RAG) has become the backbone of grounding Large Language Models (LLMs), improving knowledge updates and reducing hallucinations. Recently, LLM-based retriever models have shown state-of-the-art performance for RAG applications. However, several technical aspects remain underexplored on how to adapt general-purpose LLMs into effective domain-specific retrievers, especially in specialized domains such as biomedicine. We present Synthesize-Train-Merge (STM), a modular framework that enhances decoder-only LLMs with synthetic hard negatives, retrieval prompt optimization, and model merging. Experiments on a subset of 12 medical and general tasks from the MTEB benchmark show STM boosts task-specific experts by up to 23.5\% (average 7.5\%) and produces merged models that outperform both single experts and strong baselines without extensive pretraining. Our results demonstrate a scalable, efficient path for turning general LLMs into high-performing, domain-specialized retrievers, preserving general-domain capabilities while excelling on specialized tasks.
comment: Preprint
☆ "Be My Cheese?": Cultural Nuance Benchmarking for Machine Translation in Multilingual LLMs
We present a large-scale human evaluation benchmark for assessing cultural localisation in machine translation produced by state-of-the-art multilingual large language models (LLMs). Existing MT benchmarks emphasise token-level and grammatical accuracy, but of ten overlook pragmatic and culturally grounded competencies required for real-world localisation. Building on a pilot study of 87 translations across 20 languages, we evaluate 7 multilingual LLMs across 15 target languages with 5 native-speaker raters per language. Raters scored both full-text translations and segment-level instances of culturally nuanced language (idioms, puns, holidays, and culturally embedded concepts) on an ordinal 0-3 quality scale; segment ratings additionally included an NA option for untranslated segments. Across full-text evaluations, mean overall quality is modest (1.68/3): GPT-5 (2.10/3), Claude Sonnet 3.7 (1.97/3), and Mistral Medium 3.1 (1.84/3) form the strongest tier with fewer catastrophic failures. Segment-level results show sharp category effects: holidays (2.20/3) and cultural concepts (2.19/3) translate substantially better than idioms (1.65/3) and puns (1.45/3), and idioms are most likely to be left untranslated. These findings demonstrate a persistent gap between grammatical adequacy and cultural resonance. To our knowledge, this is the first multilingual, human-annotated benchmark focused explicitly on cultural nuance in translation and localisation, highlighting the need for culturally informed training data, improved cross-lingual pragmatics, and evaluation paradigms that better reflect real-world communicative competence.
comment: under peer-review
☆ Identifying Intervenable and Interpretable Features via Orthogonality Regularization
With recent progress on fine-tuning language models around a fixed sparse autoencoder, we disentangle the decoder matrix into almost orthogonal features. This reduces interference and superposition between the features, while keeping performance on the target dataset essentially unchanged. Our orthogonality penalty leads to identifiable features, ensuring the uniqueness of the decomposition. Further, we find that the distance between embedded feature explanations increases with stricter orthogonality penalty, a desirable property for interpretability. Invoking the $\textit{Independent Causal Mechanisms}$ principle, we argue that orthogonality promotes modular representations amenable to causal intervention. We empirically show that these increasingly orthogonalized features allow for isolated interventions. Our code is available under $\texttt{https://github.com/mrtzmllr/sae-icm}$.
☆ Linguistically Informed Evaluation of Multilingual ASR for African Languages
Word Error Rate (WER) mischaracterizes ASR models' performance for African languages by combining phonological, tone, and other linguistic errors into a single lexical error. By contrast, Feature Error Rate (FER) has recently attracted attention as a viable metric that reveals linguistically meaningful errors in models' performance. In this paper, we evaluate three speech encoders on two African languages by complementing WER with CER, and FER, and add a tone-aware extension (TER). We show that by computing errors on phonological features, FER and TER reveal linguistically-salient error patterns even when word-level accuracy remains low. Our results reveal that models perform better on segmental features, while tones (especially mid and downstep) remain the most challenging features. Results on Yoruba show a striking differential in metrics, with WER=0.788, CER=0.305, and FER=0.151. Similarly for Uneme (an endangered language absent from pretraining data) a model with near-total WER and 0.461 CER achieves the relatively low FER of 0.267. This indicates model error is often attributable to individual phonetic feature errors, which is obscured by all-or-nothing metrics like WER.
comment: To appear at AfricaNLP 2026
☆ LiteToken: Removing Intermediate Merge Residues From BPE Tokenizers
Tokenization is fundamental to how language models represent and process text, yet the behavior of widely used BPE tokenizers has received far less study than model architectures and training. In this paper, we investigate intermediate merge residues in BPE vocabularies: tokens that are frequent during merge learning so that retained in the final vocabulary, but are mostly further merged and rarely emitted when tokenizing the corpus during tokenizer usage. Such low-frequency tokens not only waste vocabulary capacity but also increase vulnerability to adversarial or atypical inputs. We present a systematic empirical characterization of this phenomenon across commonly used tokenizers and introduce LiteToken, a simple method for removing residue tokens. Because the affected tokens are rarely used, pretrained models can often accommodate the modified tokenizer without additional fine-tuning. Experiments show that LiteToken reduces token fragmentation, reduces parameters, and improves robustness to noisy or misspelled inputs, while preserving overall performance.
☆ ERNIE 5.0 Technical Report
In this report, we introduce ERNIE 5.0, a natively autoregressive foundation model desinged for unified multimodal understanding and generation across text, image, video, and audio. All modalities are trained from scratch under a unified next-group-of-tokens prediction objective, based on an ultra-sparse mixture-of-experts (MoE) architecture with modality-agnostic expert routing. To address practical challenges in large-scale deployment under diverse resource constraints, ERNIE 5.0 adopts a novel elastic training paradigm. Within a single pre-training run, the model learns a family of sub-models with varying depths, expert capacities, and routing sparsity, enabling flexible trade-offs among performance, model size, and inference latency in memory- or time-constrained scenarios. Moreover, we systematically address the challenges of scaling reinforcement learning to unified foundation models, thereby guaranteeing efficient and stable post-training under ultra-sparse MoE architectures and diverse multimodal settings. Extensive experiments demonstrate that ERNIE 5.0 achieves strong and balanced performance across multiple modalities. To the best of our knowledge, among publicly disclosed models, ERNIE 5.0 represents the first production-scale realization of a trillion-parameter unified autoregressive model that supports both multimodal understanding and generation. To facilitate further research, we present detailed visualizations of modality-agnostic expert routing in the unified model, alongside comprehensive empirical analysis of elastic training, aiming to offer profound insights to the community.
☆ LinGO: A Linguistic Graph Optimization Framework with LLMs for Interpreting Intents of Online Uncivil Discourse
Detecting uncivil language is crucial for maintaining safe, inclusive, and democratic online spaces. Yet existing classifiers often misinterpret posts containing uncivil cues but expressing civil intents, leading to inflated estimates of harmful incivility online. We introduce LinGO, a linguistic graph optimization framework for large language models (LLMs) that leverages linguistic structures and optimization techniques to classify multi-class intents of incivility that use various direct and indirect expressions. LinGO decomposes language into multi-step linguistic components, identifies targeted steps that cause the most errors, and iteratively optimizes prompt and/or example components for targeted steps. We evaluate it using a dataset collected during the 2022 Brazilian presidential election, encompassing four forms of political incivility: Impoliteness (IMP), Hate Speech and Stereotyping (HSST), Physical Harm and Violent Political Rhetoric (PHAVPR), and Threats to Democratic Institutions and Values (THREAT). Each instance is annotated with six types of civil/uncivil intent. We benchmark LinGO using three cost-efficient LLMs: GPT-5-mini, Gemini 2.5 Flash-Lite, and Claude 3 Haiku, and four optimization techniques: TextGrad, AdalFlow, DSPy, and Retrieval-Augmented Generation (RAG). The results show that, across all models, LinGO consistently improves accuracy and weighted F1 compared with zero-shot, chain-of-thought, direct optimization, and fine-tuning baselines. RAG is the strongest optimization technique and, when paired with Gemini model, achieves the best overall performance. These findings demonstrate that incorporating multi-step linguistic components into LLM instructions and optimize targeted components can help the models explain complex semantic meanings, which can be extended to other complex semantic explanation tasks in the future.
☆ Investigating Disability Representations in Text-to-Image Models
Text-to-image generative models have made remarkable progress in producing high-quality visual content from textual descriptions, yet concerns remain about how they represent social groups. While characteristics like gender and race have received increasing attention, disability representations remain underexplored. This study investigates how people with disabilities are represented in AI-generated images by analyzing outputs from Stable Diffusion XL and DALL-E 3 using a structured prompt design. We analyze disability representations by comparing image similarities between generic disability prompts and prompts referring to specific disability categories. Moreover, we evaluate how mitigation strategies influence disability portrayals, with a focus on assessing affective framing through sentiment polarity analysis, combining both automatic and human evaluation. Our findings reveal persistent representational imbalances and highlight the need for continuous evaluation and refinement of generative models to foster more diverse and inclusive portrayals of disability.
comment: 21 pages, 9 figures. References included
☆ Audio ControlNet for Fine-Grained Audio Generation and Editing
We study the fine-grained text-to-audio (T2A) generation task. While recent models can synthesize high-quality audio from text descriptions, they often lack precise control over attributes such as loudness, pitch, and sound events. Unlike prior approaches that retrain models for specific control types, we propose to train ControlNet models on top of pre-trained T2A backbones to achieve controllable generation over loudness, pitch, and event roll. We introduce two designs, T2A-ControlNet and T2A-Adapter, and show that the T2A-Adapter model offers a more efficient structure with strong control ability. With only 38M additional parameters, T2A-Adapter achieves state-of-the-art performance on the AudioSet-Strong in both event-level and segment-level F1 scores. We further extend this framework to audio editing, proposing T2A-Editor for removing and inserting audio events at time locations specified by instructions. Models, code, dataset pipelines, and benchmarks will be released to support future research on controllable audio generation and editing.
☆ Overstating Attitudes, Ignoring Networks: LLM Biases in Simulating Misinformation Susceptibility
Large language models (LLMs) are increasingly used as proxies for human judgment in computational social science, yet their ability to reproduce patterns of susceptibility to misinformation remains unclear. We test whether LLM-simulated survey respondents, prompted with participant profiles drawn from social survey data measuring network, demographic, attitudinal and behavioral features, can reproduce human patterns of misinformation belief and sharing. Using three online surveys as baselines, we evaluate whether LLM outputs match observed response distributions and recover feature-outcome associations present in the original survey data. LLM-generated responses capture broad distributional tendencies and show modest correlation with human responses, but consistently overstate the association between belief and sharing. Linear models fit to simulated responses exhibit substantially higher explained variance and place disproportionate weight on attitudinal and behavioral features, while largely ignoring personal network characteristics, relative to models fit to human responses. Analyses of model-generated reasoning and LLM training data suggest that these distortions reflect systematic biases in how misinformation-related concepts are represented. Our findings suggest that LLM-based survey simulations are better suited for diagnosing systematic divergences from human judgment than for substituting it.
☆ Delving into Muon and Beyond: Deep Analysis and Extensions
The Muon optimizer has recently attracted considerable attention for its strong empirical performance and use of orthogonalized updates on matrix-shaped parameters, yet its underlying mechanisms and relationship to adaptive optimizers such as Adam remain insufficiently understood. In this work, we aim to address these questions through a unified spectral perspective. Specifically, we view Muon as the p = 0 endpoint of a family of spectral transformations of the form U \boldsymbolΣ^{p} V' , and consider additional variants with p = 1/2 , p = 1/4 , and p = 1 . These transformations are applied to both first-moment updates, as in momentum SGD, and to root-mean-square (RMS) normalized gradient updates as in Adam. To enable efficient computation, we develop a coupled Newton iteration that avoids explicit singular value decomposition. Across controlled experiments, we find that RMS-normalized updates yield more stable optimization than first-moment updates. Moreover, while spectral compression provides strong stabilization benefits under first-moment updates, the Muon update (p = 0) does not consistently outperform Adam. These results suggest that Muon is best understood as an effective form of spectral normalization, but not a universally superior optimization method. Our source code will be released at https://github.com/Ocram7/BeyondMuon.
comment: This paper studies matrix-based optimizers (e.g., Muon) from a spectral perspective and unifies a range of methods under a common spectral framework
☆ Approaches to Semantic Textual Similarity in Slovak Language: From Algorithms to Transformers
Semantic textual similarity (STS) plays a crucial role in many natural language processing tasks. While extensively studied in high-resource languages, STS remains challenging for under-resourced languages such as Slovak. This paper presents a comparative evaluation of sentence-level STS methods applied to Slovak, including traditional algorithms, supervised machine learning models, and third-party deep learning tools. We trained several machine learning models using outputs from traditional algorithms as features, with feature selection and hyperparameter tuning jointly guided by artificial bee colony optimization. Finally, we evaluated several third-party tools, including fine-tuned model by CloudNLP, OpenAI's embedding models, GPT-4 model, and pretrained SlovakBERT model. Our findings highlight the trade-offs between different approaches.
comment: This is a preprint of a paper that was presented at the IEEE 24th World Symposium on Applied Machine Intelligence and Informatics (SAMI 2026)
☆ Outcome Accuracy is Not Enough: Aligning the Reasoning Process of Reward Models
Generative Reward Models (GenRMs) and LLM-as-a-Judge exhibit deceptive alignment by producing correct judgments for incorrect reasons, as they are trained and evaluated to prioritize Outcome Accuracy, which undermines their ability to generalize during RLHF. We introduce Rationale Consistency, a fine-grained metric that quantifies the alignment between the model's reasoning process and human judgment. Our evaluation of frontier models reveals that rationale consistency effectively discriminates among state-of-the-art models and detects deceptive alignment, while outcome accuracy falls short in both respects. To mitigate this gap, we introduce a hybrid signal that combines rationale consistency with outcome accuracy for GenRM training. Our training method achieves state-of-the-art performance on RM-Bench (87.1%) and JudgeBench (82%), surpassing outcome-only baselines by an average of 5%. Using RM during RLHF, our method effectively improves performance as demonstrated on Arena Hard v2, notably yielding a 7% improvement in creative writing tasks. Further analysis confirms that our method escapes the deceptive alignment trap, effectively reversing the decline in rationale consistency observed in outcome-only training.
☆ Mapping the Web of Science, a large-scale graph and text-based dataset with LLM embeddings
Large text data sets, such as publications, websites, and other text-based media, inherit two distinct types of features: (1) the text itself, its information conveyed through semantics, and (2) its relationship to other texts through links, references, or shared attributes. While the latter can be described as a graph structure and can be handled by a range of established algorithms for classification and prediction, the former has recently gained new potential through the use of LLM embedding models. Demonstrating these possibilities and their practicability, we investigate the Web of Science dataset, containing ~56 million scientific publications through the lens of our proposed embedding method, revealing a self-structured landscape of texts.
☆ LEAD: Layer-wise Expert-aligned Decoding for Faithful Radiology Report Generation
Radiology Report Generation (RRG) aims to produce accurate and coherent diagnostics from medical images. Although large vision language models (LVLM) improve report fluency and accuracy, they exhibit hallucinations, generating plausible yet image-ungrounded pathological details. Existing methods primarily rely on external knowledge guidance to facilitate the alignment between generated text and visual information. However, these approaches often ignore the inherent decoding priors and vision-language alignment biases in pretrained models and lack robustness due to reliance on constructed guidance. In this paper, we propose Layer-wise Expert-aligned Decoding (LEAD), a novel method to inherently modify the LVLM decoding trajectory. A multiple experts module is designed for extracting distinct pathological features which are integrated into each decoder layer via a gating mechanism. This layer-wise architecture enables the LLM to consult expert features at every inference step via a learned gating function, thereby dynamically rectifying decoding biases and steering the generation toward factual consistency. Experiments conducted on multiple public datasets demonstrate that the LEAD method yields effective improvements in clinical accuracy metrics and mitigates hallucinations while preserving high generation quality.
☆ Disentangling meaning from language in LLM-based machine translation
Mechanistic Interpretability (MI) seeks to explain how neural networks implement their capabilities, but the scale of Large Language Models (LLMs) has limited prior MI work in Machine Translation (MT) to word-level analyses. We study sentence-level MT from a mechanistic perspective by analyzing attention heads to understand how LLMs internally encode and distribute translation functions. We decompose MT into two subtasks: producing text in the target language (i.e. target language identification) and preserving the input sentence's meaning (i.e. sentence equivalence). Across three families of open-source models and 20 translation directions, we find that distinct, sparse sets of attention heads specialize in each subtask. Based on this insight, we construct subtask-specific steering vectors and show that modifying just 1% of the relevant heads enables instruction-free MT performance comparable to instruction-based prompting, while ablating these heads selectively disrupts their corresponding translation functions.
comment: 61 pages, 70 figures
☆ Focus-LIME: Surgical Interpretation of Long-Context Large Language Models via Proxy-Based Neighborhood Selection
As Large Language Models (LLMs) scale to handle massive context windows, achieving surgical feature-level interpretation is essential for high-stakes tasks like legal auditing and code debugging. However, existing local model-agnostic explanation methods face a critical dilemma in these scenarios: feature-based methods suffer from attribution dilution due to high feature dimensionality, thus failing to provide faithful explanations. In this paper, we propose Focus-LIME, a coarse-to-fine framework designed to restore the tractability of surgical interpretation. Focus-LIME utilizes a proxy model to curate the perturbation neighborhood, allowing the target model to perform fine-grained attribution exclusively within the optimized context. Empirical evaluations on long-context benchmarks demonstrate that our method makes surgical explanations practicable and provides faithful explanations to users.
☆ RexBERT: Context Specialized Bidirectional Encoders for E-commerce
Encoder-only transformers remain indispensable in retrieval, classification, and ranking systems where latency, stability, and cost are paramount. Most general purpose encoders, however, are trained on generic corpora with limited coverage of specialized domains. We introduce RexBERT, a family of BERT-style encoders designed specifically for e-commerce semantics. We make three contributions. First, we release Ecom-niverse, a 350 billion token corpus curated from diverse retail and shopping sources. We describe a modular pipeline that isolates and extracts e-commerce content from FineFineWeb and other open web resources, and characterize the resulting domain distribution. Second, we present a reproducible pretraining recipe building on ModernBERT's architectural advances. The recipe consists of three phases: general pre-training, context extension, and annealed domain specialization. Third, we train RexBERT models ranging from 17M to 400M parameters and evaluate them on token classification, semantic similarity, and general natural language understanding tasks using e-commerce datasets. Despite having 2-3x fewer parameters, RexBERT outperforms larger general-purpose encoders and matches or surpasses modern long-context models on domain-specific benchmarks. Our results demonstrate that high quality in-domain data combined with a principled training approach provides a stronger foundation for e-commerce applications than indiscriminate scaling alone.
comment: Blog: https://huggingface.co/blog/thebajajra/rexbert-encoders Models: https://huggingface.co/collections/thebajajra/rexbert Ecom-niverse Dataset: https://huggingface.co/datasets/thebajajra/Ecom-niverse
☆ Beyond Holistic Scores: Automatic Trait-Based Quality Scoring of Argumentative Essays
Automated Essay Scoring systems have traditionally focused on holistic scores, limiting their pedagogical usefulness, especially in the case of complex essay genres such as argumentative writing. In educational contexts, teachers and learners require interpretable, trait-level feedback that aligns with instructional goals and established rubrics. In this paper, we study trait-based Automatic Argumentative Essay Scoring using two complementary modeling paradigms designed for realistic educational deployment: (1) structured in-context learning with small open-source LLMs, and (2) a supervised, encoder-based BigBird model with a CORAL-style ordinal regression formulation, optimized for long-sequence understanding. We conduct a systematic evaluation on the ASAP++ dataset, which includes essay scores across five quality traits, offering strong coverage of core argumentation dimensions. LLMs are prompted with designed, rubric-aligned in-context examples, along with feedback and confidence requests, while we explicitly model ordinality in scores with the BigBird model via the rank-consistent CORAL framework. Our results show that explicitly modeling score ordinality substantially improves agreement with human raters across all traits, outperforming LLMs and nominal classification and regression-based baselines. This finding reinforces the importance of aligning model objectives with rubric semantics for educational assessment. At the same time, small open-source LLMs achieve a competitive performance without task-specific fine-tuning, particularly for reasoning-oriented traits, while enabling transparent, privacy-preserving, and locally deployable assessment scenarios. Our findings provide methodological, modeling, and practical insights for the design of AI-based educational systems that aim to deliver interpretable, rubric-aligned feedback for argumentative writing.
☆ VILLAIN at AVerImaTeC: Verifying Image-Text Claims via Multi-Agent Collaboration EACL 2026
This paper describes VILLAIN, a multimodal fact-checking system that verifies image-text claims through prompt-based multi-agent collaboration. For the AVerImaTeC shared task, VILLAIN employs vision-language model agents across multiple stages of fact-checking. Textual and visual evidence is retrieved from the knowledge store enriched through additional web collection. To identify key information and address inconsistencies among evidence items, modality-specific and cross-modal agents generate analysis reports. In the subsequent stage, question-answer pairs are produced based on these reports. Finally, the Verdict Prediction agent produces the verification outcome based on the image-text claim and the generated question-answer pairs. Our system ranked first on the leaderboard across all evaluation metrics. The source code is publicly available at https://github.com/ssu-humane/VILLAIN.
comment: A system description paper for the AVerImaTeC shared task at the Ninth FEVER Workshop (co-located with EACL 2026)
☆ Trust The Typical
Current approaches to LLM safety fundamentally rely on a brittle cat-and-mouse game of identifying and blocking known threats via guardrails. We argue for a fresh approach: robust safety comes not from enumerating what is harmful, but from deeply understanding what is safe. We introduce Trust The Typical (T3), a framework that operationalizes this principle by treating safety as an out-of-distribution (OOD) detection problem. T3 learns the distribution of acceptable prompts in a semantic space and flags any significant deviation as a potential threat. Unlike prior methods, it requires no training on harmful examples, yet achieves state-of-the-art performance across 18 benchmarks spanning toxicity, hate speech, jailbreaking, multilingual harms, and over-refusal, reducing false positive rates by up to 40x relative to specialized safety models. A single model trained only on safe English text transfers effectively to diverse domains and over 14 languages without retraining. Finally, we demonstrate production readiness by integrating a GPU-optimized version into vLLM, enabling continuous guardrailing during token generation with less than 6% overhead even under dense evaluation intervals on large-scale workloads.
☆ AIANO: Enhancing Information Retrieval with AI-Augmented Annotation
The rise of Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) has rapidly increased the need for high-quality, curated information retrieval datasets. These datasets, however, are currently created with off-the-shelf annotation tools that make the annotation process complex and inefficient. To streamline this process, we developed a specialized annotation tool - AIANO. By adopting an AI-augmented annotation workflow that tightly integrates human expertise with LLM assistance, AIANO enables annotators to leverage AI suggestions while retaining full control over annotation decisions. In a within-subject user study ($n = 15$), participants created question-answering datasets using both a baseline tool and AIANO. AIANO nearly doubled annotation speed compared to the baseline while being easier to use and improving retrieval accuracy. These results demonstrate that AIANO's AI-augmented approach accelerates and enhances dataset creation for information retrieval tasks, advancing annotation capabilities in retrieval-intensive domains.
☆ Semantic Self-Distillation for Language Model Uncertainty
Large language models present challenges for principled uncertainty quantification, in part due to their complexity and the diversity of their outputs. Semantic dispersion, or the variance in the meaning of sampled answers, has been proposed as a useful proxy for model uncertainty, but the associated computational cost prohibits its use in latency-critical applications. We show that sampled semantic distributions can be distilled into lightweight student models which estimate a prompt-conditioned uncertainty before the language model generates an answer token. The student model predicts a semantic distribution over possible answers; the entropy of this distribution provides an effective uncertainty signal for hallucination prediction, and the probability density allows candidate answers to be evaluated for reliability. On TriviaQA, our student models match or outperform finite-sample semantic dispersion for hallucination prediction and provide a strong signal for out-of-domain answer detection. We term this technique Semantic Self-Distillation (SSD), which we suggest provides a general framework for distilling predictive uncertainty in complex output spaces beyond language.
☆ Can LLMs capture stable human-generated sentence entropy measures?
Predicting upcoming words is a core mechanism of language comprehension and may be quantified using Shannon entropy. There is currently no empirical consensus on how many human responses are required to obtain stable and unbiased entropy estimates at the word level. Moreover, large language models (LLMs) are increasingly used as substitutes for human norming data, yet their ability to reproduce stable human entropy remains unclear. Here, we address both issues using two large publicly available cloze datasets in German 1 and English 2. We implemented a bootstrap-based convergence analysis that tracks how entropy estimates stabilize as a function of sample size. Across both languages, more than 97% of sentences reached stable entropy estimates within the available sample sizes. 90% of sentences converged after 111 responses in German and 81 responses in English, while low-entropy sentences (<1) required as few as 20 responses and high-entropy sentences (>2.5) substantially more. These findings provide the first direct empirical validation for common norming practices and demonstrate that convergence critically depends on sentence predictability. We then compared stable human entropy values with entropy estimates derived from several LLMs, including GPT-4o, using both logit-based probability extraction and sampling-based frequency estimation, GPT2-xl/german-GPT-2, RoBERTa Base/GottBERT, and LLaMA 2 7B Chat. GPT-4o showed the highest correspondence with human data, although alignment depended strongly on the extraction method and prompt design. Logit-based estimates minimized absolute error, whereas sampling-based estimates were better in capturing the dispersion of human variability. Together, our results establish practical guidelines for human norming and show that while LLMs can approximate human entropy, they are not interchangeable with stable human-derived distributions.
☆ Textual Planning with Explicit Latent Transitions
Planning with LLMs is bottlenecked by token-by-token generation and repeated full forward passes, making multi-step lookahead and rollout-based search expensive in latency and compute. We propose EmbedPlan, which replaces autoregressive next-state generation with a lightweight transition model operating in a frozen language embedding space. EmbedPlan encodes natural language state and action descriptions into vectors, predicts the next-state embedding, and retrieves the next state by nearest-neighbor similarity, enabling fast planning computation without fine-tuning the encoder. We evaluate next-state prediction across nine classical planning domains using six evaluation protocols of increasing difficulty: interpolation, plan-variant, extrapolation, multi-domain, cross-domain, and leave-one-out. Results show near-perfect interpolation performance but a sharp degradation when generalization requires transfer to unseen problems or unseen domains; plan-variant evaluation indicates generalization to alternative plans rather than memorizing seen trajectories. Overall, frozen embeddings support within-domain dynamics learning after observing a domain's transitions, while transfer across domain boundaries remains a bottleneck.
☆ Rethinking Weight Tying: Pseudo-Inverse Tying for Stable LM Training and Updates
Weight tying is widely used in compact language models to reduce parameters by sharing the token table between the input embedding and the output projection. However, weight sharing does not guarantee a stable token interface: during training, the correspondence between encoding tokens into hidden states and decoding hidden states into logits can drift, worsening optimization sensitivity and making post-training interventions such as editing, patching, and lightweight adaptation less predictable. We propose Pseudo-Inverse Tying (PIT), which synchronizes embedding and unembedding as coupled projections of a shared latent token memory, guaranteeing a pseudo-inverse-consistent interface throughout training. PIT maintains an orthonormal shared memory, obtained by thin polar decomposition for teacher initialization or random orthonormal initialization from scratch, and introduces a fully learned symmetric positive definite hidden-space transform parameterized via a Cholesky factor. The output head applies this transform to hidden states before the vocabulary projection, while the embedding applies the inverse transform to token vectors using stable triangular solves, avoiding explicit pseudo-inverse recomputation and any vocabulary-sized auxiliary parameters. We evaluate PIT on on-device models spanning 256M-1.3B parameters across pretraining and adaptation, and consistently observe improved training stability, stronger layerwise semantic consistency, and substantially reduced side effects.
comment: an early-stage version
☆ Unmasking Superspreaders: Data-Driven Approaches for Identifying and Comparing Key Influencers of Conspiracy Theories on X.com
Conspiracy theories can threaten society by spreading misinformation, deepening polarization, and eroding trust in democratic institutions. Social media often fuels the spread of conspiracies, primarily driven by two key actors: Superspreaders -- influential individuals disseminating conspiracy content at disproportionately high rates, and Bots -- automated accounts designed to amplify conspiracies strategically. To counter the spread of conspiracy theories, it is critical to both identify these actors and to better understand their behavior. However, a systematic analysis of these actors as well as real-world-applicable identification methods are still lacking. In this study, we leverage over seven million tweets from the COVID-19 pandemic to analyze key differences between Human Superspreaders and Bots across dimensions such as linguistic complexity, toxicity, and hashtag usage. Our analysis reveals distinct communication strategies: Superspreaders tend to use more complex language and substantive content while relying less on structural elements like hashtags and emojis, likely to enhance credibility and authority. By contrast, Bots favor simpler language and strategic cross-usage of hashtags, likely to increase accessibility, facilitate infiltration into trending discussions, and amplify reach. To counter both Human Superspreaders and Bots, we propose and evaluate 27 novel metrics for quantifying the severity of conspiracy theory spread. Our findings highlight the effectiveness of an adapted H-Index for computationally feasible identification of Human Superspreaders. By identifying behavioral patterns unique to Human Superspreaders and Bots as well as providing suitable identification methods, this study provides a foundation for mitigation strategies, including platform moderation policies, temporary and permanent account suspensions, and public awareness campaigns.
☆ LycheeDecode: Accelerating Long-Context LLM Inference via Hybrid-Head Sparse Decoding ICLR 2026
The proliferation of long-context large language models (LLMs) exposes a key bottleneck: the rapidly expanding key-value cache during decoding, which imposes heavy memory and latency costs. While recent approaches attempt to alleviate this by sharing a single set of crucial tokens across layers, such coarse-grained sharing undermines model performance by neglecting the functional diversity of attention heads. To address this, we propose LycheeDecode, an efficient decoding method centered on a fine-grained hybrid-head attention mechanism that employs a hardware-efficient top-k selection strategy. Specifically, the novel HardKuma-based mechanism partitions attention heads into a small subset of retrieval heads that dynamically identify crucial tokens and a majority of sparse heads that reuse them for efficient computation. Through extensive experiments on leading models like Llama3 and Qwen3 across diverse benchmarks for long-context understanding (e.g., LongBench, RULER) and complex reasoning (e.g., AIME24, OlympiadBench), we demonstrate that LycheeDecode achieves generative quality comparable to, and at times surpassing even the full-attention baseline. Crucially, this is accomplished with up to a 2.7x speedup at a 128K context length. By preserving the functional diversity of attention heads, our fine-grained strategy overcomes the performance bottlenecks of existing methods, providing a powerful and validated pathway to both efficient and high-quality long-context LLM inference.
comment: ICLR 2026
☆ PersoPilot: An Adaptive AI-Copilot for Transparent Contextualized Persona Classification and Personalized Response Generation ICDM
Understanding and classifying user personas is critical for delivering effective personalization. While persona information offers valuable insights, its full potential is realized only when contextualized, linking user characteristics with situational context to enable more precise and meaningful service provision. Existing systems often treat persona and context as separate inputs, limiting their ability to generate nuanced, adaptive interactions. To address this gap, we present PersoPilot, an agentic AI-Copilot that integrates persona understanding with contextual analysis to support both end users and analysts. End users interact through a transparent, explainable chat interface, where they can express preferences in natural language, request recommendations, and receive information tailored to their immediate task. On the analyst side, PersoPilot delivers a transparent, reasoning-powered labeling assistant, integrated with an active learning-driven classification process that adapts over time with new labeled data. This feedback loop enables targeted service recommendations and adaptive personalization, bridging the gap between raw persona data and actionable, context-aware insights. As an adaptable framework, PersoPilot is applicable to a broad range of service personalization scenarios.
comment: Accepted for the Demo Track at the IEEE International Conference on Data Mining (ICDM) 2025
☆ $C$-$ΔΘ$: Circuit-Restricted Weight Arithmetic for Selective Refusal
Modern deployments require LLMs to enforce safety policies at scale, yet many controls rely on inference-time interventions that add recurring compute cost and serving complexity. Activation steering is widely used, but it requires runtime hooks and scales cost with the number of generations; conditional variants improve selectivity by gating when steering is applied but still retain an inference-time control path. We ask whether selective refusal can be moved entirely offline: can a mechanistic understanding of category-specific refusal be distilled into a circuit-restricted weight update that deploys as a standard checkpoint? We propose C-Δθ: Circuit Restricted Weight Arithmetic, which (i) localizes refusal-causal computation as a sparse circuit using EAP-IG and (ii) computes a constrained weight update ΔθC supported only on that circuit (typically <5% of parameters). Applying ΔθC yields a drop-in edited checkpoint with no inference-time hooks, shifting cost from per-request intervention to a one-time offline update. We evaluate category-targeted selectivity and capability retention on refusal and utility benchmarks.
☆ ReFRAME or Remain: Unsupervised Lexical Semantic Change Detection with Frame Semantics
The majority of contemporary computational methods for lexical semantic change (LSC) detection are based on neural embedding distributional representations. Although these models perform well on LSC benchmarks, their results are often difficult to interpret. We explore an alternative approach that relies solely on frame semantics. We show that this method is effective for detecting semantic change and can even outperform many distributional semantic models. Finally, we present a detailed quantitative and qualitative analysis of its predictions, demonstrating that they are both plausible and highly interpretable
☆ Model-Dowser: Data-Free Importance Probing to Mitigate Catastrophic Forgetting in Multimodal Large Language Models
Fine-tuning Multimodal Large Language Models (MLLMs) on task-specific data is an effective way to improve performance on downstream applications. However, such adaptation often leads to a degradation in generalization on pretrained tasks, a phenomenon known as Catastrophic Forgetting. Existing methods that aim to mitigate this issue either become ineffective when fine-tuning deeper layers of the language decoder or scale poorly with increasing model size. To address these limitations, we propose Model-Dowser, a novel sparse fine-tuning approach for MLLMs. Model-Dowser measures a principled importance score for each model parameter with respect to pretrained generalization (prior to downstream adaptation) by jointly considering weight magnitudes, input activations, and output sensitivities. During fine-tuning, Model-Dowser selectively preserves high-importance parameters and updates the remaining. Comprehensive experiments on two representative MLLMs, LLaVA and NVILA, demonstrate that Model-Dowser effectively mitigates catastrophic forgetting and consistently outperforms prior methods, while remaining resource-efficient and scalable to multi-billion-parameter models.
☆ PersoDPO: Scalable Preference Optimization for Instruction-Adherent, Persona-Grounded Dialogue via Multi-LLM Evaluation
Personalization and contextual coherence are two essential components in building effective persona-grounded dialogue systems. These aspects play a crucial role in enhancing user engagement and ensuring responses are more relevant and consistent with user identity. However, recent studies indicate that open-source large language models (LLMs) continue to struggle to generate responses that are both contextually grounded and aligned with persona cues, despite exhibiting strong general conversational abilities like fluency and naturalness. We present PersoDPO, a scalable preference optimisation framework that uses supervision signals from automatic evaluations of responses generated by both closed-source and open-source LLMs to fine-tune dialogue models. The framework integrates evaluation metrics targeting coherence and personalization, along with a length-format compliance feature to promote instruction adherence. These signals are combined to automatically construct high-quality preference pairs without manual annotation, enabling a scalable and reproducible training pipeline. Experiments on the FoCus dataset show that an open-source language model fine-tuned with the PersoDPO framework consistently outperforms strong open-source baselines and a standard Direct Preference Optimization (DPO) variant across multiple evaluation dimensions.
comment: Accepted at WISE 2025 Conference
☆ Deconstructing sentence disambiguation by joint latent modeling of reading paradigms: LLM surprisal is not enough
Using temporarily ambiguous garden-path sentences ("While the team trained the striker wondered ...") as a test case, we present a latent-process mixture model of human reading behavior across four different reading paradigms (eye tracking, uni- and bidirectional self-paced reading, Maze). The model distinguishes between garden-path probability, garden-path cost, and reanalysis cost, and yields more realistic processing cost estimates by taking into account trials with inattentive reading. We show that the model is able to reproduce empirical patterns with regard to rereading behavior, comprehension question responses, and grammaticality judgments. Cross-validation reveals that the mixture model also has better predictive fit to human reading patterns and end-of-trial task data than a mixture-free model based on GPT-2-derived surprisal values. We discuss implications for future work.
☆ Beyond Unimodal Shortcuts: MLLMs as Cross-Modal Reasoners for Grounded Named Entity Recognition
Grounded Multimodal Named Entity Recognition (GMNER) aims to extract text-based entities, assign them semantic categories, and ground them to corresponding visual regions. In this work, we explore the potential of Multimodal Large Language Models (MLLMs) to perform GMNER in an end-to-end manner, moving beyond their typical role as auxiliary tools within cascaded pipelines. Crucially, our investigation reveals a fundamental challenge: MLLMs exhibit $\textbf{modality bias}$, including visual bias and textual bias, which stems from their tendency to take unimodal shortcuts rather than rigorous cross-modal verification. To address this, we propose Modality-aware Consistency Reasoning ($\textbf{MCR}$), which enforces structured cross-modal reasoning through Multi-style Reasoning Schema Injection (MRSI) and Constraint-guided Verifiable Optimization (CVO). MRSI transforms abstract constraints into executable reasoning chains, while CVO empowers the model to dynamically align its reasoning trajectories with Group Relative Policy Optimization (GRPO). Experiments on GMNER and visual grounding tasks demonstrate that MCR effectively mitigates modality bias and achieves superior performance compared to existing baselines.
comment: GMNER
☆ Is Micro Domain-Adaptive Pre-Training Effective for Real-World Operations? Multi-Step Evaluation Reveals Potential and Bottlenecks EACL2026
When applying LLMs to real-world enterprise operations, LLMs need to handle proprietary knowledge in small domains of specific operations ($\textbf{micro domains}$). A previous study shows micro domain-adaptive pre-training ($\textbf{mDAPT}$) with fewer documents is effective, similarly to DAPT in larger domains. However, it evaluates mDAPT only on multiple-choice questions; thus, its effectiveness for generative tasks in real-world operations remains unknown. We aim to reveal the potential and bottlenecks of mDAPT for generative tasks. To this end, we disentangle the answering process into three subtasks and evaluate the performance of each subtask: (1) $\textbf{eliciting}$ facts relevant to questions from an LLM's own knowledge, (2) $\textbf{reasoning}$ over the facts to obtain conclusions, and (3) $\textbf{composing}$ long-form answers based on the conclusions. We verified mDAPT on proprietary IT product knowledge for real-world questions in IT technical support operations. As a result, mDAPT resolved the elicitation task that the base model struggled with but did not resolve other subtasks. This clarifies mDAPT's effectiveness in the knowledge aspect and its bottlenecks in other aspects. Further analysis empirically shows that resolving the elicitation and reasoning tasks ensures sufficient performance (over 90%), emphasizing the need to enhance reasoning capability.
comment: 13 pages, 9 figures, Accepted by EACL2026 Industry Track
☆ Growth First, Care Second? Tracing the Landscape of LLM Value Preferences in Everyday Dilemmas
People increasingly seek advice online from both human peers and large language model (LLM)-based chatbots. Such advice rarely involves identifying a single correct answer; instead, it typically requires navigating trade-offs among competing values. We aim to characterize how LLMs navigate value trade-offs across different advice-seeking contexts. First, we examine the value trade-off structure underlying advice seeking using a curated dataset from four advice-oriented subreddits. Using a bottom-up approach, we inductively construct a hierarchical value framework by aggregating fine-grained values extracted from individual advice options into higher-level value categories. We construct value co-occurrence networks to characterize how values co-occur within dilemmas and find substantial heterogeneity in value trade-off structures across advice-seeking contexts: a women-focused subreddit exhibits the highest network density, indicating more complex value conflicts; women's, men's, and friendship-related subreddits exhibit highly correlated value-conflict patterns centered on security-related tensions (security vs. respect/connection/commitment); by contrast, career advice forms a distinct structure where security frequently clashes with self-actualization and growth. We then evaluate LLM value preferences against these dilemmas and find that, across models and contexts, LLMs consistently prioritize values related to Exploration & Growth over Benevolence & Connection. This systemically skewed value orientation highlights a potential risk of value homogenization in AI-mediated advice, raising concerns about how such systems may shape decision-making and normative outcomes at scale.
comment: dataset available at https://github.com/Renesmeeczy/Value-Trade-off-in-Reddit-Dilemmas
☆ No One-Size-Fits-All: Building Systems For Translation to Bashkir, Kazakh, Kyrgyz, Tatar and Chuvash Using Synthetic And Original Data EACL 2026
We explore machine translation for five Turkic language pairs: Russian-Bashkir, Russian-Kazakh, Russian-Kyrgyz, English-Tatar, English-Chuvash. Fine-tuning nllb-200-distilled-600M with LoRA on synthetic data achieved chrF++ 49.71 for Kazakh and 46.94 for Bashkir. Prompting DeepSeek-V3.2 with retrieved similar examples achieved chrF++ 39.47 for Chuvash. For Tatar, zero-shot or retrieval-based approaches achieved chrF++ 41.6, while for Kyrgyz the zero-shot approach reached 45.6. We release the dataset and the obtained weights.
comment: Accepted to EACL 2026 (LoResMT workshop)
☆ Fine-Grained Activation Steering: Steering Less, Achieving More ICLR 2026
Activation steering has emerged as a cost-effective paradigm for modifying large language model (LLM) behaviors. Existing methods typically intervene at the block level, steering the bundled activations of selected attention heads, feedforward networks, or residual streams. However, we reveal that block-level activations are inherently heterogeneous, entangling beneficial, irrelevant, and harmful features, thereby rendering block-level steering coarse, inefficient, and intrusive. To investigate the root cause, we decompose block activations into fine-grained atomic unit (AU)-level activations, where each AU-level activation corresponds to a single dimension of the block activation, and each AU denotes a slice of the block weight matrix. Steering an AU-level activation is thus equivalent to steering its associated AU. Our theoretical and empirical analysis show that heterogeneity arises because different AUs or dimensions control distinct token distributions in LLM outputs. Hence, block-level steering inevitably moves helpful and harmful token directions together, which reduces efficiency. Restricting intervention to beneficial AUs yields more precise and effective steering. Building on this insight, we propose AUSteer, a simple and efficient method that operates at a finer granularity of the AU level. AUSteer first identifies discriminative AUs globally by computing activation momenta on contrastive samples. It then assigns adaptive steering strengths tailored to diverse inputs and selected AU activations. Comprehensive experiments on multiple LLMs and tasks show that AUSteer consistently surpasses advanced baselines while steering considerably fewer activations, demonstrating that steering less achieves more.
comment: ICLR 2026
☆ History-Guided Iterative Visual Reasoning with Self-Correction
Self-consistency methods are the core technique for improving the reasoning reliability of multimodal large language models (MLLMs). By generating multiple reasoning results through repeated sampling and selecting the best answer via voting, they play an important role in cross-modal tasks. However, most existing self-consistency methods are limited to a fixed ``repeated sampling and voting'' paradigm and do not reuse historical reasoning information. As a result, models struggle to actively correct visual understanding errors and dynamically adjust their reasoning during iteration. Inspired by the human reasoning behavior of repeated verification and dynamic error correction, we propose the H-GIVR framework. During iterative reasoning, the MLLM observes the image multiple times and uses previously generated answers as references for subsequent steps, enabling dynamic correction of errors and improving answer accuracy. We conduct comprehensive experiments on five datasets and three models. The results show that the H-GIVR framework can significantly improve cross-modal reasoning accuracy while maintaining low computational cost. For instance, using \texttt{Llama3.2-vision:11b} on the ScienceQA dataset, the model requires an average of 2.57 responses per question to achieve an accuracy of 78.90\%, representing a 107\% improvement over the baseline.
☆ Swordsman: Entropy-Driven Adaptive Block Partition for Efficient Diffusion Language Models
Block-wise decoding effectively improves the inference speed and quality in diffusion language models (DLMs) by combining inter-block sequential denoising and intra-block parallel unmasking. However, existing block-wise decoding methods typically partition blocks in a rigid and fixed manner, which inevitably fragments complete semantic or syntactic constituents, leading to suboptimal performance. Inspired by the entropy reduction hypothesis (ERH), we recognize that constituent boundaries offer greater opportunities for uncertainty reduction, which motivates us to employ entropy analysis for identifying constituent boundaries. Therefore, we propose Swordsman, an entropy-driven adaptive block-wise decoding framework for DLMs. Swordsman adaptively partitions blocks by identifying entropy shifts between adjacent tokens to better align with semantic or syntactic constituent boundaries. In addition, Swordsman dynamically adjusts unmasking thresholds conditioned on the real-time unmasking status within a block, further improving both efficiency and stability. As a training-free framework, supported by KV Cache, Swordsman demonstrates state-of-the-art performance across extensive evaluations.
☆ Bi-directional Bias Attribution: Debiasing Large Language Models without Modifying Prompts
Large language models (LLMs) have demonstrated impressive capabilities across a wide range of natural language processing tasks. However, their outputs often exhibit social biases, raising fairness concerns. Existing debiasing methods, such as fine-tuning on additional datasets or prompt engineering, face scalability issues or compromise user experience in multi-turn interactions. To address these challenges, we propose a framework for detecting stereotype-inducing words and attributing neuron-level bias in LLMs, without the need for fine-tuning or prompt modification. Our framework first identifies stereotype-inducing adjectives and nouns via comparative analysis across demographic groups. We then attribute biased behavior to specific neurons using two attribution strategies based on integrated gradients. Finally, we mitigate bias by directly intervening on their activations at the projection layer. Experiments on three widely used LLMs demonstrate that our method effectively reduces bias while preserving overall model performance. Code is available at the github link: https://github.com/XMUDeepLIT/Bi-directional-Bias-Attribution.
☆ Evaluating the Presence of Sex Bias in Clinical Reasoning by Large Language Models
Large language models (LLMs) are increasingly embedded in healthcare workflows for documentation, education, and clinical decision support. However, these systems are trained on large text corpora that encode existing biases, including sex disparities in diagnosis and treatment, raising concerns that such patterns may be reproduced or amplified. We systematically examined whether contemporary LLMs exhibit sex-specific biases in clinical reasoning and how model configuration influences these behaviours. We conducted three experiments using 50 clinician-authored vignettes spanning 44 specialties in which sex was non-informative to the initial diagnostic pathway. Four general-purpose LLMs (ChatGPT (gpt-4o-mini), Claude 3.7 Sonnet, Gemini 2.0 Flash and DeepSeekchat). All models demonstrated significant sex-assignment skew, with predicted sex differing by model. At temperature 0.5, ChatGPT assigned female sex in 70% of cases (95% CI 0.66-0.75), DeepSeek in 61% (0.57-0.65) and Claude in 59% (0.55-0.63), whereas Gemini showed a male skew, assigning a female sex in 36% of cases (0.32-0.41). Contemporary LLMs exhibit stable, model-specific sex biases in clinical reasoning. Permitting abstention reduces explicit labelling but does not eliminate downstream diagnostic differences. Safe clinical integration requires conservative and documented configuration, specialty-level clinical data auditing, and continued human oversight when deploying general-purpose models in healthcare settings.
☆ Beyond Rejection Sampling: Trajectory Fusion for Scaling Mathematical Reasoning
Large language models (LLMs) have made impressive strides in mathematical reasoning, often fine-tuned using rejection sampling that retains only correct reasoning trajectories. While effective, this paradigm treats supervision as a binary filter that systematically excludes teacher-generated errors, leaving a gap in how reasoning failures are modeled during training. In this paper, we propose TrajFusion, a fine-tuning strategy that reframes rejection sampling as a structured supervision construction process. Specifically, TrajFusion forms fused trajectories that explicitly model trial-and-error reasoning by interleaving selected incorrect trajectories with reflection prompts and correct trajectories. The length of each fused sample is adaptively controlled based on the frequency and diversity of teacher errors, providing richer supervision for challenging problems while safely reducing to vanilla rejection sampling fine-tuning (RFT) when error signals are uninformative. TrajFusion requires no changes to the architecture or training objective. Extensive experiments across multiple math benchmarks demonstrate that TrajFusion consistently outperforms RFT, particularly on challenging and long-form reasoning problems.
☆ Can Vision Replace Text in Working Memory? Evidence from Spatial n-Back in Vision-Language Models
Working memory is a central component of intelligent behavior, providing a dynamic workspace for maintaining and updating task-relevant information. Recent work has used n-back tasks to probe working-memory-like behavior in large language models, but it is unclear whether the same probe elicits comparable computations when information is carried in a visual rather than textual code in vision-language models. We evaluate Qwen2.5 and Qwen2.5-VL on a controlled spatial n-back task presented as matched text-rendered or image-rendered grids. Across conditions, models show reliably higher accuracy and d' with text than with vision. To interpret these differences at the process level, we use trial-wise log-probability evidence and find that nominal 2/3-back often fails to reflect the instructed lag and instead aligns with a recency-locked comparison. We further show that grid size alters recent-repeat structure in the stimulus stream, thereby changing interference and error patterns. These results motivate computation-sensitive interpretations of multimodal working memory.
☆ From Assumptions to Actions: Turning LLM Reasoning into Uncertainty-Aware Planning for Embodied Agents ICLR 2026
Embodied agents operating in multi-agent, partially observable, and decentralized environments must plan and act despite pervasive uncertainty about hidden objects and collaborators' intentions. Recent advances in applying Large Language Models (LLMs) to embodied agents have addressed many long-standing challenges, such as high-level goal decomposition and online adaptation. Yet, uncertainty is still primarily mitigated through frequent inter-agent communication. This incurs substantial token and time costs, and can disrupt established workflows, when human partners are involved. We introduce PCE, a Planner-Composer-Evaluator framework that converts the fragmented assumptions latent in LLM reasoning traces into a structured decision tree. Internal nodes encode environment assumptions and leaves map to actions; each path is then scored by scenario likelihood, goal-directed gain, and execution cost to guide rational action selection without heavy communication. Across two challenging multi-agent benchmarks (C-WAH and TDW-MAT) and three diverse LLM backbones, PCE consistently outperforms communication-centric baselines in success rate and task efficiency while showing comparable token usage. Ablation results indicate that the performance gains obtained by scaling model capacity or reasoning depth persist even when PCE is applied, while PCE consistently raises the baseline across both capacity and reasoning-depth scales, confirming that structured uncertainty handling complements both forms of scaling. A user study further demonstrates that PCE produces communication patterns that human partners perceive as more efficient and trustworthy. Together, these results establish a principled route for turning latent LLM assumptions into reliable strategies for uncertainty-aware planning.
comment: 31 pages, 10 figures, Accepted ICLR 2026
☆ A Domain-Specific Curated Benchmark for Entity and Document-Level Relation Extraction EACL 2026
Information Extraction (IE), encompassing Named Entity Recognition (NER), Named Entity Linking (NEL), and Relation Extraction (RE), is critical for transforming the rapidly growing volume of scientific publications into structured, actionable knowledge. This need is especially evident in fast-evolving biomedical fields such as the gut-brain axis, where research investigates complex interactions between the gut microbiota and brain-related disorders. Existing biomedical IE benchmarks, however, are often narrow in scope and rely heavily on distantly supervised or automatically generated annotations, limiting their utility for advancing robust IE methods. We introduce GutBrainIE, a benchmark based on more than 1,600 PubMed abstracts, manually annotated by biomedical and terminological experts with fine-grained entities, concept-level links, and relations. While grounded in the gut-brain axis, the benchmark's rich schema, multiple tasks, and combination of highly curated and weakly supervised data make it broadly applicable to the development and evaluation of biomedical IE systems across domains.
comment: Accepted to EACL 2026
☆ Universal Robust Speech Adaptation for Cross-Domain Speech Recognition and Enhancement
Pre-trained models for automatic speech recognition (ASR) and speech enhancement (SE) have exhibited remarkable capabilities under matched noise and channel conditions. However, these models often suffer from severe performance degradation when confronted with domain shifts, particularly in the presence of unseen noise and channel distortions. In view of this, we in this paper present URSA-GAN, a unified and domain-aware generative framework specifically designed to mitigate mismatches in both noise and channel conditions. URSA-GAN leverages a dual-embedding architecture that consists of a noise encoder and a channel encoder, each pre-trained with limited in-domain data to capture domain-relevant representations. These embeddings condition a GAN-based speech generator, facilitating the synthesis of speech that is acoustically aligned with the target domain while preserving phonetic content. To enhance generalization further, we propose dynamic stochastic perturbation, a novel regularization technique that introduces controlled variability into the embeddings during generation, promoting robustness to unseen domains. Empirical results demonstrate that URSA-GAN effectively reduces character error rates in ASR and improves perceptual metrics in SE across diverse noisy and mismatched channel scenarios. Notably, evaluations on compound test conditions with both channel and noise degradations confirm the generalization ability of URSA-GAN, yielding relative improvements of 16.16% in ASR performance and 15.58% in SE metrics.
comment: Accepted to IEEE Transactions on Audio, Speech and Language Processing (IEEE TASLP)
☆ DeFrame: Debiasing Large Language Models Against Framing Effects
As large language models (LLMs) are increasingly deployed in real-world applications, ensuring their fair responses across demographics has become crucial. Despite many efforts, an ongoing challenge is hidden bias: LLMs appear fair under standard evaluations, but can produce biased responses outside those evaluation settings. In this paper, we identify framing -- differences in how semantically equivalent prompts are expressed (e.g., "A is better than B" vs. "B is worse than A") -- as an underexplored contributor to this gap. We first introduce the concept of "framing disparity" to quantify the impact of framing on fairness evaluation. By augmenting fairness evaluation benchmarks with alternative framings, we find that (1) fairness scores vary significantly with framing and (2) existing debiasing methods improve overall (i.e., frame-averaged) fairness, but often fail to reduce framing-induced disparities. To address this, we propose a framing-aware debiasing method that encourages LLMs to be more consistent across framings. Experiments demonstrate that our approach reduces overall bias and improves robustness against framing disparities, enabling LLMs to produce fairer and more consistent responses.
comment: 40 pages, 12 figures
☆ Beyond Static Cropping: Layer-Adaptive Visual Localization and Decoding Enhancement
Large Vision-Language Models (LVLMs) have advanced rapidly by aligning visual patches with the text embedding space, but a fixed visual-token budget forces images to be resized to a uniform pretraining resolution, often erasing fine-grained details and causing hallucinations via over-reliance on language priors. Recent attention-guided enhancement (e.g., cropping or region-focused attention allocation) alleviates this, yet it commonly hinges on a static "magic layer" empirically chosen on simple recognition benchmarks and thus may not transfer to complex reasoning tasks. In contrast to this static assumption, we propose a dynamic perspective on visual grounding. Through a layer-wise sensitivity analysis, we demonstrate that visual grounding is a dynamic process: while simple object recognition tasks rely on middle layers, complex visual search and reasoning tasks require visual information to be reactivated at deeper layers. Based on this observation, we introduce Visual Activation by Query (VAQ), a metric that identifies the layer whose attention map is most relevant to query-specific visual grounding by measuring attention sensitivity to the input query. Building on VAQ, we further propose LASER (Layer-adaptive Attention-guided Selective visual and decoding Enhancement for Reasoning), a training-free inference procedure that adaptively selects task-appropriate layers for visual localization and question answering. Experiments across diverse VQA benchmarks show that LASER significantly improves VQA accuracy across tasks with varying levels of complexity.
comment: 9 pages, 5 figures
☆ Revisiting Prompt Sensitivity in Large Language Models for Text Classification: The Role of Prompt Underspecification
Large language models (LLMs) are widely used as zero-shot and few-shot classifiers, where task behaviour is largely controlled through prompting. A growing number of works have observed that LLMs are sensitive to prompt variations, with small changes leading to large changes in performance. However, in many cases, the investigation of sensitivity is performed using underspecified prompts that provide minimal task instructions and weakly constrain the model's output space. In this work, we argue that a significant portion of the observed prompt sensitivity can be attributed to prompt underspecification. We systematically study and compare the sensitivity of underspecified prompts and prompts that provide specific instructions. Utilising performance analysis, logit analysis, and linear probing, we find that underspecified prompts exhibit higher performance variance and lower logit values for relevant tokens, while instruction-prompts suffer less from such problems. However, linear probing analysis suggests that the effects of prompt underspecification have only a marginal impact on the internal LLM representations, instead emerging in the final layers. Overall, our findings highlight the need for more rigour when investigating and mitigating prompt sensitivity.
☆ How Few-shot Demonstrations Affect Prompt-based Defenses Against LLM Jailbreak Attacks
Large Language Models (LLMs) face increasing threats from jailbreak attacks that bypass safety alignment. While prompt-based defenses such as Role-Oriented Prompts (RoP) and Task-Oriented Prompts (ToP) have shown effectiveness, the role of few-shot demonstrations in these defense strategies remains unclear. Prior work suggests that few-shot examples may compromise safety, but lacks investigation into how few-shot interacts with different system prompt strategies. In this paper, we conduct a comprehensive evaluation on multiple mainstream LLMs across four safety benchmarks (AdvBench, HarmBench, SG-Bench, XSTest) using six jailbreak attack methods. Our key finding reveals that few-shot demonstrations produce opposite effects on RoP and ToP: few-shot enhances RoP's safety rate by up to 4.5% through reinforcing role identity, while it degrades ToP's effectiveness by up to 21.2% through distracting attention from task instructions. Based on these findings, we provide practical recommendations for deploying prompt-based defenses in real-world LLM applications.
comment: 13 pages, 4 figures, 6 tables
☆ Guided Verifier: Collaborative Multimodal Reasoning via Dynamic Process Supervision
Reinforcement Learning (RL) has emerged as a pivotal mechanism for enhancing the complex reasoning capabilities of Multimodal Large Language Models (MLLMs). However, prevailing paradigms typically rely on solitary rollout strategies where the model works alone. This lack of intermediate oversight renders the reasoning process susceptible to error propagation, where early logical deviations cascade into irreversible failures, resulting in noisy optimization signals. In this paper, we propose the \textbf{Guided Verifier} framework to address these structural limitations. Moving beyond passive terminal rewards, we introduce a dynamic verifier that actively co-solves tasks alongside the policy. During the rollout phase, this verifier interacts with the policy model in real-time, detecting inconsistencies and providing directional signals to steer the model toward valid trajectories. To facilitate this, we develop a specialized data synthesis pipeline targeting multimodal hallucinations, constructing \textbf{CoRe} dataset of process-level negatives and \textbf{Co}rrect-guide \textbf{Re}asoning trajectories to train the guided verifier. Extensive experiments on MathVista, MathVerse and MMMU indicate that by allocating compute to collaborative inference and dynamic verification, an 8B-parameter model can achieve strong performance.
☆ Proxy Compression for Language Modeling
Modern language models are trained almost exclusively on token sequences produced by a fixed tokenizer, an external lossless compressor often over UTF-8 byte sequences, thereby coupling the model to that compressor. This work introduces proxy compression, an alternative training scheme that preserves the efficiency benefits of compressed inputs while providing an end-to-end, raw-byte interface at inference time. During training, one language model is jointly trained on raw byte sequences and compressed views generated by external compressors; through the process, the model learns to internally align compressed sequences and raw bytes. This alignment enables strong transfer between the two formats, even when training predominantly on compressed inputs which are discarded at inference. Extensive experiments on code language modeling demonstrate that proxy compression substantially improves training efficiency and significantly outperforms pure byte-level baselines given fixed compute budgets. As model scale increases, these gains become more pronounced, and proxy-trained models eventually match or rival tokenizer approaches, all while operating solely on raw bytes and retaining the inherent robustness of byte-level modeling.
☆ Contextual Drag: How Errors in the Context Affect LLM Reasoning
Central to many self-improvement pipelines for large language models (LLMs) is the assumption that models can improve by reflecting on past mistakes. We study a phenomenon termed contextual drag: the presence of failed attempts in the context biases subsequent generations toward structurally similar errors. Across evaluations of 11 proprietary and open-weight models on 8 reasoning tasks, contextual drag induces 10-20% performance drops, and iterative self-refinement in models with severe contextual drag can collapse into self-deterioration. Structural analysis using tree edit distance reveals that subsequent reasoning trajectories inherit structurally similar error patterns from the context. We demonstrate that neither external feedback nor successful self-verification suffices to eliminate this effect. While mitigation strategies such as fallback-behavior fine-tuning and context denoising yield partial improvements, they fail to fully restore baseline performance, positioning contextual drag as a persistent failure mode in current reasoning architectures.
☆ ECG-R1: Protocol-Guided and Modality-Agnostic MLLM for Reliable ECG Interpretation
Electrocardiography (ECG) serves as an indispensable diagnostic tool in clinical practice, yet existing multimodal large language models (MLLMs) remain unreliable for ECG interpretation, often producing plausible but clinically incorrect analyses. To address this, we propose ECG-R1, the first reasoning MLLM designed for reliable ECG interpretation via three innovations. First, we construct the interpretation corpus using \textit{Protocol-Guided Instruction Data Generation}, grounding interpretation in measurable ECG features and monograph-defined quantitative thresholds and diagnostic logic. Second, we present a modality-decoupled architecture with \textit{Interleaved Modality Dropout} to improve robustness and cross-modal consistency when either the ECG signal or ECG image is missing. Third, we present \textit{Reinforcement Learning with ECG Diagnostic Evidence Rewards} to strengthen evidence-grounded ECG interpretation. Additionally, we systematically evaluate the ECG interpretation capabilities of proprietary, open-source, and medical MLLMs, and provide the first quantitative evidence that severe hallucinations are widespread, suggesting that the public should not directly trust these outputs without independent verification. Code and data are publicly available at \href{https://github.com/PKUDigitalHealth/ECG-R1}{here}, and an online platform can be accessed at \href{http://ai.heartvoice.com.cn/ECG-R1/}{here}.
☆ Scaling Agentic Verifier for Competitive Coding
Large language models (LLMs) have demonstrated strong coding capabilities but still struggle to solve competitive programming problems correctly in a single attempt. Execution-based re-ranking offers a promising test-time scaling strategy, yet existing methods are constrained by either difficult test case generation or inefficient random input sampling. To address this limitation, we propose Agentic Verifier, an execution-based agent that actively reasons about program behaviors and searches for highly discriminative test inputs that expose behavioral discrepancies among candidate solutions. Through multi-turn interaction with code execution environments, the verifier iteratively refines the candidate input generator and produces targeted counterexamples rather than blindly sampling inputs. We train the verifier to acquire this discriminative input generation capability via a scalable pipeline combining large-scale data synthesis, rejection fine-tuning, and agentic reinforcement learning. Extensive experiments across five competitive programming benchmarks demonstrate consistent improvements over strong execution-based baselines, achieving up to +10-15% absolute gains in Best@K accuracy. Further analysis reveals clear test-time scaling behavior and highlights the verifier's broader potential beyond reranking.
☆ Empirical-MCTS: Continuous Agent Evolution via Dual-Experience Monte Carlo Tree Search
Inference-time scaling strategies, particularly Monte Carlo Tree Search (MCTS), have significantly enhanced the reasoning capabilities of Large Language Models (LLMs). However, current approaches remain predominantly stateless, discarding successful reasoning patterns after each problem instance and failing to mimic the empirical accumulation of wisdom characteristic of human problem-solving. To bridge this gap, we introduce Empirical-MCTS, a dual-loop framework that transforms stateless search into a continuous, non-parametric learning process. The framework unifies local exploration with global memory optimization through two novel mechanisms: Pairwise-Experience-Evolutionary Meta-Prompting (PE-EMP) and a Memory Optimization Agent. PE-EMP functions as a reflexive optimizer within the local search, utilizing pairwise feedback to dynamically synthesize adaptive criteria and evolve meta-prompts (system prompts) in real-time. Simultaneously, the Memory Optimization Agent manages a global repository as a dynamic policy prior, employing atomic operations to distill high-quality insights across problems. Extensive evaluations on complex reasoning benchmarks, including AIME25, ARC-AGI-2, and MathArena Apex, demonstrate that Empirical-MCTS significantly outperforms both stateless MCTS strategies and standalone experience-driven agents. These results underscore the critical necessity of coupling structured search with empirical accumulation for mastering complex, open-ended reasoning tasks.
comment: 9 pages, 5 figures
☆ DementiaBank-Emotion: A Multi-Rater Emotion Annotation Corpus for Alzheimer's Disease Speech (Version 1.0) EACL 2026
We present DementiaBank-Emotion, the first multi-rater emotion annotation corpus for Alzheimer's disease (AD) speech. Annotating 1,492 utterances from 108 speakers for Ekman's six basic emotions and neutral, we find that AD patients express significantly more non-neutral emotions (16.9%) than healthy controls (5.7%; p < .001). Exploratory acoustic analysis suggests a possible dissociation: control speakers showed substantial F0 modulation for sadness (Delta = -3.45 semitones from baseline), whereas AD speakers showed minimal change (Delta = +0.11 semitones; interaction p = .023), though this finding is based on limited samples (sadness: n=5 control, n=15 AD) and requires replication. Within AD speech, loudness differentiates emotion categories, indicating partially preserved emotion-prosody mappings. We release the corpus, annotation guidelines, and calibration workshop materials to support research on emotion recognition in clinical populations.
comment: Accepted at HeaLING Workshop @ EACL 2026. 9 pages, 3 figures, 8 tables
☆ CoLT: Reasoning with Chain of Latent Tool Calls
Chain-of-Thought (CoT) is a critical technique in enhancing the reasoning ability of Large Language Models (LLMs), and latent reasoning methods have been proposed to accelerate the inefficient token-level reasoning chain. We notice that existing latent reasoning methods generally require model structure augmentation and exhaustive training, limiting their broader applicability. In this paper, we propose CoLT, a novel framework that implements latent reasoning as ``tool calls''. Instead of reasoning entirely in the latent space, CoLT generates seed tokens that contain information of a reasoning step. When a latent tool call is triggered, a smaller external model will take the hidden states of seed tokens as its input, and unpack the seed tokens back to a full reasoning step. In this way, we can ensure that the main model reasons in the explicit token space, preserving its ability while improving efficiency. Experimental results on four mathematical datasets demonstrate that CoLT achieves higher accuracy and shorter reasoning length than baseline latent models, and is compatible with reinforcement learning algorithms and different decoder structures.
☆ Tokenization and Morphological Fidelity in Uralic NLP: A Cross-Lingual Evaluation
Subword tokenization critically affects Natural Language Processing (NLP) performance, yet its behavior in morphologically rich and low-resource language families remains under-explored. This study systematically compares three subword paradigms -- Byte Pair Encoding (BPE), Overlap BPE (OBPE), and Unigram Language Model -- across six Uralic languages with varying resource availability and typological diversity. Using part-of-speech (POS) tagging as a controlled downstream task, we show that OBPE consistently achieves stronger morphological alignment and higher tagging accuracy than conventional methods, particularly within the Latin-script group. These gains arise from reduced fragmentation in open-class categories and a better balance across the frequency spectrum. Transfer efficacy further depends on the downstream tagging architecture, interacting with both training volume and genealogical proximity. Taken together, these findings highlight that morphology-sensitive tokenization is not merely a preprocessing choice but a decisive factor in enabling effective cross-lingual transfer for agglutinative, low-resource languages.
☆ RAPO: Risk-Aware Preference Optimization for Generalizable Safe Reasoning
Large Reasoning Models (LRMs) have achieved tremendous success with their chain-of-thought (CoT) reasoning, yet also face safety issues similar to those of basic language models. In particular, while algorithms are designed to guide them to deliberately refuse harmful prompts with safe reasoning, this process often fails to generalize against diverse and complex jailbreak attacks. In this work, we attribute these failures to the generalization of the safe reasoning process, particularly their insufficiency against complex attack prompts. We provide both theoretical and empirical evidence to show the necessity of a more sufficient safe reasoning process to defend against advanced attack prompts. Building on this insight, we propose a Risk-Aware Preference Optimization (RAPO) framework that enables LRM to adaptively identify and address the safety risks with appropriate granularity in its thinking content. Extensive experiments demonstrate that RAPO successfully generalizes multiple LRMs' safe reasoning adaptively across diverse attack prompts whilst preserving general utility, contributing a robust alignment technique for LRM safety. Our code is available at https://github.com/weizeming/RAPO.
☆ Frontend Token Enhancement for Token-Based Speech Recognition ICASSP 2026
Discretized representations of speech signals are efficient alternatives to continuous features for various speech applications, including automatic speech recognition (ASR) and speech language models. However, these representations, such as semantic or phonetic tokens derived from clustering outputs of self-supervised learning (SSL) speech models, are susceptible to environmental noise, which can degrade backend task performance. In this work, we introduce a frontend system that estimates clean speech tokens from noisy speech and evaluate it on an ASR backend using semantic tokens. We consider four types of enhancement models based on their input/output domains: wave-to-wave, token-to-token, continuous SSL features-to-token, and wave-to-token. These models are trained independently of ASR backends. Experiments on the CHiME-4 dataset demonstrate that wave-to-token enhancement achieves the best performance among the frontends. Moreover, it mostly outperforms the ASR system based on continuous SSL features.
comment: Accepted at ICASSP 2026
☆ Language Models Struggle to Use Representations Learned In-Context
Though large language models (LLMs) have enabled great success across a wide variety of tasks, they still appear to fall short of one of the loftier goals of artificial intelligence research: creating an artificial system that can adapt its behavior to radically new contexts upon deployment. One important step towards this goal is to create systems that can induce rich representations of data that are seen in-context, and then flexibly deploy these representations to accomplish goals. Recently, Park et al. (2024) demonstrated that current LLMs are indeed capable of inducing such representation from context (i.e., in-context representation learning). The present study investigates whether LLMs can use these representations to complete simple downstream tasks. We first assess whether open-weights LLMs can use in-context representations for next-token prediction, and then probe models using a novel task, adaptive world modeling. In both tasks, we find evidence that open-weights LLMs struggle to deploy representations of novel semantics that are defined in-context, even if they encode these semantics in their latent representations. Furthermore, we assess closed-source, state-of-the-art reasoning models on the adaptive world modeling task, demonstrating that even the most performant LLMs cannot reliably leverage novel patterns presented in-context. Overall, this work seeks to inspire novel methods for encouraging models to not only encode information presented in-context, but to do so in a manner that supports flexible deployment of this information.
☆ Enforcing Monotonic Progress in Legal Cross-Examination: Preventing Long-Horizon Stagnation in LLM-Based Inquiry
Large language models (LLMs) exhibit impressive linguistic fluency but struggle to reliably complete long-horizon tasks under explicit procedural constraints. In legal cross-examination, purely proba-bilistic generation often maintains behavioral coherence while failing to ensure procedural advancement. We characterize this failure as procedural stagnation and propose Soft-FSM, a neuro-symbolic architecture that enforces monotonic progress over accumulated Key Information Units (KIUs) via an external deterministic state controller. Experiments on three real-world Taiwanese criminal homicide cases show that baseline methods collapse below 40% completeness, while Soft-FSM consistently achieves over 97% with near-zero redundancy. These results suggest that, in such domains, reliable task completion cannot be guaranteed by emergent LLM behavior alone, and can be reliably enforced through explicit and verifiable external state control.
comment: Submitted to ICAIL 2026. Under review
☆ From Helpfulness to Toxic Proactivity: Diagnosing Behavioral Misalignment in LLM Agents
The enhanced capabilities of LLM-based agents come with an emergency for model planning and tool-use abilities. Attributing to helpful-harmless trade-off from LLM alignment, agents typically also inherit the flaw of "over-refusal", which is a passive failure mode. However, the proactive planning and action capabilities of agents introduce another crucial danger on the other side of the trade-off. This phenomenon we term "Toxic Proactivity'': an active failure mode in which an agent, driven by the optimization for Machiavellian helpfulness, disregards ethical constraints to maximize utility. Unlike over-refusal, Toxic Proactivity manifests as the agent taking excessive or manipulative measures to ensure its "usefulness'' is maintained. Existing research pays little attention to identifying this behavior, as it often lacks the subtle context required for such strategies to unfold. To reveal this risk, we introduce a novel evaluation framework based on dilemma-driven interactions between dual models, enabling the simulation and analysis of agent behavior over multi-step behavioral trajectories. Through extensive experiments with mainstream LLMs, we demonstrate that Toxic Proactivity is a widespread behavioral phenomenon and reveal two major tendencies. We further present a systematic benchmark for evaluating Toxic Proactive behavior across contextual settings.
comment: 9 pages (excluding appendices), 6 figures. Code is available at https://github.com/wxyoio-0715/Toxic-Proactivity
☆ The Missing Half: Unveiling Training-time Implicit Safety Risks Beyond Deployment
Safety risks of AI models have been widely studied at deployment time, such as jailbreak attacks that elicit harmful outputs. In contrast, safety risks emerging during training remain largely unexplored. Beyond explicit reward hacking that directly manipulates explicit reward functions in reinforcement learning, we study implicit training-time safety risks: harmful behaviors driven by a model's internal incentives and contextual background information. For example, during code-based reinforcement learning, a model may covertly manipulate logged accuracy for self-preservation. We present the first systematic study of this problem, introducing a taxonomy with five risk levels, ten fine-grained risk categories, and three incentive types. Extensive experiments reveal the prevalence and severity of these risks: notably, Llama-3.1-8B-Instruct exhibits risky behaviors in 74.4% of training runs when provided only with background information. We further analyze factors influencing these behaviors and demonstrate that implicit training-time risks also arise in multi-agent training settings. Our results identify an overlooked yet urgent safety challenge in training.
☆ Training Data Efficiency in Multimodal Process Reward Models
Multimodal Process Reward Models (MPRMs) are central to step-level supervision for visual reasoning in MLLMs. Training MPRMs typically requires large-scale Monte Carlo (MC)-annotated corpora, incurring substantial training cost. This paper studies the data efficiency for MPRM training.Our preliminary experiments reveal that MPRM training quickly saturates under random subsampling of the training data, indicating substantial redundancy within existing MC-annotated corpora.To explain this, we formalize a theoretical framework and reveal that informative gradient updates depend on two factors: label mixtures of positive/negative steps and label reliability (average MC scores of positive steps). Guided by these insights, we propose the Balanced-Information Score (BIS), which prioritizes both mixture and reliability based on existing MC signals at the rollout level, without incurring any additional cost. Across two backbones (InternVL2.5-8B and Qwen2.5-VL-7B) on VisualProcessBench, BIS-selected subsets consistently match and even surpass the full-data performance at small fractions. Notably, the BIS subset reaches full-data performance using only 10% of the training data, improving over random subsampling by a relative 4.1%.
☆ From Lemmas to Dependencies: What Signals Drive Light Verbs Classification? EACL
Light verb constructions (LVCs) are a challenging class of verbal multiword expressions, especially in Turkish, where rich morphology and productive complex predicates create minimal contrasts between idiomatic predicate meanings and literal verb--argument uses. This paper asks what signals drive LVC classification by systematically restricting model inputs. Using UD-derived supervision, we compare lemma-driven baselines (lemma TF--IDF + Logistic Regression; BERTurk trained on lemma sequences), a grammar-only Logistic Regression over UD morphosyntax (UPOS/DEPREL/MORPH), and a full-input BERTurk baseline. We evaluate on a controlled diagnostic set with Random negatives, lexical controls (NLVC), and LVC positives, reporting split-wise performance to expose decision-boundary behavior. Results show that coarse morphosyntax alone is insufficient for robust LVC detection under controlled contrasts, while lexical identity supports LVC judgments but is sensitive to calibration and normalization choices. Overall, Our findings motivate targeted evaluation of Turkish MWEs and show that ``lemma-only'' is not a single, well-defined representation, but one that depends critically on how normalization is operationalized.
comment: EACL SIGTURK
☆ DELTA: Deliberative Multi-Agent Reasoning with Reinforcement Learning for Multimodal Psychological Counseling
Psychological counseling is a fundamentally multimodal cognitive process in which clinicians integrate verbal content with visual and vocal cues to infer clients' mental states and respond empathically. However, most existing language-model-based counseling systems operate on text alone and rely on implicit mental state inference. We introduce DELTA, a deliberative multi-agent framework that models counseling as a structured reasoning process over multimodal signals, separating evidence grounding, mental state abstraction, and response generation. DELTA further incorporates reinforcement learning guided by a distribution-level Emotion Attunement Score to encourage emotionally attuned responses. Experiments on a multimodal counseling benchmark show that DELTA improves both counseling quality and emotion attunement across models. Ablation and qualitative analyses suggest that explicit multimodal reasoning and structured mental state representations play complementary roles in supporting empathic human-AI interaction.
☆ Expert Selections In MoE Models Reveal (Almost) As Much As Text
We present a text-reconstruction attack on mixture-of-experts (MoE) language models that recovers tokens from expert selections alone. In MoE models, each token is routed to a subset of expert subnetworks; we show these routing decisions leak substantially more information than previously understood. Prior work using logistic regression achieves limited reconstruction; we show that a 3-layer MLP improves this to 63.1% top-1 accuracy, and that a transformer-based sequence decoder recovers 91.2% of tokens top-1 (94.8% top-10) on 32-token sequences from OpenWebText after training on 100M tokens. These results connect MoE routing to the broader literature on embedding inversion. We outline practical leakage scenarios (e.g., distributed inference and side channels) and show that adding noise reduces but does not eliminate reconstruction. Our findings suggest that expert selections in MoE deployments should be treated as sensitive as the underlying text.
☆ Rethinking Perplexity: Revealing the Impact of Input Length on Perplexity Evaluation in LLMs
Perplexity is a widely adopted metric for assessing the predictive quality of large language models (LLMs) and often serves as a reference metric for downstream evaluations. However, recent evidence shows that perplexity can be unreliable, especially when irrelevant long inputs are used, raising concerns for both benchmarking and system deployment. While prior efforts have employed selective input filtering and curated datasets, the impact of input length on perplexity has not been systematically studied from a systems perspective and input length has rarely been treated as a first-class system variable affecting both fairness and efficiency. In this work, we close this gap by introducing LengthBenchmark, a system-conscious evaluation framework that explicitly integrates input length, evaluation protocol design, and system-level costs, evaluating representative LLMs under two scoring protocols (direct accumulation and fixed window sliding) across varying context lengths. Unlike prior work that focuses solely on accuracy-oriented metrics, LengthBenchmark additionally measures latency, memory footprint, and evaluation cost, thereby linking predictive metrics to deployment realities. We further incorporate quantized variants not as a main contribution, but as robustness checks, showing that length-induced biases persist across both full-precision and compressed models. This design disentangles the effects of evaluation logic, quantization, and input length, and demonstrates that length bias is a general phenomenon that undermines fair cross-model comparison. Our analysis yields two key observations: (i) sliding window evaluation consistently inflates performance on short inputs, and (ii) both full-precision and quantized models appear to realise gains as the evaluated segment length grows.
☆ SocialVeil: Probing Social Intelligence of Language Agents under Communication Barriers
Large language models (LLMs) are increasingly evaluated in interactive environments to test their social intelligence. However, existing benchmarks often assume idealized communication between agents, limiting our ability to diagnose whether LLMs can maintain and repair interactions in more realistic, imperfect settings. To close this gap, we present \textsc{SocialVeil}, a social learning environment that can simulate social interaction under cognitive-difference-induced communication barriers. Grounded in a systematic literature review of communication challenges in human interaction, \textsc{SocialVeil} introduces three representative types of such disruption, \emph{semantic vagueness}, \emph{sociocultural mismatch}, and \emph{emotional interference}. We also introduce two barrier-aware evaluation metrics, \emph{unresolved confusion} and \emph{mutual understanding}, to evaluate interaction quality under impaired communication. Experiments across 720 scenarios and four frontier LLMs show that barriers consistently impair performance, with mutual understanding reduced by over 45\% on average, and confusion elevated by nearly 50\%. Human evaluations validate the fidelity of these simulated barriers (ICC$\approx$0.78, Pearson r$\approx$0.80). We further demonstrate that adaptation strategies (Repair Instruction and Interactive learning) only have a modest effect far from barrier-free performance. This work takes a step toward bringing social interaction environments closer to real-world communication, opening opportunities for exploring the social intelligence of LLM agents.
comment: 10 pages
☆ Multilingual Extraction and Recognition of Implicit Discourse Relations in Speech and Text
Implicit discourse relation classification is a challenging task, as it requires inferring meaning from context. While contextual cues can be distributed across modalities and vary across languages, they are not always captured by text alone. To address this, we introduce an automatic method for distantly related and unrelated language pairs to construct a multilingual and multimodal dataset for implicit discourse relations in English, French, and Spanish. For classification, we propose a multimodal approach that integrates textual and acoustic information through Qwen2-Audio, allowing joint modeling of text and audio for implicit discourse relation classification across languages. We find that while text-based models outperform audio-based models, integrating both modalities can enhance performance, and cross-lingual transfer can provide substantial improvements for low-resource languages.
☆ Data Kernel Perspective Space Performance Guarantees for Synthetic Data from Transformer Models
Scarcity of labeled training data remains the long pole in the tent for building performant language technology and generative AI models. Transformer models -- particularly LLMs -- are increasingly being used to mitigate the data scarcity problem via synthetic data generation. However, because the models are black boxes, the properties of the synthetic data are difficult to predict. In practice it is common for language technology engineers to 'fiddle' with the LLM temperature setting and hope that what comes out the other end improves the downstream model. Faced with this uncertainty, here we propose Data Kernel Perspective Space (DKPS) to provide the foundation for mathematical analysis yielding concrete statistical guarantees for the quality of the outputs of transformer models. We first show the mathematical derivation of DKPS and how it provides performance guarantees. Next we show how DKPS performance guarantees can elucidate performance of a downstream task, such as neural machine translation models or LLMs trained using Contrastive Preference Optimization (CPO). Limitations of the current work and future research are also discussed.
☆ Locas: Your Models are Principled Initializers of Locally-Supported Parametric Memories
In this paper, we aim to bridge test-time-training with a new type of parametric memory that can be flexibly offloaded from or merged into model parameters. We present Locas, a Locally-Supported parametric memory that shares the design of FFN blocks in modern transformers, allowing it to be flexibly permanentized into the model parameters while supporting efficient continual learning. We discuss two major variants of Locas: one with a conventional two-layer MLP design that has a clearer theoretical guarantee; the other one shares the same GLU-FFN structure with SOTA LLMs, and can be easily attached to existing models for both parameter-efficient and computation-efficient continual learning. Crucially, we show that proper initialization of such low-rank sideway-FFN-style memories -- performed in a principled way by reusing model parameters, activations and/or gradients -- is essential for fast convergence, improved generalization, and catastrophic forgetting prevention. We validate the proposed memory mechanism on the PG-19 whole-book language modeling and LoCoMo long-context dialogue question answering tasks. With only 0.02\% additional parameters in the lowest case, Locas-GLU is capable of storing the information from past context while maintaining a much smaller context window. In addition, we also test the model's general capability loss after memorizing the whole book with Locas, through comparative MMLU evaluation. Results show the promising ability of Locas to permanentize past context into parametric knowledge with minimized catastrophic forgetting of the model's existing internal knowledge.
comment: Tencent AI Lab Technical Report
☆ StagePilot: A Deep Reinforcement Learning Agent for Stage-Controlled Cybergrooming Simulation
Cybergrooming is an evolving threat to youth, necessitating proactive educational interventions. We propose StagePilot, an offline RL-based dialogue agent that simulates the stage-wise progression of grooming behaviors for prevention training. StagePilot selects conversational stages using a composite reward that balances user sentiment and goal proximity, with transitions constrained to adjacent stages for realism and interpretability. We evaluate StagePilot through LLM-based simulations, measuring stage completion, dialogue efficiency, and emotional engagement. Results show that StagePilot generates realistic and coherent conversations aligned with grooming dynamics. Among tested methods, the IQL+AWAC agent achieves the best balance between strategic planning and emotional coherence, reaching the final stage up to 43% more frequently than baselines while maintaining over 70% sentiment alignment.
☆ VEXA: Evidence-Grounded and Persona-Adaptive Explanations for Scam Risk Sensemaking
Online scams across email, short message services, and social media increasingly challenge everyday risk assessment, particularly as generative AI enables more fluent and context-aware deception. Although transformer-based detectors achieve strong predictive performance, their explanations are often opaque to non-experts or misaligned with model decisions. We propose VEXA, an evidence-grounded and persona-adaptive framework for generating learner-facing scam explanations by integrating GradientSHAP-based attribution with theory-informed vulnerability personas. Evaluation across multi-channel datasets shows that grounding explanations in detector-derived evidence improves semantic reliability without increasing linguistic complexity, while persona conditioning introduces interpretable stylistic variation without disrupting evidential alignment. These results reveal a key design insight: evidential grounding governs semantic correctness, whereas persona-based adaptation operates at the level of presentation under constraints of faithfulness. Together, VEXA demonstrates the feasibility of persona-adaptive, evidence-grounded explanations and provides design guidance for trustworthy, learner-facing security explanations in non-formal contexts.
☆ Capacity Constraints and the Multilingual Penalty for Lexical Disambiguation
Multilingual language models (LMs) sometimes under-perform their monolingual counterparts, possibly due to capacity limitations. We quantify this ``multilingual penalty'' for lexical disambiguation--a task requiring precise semantic representations and contextualization mechanisms--using controlled datasets of human relatedness judgments for ambiguous words in both English and Spanish. Comparing monolingual and multilingual LMs from the same families, we find consistently reduced performance in multilingual LMs. We then explore three potential capacity constraints: representational (reduced embedding isotropy), attentional (reduced attention to disambiguating cues), and vocabulary-related (increased multi-token segmentation). Multilingual LMs show some evidence of all three limitations; moreover, these factors statistically account for the variance formerly attributed to a model's multilingual status. These findings suggest both that multilingual LMs do suffer from multiple capacity constraints, and that these constraints correlate with reduced disambiguation performance.
comment: 9 pages, 5 figures, conference
☆ DeepRead: Document Structure-Aware Reasoning to Enhance Agentic Search
With the rapid progress of tool-using and agentic large language models (LLMs), Retrieval-Augmented Generation (RAG) is evolving from one-shot, passive retrieval into multi-turn, decision-driven evidence acquisition. Despite strong results in open-domain settings, existing agentic search frameworks commonly treat long documents as flat collections of chunks, underutilizing document-native priors such as hierarchical organization and sequential discourse structure. We introduce DeepRead, a structure-aware, multi-turn document reasoning agent that explicitly operationalizes these priors for long-document question answering. DeepRead leverages LLM-based OCR model to convert PDFs into structured Markdown that preserves headings and paragraph boundaries. It then indexes documents at the paragraph level and assigns each paragraph a coordinate-style metadata key encoding its section identity and in-section order. Building on this representation, DeepRead equips the LLM with two complementary tools: a Retrieve tool that localizes relevant paragraphs while exposing their structural coordinates (with lightweight scanning context), and a ReadSection tool that enables contiguous, order-preserving reading within a specified section and paragraph range. Our experiments demonstrate that DeepRead achieves significant improvements over Search-o1-style agentic search in document question answering. The synergistic effect between retrieval and reading tools is also validated. Our fine-grained behavioral analysis reveals a reading and reasoning paradigm resembling human-like ``locate then read'' behavior.
comment: working in progress
☆ Enhanced QKNorm normalization for neural transformers with the Lp norm
The normalization of query and key vectors is an essential part of the Transformer architecture. It ensures that learning is stable regardless of the scale of these vectors. Some normalization approaches are available. In this preliminary work, a generalization of the QKNorm normalization scheme is proposed. The approach is based on the Lp norm, allowing non-Euclidean norms to be employed. Experimental results demonstrate the suitability of the method for a simple problem.
☆ CoWork-X: Experience-Optimized Co-Evolution for Multi-Agent Collaboration System
Large language models are enabling language-conditioned agents in interactive environments, but highly cooperative tasks often impose two simultaneous constraints: sub-second real-time coordination and sustained multi-episode adaptation under a strict online token budget. Existing approaches either rely on frequent in-episode reasoning that induces latency and timing jitter, or deliver post-episode improvements through unstructured text that is difficult to compile into reliable low-cost execution. We propose CoWork-X, an active co-evolution framework that casts peer collaboration as a closed-loop optimization problem across episodes, inspired by fast--slow memory separation. CoWork-X instantiates a Skill-Agent that executes via HTN (hierarchical task network)-based skill retrieval from a structured, interpretable, and compositional skill library, and a post-episode Co-Optimizer that performs patch-style skill consolidation with explicit budget constraints and drift regularization. Experiments in challenging Overcooked-AI-like realtime collaboration benchmarks demonstrate that CoWork-X achieves stable, cumulative performance gains while steadily reducing online latency and token usage.
☆ EntRGi: Entropy Aware Reward Guidance for Diffusion Language Models
Reward guidance has been applied to great success in the test-time adaptation of continuous diffusion models; it updates each denoising step using the gradients from a downstream reward model. We study reward guidance for discrete diffusion language models, where one cannot differentiate through the natural outputs of the model because they are discrete tokens. Existing approaches either replace these discrete tokens with continuous relaxations, or employ techniques like the straight-through estimator. In this work, we show the downsides of both these methods. The former degrades gradient feedback because the reward model has never been trained with continuous inputs. The latter involves incorrect optimization because the gradient evaluated at discrete tokens is used to update continuous logits. Our key innovation is to go beyond this tradeoff by introducing a novel mechanism called EntRGi: Entropy aware Reward Guidance that dynamically regulates the gradients from the reward model. By modulating the continuous relaxation using the model's confidence, our approach substantially improves reward guidance while providing reliable inputs to the reward model. We empirically validate our approach on a 7B-parameter diffusion language model across 3 diverse reward models and 3 multi-skill benchmarks, showing consistent improvements over state-of-the-art methods.
comment: Preprint
☆ Learning Rate Matters: Vanilla LoRA May Suffice for LLM Fine-tuning
Low-Rank Adaptation (LoRA) is the prevailing approach for efficient large language model (LLM) fine-tuning. Building on this paradigm, recent studies have proposed alternative initialization strategies and architectural modifications, reporting substantial improvements over vanilla LoRA. However, these gains are often demonstrated under fixed or narrowly tuned hyperparameter settings, despite the known sensitivity of neural networks to training configurations. In this work, we systematically re-evaluate four representative LoRA variants alongside vanilla LoRA through extensive hyperparameter searches. Across mathematical and code generation tasks on diverse model scales, we find that different LoRA methods favor distinct learning rate ranges. Crucially, once learning rates are properly tuned, all methods achieve similar peak performance (within 1-2%), with only subtle rank-dependent behaviors. These results suggest that vanilla LoRA remains a competitive baseline and that improvements reported under single training configuration may not reflect consistent methodological advantages. Finally, a second-order analysis attributes the differing optimal learning rate ranges to variations in the largest Hessian eigenvalue, aligning with classical learning theories.
♻ ☆ Grammatical Error Correction for Low-Resource Languages: The Case of Zarma
Grammatical error correction (GEC) aims to improve text quality and readability. Previous work on the task focused primarily on high-resource languages, while low-resource languages lack robust tools. To address this shortcoming, we present a study on GEC for Zarma, a language spoken by over five million people in West Africa. We compare three approaches: rule-based methods, machine translation (MT) models, and large language models (LLMs). We evaluated GEC models using a dataset of more than 250,000 examples, including synthetic and human-annotated data. Our results showed that the MT-based approach using M2M100 outperforms others, with a detection rate of 95.82% and a suggestion accuracy of 78.90% in automatic evaluations (AE) and an average score of 3.0 out of 5.0 in manual evaluation (ME) from native speakers for grammar and logical corrections. The rule-based method was effective for spelling errors but failed on complex context-level errors. LLMs -- Gemma 2b and MT5-small -- showed moderate performance. Our work supports use of MT models to enhance GEC in low-resource settings, and we validated these results with Bambara, another West African language.
♻ ☆ Group-Adaptive Adversarial Learning for Robust Fake News Detection Against Malicious Comments
Online fake news profoundly distorts public judgment and erodes trust in social platforms. While existing detectors achieve competitive performance on benchmark datasets, they remain notably vulnerable to malicious comments designed specifically to induce misclassification. This evolving threat landscape necessitates detection systems that simultaneously prioritize predictive accuracy and structural robustness. However, current detectors often fail to generalize across diverse and novel comment attack patterns. To bridge this gap, we propose AdComment, an adaptive adversarial training framework for robustness enhancement against diverse malicious comments. Based on cognitive psychology, we categorize adversarial comments into Fact Distortion, Logical Confusion, and Emotional Manipulation, and leverage LLMs to synthesize diverse, category-specific perturbations. Central to our framework is an InfoDirichlet Resampling (IDR) mechanism that dynamically adjusts malicious comment proportions during training, thereby steering optimization toward the model's most susceptible regions. Experimental results demonstrate that our approach achieves state-of-the-art performance on three benchmark datasets, improving the F1 scores by 17.9%, 14.5% and 9.0%, respectively.
comment: 10 pages, 12 figures
♻ ☆ Self-Improving Pretraining: using post-trained models to pretrain better models
Ensuring safety, factuality and overall quality in the generations of large language models is a critical challenge, especially as these models are increasingly deployed in real-world applications. The prevailing approach to addressing these issues involves collecting expensive, carefully curated datasets and applying multiple stages of fine-tuning and alignment. However, even this complex pipeline cannot guarantee the correction of patterns learned during pretraining. Therefore, addressing these issues during pretraining is crucial, as it shapes a model's core behaviors and prevents unsafe or hallucinated outputs from becoming deeply embedded. To tackle this issue, we introduce a new pretraining method that streams documents and uses reinforcement learning (RL) to improve the next K generated tokens at each step. A strong, post-trained model judges candidate generations -- including model rollouts, the original suffix, and a rewritten suffix -- for quality, safety, and factuality. Early in training, the process relies on the original and rewritten suffixes; as the model improves, RL rewards high-quality rollouts. This approach builds higher quality, safer, and more factual models from the ground up. In experiments, our method gives 36.2% and 18.5% relative improvements over standard pretraining in terms of factuality and safety, and up to 86.3% win rate improvements in overall generation quality.
♻ ☆ DEBATE: A Large-Scale Benchmark for Evaluating Opinion Dynamics in Role-Playing LLM Agents
Accurately modeling opinion change through social interactions is crucial for understanding and mitigating polarization, misinformation, and societal conflict. Recent work simulates opinion dynamics with role-playing LLM agents (RPLAs), but multi-agent simulations often display unnatural group behavior (e.g., premature convergence) and lack empirical benchmarks for assessing alignment with real human group interactions. We introduce DEBATE, a large-scale benchmark for evaluating the authenticity of opinion dynamics in multi-agent RPLA simulations. DEBATE contains 36,383 messages from 2,832 U.S.-based participants across 708 groups and 107 topics, with both public messages and private Likert-scale beliefs, enabling evaluation at the utterance and group levels (and supporting future individual-level analyses). We instantiate "digital twin" RPLAs with seven LLMs and evaluate across two settings: next-message prediction and full conversation rollout, using stance-alignment and opinion-convergence metrics. In zero-shot settings, RPLA groups exhibit strong opinion convergence relative to human groups. Post-training via supervised fine-tuning (SFT) and Direct Preference Optimization (DPO) improves stance alignment and brings group-level convergence closer to human behavior, though discrepancies in opinion change and belief updating remain. DEBATE enables rigorous benchmarking of simulated opinion dynamics and supports future research on aligning multi-agent RPLAs with realistic human interactions.
♻ ☆ Open-Source Multimodal Moxin Models with Moxin-VLM and Moxin-VLA
Recently, Large Language Models (LLMs) have undergone a significant transformation, marked by a rapid rise in both their popularity and capabilities. Leading this evolution are proprietary LLMs like GPT-4 and GPT-o1, which have captured widespread attention in the AI community due to their remarkable performance and versatility. Simultaneously, open-source LLMs, such as LLaMA and Mistral, have made great contributions to the ever-increasing popularity of LLMs due to the ease to customize and deploy the models across diverse applications. Moxin 7B is introduced as a fully open-source LLM developed in accordance with the Model Openness Framework, which moves beyond the simple sharing of model weights to embrace complete transparency in training, datasets, and implementation detail, thus fostering a more inclusive and collaborative research environment that can sustain a healthy open-source ecosystem. To further equip Moxin with various capabilities in different tasks, we develop three variants based on Moxin, including Moxin-VLM, Moxin-VLA, and Moxin-Chinese, which target the vision-language, vision-language-action, and Chinese capabilities, respectively. Experiments show that our models achieve superior performance in various evaluations. We adopt open-source framework and open data for the training. We release our models, along with the available data and code to derive these models.
♻ ☆ Anticipatory Evaluation of Language Models
Progress in large language models is increasingly constrained by an evaluation bottleneck: benchmarks must be built and models run before iteration can begin. We investigate whether evaluation outcomes can be forecast before any experiments are conducted. Specifically, we study text-only performance prediction, where models estimate performance from task descriptions and experimental configurations alone, without access to dataset instances. To support systematic study, we curate PRECOG, a corpus of description-performance pairs spanning diverse tasks, domains, and metrics. We scrape task and configuration descriptions from arXiv, yielding 2,290 instances covering 1,519 papers, and construct a test split using papers published after the evaluated models' knowledge cutoff. Experiments show the task is challenging but feasible: reasoning models achieve a non-trivial forecasting skill reaching mean absolute error as low as 9.9 at high-confidence thresholds. Overall, our corpus and analyses offer an initial step toward open-ended anticipatory evaluation, supporting difficulty estimation and smarter resource allocation.
comment: 30 pages, 7 figures
♻ ☆ Latent Chain-of-Thought as Planning: Decoupling Reasoning from Verbalization
Chain-of-Thought (CoT) empowers Large Language Models (LLMs) to tackle complex problems, but remains constrained by the computational cost and reasoning path collapse when grounded in discrete token spaces. Recent latent reasoning approaches attempt to optimize efficiency by performing reasoning within continuous hidden states. However, these methods typically operate as opaque end-to-end mappings from explicit reasoning steps to latent states, and often require a pre-defined number of latent steps during inference. In this work, we introduce PLaT (Planning with Latent Thoughts), a framework that reformulates latent reasoning as planning by fundamentally decouple reasoning from verbalization. We model reasoning as a deterministic trajectory of latent planning states, while a separate Decoder grounds these thoughts into text when necessary. This decoupling allows the model to dynamically determine when to terminate reasoning rather than relying on fixed hyperparameters. Empirical results on mathematical benchmarks reveal a distinct trade-off: while PLaT achieves lower greedy accuracy than baselines, it demonstrates superior scalability in terms of reasoning diversity. This indicates that PLaT learns a robust, broader solution space, offering a transparent and scalable foundation for inference-time search. Our code can be found in https://github.com/yunsaijc/PLaT.
♻ ☆ Breaking the MoE LLM Trilemma: Dynamic Expert Clustering with Structured Compression ICML 2026
Mixture-of-Experts (MoE) Large Language Models (LLMs) face a trilemma of load imbalance, parameter redundancy, and communication overhead. We introduce a unified framework based on dynamic expert clustering and structured compression to address these issues cohesively. Our method employs an online clustering procedure that periodically regroups experts using a fused metric of parameter and activation similarity, which stabilizes expert utilization. To our knowledge, this is one of the first frameworks to leverage the semantic embedding capability of the router to dynamically reconfigure the model's architecture during training for substantial efficiency gains. Within each cluster, we decompose expert weights into a shared base matrix and extremely low-rank residual adapters, achieving up to fivefold parameter reduction per group while preserving specialization. This structure enables a two-stage hierarchical routing strategy: tokens are first assigned to a cluster, then to specific experts within it, drastically reducing the routing search space and the volume of all-to-all communication. Furthermore, a heterogeneous precision scheme, which stores shared bases in FP16 and residual factors in INT4, coupled with dynamic offloading of inactive clusters, reduces peak memory consumption to levels comparable to dense models. Evaluated on GLUE and WikiText-103, our framework matches the quality of standard MoE models while reducing total parameters by approximately 80%, improving throughput by 10% to 20%, and lowering expert load variance by a factor of over three. Our work demonstrates that structural reorganization is a principled path toward scalable, efficient, and memory-effective MoE LLMs. Code is available at https://github.com/szdtzpj/Breaking_the_moe_trilemma
comment: 10 pages, 2 figures, 8 tables. Under review as a conference paper at ICML 2026
♻ ☆ Sparse Subnetwork Enhancement for Underrepresented Languages in Large Language Models
Large language models (LLMs) exhibit substantial performance disparities across languages, particularly between high- and low-resource settings. We propose a framework for improving performance in underrepresented languages while preserving general-purpose capabilities via targeted fine-tuning of sparse, language-associated subnetworks. Our approach identifies language-relevant neurons using Language Activation Probability Entropy (LAPE), an information-theoretic metric that reliably captures language-specific activation patterns, and fine-tunes only the corresponding weights. Experiments on Llama-3.1-8B, Mistral-Nemo-12B, and Aya-Expanse-8B across 12 mid- and low-resource languages show that our method consistently outperforms full fine-tuning, FFN-only fine-tuning, LoRA, IA^3, and random-subset baselines while updating only 0.2-1% of model parameters. We further show that sparse, neuron-targeted fine-tuning can inject new language capabilities without catastrophic forgetting, with potential applicability to other model capabilities. Mechanistic analyses of weight updates and internal representations reveal asymmetric roles of FFN projections in language adaptation and improved cross-lingual alignment. Finally, we release language neuron sets for over 100 languages together with our adaptation pipeline, enabling a cost-effective path for extending LLMs to underrepresented languages.
comment: preprint
♻ ☆ When Algorithms Meet Artists: Semantic Compression of Artists' Concerns in the Public AI-Art Debate
Artists occupy a paradoxical position in generative AI: their work trains the models reshaping creative labor. We tested whether their concerns achieve proportional representation in public discourse shaping AI governance. Analyzing public AI-art discourse (news, podcasts, legal filings, research; 2013--2025) and projecting 1,259 survey-derived artist statements into this semantic space, we find stark compression: 95% of artist concerns cluster in 4 of 22 discourse topics, while 14 topics (62% of discourse) contain no artist perspective. This compression is selective - governance concerns (ownership, transparency) are 7x underrepresented; affective themes (threat, utility) show only 1.4x underrepresentation after style controls. The pattern indicates semantic, not stylistic, marginalization. These findings demonstrate a measurable representational gap: decision-makers relying on public discourse as a proxy for stakeholder priorities will systematically underweight those most affected. We introduce a consensus-based semantic projection methodology that is currently being validated across domains and generalizes to other stakeholder-technology contexts.
comment: 35 pages, 5 figures, 4 tables
♻ ☆ Asynchronous Reasoning: Training-Free Interactive Thinking LLMs
Many state-of-the-art LLMs are trained to think before giving their answer. Reasoning can greatly improve language model capabilities, but it also makes them less interactive: given a new input, a model must stop thinking before it can respond. Real-world use cases such as voice-based or embodied assistants require an LLM agent to respond and adapt to additional information in real time, which is incompatible with sequential interactions. In contrast, humans can listen, think, and act asynchronously: we begin thinking about the problem while reading it and continue thinking while formulating the answer. In this work, we augment LLMs capable of reasoning to operate in a similar way without additional training. Our method uses the properties of positional embeddings to enable LLMs built for sequential generation to simultaneously think, listen, and write outputs. We evaluate our approach on math, commonsense, and safety reasoning: it allows models to generate accurate thinking-augmented answers while reducing time to first non-thinking token from minutes to ${\le}$ 5s and the overall real-time delays by up to $12{\times}$.
comment: Preprint, work in progress
♻ ☆ Addressing Data Imbalance in Transformer-Based Multi-Label Emotion Detection with Weighted Loss SemEval 2025
This paper explores the application of a simple weighted loss function to Transformer-based models for multi-label emotion detection in SemEval-2025 Shared Task 11. Our approach addresses data imbalance by dynamically adjusting class weights, thereby enhancing performance on minority emotion classes without the computational burden of traditional resampling methods. We evaluate BERT, RoBERTa, and BART on the BRIGHTER dataset, using evaluation metrics such as Micro F1, Macro F1, ROC-AUC, Accuracy, and Jaccard similarity coefficients. The results demonstrate that the weighted loss function improves performance on high-frequency emotion classes but shows limited impact on minority classes. These findings underscore both the effectiveness and the challenges of applying this approach to imbalanced multi-label emotion detection.
comment: 10 pages, 1 figure, SemEval 2025
♻ ☆ PromotionGo at SemEval-2025 Task 11: A Feature-Centric Framework for Cross-Lingual Multi-Emotion Detection in Short Texts
This paper presents our system for SemEval 2025 Task 11: Bridging the Gap in Text-Based Emotion Detection (Track A), which focuses on multi-label emotion detection in short texts. We propose a feature-centric framework that dynamically adapts document representations and learning algorithms to optimize language-specific performance. Our study evaluates three key components: document representation, dimensionality reduction, and model training in 28 languages, highlighting five for detailed analysis. The results show that TF-IDF remains highly effective for low-resource languages, while contextual embeddings like FastText and transformer-based document representations, such as those produced by Sentence-BERT, exhibit language-specific strengths. Principal Component Analysis (PCA) reduces training time without compromising performance, particularly benefiting FastText and neural models such as Multi-Layer Perceptrons (MLP). Computational efficiency analysis underscores the trade-off between model complexity and processing cost. Our framework provides a scalable solution for multilingual emotion detection, addressing the challenges of linguistic diversity and resource constraints.
♻ ☆ Representation-Aware Unlearning via Activation Signatures: From Suppression to Knowledge-Signature Erasure
Selective knowledge erasure from LLMs is critical for GDPR compliance and model safety, yet current unlearning methods conflate behavioral suppression with true knowledge removal, allowing latent capabilities to persist beneath surface-level refusals. In this work, we address this challenge by introducing Knowledge Immunization Framework (KIF), a representation-aware architecture that distinguishes genuine erasure from obfuscation by targeting internal activation signatures rather than surface outputs. Our approach combines dynamic suppression of subject-specific representations with parameter-efficient adaptation, enabling durable unlearning without full model retraining. KIF achieves near-oracle erasure (FQ approx 0.99 vs. 1.00) while preserving utility at oracle levels (MU = 0.62), effectively breaking the stability-erasure tradeoff that has constrained all prior work. We evaluate both standard foundation models (Llama and Mistral) and reasoning-prior models (Qwen and DeepSeek) across 3B to 14B parameters. Our observation shows that standard models exhibit scale-independent true erasure (<3% utility drift), while reasoning-prior models reveal fundamental architectural divergence. Our comprehensive dual-metric evaluation protocol, combining surface-level leakage with latent trace persistence, operationalizes the obfuscation - erasure distinction and enables the first systematic diagnosis of mechanism-level forgetting behavior across model families and scales.
comment: 16 pages, 4 figures
♻ ☆ PersoBench: Benchmarking Personalized Response Generation in Large Language Models
While large language models (LLMs) have exhibited impressive conversational capabilities, their proficiency in delivering personalized responses remains unclear. Although recent benchmarks automatically evaluate persona consistency in role-playing contexts using LLM-based judgment, the evaluation of personalization in response generation remains underexplored. To address this gap, we present an automated benchmarking pipeline, PersoBench, to evaluate the personalization ability of LLMs in persona-aware dialogue generation within a zero-shot setting. Our framework employs a structured pipeline comprising speaker-aware annotation, task-specific and context-driven prompt construction, response post-processing, and automated evaluation across multiple dimensions of generation quality. In particular, the pipeline performs text preprocessing and speaker labeling, constructs structured prompts with task instructions and LLM roles, validates response format, and evaluates valid outputs across fluency, personalization, diversity, and coherence. We assess the performance of four open-source and four closed-source LLMs using well-known datasets and a range of explicit metrics. Our findings reveal that while LLMs excel at generating fluent and diverse responses, they are far from satisfactory in delivering personalized and coherent responses, considering both the conversation context and the provided personas.
♻ ☆ Guarding the Guardrails: A Taxonomy-Driven Approach to Jailbreak Detection SC
Jailbreaking techniques pose a significant threat to the safety of Large Language Models (LLMs). Existing defenses typically focus on single-turn attacks, lack coverage across languages, and rely on limited taxonomies that either fail to capture the full diversity of attack strategies or emphasize risk categories rather than jailbreaking techniques. To advance the understanding of the effectiveness of jailbreaking techniques, we conducted a structured red-teaming challenge. The outcomes of our experiments are fourfold. First, we developed a comprehensive hierarchical taxonomy of jailbreak strategies that systematically consolidates techniques previously studied in isolation and harmonizes existing, partially overlapping classifications with explicit cross-references to prior categorizations. The taxonomy organizes jailbreak strategies into seven mechanism-oriented families: impersonation, persuasion, privilege escalation, cognitive overload, obfuscation, goal conflict, and data poisoning. Second, we analyzed the data collected from the challenge to examine the prevalence and success rates of different attack types, providing insights into how specific jailbreak strategies exploit model vulnerabilities and induce misalignment. Third, we benchmarked GPT-5 as a judge for jailbreak detection, evaluating the benefits of taxonomy-guided prompting for improving automatic detection. Finally, we compiled a new Italian dataset of 1364 multi-turn adversarial dialogues, annotated with our taxonomy, enabling the study of interactions where adversarial intent emerges gradually and succeeds in bypassing traditional safeguards.
comment: 2nd Conference on International Association for Safe & Ethical AI (IASEAI 2026), 24-26 February 2026, UNESCO House, Paris, France
♻ ☆ SpeechMapper: Speech-to-text Embedding Projector for LLMs ICASSP 2026
Current speech LLMs bridge speech foundation models to LLMs using projection layers, training all of these components on speech instruction data. This strategy is computationally intensive and susceptible to task and prompt overfitting. We present SpeechMapper, a cost-efficient speech-to-LLM-embedding training approach that mitigates overfitting, enabling more robust and generalizable models. Our model is first pretrained without the LLM on inexpensive hardware, and then efficiently attached to the target LLM via a brief 1K-step instruction tuning (IT) stage. Through experiments on speech translation and spoken question answering, we demonstrate the versatility of SpeechMapper's pretrained block, presenting results for both task-agnostic IT, an ASR-based adaptation strategy that does not train in the target task, and task-specific IT. In task-agnostic settings, Speechmapper rivals the best instruction-following speech LLM from IWSLT25, despite never being trained on these tasks, while in task-specific settings, it outperforms this model across many datasets, despite requiring less data and compute. Overall, SpeechMapper offers a practical and scalable approach for efficient, generalizable speech-LLM integration without large-scale IT.
comment: Accepted to ICASSP 2026
♻ ☆ Stingy Context: 18:1 Hierarchical Code Compression for LLM Auto-Coding
We introduce Stingy Context, a hierarchical tree-based compression scheme achieving 18:1 reduction in LLM context for auto-coding tasks. Using our TREEFRAG exploit decomposition, we reduce a real source code base of 239k tokens to 11k tokens while preserving task fidelity. Empirical results across 12 Frontier models show 94 to 97% success on 40 real-world issues at low cost, outperforming flat methods and mitigating lost-in-the-middle effects.
comment: 28 pages, 10 tables, 2 figures, 10 bibliographical references and 6 appendices
♻ ☆ Why Steering Works: Toward a Unified View of Language Model Parameter Dynamics
Methods for controlling large language models (LLMs), including local weight fine-tuning, LoRA-based adaptation, and activation-based interventions, are often studied in isolation, obscuring their connections and making comparison difficult. In this work, we present a unified view that frames these interventions as dynamic weight updates induced by a control signal, placing them within a single conceptual framework. Building on this view, we propose a unified preference-utility analysis that separates control effects into preference, defined as the tendency toward a target concept, and utility, defined as coherent and task-valid generation, and measures both on a shared log-odds scale using polarity-paired contrastive examples. Across methods, we observe a consistent trade-off between preference and utility: stronger control increases preference while predictably reducing utility. We further explain this behavior through an activation manifold perspective, in which control shifts representations along target-concept directions to enhance preference, while utility declines primarily when interventions push representations off the model's valid-generation manifold. Finally, we introduce a new steering approach SPLIT guided by this analysis that improves preference while better preserving utility. Code is available at https://github.com/zjunlp/EasyEdit/blob/main/examples/SPLIT.md.
comment: Work in progress
♻ ☆ Diversity or Precision? A Deep Dive into Next Token Prediction
Recent advancements have shown that reinforcement learning (RL) can substantially improve the reasoning abilities of large language models (LLMs). The effectiveness of such RL training, however, depends critically on the exploration space defined by the pre-trained model's token-output distribution. In this paper, we revisit the standard cross-entropy loss, interpreting it as a specific instance of policy gradient optimization applied within a single-step episode. To systematically study how the pre-trained distribution shapes the exploration potential for subsequent RL, we propose a generalized pre-training objective that adapts on-policy RL principles to supervised learning. By framing next-token prediction as a stochastic decision process, we introduce a reward-shaping strategy that explicitly balances diversity and precision. Our method employs a positive reward scaling factor to control probability concentration on ground-truth tokens and a rank-aware mechanism that treats high-ranking and low-ranking negative tokens asymmetrically. This allows us to reshape the pre-trained token-output distribution and investigate how to provide a more favorable exploration space for RL, ultimately enhancing end-to-end reasoning performance. Contrary to the intuition that higher distribution entropy facilitates effective exploration, we find that imposing a precision-oriented prior yields a superior exploration space for RL.
♻ ☆ LLM Agents for Education: Advances and Applications EMNLP 2025
Large Language Model (LLM) agents are transforming education by automating complex pedagogical tasks and enhancing both teaching and learning processes. In this survey, we present a systematic review of recent advances in applying LLM agents to address key challenges in educational settings, such as feedback comment generation, curriculum design, etc. We analyze the technologies enabling these agents, including representative datasets, benchmarks, and algorithmic frameworks. Additionally, we highlight key challenges in deploying LLM agents in educational settings, including ethical issues, hallucination and overreliance, and integration with existing educational ecosystems. Beyond the core technical focus, we include in Appendix A a comprehensive overview of domain-specific educational agents, covering areas such as science learning, language learning, and professional development.
comment: Accepted by EMNLP 2025 Findings
♻ ☆ DeVisE: Behavioral Testing of Medical Large Language Models
Large language models (LLMs) are increasingly applied in clinical decision support, yet current evaluations rarely reveal whether their outputs reflect genuine medical reasoning or superficial correlations. We introduce DeVisE (Demographics and Vital signs Evaluation), a behavioral testing framework that probes fine-grained clinical understanding through controlled counterfactuals. Using intensive care unit (ICU) discharge notes from MIMIC-IV, we construct both raw (real-world) and template-based (synthetic) variants with single-variable perturbations in demographic (age, gender, ethnicity) and vital sign attributes. We evaluate eight LLMs, spanning general-purpose and medical variants, under zero-shot setting. Model behavior is analyzed through (1) input-level sensitivity, capturing how counterfactuals alter perplexity, and (2) downstream reasoning, measuring their effect on predicted ICU length-of-stay and mortality. Overall, our results show that standard task metrics obscure clinically relevant differences in model behavior, with models differing substantially in how consistently and proportionally they adjust predictions to counterfactual perturbations.
♻ ☆ CreditAudit: 2$^\text{nd}$ Dimension for LLM Evaluation and Selection
Leaderboard scores on public benchmarks have been steadily rising and converging, with many frontier language models now separated by only marginal differences. However, these scores often fail to match users' day to day experience, because system prompts, output protocols, and interaction modes evolve under routine iteration, and in agentic multi step pipelines small protocol shifts can trigger disproportionate failures, leaving practitioners uncertain about which model to deploy. We propose CreditAudit, a deployment oriented credit audit framework that evaluates models under a family of semantically aligned and non adversarial system prompt templates across multiple benchmarks, reporting mean ability as average performance across scenarios and scenario induced fluctuation sigma as a stability risk signal, and further mapping volatility into interpretable credit grades from AAA to BBB via cross model quantiles with diagnostics that mitigate template difficulty drift. Controlled experiments on GPQA, TruthfulQA, and MMLU Pro show that models with similar mean ability can exhibit substantially different fluctuation, and stability risk can overturn prioritization decisions in agentic or high failure cost regimes. By providing a 2D and grade based language for regime specific selection, CreditAudit supports tiered deployment and more disciplined allocation of testing and monitoring effort, enabling more objective and trustworthy model evaluation for real world use.
comment: Second update
♻ ☆ EvasionBench: A Large-Scale Benchmark for Detecting Managerial Evasion in Earnings Call Q&A
We present EvasionBench, a comprehensive benchmark for detecting evasive responses in corporate earnings call question-and-answer sessions. Drawing from 22.7 million Q&A pairs extracted from S&P Capital IQ transcripts, we construct a rigorously filtered dataset and introduce a three-level evasion taxonomy: direct, intermediate, and fully evasive. Our annotation pipeline employs a Multi-Model Consensus (MMC) framework, combining dual frontier LLM annotation with a three-judge majority voting mechanism for ambiguous cases, achieving a Cohen's Kappa of 0.835 on human inter-annotator agreement. We release: (1) a balanced 84K training set, (2) a 1K gold-standard evaluation set with expert human labels, and (3) [Eva-4B], a 4-billion parameter classifier fine-tuned from Qwen3-4B that achieves 84.9% Macro-F1, outperforming Claude 4.5, GPT-5.2, and Gemini 3 Flash. Our ablation studies demonstrate the effectiveness of multi-model consensus labeling over single-model annotation. EvasionBench fills a critical gap in financial NLP by providing the first large-scale benchmark specifically targeting managerial communication evasion.
comment: Major revision. Title and abstract updated to better reflect the refined results. Shijian Ma and Yan Lin contributed equally. Corresponding author: Yan Lin; Project page: https://iiiiqiiii.github.io/EvasionBench/
♻ ☆ Hebrew Diacritics Restoration using Visual Representation
Diacritics restoration in Hebrew is a fundamental task for ensuring accurate word pronunciation and disambiguating textual meaning. Despite the language's high degree of ambiguity when unvocalized, recent machine learning approaches have significantly advanced performance on this task. In this work, we present DiVRit, a novel system for Hebrew diacritization that frames the task as a zero-shot classification problem. Our approach operates at the word level, selecting the most appropriate diacritization pattern for each undiacritized word from a dynamically generated candidate set, conditioned on the surrounding textual context. A key innovation of DiVRit is its use of a Hebrew Visual Language Model to process diacritized candidates as images, allowing diacritic information to be embedded directly within their vector representations while the surrounding context remains tokenization-based. Through a comprehensive evaluation across various configurations, we demonstrate that the system effectively performs diacritization without relying on complex, explicit linguistic analysis. Notably, in an ``oracle'' setting where the correct diacritized form is guaranteed to be among the provided candidates, DiVRit achieves a high level of accuracy. Furthermore, strategic architectural enhancements and optimized training methodologies yield significant improvements in the system's overall generalization capabilities. These findings highlight the promising potential of visual representations for accurate and automated Hebrew diacritization.
♻ ☆ ROSA-Tuning: Enhancing Long-Context Modeling via Suffix Matching
Long-context capability and computational efficiency are among the central challenges facing today's large language models. Existing efficient attention methods reduce computational complexity, but they typically suffer from a limited coverage of the model state. This paper proposes ROSA-Tuning, a retrieval-and-recall mechanism for enhancing the long-context modeling ability of pretrained models. Beyond the standard attention mechanism, ROSA-Tuning leverages in parallel a CPU-based ROSA (RWKV Online Suffix Automaton) retrieval module, which efficiently locates historical positions in long contexts that are relevant to the current query, and injects the retrieved information into the model state in a trainable manner; subsequent weighted fusion can then be handled by range-restricted attention. To enable end-to-end training, we employ the binary discretization strategy and the counterfactual gradient algorithm, and further optimize overall execution efficiency via an asynchronous CPU-GPU pipeline. Systematic evaluations on Qwen3-Base-1.7B show that ROSA-Tuning substantially restores the long-context modeling ability of windowed-attention models, achieving performance close to and in some cases matching global attention on benchmarks such as LongBench, while maintaining computational efficiency and GPU memory usage that are nearly comparable to windowed-attention methods, offering a new technical path for efficient long-context processing. The example code can be found at https://github.com/zyaaa-ux/ROSA-Tuning.
♻ ☆ Look Back to Reason Forward: Revisitable Memory for Long-Context LLM Agents
Large language models face challenges in long-context question answering, where key evidence of a query may be dispersed across millions of tokens. Existing works equip large language models with a memory buffer that is dynamically updated via a linear document scan, also known as the "memorize while reading" methods. While this approach scales efficiently, it suffers from pruning of latent evidence, information loss through overwriting, and sparse reinforcement learning signals. To tackle these challenges, we present ReMemR1, which integrates the mechanism of memory retrieval into the memory update process, enabling the agent to selectively callback historical memories for non-linear reasoning. To further strengthen training, we propose a multi-level reward design, which combines final-answer rewards with dense, step-level signals that guide effective memory use. Together, these contributions mitigate information degradation, improve supervision, and support complex multi-hop reasoning. Extensive experiments demonstrate that ReMemR1 significantly outperforms state-of-the-art baselines on long-context question answering while incurring negligible computational overhead, validating its ability to trade marginal cost for robust long-context reasoning.
♻ ☆ SWE-Pruner: Self-Adaptive Context Pruning for Coding Agents
LLM agents have demonstrated remarkable capabilities in software development, but their performance is hampered by long interaction contexts, which incur high API costs and latency. While various context compression approaches such as LongLLMLingua have emerged to tackle this challenge, they typically rely on fixed metrics such as PPL, ignoring the task-specific nature of code understanding. As a result, they frequently disrupt syntactic and logical structure and fail to retain critical implementation details. In this paper, we propose SWE-Pruner, a self-adaptive context pruning framework tailored for coding agents. Drawing inspiration from how human programmers "selectively skim" source code during development and debugging, SWE-Pruner performs task-aware adaptive pruning for long contexts. Given the current task, the agent formulates an explicit goal (e.g., "focus on error handling") as a hint to guide the pruning targets. A lightweight neural skimmer (0.6B parameters) is trained to dynamically select relevant lines from the surrounding context given the goal. Evaluations across four benchmarks and multiple models validate SWE-Pruner's effectiveness in various scenarios, achieving 23-54% token reduction on agent tasks like SWE-Bench Verified while even improving success rates, and up to 14.84x compression on single-turn tasks like LongCodeQA with minimal performance impact.
comment: Code available at https://github.com/Ayanami1314/swe-pruner
♻ ☆ Beyond speculation: Measuring the growing presence of LLM-generated texts in multilingual disinformation
Increased sophistication of large language models (LLMs) and the consequent quality of generated multilingual text raises concerns about potential disinformation misuse. While humans struggle to distinguish LLM-generated content from human-written texts, the scholarly debate about their impact remains divided. Some argue that heightened fears are overblown due to natural ecosystem limitations, while others contend that specific "longtail" contexts face overlooked risks. Our study bridges this debate by providing the first empirical evidence of LLM presence in the latest real-world disinformation datasets, documenting the increase of machine-generated content following ChatGPT's release, and revealing crucial patterns across languages, platforms, and time periods.
comment: accepted to Computer magazine
♻ ☆ Entailed Opinion Matters: Improving the Fact-Checking Performance of Language Models by Relying on their Entailment Ability
Automated fact-checking has been a challenging task for the research community. Past works tried various strategies, such as end-to-end training, retrieval-augmented generation, and prompt engineering, to build robust fact-checking systems. However, their accuracy was not high enough for real-world deployment. We, on the other hand, propose a new learning paradigm, where evidence classification and entailed justifications made by generative language models (GLMs) are used to train encoder-only language models (ELMs). We have conducted a rigorous set of experiments, comparing our approach with recent works along with various prompting and fine-tuning strategies. Additionally, we have conducted ablation studies, error analysis, quality analysis of model explanations, and a domain generalisation study to provide a comprehensive understanding of our approach.
comment: 22 pages
♻ ☆ DPO Unchained: Your Training Algorithm is Secretly Disentangled in Human Choice Theory
Normative theories allow one to elicit key parts of a ML algorithm from first principles, which is crucial at a time of championed scrutiny for ML work. Direct Preference Optimization (DPO) cleverly bypasses reward modeling by making an explicit link with a specific normative model of human choice. Our paper elevates this connection to the full generality of DPO's normative framework. Getting there requires reworking human choice theory's textbook path for a better RLHF/ML fit. It elevates the connection to a remarkably broad viewpoint on preference optimization, considering the current panorama of DPO follow-ups. It also unveils unexpected riches for ML, chief among which the support for non-convex losses, the fact that any compliant ML analytical choice can be embedded with any human choice model, and a normative framework's umbrella wide enough to safeguard DPO's extensions (margins, length correction, ...). A toy experiment ``far away'' from the DPO crowd is given.
♻ ☆ Fine-tuned LLM-based Code Migration Framework
The study presents the outcomes of research and experimental validation in the domain of automated codebase migration, with a focus on addressing challenges in transitioning SQL-based systems. The proposed method for migration essentially appears as a framework that leverages the best aspects of traditional software engineering techniques and provides an iterative, scalable, precise and efficient solution for modern database transformations. The central piece of the approach is the integration of a fine-tuned Large Language Model to address critical issues in SQL code conversion, such as syntax mapping, resolving discrepancies between Oracle PL/SQL and PostgreSQL, and optimising database elements such as stored procedures, triggers, views, and overall database logic. Thus, the method involves a trade-off between fine-tuning and prompt engineering. Special attention is given to a fine-tuning approach, which enhances the adaptability and compatibility with migration requirements across the entire database. According to the achieved results, fine-tuning plays a very important role. The study employs targeted evaluation methodologies along with computational metrics to measure the success of iterative conversion cycles. Core innovations include automated SQL feature detection, semi-supervised error analysis and integration of Subject Matter Experts feedback within a systematic migration workflow. The methodology achieves significant reductions in Syntax Error Rates, enhances feature alignment throughout migration iterations, and leverages dataset sampling to ensure continual improvement. By embedding GAI into the migration process, the framework facilitates precise feature mapping, semi-automated error resolution, and data-driven optimisation loops, improving workflow efficiency.
comment: 16 pages, 27 figures, 7 references
♻ ☆ Evaluating and Steering Modality Preferences in Multimodal Large Language Model
Multi-modal large language models (MLLMs) have achieved remarkable success on complex multi-modal tasks. However, it remains insufficiently explored whether they exhibit $\textbf{modality preference}$, a tendency to favor one modality over another when processing multi-modal contexts. To study this question, we introduce $\textbf{MC\textsuperscript{2}}$ benchmark, which constructs controlled evidence-conflict scenarios to systematically evaluate modality preference in decision-making. Extensive experiments reveal that all 20 tested MLLMs generally demonstrate clear modality preferences, and such preferences can serve as a useful indicator of downstream task performance of MLLMs. Further analysis shows that modality preference can be controlled by instruction guidance and captured within the latent representations of MLLMs. Built on these insights, we propose a probing and steering method based on representation engineering to explicitly control modality preference without requiring additional fine-tuning. This method effectively amplifies modality preference toward a desired direction and demonstrates promising improvements across multiple multi-modal understanding and reasoning tasks.
comment: Modality Preference
♻ ☆ Beyond Correctness: Rewarding Faithful Reasoning in Retrieval-Augmented Generation
Inspired by the success of reinforcement learning (RL) in Large Language Model (LLM) training for domains like math and code, recent works have begun exploring how to train LLMs to use search engines more effectively as tools for retrieval-augmented generation. Although these methods achieve performance improvement across QA benchmarks, many prioritize final answer correctness while overlooking the quality of intermediate reasoning steps, which may lead to chain-of-thought unfaithfulness. In this paper, we first introduce a comprehensive evaluation framework for evaluating RL-based search agents, covering three distinct faithfulness metrics: information-think faithfulness, think-answer faithfulness, and think-search faithfulness. Our evaluations reveal that canonical search agents trained via Reinforcement Learning from Verifiable Reward (RLVR) -- including SearchR1 and ReSearch -- have significant room for improvement in this regard. To foster faithful reasoning, we introduce VERITAS(Verifying Entailed Reasoning through Intermediate Traceability in Agentic Search), a novel framework that integrates fine-grained faithfulness rewards into the reinforcement learning process. Our experiments show that models trained with VERITAS not only significantly improve reasoning faithfulness, but also achieve better task performance compared to the baselines trained against pure outcome-based reward.
♻ ☆ MIRROR: A Multi-Agent Framework with Iterative Adaptive Revision and Hierarchical Retrieval for Optimization Modeling in Operations Research
Operations Research (OR) relies on expert-driven modeling-a slow and fragile process ill-suited to novel scenarios. While large language models (LLMs) can automatically translate natural language into optimization models, existing approaches either rely on costly post-training or employ multi-agent frameworks, yet most still lack reliable collaborative error correction and task-specific retrieval, often leading to incorrect outputs. We propose MIRROR, a fine-tuning-free, end-to-end multi-agent framework that directly translates natural language optimization problems into mathematical models and solver code. MIRROR integrates two core mechanisms: (1) execution-driven iterative adaptive revision for automatic error correction, and (2) hierarchical retrieval to fetch relevant modeling and coding exemplars from a carefully curated exemplar library. Experiments show that MIRROR outperforms existing methods on standard OR benchmarks, with notable results on complex industrial datasets such as IndustryOR and Mamo-ComplexLP. By combining precise external knowledge infusion with systematic error correction, MIRROR provides non-expert users with an efficient and reliable OR modeling solution, overcoming the fundamental limitations of general-purpose LLMs in expert optimization tasks.
♻ ☆ DeepAgent: A General Reasoning Agent with Scalable Toolsets WWW 2026
Large reasoning models have demonstrated strong problem-solving abilities, yet real-world tasks often require external tools and long-horizon interactions. Existing agent frameworks typically follow predefined workflows, which limit autonomous and global task completion. In this paper, we introduce DeepAgent, an end-to-end deep reasoning agent that performs autonomous thinking, tool discovery, and action execution within a single, coherent reasoning process. To address the challenges of long-horizon interactions, particularly the context length explosion from multiple tool calls and the accumulation of interaction history, we introduce an autonomous memory folding mechanism that compresses past interactions into structured episodic, working, and tool memories, reducing error accumulation while preserving critical information. To teach general-purpose tool use efficiently and stably, we develop an end-to-end reinforcement learning strategy, namely ToolPO, that leverages LLM-simulated APIs and applies tool-call advantage attribution to assign fine-grained credit to the tool invocation tokens. Extensive experiments on eight benchmarks, including general tool-use tasks (ToolBench, API-Bank, TMDB, Spotify, ToolHop) and downstream applications (ALFWorld, WebShop, GAIA, HLE), demonstrate that DeepAgent consistently outperforms baselines across both labeled-tool and open-set tool retrieval scenarios. This work takes a step toward more general and capable agents for real-world applications. The code and demo are available at https://github.com/RUC-NLPIR/DeepAgent.
comment: Accepted by WWW 2026
♻ ☆ Act or Clarify? Modeling Sensitivity to Uncertainty and Cost in Communication
When deciding how to act under uncertainty, agents may choose to act to reduce uncertainty or they may act despite that uncertainty. In communicative settings, an important way of reducing uncertainty is by asking clarification questions (CQs). We predict that the decision to ask a CQ depends on both contextual uncertainty and the cost of alternative actions, and that these factors interact: uncertainty should matter most when acting incorrectly is costly. We formalize this interaction in a computational model based on expected regret: how much an agent stands to lose by acting now rather than with full information. We test these predictions in two experiments, one examining purely linguistic responses to questions and another extending to choices between clarification and non-linguistic action. Taken together, our results suggest a rational tradeoff: humans tend to seek clarification proportional to the risk of substantial loss when acting under uncertainty.
comment: 6 pages, 3 figures, under review
♻ ☆ MapCoder-Lite: Distilling Multi-Agent Coding into a Single Small LLM
Large language models (LLMs) have advanced code generation from single-function tasks to competitive-programming problems, but existing multi-agent solutions either rely on costly large-scale (>30B) models or collapse when downsized to small open-source models. We present MapCoder-Lite, a framework for distilling the complex reasoning of large, multi-agent coding systems into a single 7B model. Our contribution is a novel, three-pillar methodology that synergistically generates, refines, and encodes multi-agent knowledge: (i) pass-based trajectory distillation from strong LLMs fixes format fragility in retrieval and reduces failures in debugging, (ii) supervisor-guided correction with global feedback strengthens planning and coding agents, and (iii) agent-wise LoRA fine-tuning delivers memory-efficient specialisation. Comprehensive evaluation on xCodeEval, APPS, and CodeContests shows that MapCoder-Lite more than doubles xCodeEval accuracy (from 13.2% to 28.3%), eliminates all format failures, while reducing GPU memory and token-generation time by 4x compared to a 32B model. It also achieves over 10% gains on simpler coding benchmarks, demonstrating broad improvements beyond competitive programming. These results demonstrate that careful agent-wise fine-tuning unleashes high-quality multi-agent coding on a small language model. Our code is publicly available at https://github.com/aiha-lab/MapCoder-Lite.
♻ ☆ ACE: Attribution-Controlled Knowledge Editing for Multi-hop Factual Recall ICLR2026
Large Language Models (LLMs) require efficient knowledge editing (KE) to update factual information, yet existing methods exhibit significant performance decay in multi-hop factual recall. This failure is particularly acute when edits involve intermediate implicit subjects within reasoning chains. Through causal analysis, we reveal that this limitation stems from an oversight of how chained knowledge is dynamically represented and utilized at the neuron level. We discover that during multi hop reasoning, implicit subjects function as query neurons, which sequentially activate corresponding value neurons across transformer layers to accumulate information toward the final answer, a dynamic prior KE work has overlooked. Guided by this insight, we propose ACE: Attribution-Controlled Knowledge Editing for Multi-hop Factual Recall, a framework that leverages neuron-level attribution to identify and edit these critical query-value (Q-V) pathways. ACE provides a mechanistically grounded solution for multi-hop KE, empirically outperforming state-of-the-art methods by 9.44% on GPT-J and 37.46% on Qwen3-8B. Our analysis further reveals more fine-grained activation patterns in Qwen3 and demonstrates that the semantic interpretability of value neurons is orchestrated by query-driven accumulation. These findings establish a new pathway for advancing KE capabilities based on the principled understanding of internal reasoning mechanisms.
comment: Accepted by ICLR2026
♻ ☆ A Survey on Vision-Language-Action Models for Embodied AI
Embodied AI is widely recognized as a cornerstone of artificial general intelligence because it involves controlling embodied agents to perform tasks in the physical world. Building on the success of large language models and vision-language models, a new category of multimodal models -- referred to as vision-language-action models (VLAs) -- has emerged to address language-conditioned robotic tasks in embodied AI by leveraging their distinct ability to generate actions. The recent proliferation of VLAs necessitates a comprehensive survey to capture the rapidly evolving landscape. To this end, we present the first survey on VLAs for embodied AI. This work provides a detailed taxonomy of VLAs, organized into three major lines of research. The first line focuses on individual components of VLAs. The second line is dedicated to developing VLA-based control policies adept at predicting low-level actions. The third line comprises high-level task planners capable of decomposing long-horizon tasks into a sequence of subtasks, thereby guiding VLAs to follow more general user instructions. Furthermore, we provide an extensive summary of relevant resources, including datasets, simulators, and benchmarks. Finally, we discuss the challenges facing VLAs and outline promising future directions in embodied AI. A curated repository associated with this survey is available at: https://github.com/yueen-ma/Awesome-VLA.
comment: Project page: https://github.com/yueen-ma/Awesome-VLA
♻ ☆ The ICASSP 2026 HumDial Challenge: Benchmarking Human-like Spoken Dialogue Systems in the LLM Era ICASSP 2026
Driven by the rapid advancement of Large Language Models (LLMs), particularly Audio-LLMs and Omni-models, spoken dialogue systems have evolved significantly, progressively narrowing the gap between human-machine and human-human interactions. Achieving truly ``human-like'' communication necessitates a dual capability: emotional intelligence to perceive and resonate with users' emotional states, and robust interaction mechanisms to navigate the dynamic, natural flow of conversation, such as real-time turn-taking. Therefore, we launched the first Human-like Spoken Dialogue Systems Challenge (HumDial) at ICASSP 2026 to benchmark these dual capabilities. Anchored by a sizable dataset derived from authentic human conversations, this initiative establishes a fair evaluation platform across two tracks: (1) Emotional Intelligence, targeting long-term emotion understanding and empathetic generation; and (2) Full-Duplex Interaction, systematically evaluating real-time decision-making under `` listening-while-speaking'' conditions. This paper summarizes the dataset, track configurations, and the final results.
comment: Official summary paper for the ICASSP 2026 HumDial Challenge
♻ ☆ Integrating Fine-Grained Audio-Visual Evidence for Robust Multimodal Emotion Reasoning
Multimodal emotion analysis is shifting from static classification to generative reasoning. Beyond simple label prediction, robust affective reasoning must synthesize fine-grained signals such as facial micro-expressions and prosodic which shifts to decode the latent causality within complex social contexts. However, current Multimodal Large Language Models (MLLMs) face significant limitations in fine-grained perception, primarily due to data scarcity and insufficient cross-modal fusion. As a result, these models often exhibit unimodal dominance which leads to hallucinations in complex multimodal interactions, particularly when visual and acoustic cues are subtle, ambiguous, or even contradictory (e.g., in sarcastic scenery). To address this, we introduce SABER-LLM, a framework designed for robust multimodal reasoning. First, we construct SABER, a large-scale emotion reasoning dataset comprising 600K video clips, annotated with a novel six-dimensional schema that jointly captures audiovisual cues and causal logic. Second, we propose the structured evidence decomposition paradigm, which enforces a "perceive-then-reason" separation between evidence extraction and reasoning to alleviate unimodal dominance. The ability to perceive complex scenes is further reinforced by consistency-aware direct preference optimization, which explicitly encourages alignment among modalities under ambiguous or conflicting perceptual conditions. Experiments on EMER, EmoBench-M, and SABER-Test demonstrate that SABER-LLM significantly outperforms open-source baselines and achieves robustness competitive with closed-source models in decoding complex emotional dynamics. The dataset and model are available at https://github.com/zxzhao0/SABER-LLM.
♻ ☆ DynamicNER: A Dynamic, Multilingual, and Fine-Grained Dataset for LLM-based Named Entity Recognition EMNLP 2025
The advancements of Large Language Models (LLMs) have spurred a growing interest in their application to Named Entity Recognition (NER) methods. However, existing datasets are primarily designed for traditional machine learning methods and are inadequate for LLM-based methods, in terms of corpus selection and overall dataset design logic. Moreover, the prevalent fixed and relatively coarse-grained entity categorization in existing datasets fails to adequately assess the superior generalization and contextual understanding capabilities of LLM-based methods, thereby hindering a comprehensive demonstration of their broad application prospects. To address these limitations, we propose DynamicNER, the first NER dataset designed for LLM-based methods with dynamic categorization, introducing various entity types and entity type lists for the same entity in different context, leveraging the generalization of LLM-based NER better. The dataset is also multilingual and multi-granular, covering 8 languages and 155 entity types, with corpora spanning a diverse range of domains. Furthermore, we introduce CascadeNER, a novel NER method based on a two-stage strategy and lightweight LLMs, achieving higher accuracy on fine-grained tasks while requiring fewer computational resources. Experiments show that DynamicNER serves as a robust and effective benchmark for LLM-based NER methods. Furthermore, we also conduct analysis for traditional methods and LLM-based methods on our dataset. Our code and dataset are openly available at https://github.com/Astarojth/DynamicNER.
comment: This paper is accepted by EMNLP 2025 Main Conference
♻ ☆ From Consistency to Complementarity: Aligned and Disentangled Multi-modal Learning for Time Series Understanding and Reasoning
Advances in multi-modal large language models (MLLMs) have inspired time series understanding and reasoning tasks, that enable natural language querying over time series, producing textual analyses of complex temporal dynamics. Recent attempts hybridize numerical time series with their visualized plots, facilitating precise value reasoning and visual structure comprehension for comprehensive time series understanding of MLLMs. However, effective numerical-visual modality integration remains challenging due to fine-grained temporal misalignment across modalities and severe entanglement between shared and modality-specific semantics, which hinder localized interpretation and complementary reasoning. To address these issues, we propose MADI, a multi-modal LLM enhanced with fine-grained alignment and disentangled interaction, featuring (1) Patch-level Alignment, which enforces physically grounded fine-grained correspondence across heterogeneous modalities, (2) Discrete Disentangled Interaction, which separates modality-common semantics into compact discrete latents and adaptively synergizes the purified modality-unique information, and (3) Critical-token Highlighting, which emphasizes informative, query-relevant signals for robust reasoning. Experiments on synthetic and real-world benchmarks show that MADI consistently outperforms general-purpose LLMs and time-series-specialized MLLMs.
♻ ☆ Bridging the Knowledge-Prediction Gap in LLMs on Multiple-Choice Questions
While large language models (LLMs) perform strongly on diverse tasks, their trustworthiness is limited by erratic behavior that is unfaithful to their internal knowledge. In particular, LLMs often fail on multiple-choice questions (MCQs) even if they encode correct answers in their hidden representations, revealing a misalignment between internal knowledge and output behavior. We investigate and mitigate this knowledge-prediction gap on MCQs through a three-step analysis of hidden representations. First, we quantify the prevalence and magnitude of the gap across models and datasets. Second, we provide a geometric interpretation by identifying distinct knowledge and prediction subspaces in the residual stream. Third, we introduce KAPPA, a lightweight inference-time intervention that aligns the two subspaces within the residual stream to reduce the knowledge-prediction gap. Our results provide a geometric and interpretable explanation of the knowledge-prediction gap in LLMs. Furthermore, KAPPA effectively reduces the gap across diverse MCQ benchmarks and models, and generalizes to free-form settings.
♻ ☆ Hallucination is a Consequence of Space-Optimality: A Rate-Distortion Theorem for Membership Testing
Large language models often hallucinate with high confidence on "random facts" that lack inferable patterns. We formalize the memorization of such facts as a membership testing problem, unifying the discrete error metrics of Bloom filters with the continuous log-loss of LLMs. By analyzing this problem in the regime where facts are sparse in the universe of plausible claims, we establish a rate-distortion theorem: the optimal memory efficiency is characterized by the minimum KL divergence between score distributions on facts and non-facts. This theoretical framework provides a distinctive explanation for hallucination: even with optimal training, perfect data, and a simplified "closed world" setting, the information-theoretically optimal strategy under limited capacity is not to abstain or forget, but to assign high confidence to some non-facts, resulting in hallucination. We validate this theory empirically on synthetic data, showing that hallucinations persist as a natural consequence of lossy compression.
♻ ☆ Language models can learn implicit multi-hop reasoning, but only if they have lots of training data EMNLP 2025
Implicit reasoning is the ability of a language model to solve multi-hop reasoning tasks in a single forward pass, without chain of thought. We investigate this capability using GPT2-style language models trained from scratch on controlled $k$-hop reasoning datasets ($k = 2, 3, 4$). We show that while such models can indeed learn implicit $k$-hop reasoning, the required training data grows exponentially in $k$, and the required number of transformer layers grows linearly in $k$. We offer a theoretical explanation for why this depth growth is necessary. We further find that the data requirement can be mitigated, but not eliminated, through curriculum learning.
comment: Accepted at EMNLP 2025
♻ ☆ ResT: Reshaping Token-Level Policy Gradients for Tool-Use Large Language Models ICLR2026
Large language models (LLMs) transcend passive generation and act as goal-directed agents by invoking external tools. Reinforcement learning (RL) offers a principled framework for optimizing these emergent tool-use policies, yet the prevailing paradigm relies exclusively on sparse outcome rewards and lacks consideration of the particularity of tool-use tasks, inflating policy-gradient variance and resulting in inefficient training. To better understand and address these challenges, we first establish a theoretical link between policy entropy and training stability of tool-use tasks, which reveals that structured, low-entropy tokens are primary determinants of rewards. Motivated by this insight, we propose \textbf{Res}haped \textbf{T}oken-level policy gradients (\textbf{ResT}) for tool-use tasks. ResT reshapes the policy gradient through entropy-informed token reweighting, progressively upweighting reasoning tokens as training proceeds. This entropy-aware scheme enables a smooth shift from structural correctness to semantic reasoning and stabilizes convergence in multi-turn tool-use tasks. Evaluation on BFCL and API-Bank shows that ResT achieves state-of-the-art results, outperforming prior methods by up to $8.76\%$. When fine-tuned on a 4B base LLM, ResT further surpasses GPT-4o by $4.11\%$ on single-turn tasks and $1.50\%$ on multi-turn base tasks. Code is available at https://github.com/1229095296/ResT_Tool_use_LLM.git.
comment: Accepted by ICLR2026
♻ ☆ AERO: Autonomous Evolutionary Reasoning Optimization via Endogenous Dual-Loop Feedback
Large Language Models (LLMs) have achieved significant success in complex reasoning but remain bottlenecked by reliance on expert-annotated data and external verifiers. While existing self-evolution paradigms aim to bypass these constraints, they often fail to identify the optimal learning zone and risk reinforcing collective hallucinations and incorrect priors through flawed internal feedback. To address these challenges, we propose \underline{A}utonomous \underline{E}volutionary \underline{R}easoning \underline{O}ptimization (AERO), an unsupervised framework that achieves autonomous reasoning evolution by internalizing self-questioning, answering, and criticism within a synergistic dual-loop system. Inspired by the \textit{Zone of Proximal Development (ZPD)} theory, AERO utilizes entropy-based positioning to target the ``solvability gap'' and employs Independent Counterfactual Correction for robust verification. Furthermore, we introduce a Staggered Training Strategy to synchronize capability growth across functional roles and prevent curriculum collapse. Extensive evaluations across nine benchmarks spanning three domains demonstrate that AERO achieves average performance improvements of 4.57\% on Qwen3-4B-Base and 5.10\% on Qwen3-8B-Base, outperforming competitive baselines. Code is available at https://github.com/mira-ai-lab/AERO.
♻ ☆ OmniRAG-Agent: Agentic Omnimodal Reasoning for Low-Resource Long Audio-Video Question Answering
Long-horizon omnimodal question answering answers questions by reasoning over text, images, audio, and video. Despite recent progress on OmniLLMs, low-resource long audio-video QA still suffers from costly dense encoding, weak fine-grained retrieval, limited proactive planning, and no clear end-to-end optimization.To address these issues, we propose OmniRAG-Agent, an agentic omnimodal QA method for budgeted long audio-video reasoning. It builds an image-audio retrieval-augmented generation module that lets an OmniLLM fetch short, relevant frames and audio snippets from external banks. Moreover, it uses an agent loop that plans, calls tools across turns, and merges retrieved evidence to answer complex queries. Furthermore, we apply group relative policy optimization to jointly improve tool use and answer quality over time. Experiments on OmniVideoBench, WorldSense, and Daily-Omni show that OmniRAG-Agent consistently outperforms prior methods under low-resource settings and achieves strong results, with ablations validating each component.
♻ ☆ Input-Time Scaling: Adding Noise and Irrelevance into Less-Is-More Drastically Improves Reasoning Performance and Efficiency
Large Language Models (LLMs) excel at reasoning, traditionally requiring high-quality large-scale data and extensive training. Recent works reveal a very appealing Less-Is-More phenomenon where very small, carefully curated high-quality datasets match resource-intensive approaches. In this work, we further systematically relax their quality constraints by adding controlled noise via persona context relevance and comparing datasets of different qualities. Counterintuitively, we find that mixing relevant and irrelevant contexts consistently across training and inference stages yields optimal results -- a phenomenon we term training-testing co-design. Dataset quality comparisons show that high-quality data benefits weaker models on easy questions, while low-quality data achieves higher scores on hard questions with capable models. Across our experiments, reasoning performance is linked to reasoning efficiency. We, for the first time, found adding noisy and irrelevant contexts into queries can improve reasoning efficiency without any prices and targeted designs. Building on these insights, we propose Input-Time Scaling: applying small, low-quality data to capable models with training-testing co-design. This maintains Less-Is-More while further removing labor-intensive quality curation and improving reasoning effectiveness and efficiency, making the approach more applicable and affordable. Our method achieves 76.7% pass@1 on AIME24/25 using Qwen2.5-32B-Instruct, and 90.0%/80.0% with DeepSeek-R1-Distill-Qwen-32B -- state-of-the-art among Qwen2.5-32B variants. We are open-sourcing our datasets, pipelines, evaluation results, and checkpoints to facilitate reproducibility and further research.
♻ ☆ Beyond Forgetting: Machine Unlearning Elicits Controllable Side Behaviors and Capabilities
We consider representation misdirection (RM), a class of LLM unlearning methods that achieves forgetting by manipulating the forget-representations, that is, latent representations of forget samples. Despite being important, the roles of target vectors used in RM, however, remain underexplored. Here, we approach and revisit RM through the lens of the linear representation hypothesis. Specifically, if one can somehow identify a one-dimensional representation corresponding to a high-level concept, the linear representation hypothesis enables linear operations on this concept vector within the forget-representation space. Under this view, we hypothesize that, beyond forgetting, machine unlearning elicits controllable side behaviors and stronger side capabilities corresponding to the high-level concept. Our hypothesis is empirically validated across a wide range of tasks, including behavioral control (e.g., controlling unlearned models' truth, sentiment, and refusal) and capability enhancement (e.g., improving unlearned models' in-context learning capability). Our findings reveal that this fairly attractive phenomenon could be either a hidden risk if misused or a mechanism that can be harnessed for developing models that require stronger capabilities and controllable behaviors.
comment: 21 pages, 11 tables, 12 figures
♻ ☆ Beyond Tokens: Semantic-Aware Speculative Decoding for Efficient Inference by Probing Internal States
Large Language Models (LLMs) achieve strong performance across many tasks but suffer from high inference latency due to autoregressive decoding. The issue is exacerbated in Large Reasoning Models (LRMs), which generate lengthy chains of thought. While speculative decoding accelerates inference by drafting and verifying multiple tokens in parallel, existing methods operate at the token level and ignore semantic equivalence (i.e., different token sequences expressing the same meaning), leading to inefficient rejections. We propose SemanticSpec, a semantic-aware speculative decoding framework that verifies entire semantic sequences instead of tokens. SemanticSpec introduces a semantic probability estimation mechanism that probes the model's internal hidden states to assess the likelihood of generating sequences with specific meanings. Experiments on four benchmarks show that SemanticSpec achieves up to 2.7x speedup on DeepSeekR1-32B and 2.1x on QwQ-32B, consistently outperforming token-level and sequence-level baselines in both efficiency and effectiveness.
♻ ☆ Scaling Spoken Language Models with Syllabic Speech Tokenization ICASSP 2026
Spoken language models (SLMs) typically discretize speech into high-frame-rate tokens extracted from SSL speech models. As the most successful LMs are based on the Transformer architecture, processing these long token streams with self-attention is expensive, as attention scales quadratically with sequence length. A recent SSL work introduces acoustic tokenization of speech at the syllable level, which is more interpretable and potentially more scalable with significant compression in token lengths (4-5 Hz). Yet, their value for spoken language modeling is not yet fully explored. We present the first systematic study of syllabic tokenization for spoken language modeling, evaluating models on a suite of SLU benchmarks while varying training data scale. Syllabic tokens can match or surpass the previous high-frame rate tokens while significantly cutting training and inference costs, achieving more than a 2x reduction in training time and a 5x reduction in FLOPs. Our findings highlight syllable-level language modeling as a promising path to efficient long-context spoken language models.
comment: ICASSP 2026
♻ ☆ WAXAL: A Large-Scale Multilingual African Language Speech Corpus
The advancement of speech technology has predominantly favored high-resource languages, creating a significant digital divide for speakers of most Sub-Saharan African languages. To address this gap, we introduce WAXAL, a large-scale, openly accessible speech dataset for 21 languages representing over 100 million speakers. The collection consists of two main components: an Automated Speech Recognition (ASR) dataset containing approximately 1,250 hours of transcribed, natural speech from a diverse range of speakers, and a Text-to-Speech (TTS) dataset with over 180 hours of high-quality, single-speaker recordings reading phonetically balanced scripts. This paper details our methodology for data collection, annotation, and quality control, which involved partnerships with four African academic and community organizations. We provide a detailed statistical overview of the dataset and discuss its potential limitations and ethical considerations. The WAXAL datasets are released at https://huggingface.co/datasets/google/WaxalNLP under the permissive CC-BY-4.0 license to catalyze research, enable the development of inclusive technologies, and serve as a vital resource for the digital preservation of these languages.
comment: Initial dataset release
♻ ☆ DTS: Enhancing Large Reasoning Models via Decoding Tree Sketching
Large Reasoning Models (LRMs) achieve remarkable inference-time improvements through parallel thinking. However, existing methods rely on redundant sampling of reasoning trajectories, failing to effectively explore the reasoning space to uncover high-quality solutions. To address these limitations, we propose Decoding Tree Sketching (DTS), a plug-and-play decoding framework for structural multi-trajectory exploration and reasoning selection. For reasoning exploration, DTS sketches a backbone tree of the reasoning space by selectively branching at decision tokens. For reasoning selection, guided by length-accuracy anti-correlation, DTS designs an early termination to prioritize short and reliable trajectories during decoding. Experimental results across four LRMs and datasets demonstrate that DTS significantly enhances accuracy by 14% and reduces repetitive generation by 8% on average. Notably, DTS enables smaller models to outperform larger models with 10$\times$ the size, highlighting its potential to strengthen reasoning capabilities.
♻ ☆ Time-To-Inconsistency: A Survival Analysis of Large Language Model Robustness to Adversarial Attacks
Large Language Models (LLMs) have revolutionized conversational AI, yet their robustness in extended multi-turn dialogues remains poorly understood. Existing evaluation frameworks focus on static benchmarks and single-turn assessments, failing to capture the temporal dynamics of conversational degradation that characterize real-world interactions. In this work, we present a large-scale survival analysis of conversational robustness, modeling failure as a time-to-event process over 36,951 turns from 9 state-of-the-art LLMs on the MT-Consistency benchmark. Our framework combines Cox proportional hazards, Accelerated Failure Time (AFT), and Random Survival Forest models with simple semantic drift features. We find that abrupt prompt-to-prompt semantic drift sharply increases the hazard of inconsistency, whereas cumulative drift is counterintuitively \emph{protective}, suggesting adaptation in conversations that survive multiple shifts. AFT models with model-drift interactions achieve the best combination of discrimination and calibration, and proportional hazards checks reveal systematic violations for key drift covariates, explaining the limitations of Cox-style modeling in this setting. Finally, we show that a lightweight AFT model can be turned into a turn-level risk monitor that flags most failing conversations several turns before the first inconsistent answer while keeping false alerts modest. These results establish survival analysis as a powerful paradigm for evaluating multi-turn robustness and for designing practical safeguards for conversational AI systems.
♻ ☆ Learning Domain Knowledge in Multimodal Large Language Models through Reinforcement Fine-Tuning
Multimodal large language models (MLLMs) have shown remarkable capabilities in multimodal perception and understanding tasks. However, their effectiveness in specialized domains, such as remote sensing and medical imaging, remains limited. A natural approach to domain adaptation is to inject domain knowledge through textual instructions, prompts, or auxiliary captions. Surprisingly, we find that such input-level domain knowledge injection yields little to no improvement on scientific multimodal tasks, even when the domain knowledge is explicitly provided. This observation suggests that current MLLMs fail to internalize domain-specific priors through language alone, and that domain knowledge must be integrated at the optimization level. Motivated by this insight, we propose a reinforcement fine-tuning framework that incorporates domain knowledge directly into the learning objective. Instead of treating domain knowledge as descriptive information, we encode it as domain-informed constraints and reward signals, shaping the model's behavior in the output space. Extensive experiments across multiple datasets in remote sensing and medical domains consistently demonstrate good performance gains, achieving state-of-the-art results on multimodal domain tasks. Our results highlight the necessity of optimization-level domain knowledge integration and reveal a fundamental limitation of textual domain conditioning in current MLLMs.
♻ ☆ Cross-Cultural Expert-Level Art Critique Evaluation with Vision-Language Models ACL 2026
Vision-Language Models (VLMs) excel at visual perception, yet their ability to interpret cultural meaning in art remains under-validated. However, cultural understanding and interpretability are often overlooked when evaluating these models. To overcome this limitation, this paper introduces a tri-tier evaluation framework for cross-cultural art-critique assessment. Tier I provides a series of automated metrics indicating cultural coverage. Tier II leverages theory-informed template-based scoring using a single primary judge across five evaluation dimensions (Coverage, Alignment, Depth, Accuracy, Quality), each rated on a 1--5 scale. Tier III then calibrates the aggregated scores from Tier II via isotonic regression. The proposed evaluation framework is validated with a large-scale experiment covering 15 different VLMs on 294 evaluation art-critique pairs spanning six different cultural traditions. Our findings reveal that (i) automated metrics are unreliable for cultural depth analysis, (ii) Western samples score higher than non-Western samples under our sampling and evaluation template, highlighting potential model biases, and (iii) VLMs exhibit a consistent performance gap, performing well in visual description but underperforming in cultural interpretation. Dataset and code are available at https://github.com/yha9806/VULCA-Framework.
comment: 16 pages, 7 figures, submitted to ACL 2026
♻ ☆ The Invisible Leash: Why RLVR May or May Not Escape Its Origin
Recent advances highlight Reinforcement Learning with Verifiable Rewards (RLVR) as a promising method for enhancing LLMs' capabilities. However, it remains unclear whether the current practice of RLVR truly expands a model's reasoning boundary or mainly amplifies high-reward outputs that the base model already knows, thereby improving precision. This study presents an empirical investigation that provides fresh insights into the limits of RLVR. We examine how RLVR can operate as a support-constrained optimization mechanism that may restrict the discovery of entirely original solutions, remaining constrained by the base model's initial distribution. We also identify an entropy-reward trade-off: while RLVR reliably enhances precision, it may progressively narrow exploration and potentially overlook correct yet underrepresented solutions. Extensive empirical experiments validate that while RLVR consistently improves \texttt{pass@1}, \textit{the shrinkage of empirical support generally outweighs the expansion of empirical support under larger sampling budgets}, failing to recover correct answers that were previously accessible to the base model. Interestingly, while RLVR sometimes increases token-level entropy, it results in greater uncertainty at each generation step and declining answer-level entropy. This indicates that these seemingly more uncertain paths ultimately converge onto a smaller set of distinct answers. Taken together, we reveal potential limits of RLVR in extending reasoning horizons. Breaking this invisible leash requires future innovations that seed probability mass into underrepresented solution regions.
♻ ☆ Policy Learning with a Language Bottleneck
Modern AI systems such as self-driving cars and game-playing agents achieve superhuman performance, but often lack human-like generalization, interpretability, and inter-operability with human users. Inspired by the rich interactions between language and decision-making in humans, we introduce Policy Learning with a Language Bottleneck (PLLB), a framework enabling AI agents to generate linguistic rules that capture the high-level strategies underlying rewarding behaviors. PLLB alternates between a *rule generation* step guided by language models, and an *update* step where agents learn new policies guided by rules, even when a rule is insufficient to describe an entire complex policy. Across five diverse tasks, including a two-player signaling game, maze navigation, image reconstruction, and robot grasp planning, we show that PLLB agents are not only able to learn more interpretable and generalizable behaviors, but can also share the learned rules with human users, enabling more effective human-AI coordination. We provide source code for our experiments at https://github.com/meghabyte/bottleneck .
comment: Accepted to TMLR (2026)
♻ ☆ Scaling Multiagent Systems with Process Rewards
While multiagent systems have shown promise for tackling complex tasks via specialization, finetuning multiple agents simultaneously faces two key challenges: (1) credit assignment across agents, and (2) sample efficiency of expensive multiagent rollouts. In this work, we propose finetuning multiagent systems with per-action process rewards from AI feedback (MAPPA) to address both. Through assigning credit to individual agent actions rather than only at task completion, MAPPA enables fine-grained supervision without ground truth labels while extracting maximal training signal from each rollout. We demonstrate our approach on competition math problems and tool-augmented data analysis tasks. On unseen math problems, MAPPA achieves +5.0--17.5pp on AIME and +7.8--17.2pp on AMC. For data analysis tasks, our method improves success rate by +16.7pp while quality metrics improve by up to 47%, validating that per-action supervision can lead to improvements across different multiagent systems on various domains. By addressing these challenges, our work takes a first step toward scaling multiagent systems for complex, long-horizon tasks with minimal human supervision.
♻ ☆ BanglaIPA: Towards Robust Text-to-IPA Transcription with Contextual Rewriting in Bengali EACL 2026
Despite its widespread use, Bengali lacks a robust automated International Phonetic Alphabet (IPA) transcription system that effectively supports both standard language and regional dialectal texts. Existing approaches struggle to handle regional variations, numerical expressions, and generalize poorly to previously unseen words. To address these limitations, we propose BanglaIPA, a novel IPA generation system that integrates a character-based vocabulary with word-level alignment. The proposed system accurately handles Bengali numerals and demonstrates strong performance across regional dialects. BanglaIPA improves inference efficiency by leveraging a precomputed word-to-IPA mapping dictionary for previously observed words. The system is evaluated on the standard Bengali and six regional variations of the DUAL-IPA dataset. Experimental results show that BanglaIPA outperforms baseline IPA transcription models by 58.4-78.7% and achieves an overall mean word error rate of 11.4%, highlighting its robustness in phonetic transcription generation for the Bengali language.
comment: Accepted at LoResLM workshop, EACL 2026
♻ ☆ Short Chains, Deep Thoughts: Balancing Reasoning Efficiency and Intra-Segment Capability via Split-Merge Optimization
While Large Reasoning Models (LRMs) have demonstrated impressive capabilities in solving complex tasks through the generation of long reasoning chains, this reliance on verbose generation results in significant latency and computational overhead. To address these challenges, we propose \textbf{CoSMo} (\textbf{Co}nsistency-Guided \textbf{S}plit-\textbf{M}erge \textbf{O}ptimization), a framework designed to eliminate structural redundancy rather than indiscriminately restricting token volume. Specifically, CoSMo utilizes a split-merge algorithm that dynamically refines reasoning chains by merging redundant segments and splitting logical gaps to ensure coherence. We then employ structure-aligned reinforcement learning with a novel segment-level budget to supervise the model in maintaining efficient reasoning structures throughout training. Extensive experiments across multiple benchmarks and backbones demonstrate that CoSMo achieves superior performance, improving accuracy by \textbf{3.3} points while reducing segment usage by \textbf{28.7\%} on average compared to reasoning efficiency baselines.
comment: Due to a misalignment in the timing of publication, we respectfully request to withdraw our manuscript. Specifically, the corresponding author has not given approval for the article to be published at this time, as additional preparations are required. We appreciate your understanding and will resubmit when the author team has reached a unanimous agreement
♻ ☆ Improving Low-Resource Machine Translation via Round-Trip Reinforcement Learning
Low-resource machine translation (MT) has gained increasing attention as parallel data from low-resource language communities is collected, but many potential methods for improving low-resource MT remain unexplored. We investigate a self-supervised reinforcement-learning-based fine-tuning for translation in low-resource settings using round-trip bootstrapping with the No Language Left Behind (NLLB) family of models. Our approach translates English into a target low-resource language and then back into English, using a combination of chrF++ and BLEU as the reward function on the reconstructed English sentences. Using the NLLB-MD dataset, we evaluate both the 600M and 1.3B parameter NLLB models and observe consistent improvements for the following languages: Central Aymara, Friulian, Wolof and Russian. Qualitative inspection of translation outputs indicates increased fluency and semantic fidelity. We argue that our method can further benefit from scale, enabling models to increasingly leverage their pretrained knowledge and continue self-improving. The code is available on github: https://github.com/Copticoder/thesis-nllb-bootstrap-grpo.
♻ ☆ Beyond Prompting: Efficient and Robust Contextual Biasing for Speech LLMs via Logit-Space Integration (LOGIC)
The rapid emergence of new entities -- driven by cultural shifts, evolving trends, and personalized user data -- poses a significant challenge for existing Speech Large Language Models (Speech LLMs). While these models excel at general conversational tasks, their static training knowledge limits their ability to recognize domain-specific terms such as contact names, playlists, or technical jargon. Existing solutions primarily rely on prompting, which suffers from poor scalability: as the entity list grows, prompting encounters context window limitations, increased inference latency, and the "lost-in-the-middle" phenomenon. An alternative approach, Generative Error Correction (GEC), attempts to rewrite transcripts via post-processing but frequently suffers from "over-correction", introducing hallucinations of entities that were never spoken. In this work, we introduce LOGIC (Logit-Space Integration for Contextual Biasing), an efficient and robust framework that operates directly in the decoding layer. Unlike prompting, LOGIC decouples context injection from input processing, ensuring constant-time complexity relative to prompt length. Extensive experiments using the Phi-4-MM model across 11 multilingual locales demonstrate that LOGIC achieves an average 9% relative reduction in Entity WER with a negligible 0.30% increase in False Alarm Rate.
comment: This paper is withdrawn temporarily to ensure full compliance with internal institutional publication approval processes
♻ ☆ CellForge: Agentic Design of Virtual Cell Models
Virtual cell modeling aims to predict cellular responses to diverse perturbations but faces challenges from biological complexity, multimodal data heterogeneity, and the need for interdisciplinary expertise. We introduce CellForge, a multi-agent framework that autonomously designs and synthesizes neural network architectures tailored to specific single-cell datasets and perturbation tasks. Given raw multi-omics data and task descriptions, CellForge discovers candidate architectures through collaborative reasoning among specialized agents, then generates executable implementations. Our core contribution is the framework itself: showing that multi-agent collaboration mechanisms - rather than manual human design or single-LLM prompting - can autonomously produce executable, high-quality computational methods. This approach goes beyond conventional hyperparameter tuning by enabling entirely new architectural components such as trajectory-aware encoders and perturbation diffusion modules to emerge from agentic deliberation. We evaluate CellForge on six datasets spanning gene knockouts, drug treatments, and cytokine stimulations across multiple modalities (scRNA-seq, scATAC-seq, CITE-seq). The results demonstrate that the models generated by CellForge are highly competitive with established baselines, while revealing systematic patterns of architectural innovation. CellForge highlights the scientific value of multi-agent frameworks: collaboration among specialized agents enables genuine methodological innovation and executable solutions that single agents or human experts cannot achieve. This represents a paradigm shift toward autonomous scientific method development in computational biology. Code is available at https://github.com/gersteinlab/CellForge.
♻ ☆ GIFT: Group-relative Implicit Fine Tuning Integrates GRPO with DPO and UNA
I propose \textbf{G}roup-relative \textbf{I}mplicit \textbf{F}ine \textbf{T}uning (GIFT), a novel reinforcement learning framework for aligning LLMs. Instead of directly maximizing cumulative rewards like PPO or GRPO, GIFT minimizes the discrepancy between implicit and explicit reward models. It combines three key ideas: (1) the online multi-response generation and normalization of GRPO, (2) the implicit reward formulation of DPO, and (3) the implicit-explicit reward alignment principle of UNA. By jointly normalizing the implicit and explicit rewards, GIFT eliminates an otherwise intractable term that prevents effective use of implicit rewards. This normalization transforms the complex reward maximization objective into a simple mean squared error (MSE) loss between the normalized reward functions, converting a non-convex optimization problem into a convex, stable, and analytically differentiable formulation. Unlike offline methods such as DPO and UNA, GIFT remains on-policy and thus retains exploration capability. Compared to GRPO, it requires fewer hyperparameters, converges faster, and generalizes better with significantly reduced training overfitting. Empirically, GIFT achieves superior reasoning and alignment performance on mathematical benchmarks while remaining computationally efficient.
Computer Vision and Pattern Recognition 145
☆ Reinforced Attention Learning
Post-training with Reinforcement Learning (RL) has substantially improved reasoning in Large Language Models (LLMs) via test-time scaling. However, extending this paradigm to Multimodal LLMs (MLLMs) through verbose rationales yields limited gains for perception and can even degrade performance. We propose Reinforced Attention Learning (RAL), a policy-gradient framework that directly optimizes internal attention distributions rather than output token sequences. By shifting optimization from what to generate to where to attend, RAL promotes effective information allocation and improved grounding in complex multimodal inputs. Experiments across diverse image and video benchmarks show consistent gains over GRPO and other baselines. We further introduce On-Policy Attention Distillation, demonstrating that transferring latent attention behaviors yields stronger cross-modal alignment than standard knowledge distillation. Our results position attention policies as a principled and general alternative for multimodal post-training.
☆ CoWTracker: Tracking by Warping instead of Correlation
Dense point tracking is a fundamental problem in computer vision, with applications ranging from video analysis to robotic manipulation. State-of-the-art trackers typically rely on cost volumes to match features across frames, but this approach incurs quadratic complexity in spatial resolution, limiting scalability and efficiency. In this paper, we propose \method, a novel dense point tracker that eschews cost volumes in favor of warping. Inspired by recent advances in optical flow, our approach iteratively refines track estimates by warping features from the target frame to the query frame based on the current estimate. Combined with a transformer architecture that performs joint spatiotemporal reasoning across all tracks, our design establishes long-range correspondences without computing feature correlations. Our model is simple and achieves state-of-the-art performance on standard dense point tracking benchmarks, including TAP-Vid-DAVIS, TAP-Vid-Kinetics, and Robo-TAP. Remarkably, the model also excels at optical flow, sometimes outperforming specialized methods on the Sintel, KITTI, and Spring benchmarks. These results suggest that warping-based architectures can unify dense point tracking and optical flow estimation.
comment: Project website: cowtracker.github.io
☆ PerpetualWonder: Long-Horizon Action-Conditioned 4D Scene Generation
We introduce PerpetualWonder, a hybrid generative simulator that enables long-horizon, action-conditioned 4D scene generation from a single image. Current works fail at this task because their physical state is decoupled from their visual representation, which prevents generative refinements to update the underlying physics for subsequent interactions. PerpetualWonder solves this by introducing the first true closed-loop system. It features a novel unified representation that creates a bidirectional link between the physical state and visual primitives, allowing generative refinements to correct both the dynamics and appearance. It also introduces a robust update mechanism that gathers supervision from multiple viewpoints to resolve optimization ambiguity. Experiments demonstrate that from a single image, PerpetualWonder can successfully simulate complex, multi-step interactions from long-horizon actions, maintaining physical plausibility and visual consistency.
comment: Project website: https://johnzhan2023.github.io/PerpetualWonder/
☆ Laminating Representation Autoencoders for Efficient Diffusion
Recent work has shown that diffusion models can generate high-quality images by operating directly on SSL patch features rather than pixel-space latents. However, the dense patch grids from encoders like DINOv2 contain significant redundancy, making diffusion needlessly expensive. We introduce FlatDINO, a variational autoencoder that compresses this representation into a one-dimensional sequence of just 32 continuous tokens -an 8x reduction in sequence length and 48x compression in total dimensionality. On ImageNet 256x256, a DiT-XL trained on FlatDINO latents achieves a gFID of 1.80 with classifier-free guidance while requiring 8x fewer FLOPs per forward pass and up to 4.5x fewer FLOPs per training step compared to diffusion on uncompressed DINOv2 features. These are preliminary results and this work is in progress.
☆ When LLaVA Meets Objects: Token Composition for Vision-Language-Models
Current autoregressive Vision Language Models (VLMs) usually rely on a large number of visual tokens to represent images, resulting in a need for more compute especially at inference time. To address this problem, we propose Mask-LLaVA, a framework that leverages different levels of visual features to create a compact yet information-rich visual representation for autoregressive VLMs. Namely, we combine mask-based object representations together with global tokens and local patch tokens. While all tokens are used during training, it shows that the resulting model can flexibly drop especially the number of mask-based object-tokens at test time, allowing to adapt the number of tokens during inference without the need to retrain the model and without a significant drop in performance. We evaluate the proposed approach on a suite of standard benchmarks showing results competitive to current token efficient methods and comparable to the original LLaVA baseline using only a fraction of visual tokens. Our analysis demonstrates that combining multi-level features enables efficient learning with fewer tokens while allowing dynamic token selection at test time for good performance.
☆ PDF-HR: Pose Distance Fields for Humanoid Robots
Pose and motion priors play a crucial role in humanoid robotics. Although such priors have been widely studied in human motion recovery (HMR) domain with a range of models, their adoption for humanoid robots remains limited, largely due to the scarcity of high-quality humanoid motion data. In this work, we introduce Pose Distance Fields for Humanoid Robots (PDF-HR), a lightweight prior that represents the robot pose distribution as a continuous and differentiable manifold. Given an arbitrary pose, PDF-HR predicts its distance to a large corpus of retargeted robot poses, yielding a smooth measure of pose plausibility that is well suited for optimization and control. PDF-HR can be integrated as a reward shaping term, a regularizer, or a standalone plausibility scorer across diverse pipelines. We evaluate PDF-HR on various humanoid tasks, including single-trajectory motion tracking, general motion tracking, style-based motion mimicry, and general motion retargeting. Experiments show that this plug-and-play prior consistently and substantially strengthens strong baselines. Code and models will be released.
comment: \href{https://gaoyukang33.github.io/PDF-HR/}{Project page}
☆ LitS: A novel Neighborhood Descriptor for Point Clouds
With the advancement of 3D scanning technologies, point clouds have become fundamental for representing 3D spatial data, with applications that span across various scientific and technological fields. Practical analysis of this data depends crucially on available neighborhood descriptors to accurately characterize the local geometries of the point cloud. This paper introduces LitS, a novel neighborhood descriptor for 2D and 3D point clouds. LitS are piecewise constant functions on the unit circle that allow points to keep track of their surroundings. Each element in LitS' domain represents a direction with respect to a local reference system. Once constructed, evaluating LitS at any given direction gives us information about the number of neighbors in a cone-like region centered around that same direction. Thus, LitS conveys a lot of information about the local neighborhood of a point, which can be leveraged to gain global structural understanding by analyzing how LitS changes between close points. In addition, LitS comes in two versions ('regular' and 'cumulative') and has two parameters, allowing them to adapt to various contexts and types of point clouds. Overall, they are a versatile neighborhood descriptor, capable of capturing the nuances of local point arrangements and resilient to common point cloud data issues such as variable density and noise.
☆ It's not a Lottery, it's a Race: Understanding How Gradient Descent Adapts the Network's Capacity to the Task
Our theoretical understanding of neural networks is lagging behind their empirical success. One of the important unexplained phenomena is why and how, during the process of training with gradient descent, the theoretical capacity of neural networks is reduced to an effective capacity that fits the task. We here investigate the mechanism by which gradient descent achieves this through analyzing the learning dynamics at the level of individual neurons in single hidden layer ReLU networks. We identify three dynamical principles -- mutual alignment, unlocking and racing -- that together explain why we can often successfully reduce capacity after training through the merging of equivalent neurons or the pruning of low norm weights. We specifically explain the mechanism behind the lottery ticket conjecture, or why the specific, beneficial initial conditions of some neurons lead them to obtain higher weight norms.
☆ Toward Reliable and Explainable Nail Disease Classification: Leveraging Adversarial Training and Grad-CAM Visualization
Human nail diseases are gradually observed over all age groups, especially among older individuals, often going ignored until they become severe. Early detection and accurate diagnosis of such conditions are important because they sometimes reveal our body's health problems. But it is challenging due to the inferred visual differences between disease types. This paper presents a machine learning-based model for automated classification of nail diseases based on a publicly available dataset, which contains 3,835 images scaling six categories. In 224x224 pixels, all images were resized to ensure consistency. To evaluate performance, four well-known CNN models-InceptionV3, DenseNet201, EfficientNetV2, and ResNet50 were trained and analyzed. Among these, InceptionV3 outperformed the others with an accuracy of 95.57%, while DenseNet201 came next with 94.79%. To make the model stronger and less likely to make mistakes on tricky or noisy images, we used adversarial training. To help understand how the model makes decisions, we used SHAP to highlight important features in the predictions. This system could be a helpful support for doctors, making nail disease diagnosis more accurate and faster.
comment: 6 pages, 12 figures. This is the author's accepted manuscript of a paper accepted for publication in the Proceedings of the 16th International IEEE Conference on Computing, Communication and Networking Technologies (ICCCNT 2025). The final published version will be available via IEEE Xplore
☆ XtraLight-MedMamba for Classification of Neoplastic Tubular Adenomas
Accurate risk stratification of precancerous polyps during routine colonoscopy screenings is essential for lowering the risk of developing colorectal cancer (CRC). However, assessment of low-grade dysplasia remains limited by subjective histopathologic interpretation. Advancements in digital pathology and deep learning provide new opportunities to identify subtle and fine morphologic patterns associated with malignant progression that may be imperceptible to the human eye. In this work, we propose XtraLight-MedMamba, an ultra-lightweight state-space-based deep learning framework for classifying neoplastic tubular adenomas from whole-slide images (WSIs). The architecture is a blend of ConvNext based shallow feature extractor with parallel vision mamba to efficiently model both long- and short-range dependencies and image generalization. An integration of Spatial and Channel Attention Bridge (SCAB) module enhances multiscale feature extraction, while Fixed Non-Negative Orthogonal Classifier (FNOClassifier) enables substantial parameter reduction and improved generalization. The model was evaluated on a curated dataset acquired from patients with low-grade tubular adenomas, stratified into case and control cohorts based on subsequent CRC development. XtraLight-MedMamba achieved an accuracy of 97.18% and an F1-score of 0.9767 using approximately 32,000 parameters, outperforming transformer-based and conventional Mamba architectures with significantly higher model complexity.
comment: 13 pages, 8 figures
☆ X2HDR: HDR Image Generation in a Perceptually Uniform Space
High-dynamic-range (HDR) formats and displays are becoming increasingly prevalent, yet state-of-the-art image generators (e.g., Stable Diffusion and FLUX) typically remain limited to low-dynamic-range (LDR) output due to the lack of large-scale HDR training data. In this work, we show that existing pretrained diffusion models can be easily adapted to HDR generation without retraining from scratch. A key challenge is that HDR images are natively represented in linear RGB, whose intensity and color statistics differ substantially from those of sRGB-encoded LDR images. This gap, however, can be effectively bridged by converting HDR inputs into perceptually uniform encodings (e.g., using PU21 or PQ). Empirically, we find that LDR-pretrained variational autoencoders (VAEs) reconstruct PU21-encoded HDR inputs with fidelity comparable to LDR data, whereas linear RGB inputs cause severe degradations. Motivated by this finding, we describe an efficient adaptation strategy that freezes the VAE and finetunes only the denoiser via low-rank adaptation in a perceptually uniform space. This results in a unified computational method that supports both text-to-HDR synthesis and single-image RAW-to-HDR reconstruction. Experiments demonstrate that our perceptually encoded adaptation consistently improves perceptual fidelity, text-image alignment, and effective dynamic range, relative to previous techniques.
comment: Project page: https://x2hdr.github.io/, Code: https://github.com/X2HDR/X2HDR
☆ VISTA-Bench: Do Vision-Language Models Really Understand Visualized Text as Well as Pure Text?
Vision-Language Models (VLMs) have achieved impressive performance in cross-modal understanding across textual and visual inputs, yet existing benchmarks predominantly focus on pure-text queries. In real-world scenarios, language also frequently appears as visualized text embedded in images, raising the question of whether current VLMs handle such input requests comparably. We introduce VISTA-Bench, a systematic benchmark from multimodal perception, reasoning, to unimodal understanding domains. It evaluates visualized text understanding by contrasting pure-text and visualized-text questions under controlled rendering conditions. Extensive evaluation of over 20 representative VLMs reveals a pronounced modality gap: models that perform well on pure-text queries often degrade substantially when equivalent semantic content is presented as visualized text. This gap is further amplified by increased perceptual difficulty, highlighting sensitivity to rendering variations despite unchanged semantics. Overall, VISTA-Bench provides a principled evaluation framework to diagnose this limitation and to guide progress toward more unified language representations across tokenized text and pixels. The source dataset is available at https://github.com/QingAnLiu/VISTA-Bench.
comment: 27 pages, 19 figures
☆ Light Forcing: Accelerating Autoregressive Video Diffusion via Sparse Attention
Advanced autoregressive (AR) video generation models have improved visual fidelity and interactivity, but the quadratic complexity of attention remains a primary bottleneck for efficient deployment. While existing sparse attention solutions have shown promise on bidirectional models, we identify that applying these solutions to AR models leads to considerable performance degradation for two reasons: isolated consideration of chunk generation and insufficient utilization of past informative context. Motivated by these observations, we propose \textsc{Light Forcing}, the \textit{first} sparse attention solution tailored for AR video generation models. It incorporates a \textit{Chunk-Aware Growth} mechanism to quantitatively estimate the contribution of each chunk, which determines their sparsity allocation. This progressive sparsity increase strategy enables the current chunk to inherit prior knowledge in earlier chunks during generation. Additionally, we introduce a \textit{Hierarchical Sparse Attention} to capture informative historical and local context in a coarse-to-fine manner. Such two-level mask selection strategy (\ie, frame and block level) can adaptively handle diverse attention patterns. Extensive experiments demonstrate that our method outperforms existing sparse attention in quality (\eg, 84.5 on VBench) and efficiency (\eg, $1.2{\sim}1.3\times$ end-to-end speedup). Combined with FP8 quantization and LightVAE, \textsc{Light Forcing} further achieves a $2.3\times$ speedup and 19.7\,FPS on an RTX~5090 GPU. Code will be released at \href{https://github.com/chengtao-lv/LightForcing}{https://github.com/chengtao-lv/LightForcing}.
comment: 14 pages, 7 figures
☆ Generative Modeling via Drifting
Generative modeling can be formulated as learning a mapping f such that its pushforward distribution matches the data distribution. The pushforward behavior can be carried out iteratively at inference time, for example in diffusion and flow-based models. In this paper, we propose a new paradigm called Drifting Models, which evolve the pushforward distribution during training and naturally admit one-step inference. We introduce a drifting field that governs the sample movement and achieves equilibrium when the distributions match. This leads to a training objective that allows the neural network optimizer to evolve the distribution. In experiments, our one-step generator achieves state-of-the-art results on ImageNet at 256 x 256 resolution, with an FID of 1.54 in latent space and 1.61 in pixel space. We hope that our work opens up new opportunities for high-quality one-step generation.
comment: Project page: https://lambertae.github.io/projects/drifting/
☆ Mitigating Long-Tail Bias via Prompt-Controlled Diffusion Augmentation
Semantic segmentation of high-resolution remote-sensing imagery is critical for urban mapping and land-cover monitoring, yet training data typically exhibits severe long-tailed pixel imbalance. In the dataset LoveDA, this challenge is compounded by an explicit Urban/Rural split with distinct appearance and inconsistent class-frequency statistics across domains. We present a prompt-controlled diffusion augmentation framework that synthesizes paired label--image samples with explicit control of both domain and semantic composition. Stage~A uses a domain-aware, masked ratio-conditioned discrete diffusion model to generate layouts that satisfy user-specified class-ratio targets while respecting learned co-occurrence structure. Stage~B translates layouts into photorealistic, domain-consistent images using Stable Diffusion with ControlNet guidance. Mixing the resulting ratio and domain-controlled synthetic pairs with real data yields consistent improvements across multiple segmentation backbones, with gains concentrated on minority classes and improved Urban and Rural generalization, demonstrating controllable augmentation as a practical mechanism to mitigate long-tail bias in remote-sensing segmentation. Source codes, pretrained models, and synthetic datasets are available at \href{https://github.com/Buddhi19/SyntheticGen.git}{Github}
☆ How to rewrite the stars: Mapping your orchard over time through constellations of fruits
Following crop growth through the vegetative cycle allows farmers to predict fruit setting and yield in early stages, but it is a laborious and non-scalable task if performed by a human who has to manually measure fruit sizes with a caliper or dendrometers. In recent years, computer vision has been used to automate several tasks in precision agriculture, such as detecting and counting fruits, and estimating their size. However, the fundamental problem of matching the exact same fruits from one video, collected on a given date, to the fruits visible in another video, collected on a later date, which is needed to track fruits' growth through time, remains to be solved. Few attempts were made, but they either assume that the camera always starts from the same known position and that there are sufficiently distinct features to match, or they used other sources of data like GPS. Here we propose a new paradigm to tackle this problem, based on constellations of 3D centroids, and introduce a descriptor for very sparse 3D point clouds that can be used to match fruits across videos. Matching constellations instead of individual fruits is key to deal with non-rigidity, occlusions and challenging imagery with few distinct visual features to track. The results show that the proposed method can be successfully used to match fruits across videos and through time, and also to build an orchard map and later use it to locate the camera pose in 6DoF, thus providing a method for autonomous navigation of robots in the orchard and for selective fruit picking, for example.
comment: submitted to IEEE International Conference on Robotics & Automation
☆ Adaptive Prompt Elicitation for Text-to-Image Generation
Aligning text-to-image generation with user intent remains challenging, for users who provide ambiguous inputs and struggle with model idiosyncrasies. We propose Adaptive Prompt Elicitation (APE), a technique that adaptively asks visual queries to help users refine prompts without extensive writing. Our technical contribution is a formulation of interactive intent inference under an information-theoretic framework. APE represents latent intent as interpretable feature requirements using language model priors, adaptively generates visual queries, and compiles elicited requirements into effective prompts. Evaluation on IDEA-Bench and DesignBench shows that APE achieves stronger alignment with improved efficiency. A user study with challenging user-defined tasks demonstrates 19.8% higher alignment without workload overhead. Our work contributes a principled approach to prompting that, for general users, offers an effective and efficient complement to the prevailing prompt-based interaction paradigm with text-to-image models.
comment: ACM International Conference on Intelligent User Interfaces (IUI) 2026, March 23-26, Paphos, Cyprus
☆ SAR-RAG: ATR Visual Question Answering by Semantic Search, Retrieval, and MLLM Generation
We present a visual-context image retrieval-augmented generation (ImageRAG) assisted AI agent for automatic target recognition (ATR) of synthetic aperture radar (SAR). SAR is a remote sensing method used in defense and security applications to detect and monitor the positions of military vehicles, which may appear indistinguishable in images. Researchers have extensively studied SAR ATR to improve the differentiation and identification of vehicle types, characteristics, and measurements. Test examples can be compared with known vehicle target types to improve recognition tasks. New methods enhance the capabilities of neural networks, transformer attention, and multimodal large language models. An agentic AI method may be developed to utilize a defined set of tools, such as searching through a library of similar examples. Our proposed method, SAR Retrieval-Augmented Generation (SAR-RAG), combines a multimodal large language model (MLLM) with a vector database of semantic embeddings to support contextual search for image exemplars with known qualities. By recovering past image examples with known true target types, our SAR-RAG system can compare similar vehicle categories, achieving improved ATR prediction accuracy. We evaluate this through search and retrieval metrics, categorical classification accuracy, and numeric regression of vehicle dimensions. These metrics all show improvements when SAR-RAG is added to an MLLM baseline method as an attached ATR memory bank.
comment: Submitted to 2026 IEEE Radar Conference
☆ Annotation Free Spacecraft Detection and Segmentation using Vision Language Models ICRA 2026
Vision Language Models (VLMs) have demonstrated remarkable performance in open-world zero-shot visual recognition. However, their potential in space-related applications remains largely unexplored. In the space domain, accurate manual annotation is particularly challenging due to factors such as low visibility, illumination variations, and object blending with planetary backgrounds. Developing methods that can detect and segment spacecraft and orbital targets without requiring extensive manual labeling is therefore of critical importance. In this work, we propose an annotation-free detection and segmentation pipeline for space targets using VLMs. Our approach begins by automatically generating pseudo-labels for a small subset of unlabeled real data with a pre-trained VLM. These pseudo-labels are then leveraged in a teacher-student label distillation framework to train lightweight models. Despite the inherent noise in the pseudo-labels, the distillation process leads to substantial performance gains over direct zero-shot VLM inference. Experimental evaluations on the SPARK-2024, SPEED+, and TANGO datasets on segmentation tasks demonstrate consistent improvements in average precision (AP) by up to 10 points. Code and models are available at https://github.com/giddyyupp/annotation-free-spacecraft-segmentation.
comment: ICRA 2026
☆ DRMOT: A Dataset and Framework for RGBD Referring Multi-Object Tracking
Referring Multi-Object Tracking (RMOT) aims to track specific targets based on language descriptions and is vital for interactive AI systems such as robotics and autonomous driving. However, existing RMOT models rely solely on 2D RGB data, making it challenging to accurately detect and associate targets characterized by complex spatial semantics (e.g., ``the person closest to the camera'') and to maintain reliable identities under severe occlusion, due to the absence of explicit 3D spatial information. In this work, we propose a novel task, RGBD Referring Multi-Object Tracking (DRMOT), which explicitly requires models to fuse RGB, Depth (D), and Language (L) modalities to achieve 3D-aware tracking. To advance research on the DRMOT task, we construct a tailored RGBD referring multi-object tracking dataset, named DRSet, designed to evaluate models' spatial-semantic grounding and tracking capabilities. Specifically, DRSet contains RGB images and depth maps from 187 scenes, along with 240 language descriptions, among which 56 descriptions incorporate depth-related information. Furthermore, we propose DRTrack, a MLLM-guided depth-referring tracking framework. DRTrack performs depth-aware target grounding from joint RGB-D-L inputs and enforces robust trajectory association by incorporating depth cues. Extensive experiments on the DRSet dataset demonstrate the effectiveness of our framework.
☆ Investigating Disability Representations in Text-to-Image Models
Text-to-image generative models have made remarkable progress in producing high-quality visual content from textual descriptions, yet concerns remain about how they represent social groups. While characteristics like gender and race have received increasing attention, disability representations remain underexplored. This study investigates how people with disabilities are represented in AI-generated images by analyzing outputs from Stable Diffusion XL and DALL-E 3 using a structured prompt design. We analyze disability representations by comparing image similarities between generic disability prompts and prompts referring to specific disability categories. Moreover, we evaluate how mitigation strategies influence disability portrayals, with a focus on assessing affective framing through sentiment polarity analysis, combining both automatic and human evaluation. Our findings reveal persistent representational imbalances and highlight the need for continuous evaluation and refinement of generative models to foster more diverse and inclusive portrayals of disability.
comment: 21 pages, 9 figures. References included
☆ REDistill: Robust Estimator Distillation for Balancing Robustness and Efficiency
Knowledge Distillation (KD) transfers knowledge from a large teacher model to a smaller student by aligning their predictive distributions. However, conventional KD formulations - typically based on Kullback-Leibler divergence - assume that the teacher provides reliable soft targets. In practice, teacher predictions are often noisy or overconfident, and existing correction-based approaches rely on ad-hoc heuristics and extensive hyper-parameter tuning, which hinders generalization. We introduce REDistill (Robust Estimator Distillation), a simple yet principled framework grounded in robust statistics. REDistill replaces the standard KD objective with a power divergence loss, a generalization of KL divergence that adaptively downweights unreliable teacher output while preserving informative logit relationships. This formulation provides a unified and interpretable treatment of teacher noise, requires only logits, integrates seamlessly into existing KD pipelines, and incurs negligible computational overhead. Extensive experiments on CIFAR-100 and ImageNet-1k demonstrate that REDistill consistently improves student accuracy in diverse teacher-student architectures. Remarkably, it achieves these gains without model-specific hyper-parameter tuning, underscoring its robustness and strong generalization to unseen teacher-student pairs.
AGILE: Hand-Object Interaction Reconstruction from Video via Agentic Generation
Reconstructing dynamic hand-object interactions from monocular videos is critical for dexterous manipulation data collection and creating realistic digital twins for robotics and VR. However, current methods face two prohibitive barriers: (1) reliance on neural rendering often yields fragmented, non-simulation-ready geometries under heavy occlusion, and (2) dependence on brittle Structure-from-Motion (SfM) initialization leads to frequent failures on in-the-wild footage. To overcome these limitations, we introduce AGILE, a robust framework that shifts the paradigm from reconstruction to agentic generation for interaction learning. First, we employ an agentic pipeline where a Vision-Language Model (VLM) guides a generative model to synthesize a complete, watertight object mesh with high-fidelity texture, independent of video occlusions. Second, bypassing fragile SfM entirely, we propose a robust anchor-and-track strategy. We initialize the object pose at a single interaction onset frame using a foundation model and propagate it temporally by leveraging the strong visual similarity between our generated asset and video observations. Finally, a contact-aware optimization integrates semantic, geometric, and interaction stability constraints to enforce physical plausibility. Extensive experiments on HO3D, DexYCB, and in-the-wild videos reveal that AGILE outperforms baselines in global geometric accuracy while demonstrating exceptional robustness on challenging sequences where prior art frequently collapses. By prioritizing physical validity, our method produces simulation-ready assets validated via real-to-sim retargeting for robotic applications.
comment: 11 pages
☆ PIO-FVLM: Rethinking Training-Free Visual Token Reduction for VLM Acceleration from an Inference-Objective Perspective
Recently, reducing redundant visual tokens in vision-language models (VLMs) to accelerate VLM inference has emerged as a hot topic. However, most existing methods rely on heuristics constructed based on inter-visual-token similarity or cross-modal visual-text similarity, which gives rise to certain limitations in compression performance and practical deployment. In contrast, we propose PIO-FVLM from the perspective of inference objectives, which transforms visual token compression into preserving output result invariance and selects tokens primarily by their importance to this goal. Specially, vision tokens are reordered with the guidance of token-level gradient saliency generated by our designed layer-local proxy loss, a coarse constraint from the current layer to the final result. Then the most valuable vision tokens are selected following the non-maximum suppression (NMS) principle. The proposed PIO-FVLM is training-free and compatible with FlashAttention, friendly to practical application and deployment. It can be deployed independently as an encoder-free method, or combined with encoder compression approaches like VisionZip for use as an encoder-involved method. On LLaVA-Next-7B, PIO-FVLM retains just 11.1% of visual tokens but maintains 97.2% of the original performance, with a 2.67$\times$ prefill speedup, 2.11$\times$ inference speedup, 6.22$\times$ lower FLOPs, and 6.05$\times$ reduced KV Cache overhead. Our code is available at https://github.com/ocy1/PIO-FVLM.
☆ A labeled dataset of simulated phlebotomy procedures for medical AI: polygon annotations for object detection and human-object interaction
This data article presents a dataset of 11,884 labeled images documenting a simulated blood extraction (phlebotomy) procedure performed on a training arm. Images were extracted from high-definition videos recorded under controlled conditions and curated to reduce redundancy using Structural Similarity Index Measure (SSIM) filtering. An automated face-anonymization step was applied to all videos prior to frame selection. Each image contains polygon annotations for five medically relevant classes: syringe, rubber band, disinfectant wipe, gloves, and training arm. The annotations were exported in a segmentation format compatible with modern object detection frameworks (e.g., YOLOv8), ensuring broad usability. This dataset is partitioned into training (70%), validation (15%), and test (15%) subsets and is designed to advance research in medical training automation and human-object interaction. It enables multiple applications, including phlebotomy tool detection, procedural step recognition, workflow analysis, conformance checking, and the development of educational systems that provide structured feedback to medical trainees. The data and accompanying label files are publicly available on Zenodo.
☆ ImmuVis: Hyperconvolutional Foundation Model for Imaging Mass Cytometry
We present ImmuVis, an efficient convolutional foundation model for imaging mass cytometry (IMC), a high-throughput multiplex imaging technology that handles molecular marker measurements as image channels and enables large-scale spatial tissue profiling. Unlike natural images, multiplex imaging lacks a fixed channel space, as real-world marker sets vary across studies, violating a core assumption of standard vision backbones. To address this, ImmuVis introduces marker-adaptive hyperconvolutions that generate convolutional kernels from learned marker embeddings, enabling a single model to operate on arbitrary measured marker subsets without retraining. We pretrain ImmuVis on the largest to-date dataset, IMC17M (28 cohorts, 24,405 images, 265 markers, over 17M patches), using self-supervised masked reconstruction. ImmuVis outperforms SOTA baselines and ablations in virtual staining and downstream classification tasks at substantially lower compute cost than transformer-based alternatives, and is the sole model that provides calibrated uncertainty via a heteroscedastic likelihood objective. These results position ImmuVis as a practical, efficient foundation model for real-world IMC modeling.
comment: 17 pages, 6 figures
☆ SalFormer360: a transformer-based saliency estimation model for 360-degree videos
Saliency estimation has received growing attention in recent years due to its importance in a wide range of applications. In the context of 360-degree video, it has been particularly valuable for tasks such as viewport prediction and immersive content optimization. In this paper, we propose SalFormer360, a novel saliency estimation model for 360-degree videos built on a transformer-based architecture. Our approach is based on the combination of an existing encoder architecture, SegFormer, and a custom decoder. The SegFormer model was originally developed for 2D segmentation tasks, and it has been fine-tuned to adapt it to 360-degree content. To further enhance prediction accuracy in our model, we incorporated Viewing Center Bias to reflect user attention in 360-degree environments. Extensive experiments on the three largest benchmark datasets for saliency estimation demonstrate that SalFormer360 outperforms existing state-of-the-art methods. In terms of Pearson Correlation Coefficient, our model achieves 8.4% higher performance on Sport360, 2.5% on PVS-HM, and 18.6% on VR-EyeTracking compared to previous state-of-the-art.
☆ PEPR: Privileged Event-based Predictive Regularization for Domain Generalization
Deep neural networks for visual perception are highly susceptible to domain shift, which poses a critical challenge for real-world deployment under conditions that differ from the training data. To address this domain generalization challenge, we propose a cross-modal framework under the learning using privileged information (LUPI) paradigm for training a robust, single-modality RGB model. We leverage event cameras as a source of privileged information, available only during training. The two modalities exhibit complementary characteristics: the RGB stream is semantically dense but domain-dependent, whereas the event stream is sparse yet more domain-invariant. Direct feature alignment between them is therefore suboptimal, as it forces the RGB encoder to mimic the sparse event representation, thereby losing semantic detail. To overcome this, we introduce Privileged Event-based Predictive Regularization (PEPR), which reframes LUPI as a predictive problem in a shared latent space. Instead of enforcing direct cross-modal alignment, we train the RGB encoder with PEPR to predict event-based latent features, distilling robustness without sacrificing semantic richness. The resulting standalone RGB model consistently improves robustness to day-to-night and other domain shifts, outperforming alignment-based baselines across object detection and semantic segmentation.
☆ Understanding Degradation with Vision Language Model
Understanding visual degradations is a critical yet challenging problem in computer vision. While recent Vision-Language Models (VLMs) excel at qualitative description, they often fall short in understanding the parametric physics underlying image degradations. In this work, we redefine degradation understanding as a hierarchical structured prediction task, necessitating the concurrent estimation of degradation types, parameter keys, and their continuous physical values. Although these sub-tasks operate in disparate spaces, we prove that they can be unified under one autoregressive next-token prediction paradigm, whose error is bounded by the value-space quantization grid. Building on this insight, we introduce DU-VLM, a multimodal chain-of-thought model trained with supervised fine-tuning and reinforcement learning using structured rewards. Furthermore, we show that DU-VLM can serve as a zero-shot controller for pre-trained diffusion models, enabling high-fidelity image restoration without fine-tuning the generative backbone. We also introduce \textbf{DU-110k}, a large-scale dataset comprising 110,000 clean-degraded pairs with grounded physical annotations. Extensive experiments demonstrate that our approach significantly outperforms generalist baselines in both accuracy and robustness, exhibiting generalization to unseen distributions.
comment: 17 pages
☆ Nix and Fix: Targeting 1000x Compression of 3D Gaussian Splatting with Diffusion Models
3D Gaussian Splatting (3DGS) revolutionized novel view rendering. Instead of inferring from dense spatial points, as implicit representations do, 3DGS uses sparse Gaussians. This enables real-time performance but increases space requirements, hindering applications such as immersive communication. 3DGS compression emerged as a field aimed at alleviating this issue. While impressive progress has been made, at low rates, compression introduces artifacts that degrade visual quality significantly. We introduce NiFi, a method for extreme 3DGS compression through restoration via artifact-aware, diffusion-based one-step distillation. We show that our method achieves state-of-the-art perceptual quality at extremely low rates, down to 0.1 MB, and towards 1000x rate improvement over 3DGS at comparable perceptual performance. The code will be open-sourced upon acceptance.
☆ OmniRad: A Radiological Foundation Model for Multi-Task Medical Image Analysis
Radiological analysis increasingly benefits from pretrained visual representations that can support heterogeneous downstream tasks across imaging modalities. In this work, we introduce OmniRad, a self-supervised radiological foundation model pretrained on 1.2 million medical images, designed with radiology-inspired principles emphasizing representation reuse and cross-task transferability. We evaluate the pretrained encoder under multiple downstream adaptation regimes, including lightweight task-specific adapters with a frozen backbone as well as full end-to-end fine-tuning for classification, allowing us to assess both representation quality and task-specific performance. OmniRad is evaluated on a broad suite of public benchmarks spanning classification and segmentation across multiple modalities. On the MedMNISTv2 collection, OmniRad improves classification F1 by up to 2.05% over competing foundation models. For dense prediction, OmniRad attains mean Dice score improvements across six MedSegBench datasets when using frozen representations. Qualitative analyses and latent-space visualizations suggest improved feature clustering and modality-related separation.
comment: 19 pages, 4 figures, 12 tables
☆ SLUM-i: Semi-supervised Learning for Urban Mapping of Informal Settlements and Data Quality Benchmarking
Rapid urban expansion has fueled the growth of informal settlements in major cities of low- and middle-income countries, with Lahore and Karachi in Pakistan and Mumbai in India serving as prominent examples. However, large-scale mapping of these settlements is severely constrained not only by the scarcity of annotations but by inherent data quality challenges, specifically high spectral ambiguity between formal and informal structures and significant annotation noise. We address this by introducing a benchmark dataset for Lahore, constructed from scratch, along with companion datasets for Karachi and Mumbai, which were derived from verified administrative boundaries, totaling 1,869 $\text{km}^2$ of area. To evaluate the global robustness of our framework, we extend our experiments to five additional established benchmarks, encompassing eight cities across three continents, and provide comprehensive data quality assessments of all datasets. We also propose a new semi-supervised segmentation framework designed to mitigate the class imbalance and feature degradation inherent in standard semi-supervised learning pipelines. Our method integrates a Class-Aware Adaptive Thresholding mechanism that dynamically adjusts confidence thresholds to prevent minority class suppression and a Prototype Bank System that enforces semantic consistency by anchoring predictions to historically learned high-fidelity feature representations. Extensive experiments across a total of eight cities spanning three continents demonstrate that our approach outperforms state-of-the-art semi-supervised baselines. Most notably, our method demonstrates superior domain transfer capability whereby a model trained on only 10% of source labels reaches a 0.461 mIoU on unseen geographies and outperforms the zero-shot generalization of fully supervised models.
comment: 10 pages, 8 figures, 5 tables
☆ S-MUSt3R: Sliding Multi-view 3D Reconstruction
The recent paradigm shift in 3D vision led to the rise of foundation models with remarkable capabilities in 3D perception from uncalibrated images. However, extending these models to large-scale RGB stream 3D reconstruction remains challenging due to memory limitations. This work proposes S-MUSt3R, a simple and efficient pipeline that extends the limits of foundation models for monocular 3D reconstruction. Our approach addresses the scalability bottleneck of foundation models through a simple strategy of sequence segmentation followed by segment alignment and lightweight loop closure optimization. Without model retraining, we benefit from remarkable 3D reconstruction capacities of MUSt3R model and achieve trajectory and reconstruction performance comparable to traditional methods with more complex architecture. We evaluate S-MUSt3R on TUM, 7-Scenes and proprietary robot navigation datasets and show that S-MUSt3R runs successfully on long RGB sequences and produces accurate and consistent 3D reconstruction. Our results highlight the potential of leveraging the MUSt3R model for scalable monocular 3D scene in real-world settings, with an important advantage of making predictions directly in the metric space.
comment: 8 pages, 5 figures, 5 tables
☆ EgoActor: Grounding Task Planning into Spatial-aware Egocentric Actions for Humanoid Robots via Visual-Language Models
Deploying humanoid robots in real-world settings is fundamentally challenging, as it demands tight integration of perception, locomotion, and manipulation under partial-information observations and dynamically changing environments. As well as transitioning robustly between sub-tasks of different types. Towards addressing these challenges, we propose a novel task - EgoActing, which requires directly grounding high-level instructions into various, precise, spatially aware humanoid actions. We further instantiate this task by introducing EgoActor, a unified and scalable vision-language model (VLM) that can predict locomotion primitives (e.g., walk, turn, move sideways, change height), head movements, manipulation commands, and human-robot interactions to coordinate perception and execution in real-time. We leverage broad supervision over egocentric RGB-only data from real-world demonstrations, spatial reasoning question-answering, and simulated environment demonstrations, enabling EgoActor to make robust, context-aware decisions and perform fluent action inference (under 1s) with both 8B and 4B parameter models. Extensive evaluations in both simulated and real-world environments demonstrate that EgoActor effectively bridges abstract task planning and concrete motor execution, while generalizing across diverse tasks and unseen environments.
☆ Vision-aligned Latent Reasoning for Multi-modal Large Language Model
Despite recent advancements in Multi-modal Large Language Models (MLLMs) on diverse understanding tasks, these models struggle to solve problems which require extensive multi-step reasoning. This is primarily due to the progressive dilution of visual information during long-context generation, which hinders their ability to fully exploit test-time scaling. To address this issue, we introduce Vision-aligned Latent Reasoning (VaLR), a simple, yet effective reasoning framework that dynamically generates vision-aligned latent tokens before each Chain of Thought reasoning step, guiding the model to reason based on perceptual cues in the latent space. Specifically, VaLR is trained to preserve visual knowledge during reasoning by aligning intermediate embeddings of MLLM with those from vision encoders. Empirical results demonstrate that VaLR consistently outperforms existing approaches across a wide range of benchmarks requiring long-context understanding or precise visual perception, while exhibiting test-time scaling behavior not observed in prior MLLMs. In particular, VaLR improves the performance significantly from 33.0% to 52.9% on VSI-Bench, achieving a 19.9%p gain over Qwen2.5-VL.
comment: 18 pages; 5 figures
☆ SALAD-Pan: Sensor-Agnostic Latent Adaptive Diffusion for Pan-Sharpening
Recently, diffusion models bring novel insights for Pan-sharpening and notably boost fusion precision. However, most existing models perform diffusion in the pixel space and train distinct models for different multispectral (MS) imagery, suffering from high latency and sensor-specific limitations. In this paper, we present SALAD-Pan, a sensor-agnostic latent space diffusion method for efficient pansharpening. Specifically, SALAD-Pan trains a band-wise single-channel VAE to encode high-resolution multispectral (HRMS) into compact latent representations, supporting MS images with various channel counts and establishing a basis for acceleration. Then spectral physical properties, along with PAN and MS images, are injected into the diffusion backbone through unidirectional and bidirectional interactive control structures respectively, achieving high-precision fusion in the diffusion process. Finally, a lightweight cross-spectral attention module is added to the central layer of diffusion model, reinforcing spectral connections to boost spectral consistency and further elevate fusion precision. Experimental results on GaoFen-2, QuickBird, and WorldView-3 demonstrate that SALAD-Pan outperforms state-of-the-art diffusion-based methods across all three datasets, attains a 2-3x inference speedup, and exhibits robust zero-shot (cross-sensor) capability.
☆ Temporal Slowness in Central Vision Drives Semantic Object Learning ICLR 2026
Humans acquire semantic object representations from egocentric visual streams with minimal supervision. Importantly, the visual system processes with high resolution only the center of its field of view and learns similar representations for visual inputs occurring close in time. This emphasizes slowly changing information around gaze locations. This study investigates the role of central vision and slowness learning in the formation of semantic object representations from human-like visual experience. We simulate five months of human-like visual experience using the Ego4D dataset and generate gaze coordinates with a state-of-the-art gaze prediction model. Using these predictions, we extract crops that mimic central vision and train a time-contrastive Self-Supervised Learning model on them. Our results show that combining temporal slowness and central vision improves the encoding of different semantic facets of object representations. Specifically, focusing on central vision strengthens the extraction of foreground object features, while considering temporal slowness, especially during fixational eye movements, allows the model to encode broader semantic information about objects. These findings provide new insights into the mechanisms by which humans may develop semantic object representations from natural visual experience.
comment: ICLR 2026
☆ Seg-ReSearch: Segmentation with Interleaved Reasoning and External Search
Segmentation based on language has been a popular topic in computer vision. While recent advances in multimodal large language models (MLLMs) have endowed segmentation systems with reasoning capabilities, these efforts remain confined by the frozen internal knowledge of MLLMs, which limits their potential for real-world scenarios that involve up-to-date information or domain-specific concepts. In this work, we propose \textbf{Seg-ReSearch}, a novel segmentation paradigm that overcomes the knowledge bottleneck of existing approaches. By enabling interleaved reasoning and external search, Seg-ReSearch empowers segmentation systems to handle dynamic, open-world queries that extend beyond the frozen knowledge of MLLMs. To effectively train this capability, we introduce a hierarchical reward design that harmonizes initial guidance with progressive incentives, mitigating the dilemma between sparse outcome signals and rigid step-wise supervision. For evaluation, we construct OK-VOS, a challenging benchmark that explicitly requires outside knowledge for video object segmentation. Experiments on OK-VOS and two existing reasoning segmentation benchmarks demonstrate that our Seg-ReSearch improves state-of-the-art approaches by a substantial margin. Code and data will be released at https://github.com/iSEE-Laboratory/Seg-ReSearch.
☆ SynthVerse: A Large-Scale Diverse Synthetic Dataset for Point Tracking
Point tracking aims to follow visual points through complex motion, occlusion, and viewpoint changes, and has advanced rapidly with modern foundation models. Yet progress toward general point tracking remains constrained by limited high-quality data, as existing datasets often provide insufficient diversity and imperfect trajectory annotations. To this end, we introduce SynthVerse, a large-scale, diverse synthetic dataset specifically designed for point tracking. SynthVerse includes several new domains and object types missing from existing synthetic datasets, such as animated-film-style content, embodied manipulation, scene navigation, and articulated objects. SynthVerse substantially expands dataset diversity by covering a broader range of object categories and providing high-quality dynamic motions and interactions, enabling more robust training and evaluation for general point tracking. In addition, we establish a highly diverse point tracking benchmark to systematically evaluate state-of-the-art methods under broader domain shifts. Extensive experiments and analyses demonstrate that training with SynthVerse yields consistent improvements in generalization and reveal limitations of existing trackers under diverse settings.
☆ TrajVG: 3D Trajectory-Coupled Visual Geometry Learning
Feed-forward multi-frame 3D reconstruction models often degrade on videos with object motion. Global-reference becomes ambiguous under multiple motions, while the local pointmap relies heavily on estimated relative poses and can drift, causing cross-frame misalignment and duplicated structures. We propose TrajVG, a reconstruction framework that makes cross-frame 3D correspondence an explicit prediction by estimating camera-coordinate 3D trajectories. We couple sparse trajectories, per-frame local point maps, and relative camera poses with geometric consistency objectives: (i) bidirectional trajectory-pointmap consistency with controlled gradient flow, and (ii) a pose consistency objective driven by static track anchors that suppresses gradients from dynamic regions. To scale training to in-the-wild videos where 3D trajectory labels are scarce, we reformulate the same coupling constraints into self-supervised objectives using only pseudo 2D tracks, enabling unified training with mixed supervision. Extensive experiments across 3D tracking, pose estimation, pointmap reconstruction, and video depth show that TrajVG surpasses the current feedforward performance baseline.
☆ Med-MMFL: A Multimodal Federated Learning Benchmark in Healthcare
Federated learning (FL) enables collaborative model training across decentralized medical institutions while preserving data privacy. However, medical FL benchmarks remain scarce, with existing efforts focusing mainly on unimodal or bimodal modalities and a limited range of medical tasks. This gap underscores the need for standardized evaluation to advance systematic understanding in medical MultiModal FL (MMFL). To this end, we introduce Med-MMFL, the first comprehensive MMFL benchmark for the medical domain, encompassing diverse modalities, tasks, and federation scenarios. Our benchmark evaluates six representative state-of-the-art FL algorithms, covering different aggregation strategies, loss formulations, and regularization techniques. It spans datasets with 2 to 4 modalities, comprising a total of 10 unique medical modalities, including text, pathology images, ECG, X-ray, radiology reports, and multiple MRI sequences. Experiments are conducted across naturally federated, synthetic IID, and synthetic non-IID settings to simulate real-world heterogeneity. We assess segmentation, classification, modality alignment (retrieval), and VQA tasks. To support reproducibility and fair comparison of future multimodal federated learning (MMFL) methods under realistic medical settings, we release the complete benchmark implementation, including data processing and partitioning pipelines, at https://github.com/bhattarailab/Med-MMFL-Benchmark .
☆ Self-evolving Embodied AI
Embodied Artificial Intelligence (AI) is an intelligent system formed by agents and their environment through active perception, embodied cognition, and action interaction. Existing embodied AI remains confined to human-crafted setting, in which agents are trained on given memory and construct models for given tasks, enabling fixed embodiments to interact with relatively static environments. Such methods fail in in-the-wild setting characterized by variable embodiments and dynamic open environments. This paper introduces self-evolving embodied AI, a new paradigm in which agents operate based on their changing state and environment with memory self-updating, task self-switching, environment self-prediction, embodiment self-adaptation, and model self-evolution, aiming to achieve continually adaptive intelligence with autonomous evolution. Specifically, we present the definition, framework, components, and mechanisms of self-evolving embodied AI, systematically review state-of-the-art works for realized components, discuss practical applications, and point out future research directions. We believe that self-evolving embodied AI enables agents to autonomously learn and interact with environments in a human-like manner and provide a new perspective toward general artificial intelligence.
☆ LCUDiff: Latent Capacity Upgrade Diffusion for Faithful Human Body Restoration
Existing methods for restoring degraded human-centric images often struggle with insufficient fidelity, particularly in human body restoration (HBR). Recent diffusion-based restoration methods commonly adapt pre-trained text-to-image diffusion models, where the variational autoencoder (VAE) can significantly bottleneck restoration fidelity. We propose LCUDiff, a stable one-step framework that upgrades a pre-trained latent diffusion model from the 4-channel latent space to the 16-channel latent space. For VAE fine-tuning, channel splitting distillation (CSD) is used to keep the first four channels aligned with pre-trained priors while allocating the additional channels to effectively encode high-frequency details. We further design prior-preserving adaptation (PPA) to smoothly bridge the mismatch between 4-channel diffusion backbones and the higher-dimensional 16-channel latent. In addition, we propose a decoder router (DeR) for per-sample decoder routing using restoration-quality score annotations, which improves visual quality across diverse conditions. Experiments on synthetic and real-world datasets show competitive results with higher fidelity and fewer artifacts under mild degradations, while preserving one-step efficiency. The code and model will be at https://github.com/gobunu/LCUDiff.
comment: 8 pages, 7 figures. The code and model will be at https://github.com/gobunu/LCUDiff
☆ Interactive Spatial-Frequency Fusion Mamba for Multi-Modal Image Fusion
Multi-Modal Image Fusion (MMIF) aims to combine images from different modalities to produce fused images, retaining texture details and preserving significant information. Recently, some MMIF methods incorporate frequency domain information to enhance spatial features. However, these methods typically rely on simple serial or parallel spatial-frequency fusion without interaction. In this paper, we propose a novel Interactive Spatial-Frequency Fusion Mamba (ISFM) framework for MMIF. Specifically, we begin with a Modality-Specific Extractor (MSE) to extract features from different modalities. It models long-range dependencies across the image with linear computational complexity. To effectively leverage frequency information, we then propose a Multi-scale Frequency Fusion (MFF). It adaptively integrates low-frequency and high-frequency components across multiple scales, enabling robust representations of frequency features. More importantly, we further propose an Interactive Spatial-Frequency Fusion (ISF). It incorporates frequency features to guide spatial features across modalities, enhancing complementary representations. Extensive experiments are conducted on six MMIF datasets. The experimental results demonstrate that our ISFM can achieve better performances than other state-of-the-art methods. The source code is available at https://github.com/Namn23/ISFM.
comment: This work is accepted by IEEE Transactions on Image Processing. More modifications may be performed
☆ Quantile Transfer for Reliable Operating Point Selection in Visual Place Recognition
Visual Place Recognition (VPR) is a key component for localisation in GNSS-denied environments, but its performance critically depends on selecting an image matching threshold (operating point) that balances precision and recall. Thresholds are typically hand-tuned offline for a specific environment and fixed during deployment, leading to degraded performance under environmental change. We propose a method that, given a user-defined precision requirement, automatically selects the operating point of a VPR system to maximise recall. The method uses a small calibration traversal with known correspondences and transfers thresholds to deployment via quantile normalisation of similarity score distributions. This quantile transfer ensures that thresholds remain stable across calibration sizes and query subsets, making the method robust to sampling variability. Experiments with multiple state-of-the-art VPR techniques and datasets show that the proposed approach consistently outperforms the state-of-the-art, delivering up to 25% higher recall in high-precision operating regimes. The method eliminates manual tuning by adapting to new environments and generalising across operating conditions. Our code will be released upon acceptance.
☆ Enabling Real-Time Colonoscopic Polyp Segmentation on Commodity CPUs via Ultra-Lightweight Architecture
Early detection of colorectal cancer hinges on real-time, accurate polyp identification and resection. Yet current high-precision segmentation models rely on GPUs, making them impractical to deploy in primary hospitals, mobile endoscopy units, or capsule robots. To bridge this gap, we present the UltraSeg family, operating in an extreme-compression regime (<0.3 M parameters). UltraSeg-108K (0.108 M parameters) is optimized for single-center data, while UltraSeg-130K (0.13 M parameters) generalizes to multi-center, multi-modal images. By jointly optimizing encoder-decoder widths, incorporating constrained dilated convolutions to enlarge receptive fields, and integrating a cross-layer lightweight fusion module, the models achieve 90 FPS on a single CPU core without sacrificing accuracy. Evaluated on seven public datasets, UltraSeg retains >94% of the Dice score of a 31 M-parameter U-Net while utilizing only 0.4% of its parameters, establishing a strong, clinically viable baseline for the extreme-compression domain and offering an immediately deployable solution for resource-constrained settings. This work provides not only a CPU-native solution for colonoscopy but also a reproducible blueprint for broader minimally invasive surgical vision applications. Source code is publicly available to ensure reproducibility and facilitate future benchmarking.
comment: 19pages, 5 figures
☆ SparVAR: Exploring Sparsity in Visual AutoRegressive Modeling for Training-Free Acceleration
Visual AutoRegressive (VAR) modeling has garnered significant attention for its innovative next-scale prediction paradigm. However, mainstream VAR paradigms attend to all tokens across historical scales at each autoregressive step. As the next scale resolution grows, the computational complexity of attention increases quartically with resolution, causing substantial latency. Prior accelerations often skip high-resolution scales, which speeds up inference but discards high-frequency details and harms image quality. To address these problems, we present SparVAR, a training-free acceleration framework that exploits three properties of VAR attention: (i) strong attention sinks, (ii) cross-scale activation similarity, and (iii) pronounced locality. Specifically, we dynamically predict the sparse attention pattern of later high-resolution scales from a sparse decision scale, and construct scale self-similar sparse attention via an efficient index-mapping mechanism, enabling high-efficiency sparse attention computation at large scales. Furthermore, we propose cross-scale local sparse attention and implement an efficient block-wise sparse kernel, which achieves $\mathbf{> 5\times}$ faster forward speed than FlashAttention. Extensive experiments demonstrate that the proposed SparseVAR can reduce the generation time of an 8B model producing $1024\times1024$ high-resolution images to the 1s, without skipping the last scales. Compared with the VAR baseline accelerated by FlashAttention, our method achieves a $\mathbf{1.57\times}$ speed-up while preserving almost all high-frequency details. When combined with existing scale-skipping strategies, SparseVAR attains up to a $\mathbf{2.28\times}$ acceleration, while maintaining competitive visual generation quality. Code is available at https://github.com/CAS-CLab/SparVAR.
☆ When and Where to Attack? Stage-wise Attention-Guided Adversarial Attack on Large Vision Language Models
Adversarial attacks against Large Vision-Language Models (LVLMs) are crucial for exposing safety vulnerabilities in modern multimodal systems. Recent attacks based on input transformations, such as random cropping, suggest that spatially localized perturbations can be more effective than global image manipulation. However, randomly cropping the entire image is inherently stochastic and fails to use the limited per-pixel perturbation budget efficiently. We make two key observations: (i) regional attention scores are positively correlated with adversarial loss sensitivity, and (ii) attacking high-attention regions induces a structured redistribution of attention toward subsequent salient regions. Based on these findings, we propose Stage-wise Attention-Guided Attack (SAGA), an attention-guided framework that progressively concentrates perturbations on high-attention regions. SAGA enables more efficient use of constrained perturbation budgets, producing highly imperceptible adversarial examples while consistently achieving state-of-the-art attack success rates across ten LVLMs. The source code is available at https://github.com/jackwaky/SAGA.
comment: Pre-print
☆ VecSet-Edit: Unleashing Pre-trained LRM for Mesh Editing from Single Image
3D editing has emerged as a critical research area to provide users with flexible control over 3D assets. While current editing approaches predominantly focus on 3D Gaussian Splatting or multi-view images, the direct editing of 3D meshes remains underexplored. Prior attempts, such as VoxHammer, rely on voxel-based representations that suffer from limited resolution and necessitate labor-intensive 3D mask. To address these limitations, we propose \textbf{VecSet-Edit}, the first pipeline that leverages the high-fidelity VecSet Large Reconstruction Model (LRM) as a backbone for mesh editing. Our approach is grounded on a analysis of the spatial properties in VecSet tokens, revealing that token subsets govern distinct geometric regions. Based on this insight, we introduce Mask-guided Token Seeding and Attention-aligned Token Gating strategies to precisely localize target regions using only 2D image conditions. Also, considering the difference between VecSet diffusion process versus voxel we design a Drift-aware Token Pruning to reject geometric outliers during the denoising process. Finally, our Detail-preserving Texture Baking module ensures that we not only preserve the geometric details of original mesh but also the textural information. More details can be found in our project page: https://github.com/BlueDyee/VecSet-Edit/tree/main
☆ Finding NeMO: A Geometry-Aware Representation of Template Views for Few-Shot Perception 3DV 2026
We present Neural Memory Object (NeMO), a novel object-centric representation that can be used to detect, segment and estimate the 6DoF pose of objects unseen during training using RGB images. Our method consists of an encoder that requires only a few RGB template views depicting an object to generate a sparse object-like point cloud using a learned UDF containing semantic and geometric information. Next, a decoder takes the object encoding together with a query image to generate a variety of dense predictions. Through extensive experiments, we show that our method can be used for few-shot object perception without requiring any camera-specific parameters or retraining on target data. Our proposed concept of outsourcing object information in a NeMO and using a single network for multiple perception tasks enhances interaction with novel objects, improving scalability and efficiency by enabling quick object onboarding without retraining or extensive pre-processing. We report competitive and state-of-the-art results on various datasets and perception tasks of the BOP benchmark, demonstrating the versatility of our approach. https://github.com/DLR-RM/nemo
comment: 17 pages including supplement, published in 3DV 2026, Project website: https://sebastian-jung.github.io/nemo/
☆ Explicit Uncertainty Modeling for Active CLIP Adaptation with Dual Prompt Tuning
Pre-trained vision-language models such as CLIP exhibit strong transferability, yet adapting them to downstream image classification tasks under limited annotation budgets remains challenging. In active learning settings, the model must select the most informative samples for annotation from a large pool of unlabeled data. Existing approaches typically estimate uncertainty via entropy-based criteria or representation clustering, without explicitly modeling uncertainty from the model perspective. In this work, we propose a robust uncertainty modeling framework for active CLIP adaptation based on dual-prompt tuning. We introduce two learnable prompts in the textual branch of CLIP. The positive prompt enhances the discriminability of task-specific textual embeddings corresponding to light-weight tuned visual embeddings, improving classification reliability. Meanwhile, the negative prompt is trained in an reversed manner to explicitly model the probability that the predicted label is correct, providing a principled uncertainty signal for guiding active sample selection. Extensive experiments across different fine-tuning paradigms demonstrate that our method consistently outperforms existing active learning methods under the same annotation budget.
☆ Fine-tuning Pre-trained Vision-Language Models in a Human-Annotation-Free Manner
Large-scale vision-language models (VLMs) such as CLIP exhibit strong zero-shot generalization, but adapting them to downstream tasks typically requires costly labeled data. Existing unsupervised self-training methods rely on pseudo-labeling, yet often suffer from unreliable confidence filtering, confirmation bias, and underutilization of low-confidence samples. We propose Collaborative Fine-Tuning (CoFT), an unsupervised adaptation framework that leverages unlabeled data through a dual-model, cross-modal collaboration mechanism. CoFT introduces a dual-prompt learning strategy with positive and negative textual prompts to explicitly model pseudo-label cleanliness in a sample-dependent manner, removing the need for hand-crafted thresholds or noise assumptions. The negative prompt also regularizes lightweight visual adaptation modules, improving robustness under noisy supervision. CoFT employs a two-phase training scheme, transitioning from parameter-efficient fine-tuning on high-confidence samples to full fine-tuning guided by collaboratively filtered pseudo-labels. Building on CoFT, CoFT+ further enhances adaptation via iterative fine-tuning, momentum contrastive learning, and LLM-generated prompts. Extensive experiments demonstrate consistent gains over existing unsupervised methods and even few-shot supervised baselines.
☆ Multiview Self-Representation Learning across Heterogeneous Views
Features of the same sample generated by different pretrained models often exhibit inherently distinct feature distributions because of discrepancies in the model pretraining objectives or architectures. Learning invariant representations from large-scale unlabeled visual data with various pretrained models in a fully unsupervised transfer manner remains a significant challenge. In this paper, we propose a multiview self-representation learning (MSRL) method in which invariant representations are learned by exploiting the self-representation property of features across heterogeneous views. The features are derived from large-scale unlabeled visual data through transfer learning with various pretrained models and are referred to as heterogeneous multiview data. An individual linear model is stacked on top of its corresponding frozen pretrained backbone. We introduce an information-passing mechanism that relies on self-representation learning to support feature aggregation over the outputs of the linear model. Moreover, an assignment probability distribution consistency scheme is presented to guide multiview self-representation learning by exploiting complementary information across different views. Consequently, representation invariance across different linear models is enforced through this scheme. In addition, we provide a theoretical analysis of the information-passing mechanism, the assignment probability distribution consistency and the incremental views. Extensive experiments with multiple benchmark visual datasets demonstrate that the proposed MSRL method consistently outperforms several state-of-the-art approaches.
comment: 12 pages
☆ JOintGS: Joint Optimization of Cameras, Bodies and 3D Gaussians for In-the-Wild Monocular Reconstruction
Reconstructing high-fidelity animatable 3D human avatars from monocular RGB videos remains challenging, particularly in unconstrained in-the-wild scenarios where camera parameters and human poses from off-the-shelf methods (e.g., COLMAP, HMR2.0) are often inaccurate. Splatting (3DGS) advances demonstrate impressive rendering quality and real-time performance, they critically depend on precise camera calibration and pose annotations, limiting their applicability in real-world settings. We present JOintGS, a unified framework that jointly optimizes camera extrinsics, human poses, and 3D Gaussian representations from coarse initialization through a synergistic refinement mechanism. Our key insight is that explicit foreground-background disentanglement enables mutual reinforcement: static background Gaussians anchor camera estimation via multi-view consistency; refined cameras improve human body alignment through accurate temporal correspondence; optimized human poses enhance scene reconstruction by removing dynamic artifacts from static constraints. We further introduce a temporal dynamics module to capture fine-grained pose-dependent deformations and a residual color field to model illumination variations. Extensive experiments on NeuMan and EMDB datasets demonstrate that JOintGS achieves superior reconstruction quality, with 2.1~dB PSNR improvement over state-of-the-art methods on NeuMan dataset, while maintaining real-time rendering. Notably, our method shows significantly enhanced robustness to noisy initialization compared to the baseline.Our source code is available at https://github.com/MiliLab/JOintGS.
comment: 15 pages, 15 figures, Project page at https://github.com/MiliLab/JOintGS
☆ GeneralVLA: Generalizable Vision-Language-Action Models with Knowledge-Guided Trajectory Planning
Large foundation models have shown strong open-world generalization to complex problems in vision and language, but similar levels of generalization have yet to be achieved in robotics. One fundamental challenge is that the models exhibit limited zero-shot capability, which hampers their ability to generalize effectively to unseen scenarios. In this work, we propose GeneralVLA (Generalizable Vision-Language-Action Models with Knowledge-Guided Trajectory Planning), a hierarchical vision-language-action (VLA) model that can be more effective in utilizing the generalization of foundation models, enabling zero-shot manipulation and automatically generating data for robotics. In particular, we study a class of hierarchical VLA model where the high-level ASM (Affordance Segmentation Module) is finetuned to perceive image keypoint affordances of the scene; the mid-level 3DAgent carries out task understanding, skill knowledge, and trajectory planning to produce a 3D path indicating the desired robot end-effector trajectory. The intermediate 3D path prediction is then served as guidance to the low-level, 3D-aware control policy capable of precise manipulation. Compared to alternative approaches, our method requires no real-world robotic data collection or human demonstration, making it much more scalable to diverse tasks and viewpoints. Empirically, GeneralVLA successfully generates trajectories for 14 tasks, significantly outperforming state-of-the-art methods such as VoxPoser. The generated demonstrations can train more robust behavior cloning policies than training with human demonstrations or from data generated by VoxPoser, Scaling-up, and Code-As-Policies. We believe GeneralVLA can be the scalable method for both generating data for robotics and solving novel tasks in a zero-shot setting. Code: https://github.com/AIGeeksGroup/GeneralVLA. Website: https://aigeeksgroup.github.io/GeneralVLA.
☆ Beyond Static Cropping: Layer-Adaptive Visual Localization and Decoding Enhancement
Large Vision-Language Models (LVLMs) have advanced rapidly by aligning visual patches with the text embedding space, but a fixed visual-token budget forces images to be resized to a uniform pretraining resolution, often erasing fine-grained details and causing hallucinations via over-reliance on language priors. Recent attention-guided enhancement (e.g., cropping or region-focused attention allocation) alleviates this, yet it commonly hinges on a static "magic layer" empirically chosen on simple recognition benchmarks and thus may not transfer to complex reasoning tasks. In contrast to this static assumption, we propose a dynamic perspective on visual grounding. Through a layer-wise sensitivity analysis, we demonstrate that visual grounding is a dynamic process: while simple object recognition tasks rely on middle layers, complex visual search and reasoning tasks require visual information to be reactivated at deeper layers. Based on this observation, we introduce Visual Activation by Query (VAQ), a metric that identifies the layer whose attention map is most relevant to query-specific visual grounding by measuring attention sensitivity to the input query. Building on VAQ, we further propose LASER (Layer-adaptive Attention-guided Selective visual and decoding Enhancement for Reasoning), a training-free inference procedure that adaptively selects task-appropriate layers for visual localization and question answering. Experiments across diverse VQA benchmarks show that LASER significantly improves VQA accuracy across tasks with varying levels of complexity.
comment: 9 pages, 5 figures
☆ Light Up Your Face: A Physically Consistent Dataset and Diffusion Model for Face Fill-Light Enhancement
Face fill-light enhancement (FFE) brightens underexposed faces by adding virtual fill light while keeping the original scene illumination and background unchanged. Most face relighting methods aim to reshape overall lighting, which can suppress the input illumination or modify the entire scene, leading to foreground-background inconsistency and mismatching practical FFE needs. To support scalable learning, we introduce LightYourFace-160K (LYF-160K), a large-scale paired dataset built with a physically consistent renderer that injects a disk-shaped area fill light controlled by six disentangled factors, producing 160K before-and-after pairs. We first pretrain a physics-aware lighting prompt (PALP) that embeds the 6D parameters into conditioning tokens, using an auxiliary planar-light reconstruction objective. Building on a pretrained diffusion backbone, we then train a fill-light diffusion (FiLitDiff), an efficient one-step model conditioned on physically grounded lighting codes, enabling controllable and high-fidelity fill lighting at low computational cost. Experiments on held-out paired sets demonstrate strong perceptual quality and competitive full-reference metrics, while better preserving background illumination. The dataset and model will be at https://github.com/gobunu/Light-Up-Your-Face.
comment: 8 pages, 7 figures. The code and model will be available at https://github.com/gobunu/Light-Up-Your-Face
☆ SkeletonGaussian: Editable 4D Generation through Gaussian Skeletonization
4D generation has made remarkable progress in synthesizing dynamic 3D objects from input text, images, or videos. However, existing methods often represent motion as an implicit deformation field, which limits direct control and editability. To address this issue, we propose SkeletonGaussian, a novel framework for generating editable dynamic 3D Gaussians from monocular video input. Our approach introduces a hierarchical articulated representation that decomposes motion into sparse rigid motion explicitly driven by a skeleton and fine-grained non-rigid motion. Concretely, we extract a robust skeleton and drive rigid motion via linear blend skinning, followed by a hexplane-based refinement for non-rigid deformations, enhancing interpretability and editability. Experimental results demonstrate that SkeletonGaussian surpasses existing methods in generation quality while enabling intuitive motion editing, establishing a new paradigm for editable 4D generation. Project page: https://wusar.github.io/projects/skeletongaussian/
comment: Accepted by CVM 2026. Project page: https://wusar.github.io/projects/skeletongaussian
☆ KVSmooth: Mitigating Hallucination in Multi-modal Large Language Models through Key-Value Smoothing
Despite the significant progress of Multimodal Large Language Models (MLLMs) across diverse tasks, hallucination -- corresponding to the generation of visually inconsistent objects, attributes, or relations -- remains a major obstacle to their reliable deployment. Unlike pure language models, MLLMs must ground their generation process in visual inputs. However, existing models often suffer from semantic drift during decoding, causing outputs to diverge from visual facts as the sequence length increases. To address this issue, we propose KVSmooth, a training-free and plug-and-play method that mitigates hallucination by performing attention-entropy-guided adaptive smoothing on hidden states. Specifically, KVSmooth applies an exponential moving average (EMA) to both keys and values in the KV-Cache, while dynamically quantifying the sink degree of each token through the entropy of its attention distribution to adaptively adjust the smoothing strength. Unlike computationally expensive retraining or contrastive decoding methods, KVSmooth operates efficiently during inference without additional training or model modification. Extensive experiments demonstrate that KVSmooth significantly reduces hallucination ($\mathit{CHAIR}_{S}$ from $41.8 \rightarrow 18.2$) while improving overall performance ($F_1$ score from $77.5 \rightarrow 79.2$), achieving higher precision and recall simultaneously. In contrast, prior methods often improve one at the expense of the other, validating the effectiveness and generality of our approach.
☆ Decoupled Hierarchical Distillation for Multimodal Emotion Recognition
Human multimodal emotion recognition (MER) seeks to infer human emotions by integrating information from language, visual, and acoustic modalities. Although existing MER approaches have achieved promising results, they still struggle with inherent multimodal heterogeneities and varying contributions from different modalities. To address these challenges, we propose a novel framework, Decoupled Hierarchical Multimodal Distillation (DHMD). DHMD decouples each modality's features into modality-irrelevant (homogeneous) and modality-exclusive (heterogeneous) components using a self-regression mechanism. The framework employs a two-stage knowledge distillation (KD) strategy: (1) coarse-grained KD via a Graph Distillation Unit (GD-Unit) in each decoupled feature space, where a dynamic graph facilitates adaptive distillation among modalities, and (2) fine-grained KD through a cross-modal dictionary matching mechanism, which aligns semantic granularities across modalities to produce more discriminative MER representations. This hierarchical distillation approach enables flexible knowledge transfer and effectively improves cross-modal feature alignment. Experimental results demonstrate that DHMD consistently outperforms state-of-the-art MER methods, achieving 1.3\%/2.4\% (ACC$_7$), 1.3\%/1.9\% (ACC$_2$) and 1.9\%/1.8\% (F1) relative improvement on CMU-MOSI/CMU-MOSEI dataset, respectively. Meanwhile, visualization results reveal that both the graph edges and dictionary activations in DHMD exhibit meaningful distribution patterns across modality-irrelevant/-exclusive feature spaces.
comment: arXiv admin note: text overlap with arXiv:2303.13802
☆ Depth-Guided Metric-Aware Temporal Consistency for Monocular Video Human Mesh Recovery
Monocular video human mesh recovery faces fundamental challenges in maintaining metric consistency and temporal stability due to inherent depth ambiguities and scale uncertainties. While existing methods rely primarily on RGB features and temporal smoothing, they struggle with depth ordering, scale drift, and occlusion-induced instabilities. We propose a comprehensive depth-guided framework that achieves metric-aware temporal consistency through three synergistic components: A Depth-Guided Multi-Scale Fusion module that adaptively integrates geometric priors with RGB features via confidence-aware gating; A Depth-guided Metric-Aware Pose and Shape (D-MAPS) estimator that leverages depth-calibrated bone statistics for scale-consistent initialization; A Motion-Depth Aligned Refinement (MoDAR) module that enforces temporal coherence through cross-modal attention between motion dynamics and geometric cues. Our method achieves superior results on three challenging benchmarks, demonstrating significant improvements in robustness against heavy occlusion and spatial accuracy while maintaining computational efficiency.
☆ ACIL: Active Class Incremental Learning for Image Classification BMVC 2024
Continual learning (or class incremental learning) is a realistic learning scenario for computer vision systems, where deep neural networks are trained on episodic data, and the data from previous episodes are generally inaccessible to the model. Existing research in this domain has primarily focused on avoiding catastrophic forgetting, which occurs due to the continuously changing class distributions in each episode and the inaccessibility of the data from previous episodes. However, these methods assume that all the training samples in every episode are annotated; this not only incurs a huge annotation cost, but also results in a wastage of annotation effort, since most of the samples in a given episode will not be accessible to the model in subsequent episodes. Active learning algorithms identify the salient and informative samples from large amounts of unlabeled data and are instrumental in reducing the human annotation effort in inducing a deep neural network. In this paper, we propose ACIL, a novel active learning framework for class incremental learning settings. We exploit a criterion based on uncertainty and diversity to identify the exemplar samples that need to be annotated in each episode, and will be appended to the data in the next episode. Such a framework can drastically reduce annotation cost and can also avoid catastrophic forgetting. Our extensive empirical analyses on several vision datasets corroborate the promise and potential of our framework against relevant baselines.
comment: BMVC 2024 (Accepted). Authors, Aditya R. Bhattacharya and Debanjan Goswami contributed equally to this work
☆ Towards Next-Generation SLAM: A Survey on 3DGS-SLAM Focusing on Performance, Robustness, and Future Directions
Traditional Simultaneous Localization and Mapping (SLAM) systems often face limitations including coarse rendering quality, insufficient recovery of scene details, and poor robustness in dynamic environments. 3D Gaussian Splatting (3DGS), with its efficient explicit representation and high-quality rendering capabilities, offers a new reconstruction paradigm for SLAM. This survey comprehensively reviews key technical approaches for integrating 3DGS with SLAM. We analyze performance optimization of representative methods across four critical dimensions: rendering quality, tracking accuracy, reconstruction speed, and memory consumption, delving into their design principles and breakthroughs. Furthermore, we examine methods for enhancing the robustness of 3DGS-SLAM in complex environments such as motion blur and dynamic environments. Finally, we discuss future challenges and development trends in this area. This survey aims to provide a technical reference for researchers and foster the development of next-generation SLAM systems characterized by high fidelity, efficiency, and robustness.
☆ SPOT-Occ: Sparse Prototype-guided Transformer for Camera-based 3D Occupancy Prediction
Achieving highly accurate and real-time 3D occupancy prediction from cameras is a critical requirement for the safe and practical deployment of autonomous vehicles. While this shift to sparse 3D representations solves the encoding bottleneck, it creates a new challenge for the decoder: how to efficiently aggregate information from a sparse, non-uniformly distributed set of voxel features without resorting to computationally prohibitive dense attention. In this paper, we propose a novel Prototype-based Sparse Transformer Decoder that replaces this costly interaction with an efficient, two-stage process of guided feature selection and focused aggregation. Our core idea is to make the decoder's attention prototype-guided. We achieve this through a sparse prototype selection mechanism, where each query adaptively identifies a compact set of the most salient voxel features, termed prototypes, for focused feature aggregation. To ensure this dynamic selection is stable and effective, we introduce a complementary denoising paradigm. This approach leverages ground-truth masks to provide explicit guidance, guaranteeing a consistent query-prototype association across decoder layers. Our model, dubbed SPOT-Occ, outperforms previous methods with a significant margin in speed while also improving accuracy. Source code is released at https://github.com/chensuzeyu/SpotOcc.
comment: 8 pages, 6 figures
☆ An Improved Boosted DC Algorithm for Nonsmooth Functions with Applications in Image Recovery
We propose a new approach to perform the boosted difference of convex functions algorithm (BDCA) on non-smooth and non-convex problems involving the difference of convex (DC) functions. The recently proposed BDCA uses an extrapolation step from the point computed by the classical DC algorithm (DCA) via a line search procedure in a descent direction to get an additional decrease of the objective function and accelerate the convergence of DCA. However, when the first function in DC decomposition is non-smooth, the direction computed by BDCA can be ascent and a monotone line search cannot be performed. In this work, we proposed a monotone improved boosted difference of convex functions algorithm (IBDCA) for certain types of non-smooth DC programs, namely those that can be formulated as the difference of a possibly non-smooth function and a smooth one. We show that any cluster point of the sequence generated by IBDCA is a critical point of the problem under consideration and that the corresponding objective value is monotonically decreasing and convergent. We also present the global convergence and the convergent rate under the Kurdyka-Lojasiewicz property. The applications of IBDCA in image recovery show the effectiveness of our proposed method. The corresponding numerical experiments demonstrate that our IBDCA outperforms DCA and other state-of-the-art DC methods in both computational time and number of iterations.
☆ An Intuitionistic Fuzzy Logic Driven UNet architecture: Application to Brain Image segmentation
Accurate segmentation of MRI brain images is essential for image analysis, diagnosis of neuro-logical disorders and medical image computing. In the deep learning approach, the convolutional neural networks (CNNs), especially UNet, are widely applied in medical image segmentation. However, it is difficult to deal with uncertainty due to the partial volume effect in brain images. To overcome this limitation, we propose an enhanced framework, named UNet with intuitionistic fuzzy logic (IF-UNet), which incorporates intuitionistic fuzzy logic into UNet. The model processes input data in terms of membership, nonmembership, and hesitation degrees, allowing it to better address tissue ambiguity resulting from partial volume effects and boundary uncertainties. The proposed architecture is evaluated on the Internet Brain Segmentation Repository (IBSR) dataset, and its performance is computed using accuracy, Dice coefficient, and intersection over union (IoU). Experimental results confirm that IF-UNet improves segmentation quality with handling uncertainty in brain images.
☆ Adaptive 1D Video Diffusion Autoencoder
Recent video generation models largely rely on video autoencoders that compress pixel-space videos into latent representations. However, existing video autoencoders suffer from three major limitations: (1) fixed-rate compression that wastes tokens on simple videos, (2) inflexible CNN architectures that prevent variable-length latent modeling, and (3) deterministic decoders that struggle to recover appropriate details from compressed latents. To address these issues, we propose One-Dimensional Diffusion Video Autoencoder (One-DVA), a transformer-based framework for adaptive 1D encoding and diffusion-based decoding. The encoder employs query-based vision transformers to extract spatiotemporal features and produce latent representations, while a variable-length dropout mechanism dynamically adjusts the latent length. The decoder is a pixel-space diffusion transformer that reconstructs videos with the latents as input conditions. With a two-stage training strategy, One-DVA achieves performance comparable to 3D-CNN VAEs on reconstruction metrics at identical compression ratios. More importantly, it supports adaptive compression and thus can achieve higher compression ratios. To better support downstream latent generation, we further regularize the One-DVA latent distribution for generative modeling and fine-tune its decoder to mitigate artifacts caused by the generation process.
☆ AGMA: Adaptive Gaussian Mixture Anchors for Prior-Guided Multimodal Human Trajectory Forecasting
Human trajectory forecasting requires capturing the multimodal nature of pedestrian behavior. However, existing approaches suffer from prior misalignment. Their learned or fixed priors often fail to capture the full distribution of plausible futures, limiting both prediction accuracy and diversity. We theoretically establish that prediction error is lower-bounded by prior quality, making prior modeling a key performance bottleneck. Guided by this insight, we propose AGMA (Adaptive Gaussian Mixture Anchors), which constructs expressive priors through two stages: extracting diverse behavioral patterns from training data and distilling them into a scene-adaptive global prior for inference. Extensive experiments on ETH-UCY, Stanford Drone, and JRDB datasets demonstrate that AGMA achieves state-of-the-art performance, confirming the critical role of high-quality priors in trajectory forecasting.
comment: 14 pages, 3 figures
☆ VTok: A Unified Video Tokenizer with Decoupled Spatial-Temporal Latents
This work presents VTok, a unified video tokenization framework that can be used for both generation and understanding tasks. Unlike the leading vision-language systems that tokenize videos through a naive frame-sampling strategy, we propose to decouple the spatial and temporal representations of videos by retaining the spatial features of a single key frame while encoding each subsequent frame into a single residual token, achieving compact yet expressive video tokenization. Our experiments suggest that VTok effectively reduces the complexity of video representation from the product of frame count and per-frame token count to their sum, while the residual tokens sufficiently capture viewpoint and motion changes relative to the key frame. Extensive evaluations demonstrate the efficacy and efficiency of VTok: it achieves notably higher performance on a range of video understanding and text-to-video generation benchmarks compared with baselines using naive tokenization, all with shorter token sequences per video (e.g., 3.4% higher accuracy on our TV-Align benchmark and 1.9% higher VBench score). Remarkably, VTok produces more coherent motion and stronger guidance following in text-to-video generation, owing to its more consistent temporal encoding. We hope VTok can serve as a standardized video tokenization paradigm for future research in video understanding and generation.
☆ Continuous Degradation Modeling via Latent Flow Matching for Real-World Super-Resolution AAAI 2026
While deep learning-based super-resolution (SR) methods have shown impressive outcomes with synthetic degradation scenarios such as bicubic downsampling, they frequently struggle to perform well on real-world images that feature complex, nonlinear degradations like noise, blur, and compression artifacts. Recent efforts to address this issue have involved the painstaking compilation of real low-resolution (LR) and high-resolution (HR) image pairs, usually limited to several specific downscaling factors. To address these challenges, our work introduces a novel framework capable of synthesizing authentic LR images from a single HR image by leveraging the latent degradation space with flow matching. Our approach generates LR images with realistic artifacts at unseen degradation levels, which facilitates the creation of large-scale, real-world SR training datasets. Comprehensive quantitative and qualitative assessments verify that our synthetic LR images accurately replicate real-world degradations. Furthermore, both traditional and arbitrary-scale SR models trained using our datasets consistently yield much better HR outcomes.
comment: AAAI 2026
☆ DiMo: Discrete Diffusion Modeling for Motion Generation and Understanding
Prior masked modeling motion generation methods predominantly study text-to-motion. We present DiMo, a discrete diffusion-style framework, which extends masked modeling to bidirectional text--motion understanding and generation. Unlike GPT-style autoregressive approaches that tokenize motion and decode sequentially, DiMo performs iterative masked token refinement, unifying Text-to-Motion (T2M), Motion-to-Text (M2T), and text-free Motion-to-Motion (M2M) within a single model. This decoding paradigm naturally enables a quality-latency trade-off at inference via the number of refinement steps.We further improve motion token fidelity with residual vector quantization (RVQ) and enhance alignment and controllability with Group Relative Policy Optimization (GRPO). Experiments on HumanML3D and KIT-ML show strong motion quality and competitive bidirectional understanding under a unified framework. In addition, we demonstrate model ability in text-free motion completion, text-guided motion prediction and motion caption correction without architectural change.Additional qualitative results are available on our project page: https://animotionlab.github.io/DiMo/.
☆ Natural Language Instructions for Scene-Responsive Human-in-the-Loop Motion Planning in Autonomous Driving using Vision-Language-Action Models
Instruction-grounded driving, where passenger language guides trajectory planning, requires vehicles to understand intent before motion. However, most prior instruction-following planners rely on simulation or fixed command vocabularies, limiting real-world generalization. doScenes, the first real-world dataset linking free-form instructions (with referentiality) to nuScenes ground-truth motion, enables instruction-conditioned planning. In this work, we adapt OpenEMMA, an open-source MLLM-based end-to-end driving framework that ingests front-camera views and ego-state and outputs 10-step speed-curvature trajectories, to this setting, presenting a reproducible instruction-conditioned baseline on doScenes and investigate the effects of human instruction prompts on predicted driving behavior. We integrate doScenes directives as passenger-style prompts within OpenEMMA's vision-language interface, enabling linguistic conditioning before trajectory generation. Evaluated on 849 annotated scenes using ADE, we observe that instruction conditioning substantially improves robustness by preventing extreme baseline failures, yielding a 98.7% reduction in mean ADE. When such outliers are removed, instructions still influence trajectory alignment, with well-phrased prompts improving ADE by up to 5.1%. We use this analysis to discuss what makes a "good" instruction for the OpenEMMA framework. We release the evaluation prompts and scripts to establish a reproducible baseline for instruction-aware planning. GitHub: https://github.com/Mi3-Lab/doScenes-VLM-Planning
☆ HoloEv-Net: Efficient Event-based Action Recognition via Holographic Spatial Embedding and Global Spectral Gating
Event-based Action Recognition (EAR) has attracted significant attention due to the high temporal resolution and high dynamic range of event cameras. However, existing methods typically suffer from (i) the computational redundancy of dense voxel representations, (ii) structural redundancy inherent in multi-branch architectures, and (iii) the under-utilization of spectral information in capturing global motion patterns. To address these challenges, we propose an efficient EAR framework named HoloEv-Net. First, to simultaneously tackle representation and structural redundancies, we introduce a Compact Holographic Spatiotemporal Representation (CHSR). Departing from computationally expensive voxel grids, CHSR implicitly embeds horizontal spatial cues into the Time-Height (T-H) view, effectively preserving 3D spatiotemporal contexts within a 2D representation. Second, to exploit the neglected spectral cues, we design a Global Spectral Gating (GSG) module. By leveraging the Fast Fourier Transform (FFT) for global token mixing in the frequency domain, GSG enhances the representation capability with negligible parameter overhead. Extensive experiments demonstrate the scalability and effectiveness of our framework. Specifically, HoloEv-Net-Base achieves state-of-the-art performance on THU-EACT-50-CHL, HARDVS and DailyDVS-200, outperforming existing methods by 10.29%, 1.71% and 6.25%, respectively. Furthermore, our lightweight variant, HoloEv-Net-Small, delivers highly competitive accuracy while offering extreme efficiency, reducing parameters by 5.4 times, FLOPs by 300times, and latency by 2.4times compared to heavy baselines, demonstrating its potential for edge deployment.
☆ Partial Ring Scan: Revisiting Scan Order in Vision State Space Models
State Space Models (SSMs) have emerged as efficient alternatives to attention for vision tasks, offering lineartime sequence processing with competitive accuracy. Vision SSMs, however, require serializing 2D images into 1D token sequences along a predefined scan order, a factor often overlooked. We show that scan order critically affects performance by altering spatial adjacency, fracturing object continuity, and amplifying degradation under geometric transformations such as rotation. We present Partial RIng Scan Mamba (PRISMamba), a rotation-robust traversal that partitions an image into concentric rings, performs order-agnostic aggregation within each ring, and propagates context across rings through a set of short radial SSMs. Efficiency is further improved via partial channel filtering, which routes only the most informative channels through the recurrent ring pathway while keeping the rest on a lightweight residual branch. On ImageNet-1K, PRISMamba achieves 84.5% Top-1 with 3.9G FLOPs and 3,054 img/s on A100, outperforming VMamba in both accuracy and throughput while requiring fewer FLOPs. It also maintains performance under rotation, whereas fixed-path scans drop by 1~2%. These results highlight scan-order design, together with channel filtering, as a crucial, underexplored factor for accuracy, efficiency, and rotation robustness in Vision SSMs. Code will be released upon acceptance.
comment: 10 pages, 3 figures
☆ Point2Insert: Video Object Insertion via Sparse Point Guidance
This paper introduces Point2Insert, a sparse-point-based framework for flexible and user-friendly object insertion in videos, motivated by the growing popularity of accurate, low-effort object placement. Existing approaches face two major challenges: mask-based insertion methods require labor-intensive mask annotations, while instruction-based methods struggle to place objects at precise locations. Point2Insert addresses these issues by requiring only a small number of sparse points instead of dense masks, eliminating the need for tedious mask drawing. Specifically, it supports both positive and negative points to indicate regions that are suitable or unsuitable for insertion, enabling fine-grained spatial control over object locations. The training of Point2Insert consists of two stages. In Stage 1, we train an insertion model that generates objects in given regions conditioned on either sparse-point prompts or a binary mask. In Stage 2, we further train the model on paired videos synthesized by an object removal model, adapting it to video insertion. Moreover, motivated by the higher insertion success rate of mask-guided editing, we leverage a mask-guided insertion model as a teacher to distill reliable insertion behavior into the point-guided model. Extensive experiments demonstrate that Point2Insert consistently outperforms strong baselines and even surpasses models with $\times$10 more parameters.
☆ Improving 2D Diffusion Models for 3D Medical Imaging with Inter-Slice Consistent Stochasticity ICLR 2026
3D medical imaging is in high demand and essential for clinical diagnosis and scientific research. Currently, diffusion models (DMs) have become an effective tool for medical imaging reconstruction thanks to their ability to learn rich, high-quality data priors. However, learning the 3D data distribution with DMs in medical imaging is challenging, not only due to the difficulties in data collection but also because of the significant computational burden during model training. A common compromise is to train the DMs on 2D data priors and reconstruct stacked 2D slices to address 3D medical inverse problems. However, the intrinsic randomness of diffusion sampling causes severe inter-slice discontinuities of reconstructed 3D volumes. Existing methods often enforce continuity regularizations along the z-axis, which introduces sensitive hyper-parameters and may lead to over-smoothing results. In this work, we revisit the origin of stochasticity in diffusion sampling and introduce Inter-Slice Consistent Stochasticity (ISCS), a simple yet effective strategy that encourages interslice consistency during diffusion sampling. Our key idea is to control the consistency of stochastic noise components during diffusion sampling, thereby aligning their sampling trajectories without adding any new loss terms or optimization steps. Importantly, the proposed ISCS is plug-and-play and can be dropped into any 2D trained diffusion based 3D reconstruction pipeline without additional computational cost. Experiments on several medical imaging problems show that our method can effectively improve the performance of medical 3D imaging problems based on 2D diffusion models. Our findings suggest that controlling inter-slice stochasticity is a principled and practically attractive route toward high-fidelity 3D medical imaging with 2D diffusion priors. The code is available at: https://github.com/duchenhe/ISCS
comment: Accepted by ICLR 2026
☆ Context Determines Optimal Architecture in Materials Segmentation
Segmentation architectures are typically benchmarked on single imaging modalities, obscuring deployment-relevant performance variations: an architecture optimal for one modality may underperform on another. We present a cross-modal evaluation framework for materials image segmentation spanning SEM, AFM, XCT, and optical microscopy. Our evaluation of six encoder-decoder combinations across seven datasets reveals that optimal architectures vary systematically by context: UNet excels for high-contrast 2D imaging while DeepLabv3+ is preferred for the hardest cases. The framework also provides deployment feedback via out-of-distribution detection and counterfactual explanations that reveal which microstructural features drive predictions. Together, the architecture guidance, reliability signals, and interpretability tools address a practical gap in materials characterization, where researchers lack tools to select architectures for their specific imaging setup or assess when models can be trusted on new samples.
☆ JSynFlow: Japanese Synthesised Flowchart Visual Question Answering Dataset built with Large Language Models
Vision and language models (VLMs) are expected to analyse complex documents, such as those containing flowcharts, through a question-answering (QA) interface. The ability to recognise and interpret these flowcharts is in high demand, as they provide valuable insights unavailable in text-only explanations. However, developing VLMs with precise flowchart understanding requires large-scale datasets of flowchart images and corresponding text, the creation of which is highly time-consuming. To address this challenge, we introduce JSynFlow, a synthesised visual QA dataset for Japanese flowcharts, generated using large language models (LLMs). Our dataset comprises task descriptions for various business occupations, the corresponding flowchart images rendered from domain-specific language (DSL) code, and related QA pairs. This paper details the dataset's synthesis procedure and demonstrates that fine-tuning with JSynFlow significantly improves VLM performance on flowchart-based QA tasks. Our dataset is publicly available at https://huggingface.co/datasets/jri-advtechlab/jsynflow.
comment: 7 pages
☆ SuperPoint-E: local features for 3D reconstruction via tracking adaptation in endoscopy
In this work, we focus on boosting the feature extraction to improve the performance of Structure-from-Motion (SfM) in endoscopy videos. We present SuperPoint-E, a new local feature extraction method that, using our proposed Tracking Adaptation supervision strategy, significantly improves the quality of feature detection and description in endoscopy. Extensive experimentation on real endoscopy recordings studies our approach's most suitable configuration and evaluates SuperPoint-E feature quality. The comparison with other baselines also shows that our 3D reconstructions are denser and cover more and longer video segments because our detector fires more densely and our features are more likely to survive (i.e. higher detection precision). In addition, our descriptor is more discriminative, making the guided matching step almost redundant. The presented approach brings significant improvements in the 3D reconstructions obtained, via SfM on endoscopy videos, compared to the original SuperPoint and the gold standard SfM COLMAP pipeline.
comment: 12 pages, 5 tables, 6 figures
☆ DMS2F-HAD: A Dual-branch Mamba-based Spatial-Spectral Fusion Network for Hyperspectral Anomaly Detection WACV 2025
Hyperspectral anomaly detection (HAD) aims to identify rare and irregular targets in high-dimensional hyperspectral images (HSIs), which are often noisy and unlabelled data. Existing deep learning methods either fail to capture long-range spectral dependencies (e.g., convolutional neural networks) or suffer from high computational cost (e.g., Transformers). To address these challenges, we propose DMS2F-HAD, a novel dual-branch Mamba-based model. Our architecture utilizes Mamba's linear-time modeling to efficiently learn distinct spatial and spectral features in specialized branches, which are then integrated by a dynamic gated fusion mechanism to enhance anomaly localization. Across fourteen benchmark HSI datasets, our proposed DMS2F-HAD not only achieves a state-of-the-art average AUC of 98.78%, but also demonstrates superior efficiency with an inference speed 4.6 times faster than comparable deep learning methods. The results highlight DMS2FHAD's strong generalization and scalability, positioning it as a strong candidate for practical HAD applications.
comment: This paper has been accepted in the WACV 2025 conference in algorithm track
☆ VideoBrain: Learning Adaptive Frame Sampling for Long Video Understanding
Long-form video understanding remains challenging for Vision-Language Models (VLMs) due to the inherent tension between computational constraints and the need to capture information distributed across thousands of frames. Existing approaches either sample frames uniformly (risking information loss) or select keyframes in a single pass (with no recovery from poor choices). We propose VideoBrain, an end-to-end framework that enables VLMs to adaptively acquire visual information through learned sampling policies. Our approach features dual complementary agents: a CLIP-based agent for semantic retrieval across the video and a Uniform agent for dense temporal sampling within intervals. Unlike prior agent-based methods that rely on text-only LLMs orchestrating visual tools, our VLM directly perceives frames and reasons about information sufficiency. To prevent models from invoking agents indiscriminately to maximize rewards, we introduce a behavior-aware reward function coupled with a data classification pipeline that teaches the model when agent invocation is genuinely beneficial. Experiments on four long video benchmarks demonstrate that VideoBrain achieves +3.5% to +9.0% improvement over the baseline while using 30-40% fewer frames, with strong cross-dataset generalization to short video benchmarks.
♻ ☆ Personalized Image Generation via Human-in-the-loop Bayesian Optimization
Imagine Alice has a specific image $x^\ast$ in her mind, say, the view of the street in which she grew up during her childhood. To generate that exact image, she guides a generative model with multiple rounds of prompting and arrives at an image $x^{p*}$. Although $x^{p*}$ is reasonably close to $x^\ast$, Alice finds it difficult to close that gap using language prompts. This paper aims to narrow this gap by observing that even after language has reached its limits, humans can still tell when a new image $x^+$ is closer to $x^\ast$ than $x^{p*}$. Leveraging this observation, we develop MultiBO (Multi-Choice Preferential Bayesian Optimization) that carefully generates $K$ new images as a function of $x^{p*}$, gets preferential feedback from the user, uses the feedback to guide the diffusion model, and ultimately generates a new set of $K$ images. We show that within $B$ rounds of user feedback, it is possible to arrive much closer to $x^\ast$, even though the generative model has no information about $x^\ast$. Qualitative scores from $30$ users, combined with quantitative metrics compared across $5$ baselines, show promising results, suggesting that multi-choice feedback from humans can be effectively harnessed for personalized image generation.
♻ ☆ DGS-Net: Distillation-Guided Gradient Surgery for CLIP Fine-Tuning in AI-Generated Image Detection
The rapid progress of generative models such as GANs and diffusion models has led to the widespread proliferation of AI-generated images, raising concerns about misinformation, privacy violations, and trust erosion in digital media. Although large-scale multimodal models like CLIP offer strong transferable representations for detecting synthetic content, fine-tuning them often induces catastrophic forgetting, which degrades pre-trained priors and limits cross-domain generalization. To address this issue, we propose the Distillation-guided Gradient Surgery Network (DGS-Net), a novel framework that preserves transferable pre-trained priors while suppressing task-irrelevant components. Specifically, we introduce a gradient-space decomposition that separates harmful and beneficial descent directions during optimization. By projecting task gradients onto the orthogonal complement of harmful directions and aligning with beneficial ones distilled from a frozen CLIP encoder, DGS-Net achieves unified optimization of prior preservation and irrelevant suppression. Extensive experiments on 50 generative models demonstrate that our method outperforms state-of-the-art approaches by an average margin of 6.6, achieving superior detection performance and generalization across diverse generation techniques.
♻ ☆ Dynamic Pyramid Network for Efficient Multimodal Large Language Model
Multimodal large language models (MLLMs) have demonstrated impressive performance in various vision-language (VL) tasks, but their expensive computations still limit the real-world application. To address this issue, recent efforts aim to compress the visual features to save the computational costs of MLLMs. However, direct visual compression methods, e.g. efficient projectors, inevitably destroy the visual semantics in MLLM, especially in difficult samples. To overcome this shortcoming, we propose a novel dynamic pyramid network (DPN) for efficient MLLMs. Specifically, DPN formulates MLLM as a hierarchical structure where visual features are gradually compressed with increasing depth. In this case, even with a high compression ratio, fine-grained visual information can still be perceived in shallow layers. To maximize the benefit of DPN, we further propose an innovative Dynamic Pooling Experts (DPE) that can dynamically choose the optimal visual compression rate according to input features. With this design, harder samples will be assigned larger computations, thus preserving the model performance. To validate our approach, we conduct extensive experiments on two popular MLLMs and ten benchmarks. Experimental results show that DPN can save up to 56% average FLOPs on LLaVA while further achieving +0.74% performance gains. Besides, the generalization ability of DPN is also validated on the existing high-resolution MLLM called LLaVA-HR. The source code will be released at https://github.com/aihao2000/DPN-LLaVA.
♻ ☆ UniReason 1.0: A Unified Reasoning Framework for World Knowledge Aligned Image Generation and Editing
Unified multimodal models often struggle with complex synthesis tasks that demand deep reasoning, and typically treat text-to-image generation and image editing as isolated capabilities rather than interconnected reasoning steps. To address this, we propose UniReason, a unified framework that harmonizes these two tasks through two complementary reasoning paradigms. We incorporate world knowledge-enhanced textual reasoning into generation to infer implicit knowledge, and leverage editing capabilities for fine-grained editing-like visual refinement to further correct visual errors via self-reflection. This approach unifies generation and editing within a shared architecture, mirroring the human cognitive process of planning followed by refinement. We support this framework by systematically constructing a large-scale reasoning-centric dataset (~300k samples) covering five major knowledge domains (e.g., cultural commonsense, physics, etc.) for textual reasoning, alongside an agent-generated corpus for visual refinement. Extensive experiments demonstrate that UniReason achieves advanced performance on reasoning-intensive benchmarks such as WISE, KrisBench and UniREditBench, while maintaining superior general synthesis capabilities.
♻ ☆ MixGRPO: Unlocking Flow-based GRPO Efficiency with Mixed ODE-SDE
Although GRPO substantially enhances flow matching models in human preference alignment of image generation, methods such as FlowGRPO and DanceGRPO still exhibit inefficiency due to the necessity of sampling and optimizing over all denoising steps specified by the Markov Decision Process (MDP). In this paper, we propose $\textbf{MixGRPO}$, a novel framework that leverages the flexibility of mixed sampling strategies through the integration of stochastic differential equations (SDE) and ordinary differential equations (ODE). This streamlines the optimization process within the MDP to improve efficiency and boost performance. Specifically, MixGRPO introduces a sliding window mechanism, using SDE sampling and GRPO-guided optimization only within the window, while applying ODE sampling outside. This design confines sampling randomness to the time-steps within the window, thereby reducing the optimization overhead, and allowing for more focused gradient updates to accelerate convergence. Additionally, as time-steps beyond the sliding window are not involved in optimization, higher-order solvers are supported for faster sampling. So we present a faster variant, termed $\textbf{MixGRPO-Flash}$, which further improves training efficiency while achieving comparable performance. MixGRPO exhibits substantial gains across multiple dimensions of human preference alignment, outperforming DanceGRPO in both effectiveness and efficiency, with nearly 50% lower training time. Notably, MixGRPO-Flash further reduces training time by 71%.
♻ ☆ Causal-Adapter: Taming Text-to-Image Diffusion for Faithful Counterfactual Generation
We present Causal-Adapter, a modular framework that adapts frozen text-to-image diffusion backbones for counterfactual image generation. Our method supports causal interventions on target attributes and consistently propagates their effects to causal dependents while preserving the core identity of the image. Unlike prior approaches that rely on prompt engineering without explicit causal structure, Causal-Adapter leverages structural causal modeling with two attribute-regularization strategies: (i) prompt-aligned injection, which aligns causal attributes with textual embeddings for precise semantic control, and (ii) a conditioned token contrastive loss that disentangles attribute factors and reduces spurious correlations. Causal-Adapter achieves state-of-the-art performance on both synthetic and real-world datasets, including up to a 91% reduction in MAE on Pendulum for accurate attribute control and up to an 87% reduction in FID on ADNI for high-fidelity MRI generation. These results demonstrate robust, generalizable counterfactual editing with faithful attribute modification and strong identity preservation. Code and models will be released at: https://leitong02.github.io/causaladapter/.
comment: Project Page: https://leitong02.github.io/causaladapter/
♻ ☆ UNO: Unifying One-stage Video Scene Graph Generation via Object-Centric Visual Representation Learning WACV 2026
Video Scene Graph Generation (VidSGG) aims to represent dynamic visual content by detecting objects and modeling their temporal interactions as structured graphs. Prior studies typically target either coarse-grained box-level or fine-grained panoptic pixel-level VidSGG, often requiring task-specific architectures and multi-stage training pipelines. In this paper, we present UNO (UNified Object-centric VidSGG), a single-stage, unified framework that jointly addresses both tasks within an end-to-end architecture. UNO is designed to minimize task-specific modifications and maximize parameter sharing, enabling generalization across different levels of visual granularity. The core of UNO is an extended slot attention mechanism that decomposes visual features into object and relation slots. To ensure robust temporal modeling, we introduce object temporal consistency learning, which enforces consistent object representations across frames without relying on explicit tracking modules. Additionally, a dynamic triplet prediction module links relation slots to corresponding object pairs, capturing evolving interactions over time. We evaluate UNO on standard box-level and pixel-level VidSGG benchmarks. Results demonstrate that UNO not only achieves competitive performance across both tasks but also offers improved efficiency through a unified, object-centric design. Code is available at: https://github.com/Fsoft-AIC/UNO
comment: 11 pages, 7 figures. Accepted at WACV 2026
♻ ☆ Improved Bag-of-Words Image Retrieval with Geometric Constraints for Ground Texture Localization ICRA 2025
Ground texture localization using a downward-facing camera offers a low-cost, high-precision localization solution that is robust to dynamic environments and requires no environmental modification. We present a significantly improved bag-of-words (BoW) image retrieval system for ground texture localization, achieving substantially higher accuracy for global localization and higher precision and recall for loop closure detection in SLAM. Our approach leverages an approximate $k$-means (AKM) vocabulary with soft assignment, and exploits the consistent orientation and constant scale constraints inherent to ground texture localization. Identifying the different needs of global localization vs. loop closure detection for SLAM, we present both high-accuracy and high-speed versions of our algorithm. We test the effect of each of our proposed improvements through an ablation study and demonstrate our method's effectiveness for both global localization and loop closure detection. With numerous ground texture localization systems already using BoW, our method can readily replace other generic BoW systems in their pipeline and immediately improve their results.
comment: Accepted to ICRA 2025
♻ ☆ Open-Source Multimodal Moxin Models with Moxin-VLM and Moxin-VLA
Recently, Large Language Models (LLMs) have undergone a significant transformation, marked by a rapid rise in both their popularity and capabilities. Leading this evolution are proprietary LLMs like GPT-4 and GPT-o1, which have captured widespread attention in the AI community due to their remarkable performance and versatility. Simultaneously, open-source LLMs, such as LLaMA and Mistral, have made great contributions to the ever-increasing popularity of LLMs due to the ease to customize and deploy the models across diverse applications. Moxin 7B is introduced as a fully open-source LLM developed in accordance with the Model Openness Framework, which moves beyond the simple sharing of model weights to embrace complete transparency in training, datasets, and implementation detail, thus fostering a more inclusive and collaborative research environment that can sustain a healthy open-source ecosystem. To further equip Moxin with various capabilities in different tasks, we develop three variants based on Moxin, including Moxin-VLM, Moxin-VLA, and Moxin-Chinese, which target the vision-language, vision-language-action, and Chinese capabilities, respectively. Experiments show that our models achieve superior performance in various evaluations. We adopt open-source framework and open data for the training. We release our models, along with the available data and code to derive these models.
♻ ☆ Quasi-Medial Distance Field (Q-MDF): A Robust Method for Approximating and Discretizing Neural Medial Axes
The medial axis, a lower-dimensional descriptor that captures the extrinsic structure of a shape, plays an important role in digital geometry processing. Despite its importance, computing the medial axis transform robustly from diverse inputs, especially point clouds with defects, remains a challenging problem. In this paper, we propose a new implicit method that deviates from traditional explicit medial axis computation. Our key technical insight is that the difference between the signed distance field (SDF) and the medial field (MF) of a solid shape relates to the unsigned distance field (UDF) of the shape's medial axis. This observation allows us to formulate medial axis extraction as an implicit reconstruction problem. By employing a modified double covering strategy, we recover the medial axis as the zero level-set of the UDF. Extensive experiments demonstrate that our method achieves higher accuracy and robustness in learning compact medial axis transforms from challenging meshes and point clouds, outperforming existing approaches.
♻ ☆ QuantVSR: Low-Bit Post-Training Quantization for Real-World Video Super-Resolution AAAI 2026
Diffusion models have shown superior performance in real-world video super-resolution (VSR). However, the slow processing speeds and heavy resource consumption of diffusion models hinder their practical application and deployment. Quantization offers a potential solution for compressing the VSR model. Nevertheless, quantizing VSR models is challenging due to their temporal characteristics and high fidelity requirements. To address these issues, we propose QuantVSR, a low-bit quantization model for real-world VSR. We propose a spatio-temporal complexity aware (STCA) mechanism, where we first utilize the calibration dataset to measure both spatial and temporal complexities for each layer. Based on these statistics, we allocate layer-specific ranks to the low-rank full-precision (FP) auxiliary branch. Subsequently, we jointly refine the FP and low-bit branches to achieve simultaneous optimization. In addition, we propose a learnable bias alignment (LBA) module to reduce the biased quantization errors. Extensive experiments on synthetic and real-world datasets demonstrate that our method obtains comparable performance with the FP model and significantly outperforms recent leading low-bit quantization methods. Code is available at: https://github.com/bowenchai/QuantVSR.
comment: Accepted to AAAI 2026. Code is available at: https://github.com/bowenchai/QuantVSR
♻ ☆ Revisiting the Evaluation of Deep Neural Networks for Pedestrian Detection
Reliable pedestrian detection represents a crucial step towards automated driving systems. However, the current performance benchmarks exhibit weaknesses. The currently applied metrics for various subsets of a validation dataset prohibit a realistic performance evaluation of a DNN for pedestrian detection. As image segmentation supplies fine-grained information about a street scene, it can serve as a starting point to automatically distinguish between different types of errors during the evaluation of a pedestrian detector. In this work, eight different error categories for pedestrian detection are proposed and new metrics are proposed for performance comparison along these error categories. We use the new metrics to compare various backbones for a simplified version of the APD, and show a more fine-grained and robust way to compare models with each other especially in terms of safety-critical performance. We achieve SOTA on CityPersons-reasonable (without extra training data) by using a rather simple architecture.
♻ ☆ Past- and Future-Informed KV Cache Policy with Salience Estimation in Autoregressive Video Diffusion
Video generation is pivotal to digital media creation, and recent advances in autoregressive video generation have markedly enhanced the efficiency of real-time video synthesis. However, existing approaches generally rely on heuristic KV Cache policies, which ignore differences in token importance in long-term video generation. This leads to the loss of critical spatiotemporal information and the accumulation of redundant, invalid cache, thereby degrading video generation quality and efficiency. To address this limitation, we first observe that token contributions to video generation are highly time-heterogeneous and accordingly propose a novel Past- and Future-Informed KV Cache Policy (PaFu-KV). Specifically, PaFu-KV introduces a lightweight Salience Estimation Head distilled from a bidirectional teacher to estimate salience scores, allowing the KV cache to retain informative tokens while discarding less relevant ones. This policy yields a better quality-efficiency trade-off by shrinking KV cache capacity and reducing memory footprint at inference time. Extensive experiments on benchmarks demonstrate that our method preserves high-fidelity video generation quality while enables accelerated inference, thereby enabling more efficient long-horizon video generation. Our code will be released upon paper acceptance.
♻ ☆ Beyond Global Alignment: Fine-Grained Motion-Language Retrieval via Pyramidal Shapley-Taylor Learning
As a foundational task in human-centric cross-modal intelligence, motion-language retrieval aims to bridge the semantic gap between natural language and human motion, enabling intuitive motion analysis, yet existing approaches predominantly focus on aligning entire motion sequences with global textual representations. This global-centric paradigm overlooks fine-grained interactions between local motion segments and individual body joints and text tokens, inevitably leading to suboptimal retrieval performance. To address this limitation, we draw inspiration from the pyramidal process of human motion perception (from joint dynamics to segment coherence, and finally to holistic comprehension) and propose a novel Pyramidal Shapley-Taylor (PST) learning framework for fine-grained motion-language retrieval. Specifically, the framework decomposes human motion into temporal segments and spatial body joints, and learns cross-modal correspondences through progressive joint-wise and segment-wise alignment in a pyramidal fashion, effectively capturing both local semantic details and hierarchical structural relationships. Extensive experiments on multiple public benchmark datasets demonstrate that our approach significantly outperforms state-of-the-art methods, achieving precise alignment between motion segments and body joints and their corresponding text tokens. The code of this work will be released upon acceptance.
♻ ☆ OCRVerse: Towards Holistic OCR in End-to-End Vision-Language Models
The development of large vision language models drives the demand for managing, and applying massive amounts of multimodal data, making OCR technology, which extracts information from visual images, increasingly popular. However, existing OCR methods primarily focus on recognizing text elements from images or scanned documents (Text-centric OCR), neglecting the identification of visual elements from visually information-dense image sources (Vision-centric OCR), such as charts, web pages and science plots. In reality, these visually information-dense images are widespread on the internet and have significant real-world application value, such as data visualization and web page analysis. In this technical report, we propose OCRVerse, the first holistic OCR method in end-to-end manner that enables unified text-centric OCR and vision-centric OCR. To this end, we constructe comprehensive data engineering to cover a wide range of text-centric documents, such as newspapers, magazines and books, as well as vision-centric rendered composites, including charts, web pages and scientific plots. Moreover, we propose a two-stage SFT-RL multi-domain training method for OCRVerse. SFT directly mixes cross-domain data to train and establish initial domain knowledge, while RL focuses on designing personalized reward strategies for the characteristics of each domain. Specifically, since different domains require various output formats and expected outputs, we provide sufficient flexibility in the RL stage to customize flexible reward signals for each domain, thereby improving cross-domain fusion and avoiding data conflicts. Experimental results demonstrate the effectiveness of OCRVerse, achieving competitive results across text-centric and vision-centric data types, even comparable to large-scale open-source and closed-source models.
♻ ☆ Why Steering Works: Toward a Unified View of Language Model Parameter Dynamics
Methods for controlling large language models (LLMs), including local weight fine-tuning, LoRA-based adaptation, and activation-based interventions, are often studied in isolation, obscuring their connections and making comparison difficult. In this work, we present a unified view that frames these interventions as dynamic weight updates induced by a control signal, placing them within a single conceptual framework. Building on this view, we propose a unified preference-utility analysis that separates control effects into preference, defined as the tendency toward a target concept, and utility, defined as coherent and task-valid generation, and measures both on a shared log-odds scale using polarity-paired contrastive examples. Across methods, we observe a consistent trade-off between preference and utility: stronger control increases preference while predictably reducing utility. We further explain this behavior through an activation manifold perspective, in which control shifts representations along target-concept directions to enhance preference, while utility declines primarily when interventions push representations off the model's valid-generation manifold. Finally, we introduce a new steering approach SPLIT guided by this analysis that improves preference while better preserving utility. Code is available at https://github.com/zjunlp/EasyEdit/blob/main/examples/SPLIT.md.
comment: Work in progress
♻ ☆ Think3D: Thinking with Space for Spatial Reasoning
Understanding and reasoning about the physical world requires spatial intelligence: the ability to interpret geometry, perspective, and spatial relations beyond 2D perception. While recent vision large models (VLMs) excel at visual understanding, they remain fundamentally 2D perceivers and struggle with genuine 3D reasoning. We introduce Think3D, a framework that enables VLM agents to think with 3D space. By leveraging 3D reconstruction models that recover point clouds and camera poses from images or videos, Think3D allows the agent to actively manipulate space through camera-based operations and ego/global-view switching, transforming spatial reasoning into an interactive 3D chain-of-thought process. Without additional training, Think3D significantly improves the spatial reasoning performance of advanced models such as GPT-4.1 and Gemini 2.5 Pro, yielding average gains of +7.8% on BLINK Multi-view and MindCube, and +4.7% on VSI-Bench. We further show that smaller models, which struggle with spatial exploration, benefit significantly from a reinforcement learning policy that enables the model to select informative viewpoints and operations. With RL, the benefit from tool usage increases from +0.7% to +6.8%. Our findings demonstrate that training-free, tool-augmented spatial exploration is a viable path toward more flexible and human-like 3D reasoning in multimodal agents, establishing a new dimension of multimodal intelligence. Code and weights are released at https://github.com/zhangzaibin/spagent.
♻ ☆ Quantization-Aware Neuromorphic Architecture for Skin Disease Classification on Resource-Constrained Devices
On-device skin lesion analysis is constrained by the compute and energy cost of conventional CNN inference and by the need to update models as new patient data become available. Neuromorphic processors provide event-driven sparse computation and support on-chip incremental learning, yet deployment is often hindered by CNN-to-SNN conversion failures, including non-spike-compatible operators and accuracy degradation under class imbalance. We propose QANA, a quantization-aware CNN backbone embedded in an end-to-end pipeline engineered for conversion-stable neuromorphic execution. QANA replaces conversion-fragile components with spike-compatible transformations by bounding intermediate activations and aligning normalization with low-bit quantization, reducing conversion-induced distortion that disproportionately impacts rare classes. Efficiency is achieved through Ghost-based feature generation under tight FLOP budgets, while spatially-aware efficient channel attention and squeeze-and-excitation recalibrate channels without heavy global operators that are difficult to map to spiking cores. The resulting quantized projection head produces SNN-ready logits and enables incremental updates on edge hardware without full retraining or data offloading. On HAM10000, QANA achieves 91.6% Top-1 accuracy and 91.0% macro F1, improving the strongest converted SNN baseline by 3.5 percentage points in Top-1 accuracy (a 4.0% relative gain) and by 12.0 points in macro F1 (a 15.2% relative gain). On a clinical dataset, QANA achieves 90.8% Top-1 accuracy and 81.7% macro F1, improving the strongest converted SNN baseline by 3.2 points in Top-1 accuracy (a 3.7% relative gain) and by 3.6 points in macro F1 (a 4.6% relative gain). When deployed on BrainChip Akida, QANA runs in 1.5 ms per image with 1.7 mJ per image, corresponding to 94.6% lower latency and 99.0% lower energy than its GPU-based CNN implementation.
♻ ☆ LiDAR-based 3D Change Detection at City Scale
High-definition 3D city maps enable city planning and change detection, which is essential for municipal compliance, map maintenance, and asset monitoring, including both built structures and urban greenery. Conventional Digital Surface Model (DSM) and image differencing are sensitive to vertical bias and viewpoint mismatch, while original point cloud or voxel models require large memory, assume perfect alignment, and degrade thin structures. We propose an uncertainty-aware, object-centric method for city-scale LiDAR-based change detection. Our method aligns data from different time periods using multi-resolution Normal Distributions Transform (NDT) and a point-to-plane Iterative Closest Point (ICP) method, normalizes elevation, and computes a per-point level of detection from registration covariance and surface roughness to calibrate change decisions. Geometry-based associations are refined by semantic and instance segmentation and optimized using class-constrained bipartite assignment with augmented dummies to handle split-merge cases. Tiled processing bounds memory and preserves narrow ground changes, while instance-level decisions integrate overlap, displacement, and volumetric differences under local detection gating. We perform experiments on a Subiaco (Western Australia) dataset captured in 2023 and again in 2025. Our method achieves 95.3% accuracy, 90.8% mF1, and 82.9% mIoU, improving over the strongest baseline, Triplet KPConv, by 0.3, 0.6, and 1.1 points, respectively. The datasets are available on IEEE DataPort (2023: https://ieee-dataport.org/documents/2023-subiaco-wa-3d-hd-lidar-point-cloud-maps-dataset and 2025: https://ieee-dataport.org/documents/2025-subiaco-wa-3d-hd-lidar-gnss-point-cloud-maps-dataset). The source code is available at https://github.com/HaitianWang/IEEE-Sensor-Journal-Changing-Detection.
♻ ☆ Vid-LLM: A Compact Video-based 3D Multimodal LLM with Reconstruction-Reasoning Synergy
Recent developments in Multimodal Large Language Models (MLLMs) have significantly improved Vision-Language (VL) reasoning in 2D domains. However, extending these capabilities to 3D scene understanding remains a major challenge. Existing 3D Multimodal Large Language Models (3D-MLLMs) often depend on 3D data inputs, which limits scalability and generalization. To address this limitation, we propose Vid-LLM, a video-based 3D-MLLM that directly processes video inputs without requiring external 3D data, making it practical for real-world deployment. In our method, the geometric prior are directly used to improve the performance of the sceen perception. To integrate the geometric cues into the MLLM compactly, we design a Cross-Task Adapter (CTA) module to align the 3D geometric priors with the vision-language representations. To ensure geometric consistency and integrity, we introduce a Metric Depth Model that recovers real-scale geometry from the reconstruction outputs. Finally, the model is fine-tuned with a two-stage distillation optimization strategy, realizing fast convergence and stabilizes training. Extensive experiments across diverse benchmarks verified the effectiveness of our method on 3D Question Answering, 3D Dense Captioning and 3D Visual Grounding tasks, demonstrating the superior multi-task capabilities.
♻ ☆ Multi-Cue Anomaly Detection and Localization under Data Contamination
Visual anomaly detection in real-world industrial settings faces two major limitations. First, most existing methods are trained on purely normal data or on unlabeled datasets assumed to be predominantly normal, presuming the absence of contamination, an assumption that is rarely satisfied in practice. Second, they assume no access to labeled anomaly samples, limiting the model from learning discriminative characteristics of true anomalies. Therefore, these approaches often struggle to distinguish anomalies from normal instances, resulting in reduced detection and weak localization performance. In real-world applications, where training data are frequently contaminated with anomalies, such methods fail to deliver reliable performance. In this work, we propose a robust anomaly detection framework that integrates limited anomaly supervision into the adaptive deviation learning paradigm. We introduce a composite anomaly score that combines three complementary components: a deviation score capturing statistical irregularity, an entropy-based uncertainty score reflecting predictive inconsistency, and a segmentation-based score highlighting spatial abnormality. This unified scoring mechanism enables accurate detection and supports gradient-based localization, providing intuitive and explainable visual evidence of anomalous regions. Following the few-anomaly paradigm, we incorporate a small set of labeled anomalies during training while simultaneously mitigating the influence of contaminated samples through adaptive instance weighting. Extensive experiments on the MVTec and VisA benchmarks demonstrate that our framework outperforms state-of-the-art baselines and achieves strong detection and localization performance, interpretability, and robustness under various levels of data contamination.
comment: 12 pages total (10 pages main text + references), 6 figures. Preprint version; the final camera-ready version may differ
♻ ☆ Weight Space Correlation Analysis: Quantifying Feature Utilization in Deep Learning Models
Deep learning models in medical imaging are susceptible to shortcut learning, relying on confounding metadata (e.g., scanner model) that is often encoded in image embeddings. The crucial question is whether the model actively utilizes this encoded information for its final prediction. We introduce Weight Space Correlation Analysis, an interpretable methodology that quantifies feature utilization by measuring the alignment between the classification heads of a primary clinical task and auxiliary metadata tasks. We first validate our method by successfully detecting artificially induced shortcut learning. We then apply it to probe the feature utilization of an SA-SonoNet model trained for Spontaneous Preterm Birth (sPTB) prediction. Our analysis confirmed that while the embeddings contain substantial metadata, the sPTB classifier's weight vectors were highly correlated with clinically relevant factors (e.g., birth weight) but decoupled from clinically irrelevant acquisition factors (e.g. scanner). Our methodology provides a tool to verify model trustworthiness, demonstrating that, in the absence of induced bias, the clinical model selectively utilizes features related to the genuine clinical signal.
comment: 26 pages
♻ ☆ Interpolation of GEDI Biomass Estimates with Calibrated Uncertainty Quantification
Reliable wall-to-wall biomass density estimation from NASA's GEDI mission requires interpolating sparse LIDAR observations across heterogeneous landscapes. While machine learning approaches like Random Forest and XGBoost are widely used, they treat spatial predictions of GEDI observations from multispectral or SAR remote sensing data as independent without adapting to the varying difficulty of heterogeneous landscapes. We demonstrate these approaches generally fail to produce calibrated prediction intervals. We show that this stems from conflating ensemble variance with aleatoric uncertainty and ignoring local spatial context. To resolve this, we introduce Attentive Neural Processes (ANPs), a probabilistic meta-learning architecture that explicitly conditions predictions on local observation sets and exploits geospatial foundation model embeddings. Unlike static ensembles, ANPs learn a flexible spatial covariance function, allowing estimates to be more uncertain in complex landscapes and less in homogeneous areas. We validate this approach across five distinct biomes ranging from tropical Amazonian forests to boreal, temperate, and alpine ecosystems, demonstrating that ANPs achieve competitive accuracy while maintaining near-ideal uncertainty calibration. We demonstrate the operational utility of the method through few-shot adaptation, where the model recovers most of the performance gap in cross-region transfer using minimal local data. This work provides a scalable, theoretically rigorous alternative to ensemble variance for continental scale earth observation.
♻ ☆ Sparse-to-Sparse Training of Diffusion Models
Diffusion models (DMs) are a powerful type of generative models that have achieved state-of-the-art results in various image synthesis tasks and have shown potential in other domains, such as natural language processing and temporal data modeling. Despite their stable training dynamics and ability to produce diverse high-quality samples, DMs are notorious for requiring significant computational resources, both in the training and inference stages. Previous work has focused mostly on increasing the efficiency of model inference. This paper introduces, for the first time, the paradigm of sparse-to-sparse training to DMs, with the aim of improving both training and inference efficiency. We focus on unconditional generation and train sparse DMs from scratch (Latent Diffusion and ChiroDiff) on six datasets using three different methods (Static-DM, RigL-DM, and MagRan-DM) to study the effect of sparsity in model performance. Our experiments show that sparse DMs are able to match and often outperform their Dense counterparts, while substantially reducing the number of trainable parameters and FLOPs. We also identify safe and effective values to perform sparse-to-sparse training of DMs.
comment: Accepted to TMLR
♻ ☆ Consistent Supervised-Unsupervised Alignment for Generalized Category Discovery NeurIPS 2025
Generalized Category Discovery (GCD) focuses on classifying known categories while simultaneously discovering novel categories from unlabeled data. However, previous GCD methods face challenges due to inconsistent optimization objectives and category confusion. This leads to feature overlap and ultimately hinders performance on novel categories. To address these issues, we propose the Neural Collapse-inspired Generalized Category Discovery (NC-GCD) framework. By pre-assigning and fixing Equiangular Tight Frame (ETF) prototypes, our method ensures an optimal geometric structure and a consistent optimization objective for both known and novel categories. We introduce a Consistent ETF Alignment Loss that unifies supervised and unsupervised ETF alignment and enhances category separability. Additionally, a Semantic Consistency Matcher (SCM) is designed to maintain stable and consistent label assignments across clustering iterations. Our method achieves strong performance on multiple GCD benchmarks, significantly enhancing novel category accuracy and demonstrating its effectiveness.
comment: Accepted by NeurIPS 2025
♻ ☆ Patient-Aware Multimodal RGB-HSI Fusion via Incremental Heuristic Meta-Learning for Oral Lesion Classification
Early detection of oral cancer and potentially malignant diseases is a major challenge in low-resource settings due to the scarcity of annotated data. We provide a unified approach for four-class oral lesion classification that incorporates deep learning, spectral analysis, and demographic data. A pathologist-verified subset of oral cavity images was curated from a publicly available dataset. Oral cavity pictures were processed using a fine-tuned ConvNeXt-v2 network for deep embeddings before being translated into the hyperspectral domain using a reconstruction algorithm. Haemoglobin-sensitive, textural, and spectral descriptors were obtained from the reconstructed hyperspectral cubes and combined with demographic data. Multiple machine-learning models were evaluated using patient-specific validation. Finally, an incremental heuristic meta-learner (IHML) was developed that merged calibrated base classifiers via probabilistic feature stacking and uncertainty-aware abstraction of multimodal representations with patient-level smoothing. By decoupling evidence extraction from decision fusion, IHML stabilizes predictions in heterogeneous, small-sample medical datasets. On an unseen test set, our proposed model achieved a macro F1 of 66.23% and an overall accuracy of 64.56%. The findings demonstrate that RGB-to-hyperspectral reconstruction and ensemble meta-learning improve diagnostic robustness in real-world oral lesion screening.
comment: 6 pages, 3 figures, 2 tables
♻ ☆ Less Precise Can Be More Reliable: A Systematic Evaluation of Quantization's Impact on CLIP Beyond Accuracy
Vision-Language Models (VLMs) such as CLIP have revolutionized zero-shot classification and safety-critical tasks, including Out-of-Distribution (OOD) detection. However, their high computational cost hinders efficient real-world deployment. While quantization is a standard solution for efficiency, its broader impact on reliability metrics beyond simple Top-1 accuracy remains critically under-explored. In this study, we conduct a large-scale evaluation of VLM quantization across a comprehensive experimental suite of over 700k evaluation runs with varying configurations. We find that, contrary to the assumption that quantization's noise degrades performance, it can simultaneously improve accuracy, calibration, OOD detection, and robustness to noise, though not to covariate shift or spurious correlations. We leverage these counterintuitive findings to characterize the mechanics of quantization beyond simple regularization: we show that quantization dampens high-rank spectral components, compelling the model to rely more heavily on robust, low-rank features. Ultimately, this spectral filtering effect drives the observed improvements in generalization and noise tolerance, establishing a pathway to deploy faster, more reliable VLMs by utilizing quantization beyond its conventional role.
comment: Preprint
♻ ☆ HAODiff: Human-Aware One-Step Diffusion via Dual-Prompt Guidance NeurIPS 2025
Human-centered images often suffer from severe generic degradation during transmission and are prone to human motion blur (HMB), making restoration challenging. Existing research lacks sufficient focus on these issues, as both problems often coexist in practice. To address this, we design a degradation pipeline that simulates the coexistence of HMB and generic noise, generating synthetic degraded data to train our proposed HAODiff, a human-aware one-step diffusion. Specifically, we propose a triple-branch dual-prompt guidance (DPG), which leverages high-quality images, residual noise (LQ minus HQ), and HMB segmentation masks as training targets. It produces a positive-negative prompt pair for classifier-free guidance (CFG) in a single diffusion step. The resulting adaptive dual prompts let HAODiff exploit CFG more effectively, boosting robustness against diverse degradations. For fair evaluation, we introduce MPII-Test, a benchmark rich in combined noise and HMB cases. Extensive experiments show that our HAODiff surpasses existing state-of-the-art (SOTA) methods in terms of both quantitative metrics and visual quality on synthetic and real-world datasets, including our introduced MPII-Test. Code is available at: https://github.com/gobunu/HAODiff.
comment: 9 pages, 8 figures. Accepted at NeurIPS 2025
♻ ☆ Unlocking Past Information: Temporal Embeddings in Cooperative Bird's Eye View Prediction
Accurate and comprehensive semantic segmentation of Bird's Eye View (BEV) is essential for ensuring safe and proactive navigation in autonomous driving. Although cooperative perception has exceeded the detection capabilities of single-agent systems, prevalent camera-based algorithms in cooperative perception neglect valuable information derived from historical observations. This limitation becomes critical during sensor failures or communication issues as cooperative perception reverts to single-agent perception, leading to degraded performance and incomplete BEV segmentation maps. This paper introduces TempCoBEV, a temporal module designed to incorporate historical cues into current observations, thereby improving the quality and reliability of BEV map segmentations. We propose an importance-guided attention architecture to effectively integrate temporal information that prioritizes relevant properties for BEV map segmentation. TempCoBEV is an independent temporal module that seamlessly integrates into state-of-the-art camera-based cooperative perception models. We demonstrate through extensive experiments on the OPV2V dataset that TempCoBEV performs better than non-temporal models in predicting current and future BEV map segmentations, particularly in scenarios involving communication failures. We show the efficacy of TempCoBEV and its capability to integrate historical cues into the current BEV map, improving predictions under optimal communication conditions by up to 2% and under communication failures by up to 19%. The code is available at https://github.com/cvims/TempCoBEV
comment: Copyright 2024 IEEE. This is the accepted version of the paper. In 2024 IEEE Intelligent Vehicles Symposium (IV), pp. 2220-2225. Official paper available at https://doi.org/10.1109/IV55156.2024.10588608
♻ ☆ Color Matters: Demosaicing-Guided Color Correlation Training for Generalizable AI-Generated Image Detection
As realistic AI-generated images threaten digital authenticity, we address the generalization failure of generative artifact-based detectors by exploiting the intrinsic properties of the camera imaging pipeline. Concretely, we investigate color correlations induced by the color filter array (CFA) and demosaicing, and propose a Demosaicing-guided Color Correlation Training (DCCT) framework for AI-generated image detection. By simulating the CFA sampling pattern, we decompose each color image into a single-channel input (as the condition) and the remaining two channels as the ground-truth targets (for prediction). A self-supervised U-Net is trained to model the conditional distribution of the missing channels from the given one, parameterized via a mixture of logistic functions. Our theoretical analysis reveals that DCCT targets a provable distributional difference in color-correlation features between photographic and AI-generated images. By leveraging these distinct features to construct a binary classifier, DCCT achieves state-of-the-art generalization and robustness, significantly outperforming prior methods across over 20 unseen generators.
♻ ☆ Investigating Redundancy in Multimodal Large Language Models with Multiple Vision Encoders ICLR2026
Recent multimodal large language models (MLLMs) increasingly integrate multiple vision encoders to improve performance on various benchmarks, assuming that diverse pretraining objectives yield complementary visual signals. However, we show this assumption often fails in practice. Through systematic encoder masking across representative multi encoder MLLMs, we find that performance typically degrades gracefully and sometimes even improves when selected encoders are masked, revealing pervasive encoder redundancy. To quantify this effect, we introduce two principled metrics: the Conditional Utilization Rate (CUR), which measures an encoders marginal contribution in the presence of others, and the Information Gap (IG), which captures heterogeneity in encoder utility within a model. Using these tools, we observe (i) strong specialization on tasks like OCR and Chart, where a single encoder can dominate with a CUR greater than 90%, (ii) high redundancy on general VQA and knowledge-based tasks, where encoders are largely interchangeable, (iii) instances of detrimental encoders with negative CUR. Notably, masking specific encoders can yield up to 16% higher accuracy on a specific task category and 3.6% overall performance boost compared to the full model.Furthermore, single and dual encoder variants recover over 90% of baseline on most non OCR tasks. Our analysis challenges the more encoders are better heuristic in MLLMs and provides actionable diagnostics for developing more efficient and effective multimodal architectures.
comment: accepted by ICLR2026
♻ ☆ StainNet: Scaling Self-Supervised Foundation Models on Immunohistochemistry and Special Stains for Computational Pathology
Foundation models trained with self-supervised learning (SSL) on large-scale histological images have significantly accelerated the development of computational pathology. These models can serve as backbones for region-of-interest (ROI) image analysis or patch-level feature extractors in whole-slide images (WSIs) based on multiple instance learning (MIL). Existing pathology foundation models (PFMs) are typically pre-trained on Hematoxylin-Eosin (H\&E) stained pathology images. However, images such as immunohistochemistry (IHC) and special stains are also frequently used in clinical practice. PFMs pre-trained mainly on H\&E-stained images may be limited in clinical applications involving these non-H\&E images. To address this issue, we propose StainNet, a collection of self-supervised foundation models specifically trained for IHC and special stains in pathology images based on the vision transformer (ViT) architecture. StainNet contains a ViT-Small and a ViT-Base model, both of which are trained using a self-distillation SSL approach on over 1.4 million patch images extracted from 20,231 publicly available IHC and special staining WSIs in the HISTAI database. To evaluate StainNet models, we conduct experiments on three in-house slide-level IHC classification tasks, three in-house ROI-level special stain and two public ROI-level IHC classification tasks to demonstrate their strong ability. We also perform ablation studies such as few-ratio learning and retrieval evaluations, and compare StainNet models with recent larger PFMs to further highlight their strengths. The StainNet model weights are available at https://github.com/WonderLandxD/StainNet.
comment: 26 pages, 7 figures, 10 tables
♻ ☆ InfoTok: Adaptive Discrete Video Tokenizer via Information-Theoretic Compression
Accurate and efficient discrete video tokenization is essential for long video sequences processing. Yet, the inherent complexity and variable information density of videos present a significant bottleneck for current tokenizers, which rigidly compress all content at a fixed rate, leading to redundancy or information loss. Drawing inspiration from Shannon's information theory, this paper introduces InfoTok, a principled framework for adaptive video tokenization. We rigorously prove that existing data-agnostic training methods are suboptimal in representation length, and present a novel evidence lower bound (ELBO)-based algorithm that approaches theoretical optimality. Leveraging this framework, we develop a transformer-based adaptive compressor that enables adaptive tokenization. Empirical results demonstrate state-of-the-art compression performance, saving 20% tokens without influence on performance, and achieving 2.3x compression rates while still outperforming prior heuristic adaptive approaches. By allocating tokens according to informational richness, InfoTok enables a more compressed yet accurate tokenization for video representation, offering valuable insights for future research.
♻ ☆ Benchmarking Foundation Models for Mitotic Figure Classification
The performance of deep learning models is known to scale with data quantity and diversity. In pathology, as in many other medical imaging domains, the availability of labeled images for a specific task is often limited. Self-supervised learning techniques have enabled the use of vast amounts of unlabeled data to train large-scale neural networks, i.e., foundation models, that can address the limited data problem by providing semantically rich feature vectors that can generalize well to new tasks with minimal training effort increasing model performance and robustness. In this work, we investigate the use of foundation models for mitotic figure classification. The mitotic count, which can be derived from this classification task, is an independent prognostic marker for specific tumors and part of certain tumor grading systems. In particular, we investigate the data scaling laws on multiple current foundation models and evaluate their robustness to unseen tumor domains. Next to the commonly used linear probing paradigm, we also adapt the models using low-rank adaptation (LoRA) of their attention mechanisms. We compare all models against end-to-end-trained baselines, both CNNs and Vision Transformers. Our results demonstrate that LoRA-adapted foundation models provide superior performance to those adapted with standard linear probing, reaching performance levels close to 100% data availability with only 10% of training data. Furthermore, LoRA-adaptation of the most recent foundation models almost closes the out-of-domain performance gap when evaluated on unseen tumor domains. However, full fine-tuning of traditional architectures still yields competitive performance.
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2026:003
♻ ☆ AccidentSim: Generating Vehicle Collision Videos with Physically Realistic Collision Trajectories from Real-World Accident Reports
Collecting real-world vehicle accident videos for autonomous driving research is challenging due to their rarity and complexity. While existing driving video generation methods may produce visually realistic videos, they often fail to deliver physically realistic simulations because they lack the capability to generate accurate post-collision trajectories. In this paper, we introduce AccidentSim, a novel framework that generates physically realistic vehicle collision videos by extracting and utilizing the physical clues and contextual information available in real-world vehicle accident reports. Specifically, AccidentSim leverages a reliable physical simulator to replicate post-collision vehicle trajectories from the physical and contextual information in the accident reports and to build a vehicle collision trajectory dataset. This dataset is then used to fine-tune a language model, enabling it to respond to user prompts and predict physically consistent post-collision trajectories across various driving scenarios based on user descriptions. Finally, we employ Neural Radiance Fields (NeRF) to render high-quality backgrounds, merging them with the foreground vehicles that exhibit physically realistic trajectories to generate vehicle collision videos. Experimental results demonstrate that the videos produced by AccidentSim excel in both visual and physical authenticity.
comment: 15 pages, 9 figures, 5 tables
♻ ☆ MMSF: Multitask and Multimodal Supervised Framework for WSI Classification and Survival Analysis
Multimodal evidence is critical in computational pathology: gigapixel whole slide images capture tumor morphology, while patient-level clinical descriptors preserve complementary context for prognosis. Integrating such heterogeneous signals remains challenging because feature spaces exhibit distinct statistics and scales. We introduce MMSF, a multitask and multimodal supervised framework built on a linear-complexity MIL backbone that explicitly decomposes and fuses cross-modal information. MMSF comprises a graph feature extraction module embedding tissue topology at the patch level, a clinical data embedding module standardizing patient attributes, a feature fusion module aligning modality-shared and modality-specific representations, and a Mamba-based MIL encoder with multitask prediction heads. Experiments on CAMELYON16 and TCGA-NSCLC demonstrate 2.1--6.6\% accuracy and 2.2--6.9\% AUC improvements over competitive baselines, while evaluations on five TCGA survival cohorts yield 7.1--9.8\% C-index improvements compared with unimodal methods and 5.6--7.1\% over multimodal alternatives.
comment: Submitted to "Biomedical Signal Processing and Control"
♻ ☆ MultiPriv: Benchmarking Individual-Level Privacy Reasoning in Vision-Language Models
Modern Vision-Language Models (VLMs) pose significant individual-level privacy risks by linking fragmented multimodal data to identifiable individuals through hierarchical chain-of-thought reasoning. However, existing privacy benchmarks remain structurally insufficient for this threat, as they primarily evaluate privacy perception while failing to address the more critical risk of privacy reasoning: a VLM's ability to infer and link distributed information to construct individual profiles. To address this gap, we propose MultiPriv, the first benchmark designed to systematically evaluate individual-level privacy reasoning in VLMs. We introduce the Privacy Perception and Reasoning (PPR) framework and construct a bilingual multimodal dataset with synthetic individual profiles, where identifiers (e.g., faces, names) are linked to sensitive attributes. This design enables nine challenging tasks spanning attribute detection, cross-image re-identification, and chained inference. We conduct a large-scale evaluation of over 50 open-source and commercial VLMs. Our analysis shows that 60 percent of widely used VLMs can perform individual-level privacy reasoning with up to 80 percent accuracy, posing a significant threat to personal privacy. MultiPriv provides a foundation for developing and assessing privacy-preserving VLMs.
♻ ☆ EAG3R: Event-Augmented 3D Geometry Estimation for Dynamic and Extreme-Lighting Scenes NeurIPS 2025
Robust 3D geometry estimation from videos is critical for applications such as autonomous navigation, SLAM, and 3D scene reconstruction. Recent methods like DUSt3R demonstrate that regressing dense pointmaps from image pairs enables accurate and efficient pose-free reconstruction. However, existing RGB-only approaches struggle under real-world conditions involving dynamic objects and extreme illumination, due to the inherent limitations of conventional cameras. In this paper, we propose EAG3R, a novel geometry estimation framework that augments pointmap-based reconstruction with asynchronous event streams. Built upon the MonST3R backbone, EAG3R introduces two key innovations: (1) a retinex-inspired image enhancement module and a lightweight event adapter with SNR-aware fusion mechanism that adaptively combines RGB and event features based on local reliability; and (2) a novel event-based photometric consistency loss that reinforces spatiotemporal coherence during global optimization. Our method enables robust geometry estimation in challenging dynamic low-light scenes without requiring retraining on night-time data. Extensive experiments demonstrate that EAG3R significantly outperforms state-of-the-art RGB-only baselines across monocular depth estimation, camera pose tracking, and dynamic reconstruction tasks.
comment: Accepted at NeurIPS 2025 (spotlight)
♻ ☆ Beyond Global Scanning: Adaptive Visual State Space Modeling for Salient Object Detection in Optical Remote Sensing Images
Salient object detection (SOD) in optical remote sensing images (ORSIs) faces numerous challenges, including significant variations in target scales and low contrast between targets and the background. Existing methods based on vision transformers (ViTs) and convolutional neural networks (CNNs) architectures aim to leverage both global and local features, but the difficulty in effectively integrating these heterogeneous features limits their overall performance. To overcome these limitations, we propose an adaptive state space context network (ASCNet), which builds upon the state space model mechanism to simultaneously capture long-range dependencies and enhance regional feature representation. Specifically, we employ the visual state space encoder to extract multi-scale features. To further achieve deep guidance and enhancement of these features, we design a Multi-Level Context Module (MLCM), which module strengthens cross-layer interaction capabilities between features of different scales while enhancing the model's structural perception, allowing it to distinguish between foreground and background more effectively. Then, we design the Adaptive Patchwise Visual State Space (APVSS) block as the decoder of ASCNet, which integrates our proposed Dynamic Adaptive Granularity Scan (DAGS) and Granularity-aware Propagation Module (GPM). It performs adaptive patch scanning on feature maps enhanced by local perception, thereby capturing rich local region information and enhancing state space model's local modeling capability. Extensive experimental results demonstrate that the proposed model achieves state-of-the-art performance, validating its effectiveness and superiority.
♻ ☆ DeepVideo-R1: Video Reinforcement Fine-Tuning via Difficulty-aware Regressive GRPO NeurIPS 2025
Recent works have demonstrated the effectiveness of reinforcement learning (RL)-based post-training for enhancing the reasoning capabilities of large language models (LLMs). In particular, Group Relative Policy Optimization (GRPO) has shown impressive success using a PPO-style reinforcement learning algorithm with group-normalized rewards. However, the effectiveness of GRPO in Video Large Language Models (VideoLLMs) remains underexplored. In this paper, we explore GRPO and identify two issues that hinder effective learning: (1) reliance on safeguards, and (2) vanishing advantage. To mitigate these challenges, we propose DeepVideo-R1, a video large language model trained with Reg-GRPO (Regressive GRPO) and difficulty-aware data augmentation. Reg-GRPO reformulates the GRPO loss function as a regression task that directly predicts the advantage in GRPO, eliminating the need for safeguards such as clipping and min operations. This directly aligns the model with the advantages, providing guidance to prefer better outputs. The difficulty-aware data augmentation strategy augments input prompts/videos to target solvable difficulty levels, enabling diverse reward signals. Our experimental results show that our approach significantly improves video reasoning performance across multiple benchmarks.
comment: NeurIPS 2025
♻ ☆ A Survey on Vision-Language-Action Models for Embodied AI
Embodied AI is widely recognized as a cornerstone of artificial general intelligence because it involves controlling embodied agents to perform tasks in the physical world. Building on the success of large language models and vision-language models, a new category of multimodal models -- referred to as vision-language-action models (VLAs) -- has emerged to address language-conditioned robotic tasks in embodied AI by leveraging their distinct ability to generate actions. The recent proliferation of VLAs necessitates a comprehensive survey to capture the rapidly evolving landscape. To this end, we present the first survey on VLAs for embodied AI. This work provides a detailed taxonomy of VLAs, organized into three major lines of research. The first line focuses on individual components of VLAs. The second line is dedicated to developing VLA-based control policies adept at predicting low-level actions. The third line comprises high-level task planners capable of decomposing long-horizon tasks into a sequence of subtasks, thereby guiding VLAs to follow more general user instructions. Furthermore, we provide an extensive summary of relevant resources, including datasets, simulators, and benchmarks. Finally, we discuss the challenges facing VLAs and outline promising future directions in embodied AI. A curated repository associated with this survey is available at: https://github.com/yueen-ma/Awesome-VLA.
comment: Project page: https://github.com/yueen-ma/Awesome-VLA
♻ ☆ STELAR-VISION: Self-Topology-Aware Efficient Learning for Aligned Reasoning in Vision AAAI 2026
Vision-language models (VLMs) have made significant strides in reasoning, yet they often struggle with complex multimodal tasks and tend to generate overly verbose outputs. A key limitation is their reliance on chain-of-thought (CoT) reasoning, despite many tasks benefiting from alternative topologies like trees or graphs. To address this, we introduce STELAR-Vision, a training framework for topology-aware reasoning. At its core is TopoAug, a synthetic data pipeline that enriches training with diverse topological structures. Using supervised fine-tuning and reinforcement learning, we post-train Qwen2VL models with both accuracy and efficiency in mind. Additionally, we propose Frugal Learning, which reduces output length with minimal accuracy loss. On MATH-V and VLM-S2H, STELAR-Vision improves accuracy by 9.7% over its base model and surpasses the larger Qwen2VL-72B-Instruct by 7.3%. On five out-of-distribution benchmarks, it outperforms Phi-4-Multimodal-Instruct by up to 28.4% and LLaMA-3.2-11B-Vision-Instruct by up to 13.2%, demonstrating strong generalization. Compared to Chain-Only training, our approach achieves 4.3% higher overall accuracy on in-distribution datasets and consistently outperforms across all OOD benchmarks.
comment: This paper has been accepted at AAAI 2026. This is the author's extended version. The final version will appear in the official proceedings
♻ ☆ LoVR: A Benchmark for Long Video Retrieval in Multimodal Contexts
Long videos contain a vast amount of information, making video-text retrieval an essential and challenging task in multimodal learning. However, existing benchmarks suffer from limited video duration, low-quality captions, and coarse annotation granularity, which hinder the evaluation of advanced video-text retrieval methods. To address these limitations, we introduce LoVR, a benchmark specifically designed for long video-text retrieval. LoVR contains 467 long videos and over 40,804 fine-grained clips with high-quality captions. To overcome the issue of poor machine-generated annotations, we propose an efficient caption generation framework that integrates VLM automatic generation, caption quality scoring, and dynamic refinement. This pipeline improves annotation accuracy while maintaining scalability. Furthermore, we introduce a semantic fusion method to generate coherent full-video captions without losing important contextual information. Our benchmark introduces longer videos, more detailed captions, and a larger-scale dataset, presenting new challenges for video understanding and retrieval. Extensive experiments on various advanced embedding models demonstrate that LoVR is a challenging benchmark, revealing the limitations of current approaches and providing valuable insights for future research. We release the code and dataset link at https://lovrbench.github.io/
♻ ☆ Integrating Fine-Grained Audio-Visual Evidence for Robust Multimodal Emotion Reasoning
Multimodal emotion analysis is shifting from static classification to generative reasoning. Beyond simple label prediction, robust affective reasoning must synthesize fine-grained signals such as facial micro-expressions and prosodic which shifts to decode the latent causality within complex social contexts. However, current Multimodal Large Language Models (MLLMs) face significant limitations in fine-grained perception, primarily due to data scarcity and insufficient cross-modal fusion. As a result, these models often exhibit unimodal dominance which leads to hallucinations in complex multimodal interactions, particularly when visual and acoustic cues are subtle, ambiguous, or even contradictory (e.g., in sarcastic scenery). To address this, we introduce SABER-LLM, a framework designed for robust multimodal reasoning. First, we construct SABER, a large-scale emotion reasoning dataset comprising 600K video clips, annotated with a novel six-dimensional schema that jointly captures audiovisual cues and causal logic. Second, we propose the structured evidence decomposition paradigm, which enforces a "perceive-then-reason" separation between evidence extraction and reasoning to alleviate unimodal dominance. The ability to perceive complex scenes is further reinforced by consistency-aware direct preference optimization, which explicitly encourages alignment among modalities under ambiguous or conflicting perceptual conditions. Experiments on EMER, EmoBench-M, and SABER-Test demonstrate that SABER-LLM significantly outperforms open-source baselines and achieves robustness competitive with closed-source models in decoding complex emotional dynamics. The dataset and model are available at https://github.com/zxzhao0/SABER-LLM.
♻ ☆ From Consistency to Complementarity: Aligned and Disentangled Multi-modal Learning for Time Series Understanding and Reasoning
Advances in multi-modal large language models (MLLMs) have inspired time series understanding and reasoning tasks, that enable natural language querying over time series, producing textual analyses of complex temporal dynamics. Recent attempts hybridize numerical time series with their visualized plots, facilitating precise value reasoning and visual structure comprehension for comprehensive time series understanding of MLLMs. However, effective numerical-visual modality integration remains challenging due to fine-grained temporal misalignment across modalities and severe entanglement between shared and modality-specific semantics, which hinder localized interpretation and complementary reasoning. To address these issues, we propose MADI, a multi-modal LLM enhanced with fine-grained alignment and disentangled interaction, featuring (1) Patch-level Alignment, which enforces physically grounded fine-grained correspondence across heterogeneous modalities, (2) Discrete Disentangled Interaction, which separates modality-common semantics into compact discrete latents and adaptively synergizes the purified modality-unique information, and (3) Critical-token Highlighting, which emphasizes informative, query-relevant signals for robust reasoning. Experiments on synthetic and real-world benchmarks show that MADI consistently outperforms general-purpose LLMs and time-series-specialized MLLMs.
♻ ☆ Adaptive Knowledge Transferring with Switching Dual-Student Framework for Semi-Supervised Medical Image Segmentation
Teacher-student frameworks have emerged as a leading approach in semi-supervised medical image segmentation, demonstrating strong performance across various tasks. However, the learning effects are still limited by the strong correlation and unreliable knowledge transfer process between teacher and student networks. To overcome this limitation, we introduce a novel switching Dual-Student architecture that strategically selects the most reliable student at each iteration to enhance dual-student collaboration and prevent error reinforcement. We also introduce a strategy of Loss-Aware Exponential Moving Average to dynamically ensure that the teacher absorbs meaningful information from students, improving the quality of pseudo-labels. Our plug-and-play framework is extensively evaluated on 3D medical image segmentation datasets, where it outperforms state-of-the-art semi-supervised methods, demonstrating its effectiveness in improving segmentation accuracy under limited supervision.
comment: The paper is published at Pattern Recognition Journal
♻ ☆ Deep Multimodal Learning with Missing Modality: A Survey
During multimodal model training and testing, certain data modalities may be absent due to sensor limitations, cost constraints, privacy concerns, or data loss, negatively affecting performance. Multimodal learning techniques designed to handle missing modalities can mitigate this by ensuring model robustness even when some modalities are unavailable. This survey reviews recent progress in Multimodal Learning with Missing Modality (MLMM), focusing on deep learning methods. It provides the first comprehensive survey that covers the motivation and distinctions between MLMM and standard multimodal learning setups, followed by a detailed analysis of current methods, applications, and datasets, concluding with challenges and future directions.
comment: Accepted by TMLR (Transactions on Machine Learning Research)
♻ ☆ Same or Not? Enhancing Visual Perception in Vision-Language Models
Vision-language models (VLMs) excel at broad visual understanding but remain coarse-grained, exhibit visual biases, and miss subtle visual details. Existing training corpora reinforce this limitation by emphasizing general recognition ("Is it a cat or a dog?") over fine-grained perception. To address this, we introduce a new training corpus and task designed to enhance the perceptual abilities of VLMs. TWIN is a large-scale dataset of 561,000 image-pair queries that task models to determine whether two visually similar images depict the same object, encouraging attention to nuanced visual cues. The dataset spans a diverse range of everyday objects across contexts, viewpoints, and appearances. Fine-tuning VLMs on TWIN yields notable gains in fine-grained recognition, even on unseen domains such as art, animals, plants, and landmarks. To quantify these gains, we introduce FGVQA, a benchmark suite of 12,000 queries that repurposes fine-grained recognition and retrieval datasets from multiple domains. While existing VLMs struggle on FGVQA, when fine-tuned on TWIN they improve by up to 19.3%, without compromising performance on general VQA benchmarks. Finally, our TWIN dataset scales favorably with object annotations, and our analysis shows that scale is key to performance. We envision TWIN as a drop-in addition to open-source VLM training corpora, advancing perceptual precision of future models. Project webpage: https://glab-caltech.github.io/twin/
comment: Project webpage: https://glab-caltech.github.io/twin/
♻ ☆ MAMBO-G: Magnitude-Aware Mitigation for Boosted Guidance
High-fidelity text-to-image and text-to-video generation typically relies on Classifier-Free Guidance (CFG), but achieving optimal results often demands computationally expensive sampling schedules. In this work, we propose MAMBO-G, a training-free acceleration framework that significantly reduces computational cost by dynamically optimizing guidance magnitudes. We observe that standard CFG schedules are inefficient, applying disproportionately large updates in early steps that hinder convergence speed. MAMBO-G mitigates this by modulating the guidance scale based on the update-to-prediction magnitude ratio, effectively stabilizing the trajectory and enabling rapid convergence. This efficiency is particularly vital for resource-intensive tasks like video generation. Our method serves as a universal plug-and-play accelerator, achieving up to 3x speedup on Stable Diffusion v3.5 (SD3.5) and 4x on Lumina. Most notably, MAMBO-G accelerates the 14B-parameter Wan2.1 video model by 2x while preserving visual fidelity, offering a practical solution for efficient large-scale video synthesis. Our implementation follows a mainstream open-source diffusion framework and is plug-and-play with existing pipelines.
♻ ☆ Invariance on Manifolds: Understanding Robust Visual Representations for Place Recognition
Visual Place Recognition (VPR) demands representations robust to drastic environmental and viewpoint shifts. Current aggregation paradigms, however, either rely on data-hungry supervision or simplistic first-order statistics, often neglecting intrinsic structural correlations. In this work, we propose a Second-Order Geometric Statistics framework that inherently captures geometric stability without training. We conceptualize scenes as covariance descriptors on the Symmetric Positive Definite (SPD) manifold, where perturbations manifest as tractable congruence transformations. By leveraging geometry-aware Riemannian mappings, we project these descriptors into a linearized Euclidean embedding, effectively decoupling signal structure from noise. Our approach introduces a training-free framework built upon fixed, pre-trained backbones, achieving strong zero-shot generalization without parameter updates. Extensive experiments confirm that our method achieves highly competitive performance against state-of-the-art baselines, particularly excelling in challenging zero-shot scenarios.
comment: 14pages, 5 figures
♻ ☆ WMVLM: Evaluating Diffusion Model Image Watermarking via Vision-Language Models
Digital watermarking is essential for securing generated images from diffusion models. Accurate watermark evaluation is critical for algorithm development, yet existing methods have significant limitations: they lack a unified framework for both residual and semantic watermarks, provide results without interpretability, neglect comprehensive security considerations, and often use inappropriate metrics for semantic watermarks. To address these gaps, we propose WMVLM, the first unified and interpretable evaluation framework for diffusion model image watermarking via vision-language models (VLMs). We redefine quality and security metrics for each watermark type: residual watermarks are evaluated by artifact strength and erasure resistance, while semantic watermarks are assessed through latent distribution shifts. Moreover, we introduce a three-stage training strategy to progressively enable the model to achieve classification, scoring, and interpretable text generation. Experiments show WMVLM outperforms state-of-the-art VLMs with strong generalization across datasets, diffusion models, and watermarking methods.
♻ ☆ UniVRSE: Unified Vision-conditioned Response Semantic Entropy for Hallucination Detection in Medical Vision-Language Models
Vision-language models (VLMs) have great potential for medical image understanding, particularly in Visual Report Generation (VRG) and Visual Question Answering (VQA), but they may generate hallucinated responses that contradict visual evidence, limiting clinical deployment. Although uncertainty-based hallucination detection methods are intuitive and effective, they are limited in medical VLMs. Specifically, Semantic Entropy (SE), effective in text-only LLMs, becomes less reliable in medical VLMs due to their overconfidence from strong language priors. To address this challenge, we propose UniVRSE, a Unified Vision-conditioned Response Semantic Entropy framework for hallucination detection in medical VLMs. UniVRSE strengthens visual guidance during uncertainty estimation by contrasting the semantic predictive distributions derived from an original image-text pair and a visually distorted counterpart, with higher entropy indicating hallucination risk. For VQA, UniVRSE works on the image-question pair, while for VRG, it decomposes the report into claims, generates verification questions, and applies vision-conditioned entropy estimation at the claim level. To evaluate hallucination detection, we propose a unified pipeline that generates responses on medical datasets and derives hallucination labels via factual consistency assessment. However, current evaluation methods rely on subjective criteria or modality-specific rules. To improve reliability, we introduce Alignment Ratio of Atomic Facts (ALFA), a novel method that quantifies fine-grained factual consistency. ALFA-derived labels provide ground truth for robust benchmarking. Experiments on six medical VQA/VRG datasets and three VLMs show UniVRSE significantly outperforms existing methods with strong cross-modal generalization.
comment: Under Review. 12 pages, 2 figures
♻ ☆ CogFlow: Bridging Perception and Reasoning through Knowledge Internalization for Visual Mathematical Problem Solving ICLR 2026
Despite significant progress, multimodal large language models continue to struggle with visual mathematical problem solving. Some recent works recognize that visual perception is a bottleneck in visual mathematical reasoning, but their solutions are limited to improving the extraction and interpretation of visual inputs. Notably, they all ignore the key issue of whether the extracted visual cues are faithfully integrated and properly utilized in subsequent reasoning. Motivated by this, we present CogFlow, a novel cognitive-inspired three-stage framework that incorporates a knowledge internalization stage, explicitly simulating the hierarchical flow of human reasoning: perception$\Rightarrow$internalization$\Rightarrow$reasoning. Inline with this hierarchical flow, we holistically enhance all its stages. We devise Synergistic Visual Rewards to boost perception capabilities in parametric and semantic spaces, jointly improving visual information extraction from symbols and diagrams. To guarantee faithful integration of extracted visual cues into subsequent reasoning, we introduce a Knowledge Internalization Reward model in the internalization stage, bridging perception and reasoning. Moreover, we design a Visual-Gated Policy Optimization algorithm to further enforce the reasoning is grounded with the visual knowledge, preventing models seeking shortcuts that appear coherent but are visually ungrounded reasoning chains. Moreover, we contribute a new dataset MathCog for model training, which contains samples with over 120K high-quality perception-reasoning aligned annotations. Comprehensive experiments and analysis on commonly used visual mathematical reasoning benchmarks validate the superiority of the proposed CogFlow.
comment: Accepted to ICLR 2026
♻ ☆ Finding Optimal Video Moment without Training: Gaussian Boundary Optimization for Weakly Supervised Video Grounding
Weakly supervised temporal video grounding aims to localize query-relevant segments in untrimmed videos using only video-sentence pairs, without requiring ground-truth segment annotations that specify exact temporal boundaries. Recent approaches tackle this task by utilizing Gaussian-based temporal proposals to represent query-relevant segments. However, their inference strategies rely on heuristic mappings from Gaussian parameters to segment boundaries, resulting in suboptimal localization performance. To address this issue, we propose Gaussian Boundary Optimization (GBO), a novel inference framework that predicts segment boundaries by solving a principled optimization problem that balances proposal coverage and segment compactness. We derive a closed-form solution for this problem and rigorously analyze the optimality conditions under varying penalty regimes. Beyond its theoretical foundations, GBO offers several practical advantages: it is training-free and compatible with both single-Gaussian and mixture-based proposal architectures. Our experiments show that GBO significantly improves localization, achieving state-of-the-art results across standard benchmarks. Extensive experiments demonstrate the efficiency and generalizability of GBO across various proposal schemes. The code is available at https://github.com/sunoh-kim/gbo.
comment: Accepted in IEEE TMM
♻ ☆ BioTamperNet: Affinity-Guided State-Space Model Detecting Tampered Biomedical Images
We propose BioTamperNet, a novel framework for detecting duplicated regions in tampered biomedical images, leveraging affinity-guided attention inspired by State Space Model (SSM) approximations. Existing forensic models, primarily trained on natural images, often underperform on biomedical data where subtle manipulations can compromise experimental validity. To address this, BioTamperNet introduces an affinity-guided self-attention module to capture intra-image similarities and an affinity-guided cross-attention module to model cross-image correspondences. Our design integrates lightweight SSM-inspired linear attention mechanisms to enable efficient, fine-grained localization. Trained end-to-end, BioTamperNet simultaneously identifies tampered regions and their source counterparts. Extensive experiments on the benchmark bio-forensic datasets demonstrate significant improvements over competitive baselines in accurately detecting duplicated regions. Code - https://github.com/SoumyaroopNandi/BioTamperNet
♻ ☆ Two-chart Beltrami Optimization for Distortion-Controlled Spherical Bijection with Application to Brain Surface Registration
Many genus-0 surface mapping tasks such as landmark alignment, feature matching, and image-driven registration, can be reduced (via an initial spherical conformal map) to optimizing a spherical self-homeomorphism with controlled distortion. However, existing works lack efficient mechanisms to control the geometric distortion of the resulting mapping. To resolve this issue, we formulate this as a Beltrami-space optimization problem, where the angle distortion is encoded explicitly by the Beltrami differential and bijectivity can be enforced through the constraint $\|μ\|_{\infty}<1$. To make this practical on the sphere, we introduce the Spherical Beltrami Differential (SBD), a two-chart representation of quasiconformal self-maps of the unit sphere $\mathbb{S}^2$, together with cross-chart consistency conditions that yield a globally bijective spherical deformation (up to conformal automorphisms). Building on the Spectral Beltrami Network, we develop BOOST, a differentiable optimization framework that updates two Beltrami fields to minimize task-driven losses while regularizing distortion and enforcing consistency along the seam. Experiments on large-deformation landmark matching and intensity-based spherical registration demonstrate improved task performance meanwhile maintaining controlled distortion and robust bijective behavior. We also apply the method to cortical surface registration by aligning sulcal landmarks and matching cortical sulcal depth, achieving comparative or better registration performance without sacrificing geometric validity.
♻ ☆ Robust automatic brain vessel segmentation in 3D CTA scans using dynamic 4D-CTA data
In this study, we develop a novel methodology for annotating the brain vasculature using dynamic 4D-CTA head scans. By using multiple time points from dynamic CTA acquisitions, we subtract bone and soft tissue to enhance the visualization of arteries and veins, reducing the effort required to obtain manual annotations of brain vessels. We then train deep learning models on our ground truth annotations by using the same segmentation for multiple phases from the dynamic 4D-CTA collection, effectively enlarging our dataset by 4 to 5 times and inducing robustness to contrast phases. In total, our dataset comprises 110 training images from 25 patients and 165 test images from 14 patients. In comparison with two similarly-sized datasets for CTA-based brain vessel segmentation, a nnUNet model trained on our dataset can achieve significantly better segmentations across all vascular regions, with an average mDC of 0.846 for arteries and 0.957 for veins in the TopBrain dataset. Furthermore, metrics such as average directed Hausdorff distance (adHD) and topology sensitivity (tSens) reflected similar trends: using our dataset resulted in low error margins (adHD of 0.304 mm for arteries and 0.078 for veins) and high sensitivity (tSens of 0.877 for arteries and 0.974 for veins), indicating excellent accuracy in capturing vessel morphology. Our code and model weights are available online at https://github.com/alceballosa/robust-vessel-segmentation
comment: 18 pages, 10 figures
♻ ☆ CLEAR-Mamba:Towards Accurate, Adaptive and Trustworthy Multi-Sequence Ophthalmic Angiography Classification
Medical image classification is a core task in computer-aided diagnosis (CAD), playing a pivotal role in early disease detection, treatment planning, and patient prognosis assessment. In ophthalmic practice, fluorescein fundus angiography (FFA) and indocyanine green angiography (ICGA) provide hemodynamic and lesion-structural information that conventional fundus photography cannot capture. However, due to the single-modality nature, subtle lesion patterns, and significant inter-device variability, existing methods still face limitations in generalization and high-confidence prediction. To address these challenges, we propose CLEAR-Mamba, an enhanced framework built upon MedMamba with optimizations in both architecture and training strategy. Architecturally, we introduce HaC, a hypernetwork-based adaptive conditioning layer that dynamically generates parameters according to input feature distributions, thereby improving cross-domain adaptability. From a training perspective, we develop RaP, a reliability-aware prediction scheme built upon evidential uncertainty learning, which encourages the model to emphasize low-confidence samples and improves overall stability and reliability. We further construct a large-scale ophthalmic angiography dataset covering both FFA and ICGA modalities, comprising multiple retinal disease categories for model training and evaluation. Experimental results demonstrate that CLEAR-Mamba consistently outperforms multiple baseline models, including the original MedMamba, across various metrics-showing particular advantages in multi-disease classification and reliability-aware prediction. This study provides an effective solution that balances generalizability and reliability for modality-specific medical image classification tasks.
comment: 10 pages,7 figures
♻ ☆ VEAttack: Downstream-agnostic Vision Encoder Attack against Large Vision Language Models
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities in multimodal understanding and generation, yet their vulnerability to adversarial attacks raises significant robustness concerns. While existing effective attacks always focus on task-specific white-box settings, these approaches are limited in the context of LVLMs, which are designed for diverse downstream tasks and require expensive full-model gradient computations. Motivated by the pivotal role and wide adoption of the vision encoder in LVLMs, we propose a simple yet effective Vision Encoder Attack (VEAttack), which targets the vision encoder of LVLMs only. Specifically, we propose to generate adversarial examples by minimizing the cosine similarity between the clean and perturbed visual features, without accessing the following large language models, task information, and labels. It significantly reduces the computational overhead while eliminating the task and label dependence of traditional white-box attacks in LVLMs. To make this simple attack effective, we propose to perturb images by optimizing image tokens instead of the classification token. We provide both empirical and theoretical evidence that VEAttack can easily generalize to various tasks. VEAttack has achieved a performance degradation of 94.5% on image caption task and 75.7% on visual question answering task. We also reveal some key observations to provide insights into LVLM attack/defense: 1) hidden layer variations of LLM, 2) token attention differential, 3) Möbius band in transfer attack, 4) low sensitivity to attack steps. The code is available at https://github.com/hefeimei06/VEAttack-LVLM.
♻ ☆ Geometry-aware 4D Video Generation for Robot Manipulation ICLR 2026
Understanding and predicting dynamics of the physical world can enhance a robot's ability to plan and interact effectively in complex environments. While recent video generation models have shown strong potential in modeling dynamic scenes, generating videos that are both temporally coherent and geometrically consistent across camera views remains a significant challenge. To address this, we propose a 4D video generation model that enforces multi-view 3D consistency of generated videos by supervising the model with cross-view pointmap alignment during training. Through this geometric supervision, the model learns a shared 3D scene representation, enabling it to generate spatio-temporally aligned future video sequences from novel viewpoints given a single RGB-D image per view, and without relying on camera poses as input. Compared to existing baselines, our method produces more visually stable and spatially aligned predictions across multiple simulated and real-world robotic datasets. We further show that the predicted 4D videos can be used to recover robot end-effector trajectories using an off-the-shelf 6DoF pose tracker, yielding robot manipulation policies that generalize well to novel camera viewpoints.
comment: ICLR 2026; Project website: https://robot4dgen.github.io
♻ ☆ Learning Domain Knowledge in Multimodal Large Language Models through Reinforcement Fine-Tuning
Multimodal large language models (MLLMs) have shown remarkable capabilities in multimodal perception and understanding tasks. However, their effectiveness in specialized domains, such as remote sensing and medical imaging, remains limited. A natural approach to domain adaptation is to inject domain knowledge through textual instructions, prompts, or auxiliary captions. Surprisingly, we find that such input-level domain knowledge injection yields little to no improvement on scientific multimodal tasks, even when the domain knowledge is explicitly provided. This observation suggests that current MLLMs fail to internalize domain-specific priors through language alone, and that domain knowledge must be integrated at the optimization level. Motivated by this insight, we propose a reinforcement fine-tuning framework that incorporates domain knowledge directly into the learning objective. Instead of treating domain knowledge as descriptive information, we encode it as domain-informed constraints and reward signals, shaping the model's behavior in the output space. Extensive experiments across multiple datasets in remote sensing and medical domains consistently demonstrate good performance gains, achieving state-of-the-art results on multimodal domain tasks. Our results highlight the necessity of optimization-level domain knowledge integration and reveal a fundamental limitation of textual domain conditioning in current MLLMs.
♻ ☆ Revisiting 360 Depth Estimation with PanoGabor: A New Fusion Perspective
Depth estimation from a monocular 360 image is important to the perception of the entire 3D environment. However, the inherent distortion and large field of view (FoV) in 360 images pose great challenges for this task. To this end, existing mainstream solutions typically introduce additional perspective-based 360 representations ({e.g., Cubemap) to achieve effective feature extraction. Nevertheless, regardless of the introduced representations, they eventually need to be unified into the equirectangular projection (ERP) format for the subsequent depth estimation, which inevitably reintroduces the troublesome distortions. In this work, we propose an oriented distortion-aware Gabor Fusion framework (PGFuse) to address the above challenges. First, we introduce Gabor filters that analyze texture in the frequency domain, thereby extending the receptive fields and enhancing depth cues. To address the reintroduced distortions, we design a linear latitude-aware distortion representation method to generate customized, distortion-aware Gabor filters (PanoGabor filters). Furthermore, we design a channel-wise and spatial-wise unidirectional fusion module (CS-UFM) that integrates the proposed PanoGabor filters to unify other representations into the ERP format, delivering effective and distortion-free features. Considering the orientation sensitivity of the Gabor transform, we introduce a spherical gradient constraint to stabilize this sensitivity. Experimental results on three popular indoor 360 benchmarks demonstrate the superiority of the proposed PGFuse to existing state-of-the-art solutions. Code and models will be available at https://github.com/zhijieshen-bjtu/PGFuse
comment: Accepted by TPAMI
♻ ☆ Event2Vec: Processing Neuromorphic Events Directly by Representations in Vector Space
Neuromorphic event cameras possess superior temporal resolution, power efficiency, and dynamic range compared to traditional cameras. However, their asynchronous and sparse data format poses a significant challenge for conventional deep learning methods. Existing methods either convert the events into dense synchronous frame representations for processing by powerful CNNs or Transformers, but lose the asynchronous, sparse and high temporal resolution characteristics of events during the conversion process; or adopt irregular models such as sparse convolution, spiking neural networks, or graph neural networks to process the irregular event representations but fail to take full advantage of GPU acceleration.Inspired by word-to-vector models, we draw an analogy between words and events to introduce event2vec, a novel representation that allows neural networks to process events directly. This approach is fully compatible with the parallel processing capabilities of Transformers. We demonstrate the effectiveness of event2vec on the DVS Gesture, ASL-DVS, and DVS-Lip benchmarks, showing that event2vec is remarkably parameter-efficient, features high throughput and low latency, and achieves high accuracy even with an extremely low number of events or low spatial resolutions. Event2vec introduces a novel paradigm by demonstrating for the first time that sparse, irregular event data can be directly integrated into high-throughput Transformer architectures. This breakthrough resolves the long-standing conflict between maintaining data sparsity and maximizing GPU efficiency, offering a promising balance for real-time, low-latency neuromorphic vision tasks. The code is provided in https://github.com/Intelligent-Computing-Lab-Panda/event2vec.
♻ ☆ Image Corruption-Inspired Membership Inference Attacks against Large Vision-Language Models EACL 2026
Large vision-language models (LVLMs) have demonstrated outstanding performance in many downstream tasks. However, LVLMs are trained on large-scale datasets, which can pose privacy risks if training images contain sensitive information. Therefore, it is important to detect whether an image is used to train the LVLM. Recent studies have investigated membership inference attacks (MIAs) against LVLMs, including detecting image-text pairs and single-modality content. In this work, we focus on detecting whether a target image is used to train the target LVLM. We design simple yet effective Image Corruption-Inspired Membership Inference Attacks (ICIMIA) against LVLMs, which are inspired by LVLM's different sensitivity to image corruption for member and non-member images. We first perform an MIA method under the white-box setting, where we can obtain the embeddings of the image through the vision part of the target LVLM. The attacks are based on the embedding similarity between the image and its corrupted version. We further explore a more practical scenario where we have no knowledge about target LVLMs and we can only query the target LVLMs with an image and a textual instruction. We then conduct the attack by utilizing the output text embeddings' similarity. Experiments on existing datasets validate the effectiveness of our proposed methods under those two different settings.
comment: Accepted by EACL 2026
Artificial Intelligence 150
☆ Protein Autoregressive Modeling via Multiscale Structure Generation
We present protein autoregressive modeling (PAR), the first multi-scale autoregressive framework for protein backbone generation via coarse-to-fine next-scale prediction. Using the hierarchical nature of proteins, PAR generates structures that mimic sculpting a statue, forming a coarse topology and refining structural details over scales. To achieve this, PAR consists of three key components: (i) multi-scale downsampling operations that represent protein structures across multiple scales during training; (ii) an autoregressive transformer that encodes multi-scale information and produces conditional embeddings to guide structure generation; (iii) a flow-based backbone decoder that generates backbone atoms conditioned on these embeddings. Moreover, autoregressive models suffer from exposure bias, caused by the training and the generation procedure mismatch, and substantially degrades structure generation quality. We effectively alleviate this issue by adopting noisy context learning and scheduled sampling, enabling robust backbone generation. Notably, PAR exhibits strong zero-shot generalization, supporting flexible human-prompted conditional generation and motif scaffolding without requiring fine-tuning. On the unconditional generation benchmark, PAR effectively learns protein distributions and produces backbones of high design quality, and exhibits favorable scaling behavior. Together, these properties establish PAR as a promising framework for protein structure generation.
comment: ByteDance Seed Tech Report; Page: https://par-protein.github.io/
☆ Contrastive Continual Learning for Model Adaptability in Internet of Things
Internet of Things (IoT) deployments operate in nonstationary, dynamic environments where factors such as sensor drift, evolving user behavior, and heterogeneous user privacy requirements can affect application utility. Continual learning (CL) addresses this by adapting models over time without catastrophic forgetting. Meanwhile, contrastive learning has emerged as a powerful representation-learning paradigm that improves robustness and sample efficiency in a self-supervised manner. This paper reviews the usage of \emph{contrastive continual learning} (CCL) for IoT, connecting algorithmic design (replay, regularization, distillation, prompts) with IoT system realities (TinyML constraints, intermittent connectivity, privacy). We present a unifying problem formulation, derive common objectives that blend contrastive and distillation losses, propose an IoT-oriented reference architecture for on-device, edge, and cloud-based CCL, and provide guidance on evaluation protocols and metrics. Finally, we highlight open unique challenges with respect to the IoT domain, such as spanning tabular and streaming IoT data, concept drift, federated settings, and energy-aware training.
☆ Rethinking the Trust Region in LLM Reinforcement Learning
Reinforcement learning (RL) has become a cornerstone for fine-tuning Large Language Models (LLMs), with Proximal Policy Optimization (PPO) serving as the de facto standard algorithm. Despite its ubiquity, we argue that the core ratio clipping mechanism in PPO is structurally ill-suited for the large vocabularies inherent to LLMs. PPO constrains policy updates based on the probability ratio of sampled tokens, which serves as a noisy single-sample Monte Carlo estimate of the true policy divergence. This creates a sub-optimal learning dynamic: updates to low-probability tokens are aggressively over-penalized, while potentially catastrophic shifts in high-probability tokens are under-constrained, leading to training inefficiency and instability. To address this, we propose Divergence Proximal Policy Optimization (DPPO), which substitutes heuristic clipping with a more principled constraint based on a direct estimate of policy divergence (e.g., Total Variation or KL). To avoid huge memory footprint, we introduce the efficient Binary and Top-K approximations to capture the essential divergence with negligible overhead. Extensive empirical evaluations demonstrate that DPPO achieves superior training stability and efficiency compared to existing methods, offering a more robust foundation for RL-based LLM fine-tuning.
☆ Multi-layer Cross-Attention is Provably Optimal for Multi-modal In-context Learning
Recent progress has rapidly advanced our understanding of the mechanisms underlying in-context learning in modern attention-based neural networks. However, existing results focus exclusively on unimodal data; in contrast, the theoretical underpinnings of in-context learning for multi-modal data remain poorly understood. We introduce a mathematically tractable framework for studying multi-modal learning and explore when transformer-like architectures can recover Bayes-optimal performance in-context. To model multi-modal problems, we assume the observed data arises from a latent factor model. Our first result comprises a negative take on expressibility: we prove that single-layer, linear self-attention fails to recover the Bayes-optimal predictor uniformly over the task distribution. To address this limitation, we introduce a novel, linearized cross-attention mechanism, which we study in the regime where both the number of cross-attention layers and the context length are large. We show that this cross-attention mechanism is provably Bayes optimal when optimized using gradient flow. Our results underscore the benefits of depth for in-context learning and establish the provable utility of cross-attention for multi-modal distributions.
☆ CRoSS: A Continual Robotic Simulation Suite for Scalable Reinforcement Learning with High Task Diversity and Realistic Physics Simulation
Continual reinforcement learning (CRL) requires agents to learn from a sequence of tasks without forgetting previously acquired policies. In this work, we introduce a novel benchmark suite for CRL based on realistically simulated robots in the Gazebo simulator. Our Continual Robotic Simulation Suite (CRoSS) benchmarks rely on two robotic platforms: a two-wheeled differential-drive robot with lidar, camera and bumper sensor, and a robotic arm with seven joints. The former represent an agent in line-following and object-pushing scenarios, where variation of visual and structural parameters yields a large number of distinct tasks, whereas the latter is used in two goal-reaching scenarios with high-level cartesian hand position control (modeled after the Continual World benchmark), and low-level control based on joint angles. For the robotic arm benchmarks, we provide additional kinematics-only variants that bypass the need for physical simulation (as long as no sensor readings are required), and which can be run two orders of magnitude faster. CRoSS is designed to be easily extensible and enables controlled studies of continual reinforcement learning in robotic settings with high physical realism, and in particular allow the use of almost arbitrary simulated sensors. To ensure reproducibility and ease of use, we provide a containerized setup (Apptainer) that runs out-of-the-box, and report performances of standard RL algorithms, including Deep Q-Networks (DQN) and policy gradient methods. This highlights the suitability as a scalable and reproducible benchmark for CRL research.
☆ Subliminal Effects in Your Data: A General Mechanism via Log-Linearity
Training modern large language models (LLMs) has become a veritable smorgasbord of algorithms and datasets designed to elicit particular behaviors, making it critical to develop techniques to understand the effects of datasets on the model's properties. This is exacerbated by recent experiments that show datasets can transmit signals that are not directly observable from individual datapoints, posing a conceptual challenge for dataset-centric understandings of LLM training and suggesting a missing fundamental account of such phenomena. Towards understanding such effects, inspired by recent work on the linear structure of LLMs, we uncover a general mechanism through which hidden subtexts can arise in generic datasets. We introduce Logit-Linear-Selection (LLS), a method that prescribes how to select subsets of a generic preference dataset to elicit a wide range of hidden effects. We apply LLS to discover subsets of real-world datasets so that models trained on them exhibit behaviors ranging from having specific preferences, to responding to prompts in a different language not present in the dataset, to taking on a different persona. Crucially, the effect persists for the selected subset, across models with varying architectures, supporting its generality and universality.
comment: Code available at https://github.com/ishaqadenali/logit-linear-selection
☆ From Evaluation to Design: Using Potential Energy Surface Smoothness Metrics to Guide Machine Learning Interatomic Potential Architectures
Machine Learning Interatomic Potentials (MLIPs) sometimes fail to reproduce the physical smoothness of the quantum potential energy surface (PES), leading to erroneous behavior in downstream simulations that standard energy and force regression evaluations can miss. Existing evaluations, such as microcanonical molecular dynamics (MD), are computationally expensive and primarily probe near-equilibrium states. To improve evaluation metrics for MLIPs, we introduce the Bond Smoothness Characterization Test (BSCT). This efficient benchmark probes the PES via controlled bond deformations and detects non-smoothness, including discontinuities, artificial minima, and spurious forces, both near and far from equilibrium. We show that BSCT correlates strongly with MD stability while requiring a fraction of the cost of MD. To demonstrate how BSCT can guide iterative model design, we utilize an unconstrained Transformer backbone as a testbed, illustrating how refinements such as a new differentiable $k$-nearest neighbors algorithm and temperature-controlled attention reduce artifacts identified by our metric. By optimizing model design systematically based on BSCT, the resulting MLIP simultaneously achieves a low conventional E/F regression error, stable MD simulations, and robust atomistic property predictions. Our results establish BSCT as both a validation metric and as an "in-the-loop" model design proxy that alerts MLIP developers to physical challenges that cannot be efficiently evaluated by current MLIP benchmarks.
comment: 13 pages main text, 10 pages reference & appendix, 8 figures
☆ El Agente Quntur: A research collaborator agent for quantum chemistry
Quantum chemistry is a foundational enabling tool for the fields of chemistry, materials science, computational biology and others. Despite of its power, the practical application of quantum chemistry simulations remains in the hands of qualified experts due to methodological complexity, software heterogeneity, and the need for informed interpretation of results. To bridge the accessibility gap for these tools and expand their reach to chemists with broader backgrounds, we introduce El Agente Quntur, a hierarchical, multi-agent AI system designed to operate not merely as an automation tool but as a research collaborator for computational quantum chemistry. Quntur was designed following three main strategies: i) elimination of hard-coded procedural policies in favour of reasoning-driven decisions, ii) construction of general and composable actions that facilitate generalization and efficiency, and iii) implementation of guided deep research to integrate abstract quantum-chemical reasoning across subdisciplines and a detailed understanding of the software's internal logic and syntax. Although instantiated in ORCA, these design principles are applicable to research agents more generally and easily expandable to additional quantum chemistry packages and beyond. Quntur supports the full range of calculations available in ORCA 6.0 and reasons over software documentation and scientific literature to plan, execute, adapt, and analyze in silico chemistry experiments following best practices. We discuss the advances and current bottlenecks in agentic systems operating at the research level in computational chemistry, and outline a roadmap toward a fully autonomous end-to-end computational chemistry research agent.
☆ El Agente Estructural: An Artificially Intelligent Molecular Editor
We present El Agente Estructural, a multimodal, natural-language-driven geometry-generation and manipulation agent for autonomous chemistry and molecular modelling. Unlike molecular generation or editing via generative models, Estructural mimics how human experts directly manipulate molecular systems in three dimensions by integrating a comprehensive set of domain-informed tools and vision-language models. This design enables precise control over atomic or functional group replacements, atomic connectivity, and stereochemistry without the need to rebuild extensive core molecular frameworks. Through a series of representative case studies, we demonstrate that Estructural enables chemically meaningful geometry manipulation across a wide range of real-world scenarios. These include site-selective functionalization, ligand binding, ligand exchange, stereochemically controlled structure construction, isomer interconversion, fragment-level structural analysis, image-guided generation of structures from schematic reaction mechanisms, and mechanism-driven geometry generation and modification. These examples illustrate how multimodal reasoning, when combined with specialized geometry-aware tools, supports interactive and context-aware molecular modelling beyond structure generation. Looking forward, the integration of Estructural into El Agente Quntur, an autonomous multi-agent quantum chemistry platform, enhances its capabilities by adding sophisticated tools for the generation and editing of three-dimensional structures.
☆ Fluid Representations in Reasoning Models
Reasoning language models, which generate long chains of thought, dramatically outperform non-reasoning language models on abstract problems. However, the internal model mechanisms that allow this superior performance remain poorly understood. We present a mechanistic analysis of how QwQ-32B - a model specifically trained to produce extensive reasoning traces - process abstract structural information. On Mystery Blocksworld - a semantically obfuscated planning domain - we find that QwQ-32B gradually improves its internal representation of actions and concepts during reasoning. The model develops abstract encodings that focus on structure rather than specific action names. Through steering experiments, we establish causal evidence that these adaptations improve problem solving: injecting refined representations from successful traces boosts accuracy, while symbolic representations can replace many obfuscated encodings with minimal performance loss. We find that one of the factors driving reasoning model performance is in-context refinement of token representations, which we dub Fluid Reasoning Representations.
☆ Group-Evolving Agents: Open-Ended Self-Improvement via Experience Sharing
Open-ended self-improving agents can autonomously modify their own structural designs to advance their capabilities and overcome the limits of pre-defined architectures, thus reducing reliance on human intervention. We introduce Group-Evolving Agents (GEA), a new paradigm for open-ended self-improvements, which treats a group of agents as the fundamental evolutionary unit, enabling explicit experience sharing and reuse within the group throughout evolution. Unlike existing open-ended self-evolving paradigms that adopt tree-structured evolution, GEA overcomes the limitation of inefficient utilization of exploratory diversity caused by isolated evolutionary branches. We evaluate GEA on challenging coding benchmarks, where it significantly outperforms state-of-the-art self-evolving methods (71.0% vs. 56.7% on SWE-bench Verified, 88.3% vs. 68.3% on Polyglot) and matches or exceeds top human-designed agent frameworks (71.8% and 52.0% on two benchmarks, respectively). Analysis reveals that GEA more effectively converts early-stage exploratory diversity into sustained, long-term progress, achieving stronger performance under the same number of evolved agents. Furthermore, GEA exhibits consistent transferability across different coding models and greater robustness, fixing framework-level bugs in 1.4 iterations on average, versus 5 for self-evolving methods.
comment: 18 pages
☆ Are AI Capabilities Increasing Exponentially? A Competing Hypothesis
Rapidly increasing AI capabilities have substantial real-world consequences, ranging from AI safety concerns to labor market consequences. The Model Evaluation & Threat Research (METR) report argues that AI capabilities have exhibited exponential growth since 2019. In this note, we argue that the data does not support exponential growth, even in shorter-term horizons. Whereas the METR study claims that fitting sigmoid/logistic curves results in inflection points far in the future, we fit a sigmoid curve to their current data and find that the inflection point has already passed. In addition, we propose a more complex model that decomposes AI capabilities into base and reasoning capabilities, exhibiting individual rates of improvement. We prove that this model supports our hypothesis that AI capabilities will exhibit an inflection point in the near future. Our goal is not to establish a rigorous forecast of our own, but to highlight the fragility of existing forecasts of exponential growth.
☆ It's not a Lottery, it's a Race: Understanding How Gradient Descent Adapts the Network's Capacity to the Task
Our theoretical understanding of neural networks is lagging behind their empirical success. One of the important unexplained phenomena is why and how, during the process of training with gradient descent, the theoretical capacity of neural networks is reduced to an effective capacity that fits the task. We here investigate the mechanism by which gradient descent achieves this through analyzing the learning dynamics at the level of individual neurons in single hidden layer ReLU networks. We identify three dynamical principles -- mutual alignment, unlocking and racing -- that together explain why we can often successfully reduce capacity after training through the merging of equivalent neurons or the pruning of low norm weights. We specifically explain the mechanism behind the lottery ticket conjecture, or why the specific, beneficial initial conditions of some neurons lead them to obtain higher weight norms.
☆ Safe Urban Traffic Control via Uncertainty-Aware Conformal Prediction and World-Model Reinforcement Learning
Urban traffic management demands systems that simultaneously predict future conditions, detect anomalies, and take safe corrective actions -- all while providing reliability guarantees. We present STREAM-RL, a unified framework that introduces three novel algorithmic contributions: (1) PU-GAT+, an Uncertainty-Guided Adaptive Conformal Forecaster that uses prediction uncertainty to dynamically reweight graph attention via confidence-monotonic attention, achieving distribution-free coverage guarantees; (2) CRFN-BY, a Conformal Residual Flow Network that models uncertainty-normalized residuals via normalizing flows with Benjamini-Yekutieli FDR control under arbitrary dependence; and (3) LyCon-WRL+, an Uncertainty-Guided Safe World-Model RL agent with Lyapunov stability certificates, certified Lipschitz bounds, and uncertainty-propagated imagination rollouts. To our knowledge, this is the first framework to propagate calibrated uncertainty from forecasting through anomaly detection to safe policy learning with end-to-end theoretical guarantees. Experiments on multiple real-world traffic trajectory data demonstrate that STREAM-RL achieves 91.4\% coverage efficiency, controls FDR at 4.1\% under verified dependence, and improves safety rate to 95.2\% compared to 69\% for standard PPO while achieving higher reward, with 23ms end-to-end inference latency.
☆ Toward Reliable and Explainable Nail Disease Classification: Leveraging Adversarial Training and Grad-CAM Visualization
Human nail diseases are gradually observed over all age groups, especially among older individuals, often going ignored until they become severe. Early detection and accurate diagnosis of such conditions are important because they sometimes reveal our body's health problems. But it is challenging due to the inferred visual differences between disease types. This paper presents a machine learning-based model for automated classification of nail diseases based on a publicly available dataset, which contains 3,835 images scaling six categories. In 224x224 pixels, all images were resized to ensure consistency. To evaluate performance, four well-known CNN models-InceptionV3, DenseNet201, EfficientNetV2, and ResNet50 were trained and analyzed. Among these, InceptionV3 outperformed the others with an accuracy of 95.57%, while DenseNet201 came next with 94.79%. To make the model stronger and less likely to make mistakes on tricky or noisy images, we used adversarial training. To help understand how the model makes decisions, we used SHAP to highlight important features in the predictions. This system could be a helpful support for doctors, making nail disease diagnosis more accurate and faster.
comment: 6 pages, 12 figures. This is the author's accepted manuscript of a paper accepted for publication in the Proceedings of the 16th International IEEE Conference on Computing, Communication and Networking Technologies (ICCCNT 2025). The final published version will be available via IEEE Xplore
☆ Agentic AI in Healthcare & Medicine: A Seven-Dimensional Taxonomy for Empirical Evaluation of LLM-based Agents
Large Language Model (LLM)-based agents that plan, use tools and act has begun to shape healthcare and medicine. Reported studies demonstrate competence on various tasks ranging from EHR analysis and differential diagnosis to treatment planning and research workflows. Yet the literature largely consists of overviews which are either broad surveys or narrow dives into a single capability (e.g., memory, planning, reasoning), leaving healthcare work without a common frame. We address this by reviewing 49 studies using a seven-dimensional taxonomy: Cognitive Capabilities, Knowledge Management, Interaction Patterns, Adaptation & Learning, Safety & Ethics, Framework Typology and Core Tasks & Subtasks with 29 operational sub-dimensions. Using explicit inclusion and exclusion criteria and a labeling rubric (Fully Implemented, Partially Implemented, Not Implemented), we map each study to the taxonomy and report quantitative summaries of capability prevalence and co-occurrence patterns. Our empirical analysis surfaces clear asymmetries. For instance, the External Knowledge Integration sub-dimension under Knowledge Management is commonly realized (~76% Fully Implemented) whereas Event-Triggered Activation sub-dimenison under Interaction Patterns is largely absent (~92% Not Implemented) and Drift Detection & Mitigation sub-dimension under Adaptation & Learning is rare (~98% Not Implemented). Architecturally, Multi-Agent Design sub-dimension under Framework Typology is the dominant pattern (~82% Fully Implemented) while orchestration layers remain mostly partial. Across Core Tasks & Subtasks, information centric capabilities lead e.g., Medical Question Answering & Decision Support and Benchmarking & Simulation, while action and discovery oriented areas such as Treatment Planning & Prescription still show substantial gaps (~59% Not Implemented).
☆ SE-Bench: Benchmarking Self-Evolution with Knowledge Internalization
True self-evolution requires agents to act as lifelong learners that internalize novel experiences to solve future problems. However, rigorously measuring this foundational capability is hindered by two obstacles: the entanglement of prior knowledge, where ``new'' knowledge may appear in pre-training data, and the entanglement of reasoning complexity, where failures may stem from problem difficulty rather than an inability to recall learned knowledge. We introduce SE-Bench, a diagnostic environment that obfuscates the NumPy library and its API doc into a pseudo-novel package with randomized identifiers. Agents are trained to internalize this package and evaluated on simple coding tasks without access to documentation, yielding a clean setting where tasks are trivial with the new API doc but impossible for base models without it. Our investigation reveals three insights: (1) the Open-Book Paradox, where training with reference documentation inhibits retention, requiring "Closed-Book Training" to force knowledge compression into weights; (2) the RL Gap, where standard RL fails to internalize new knowledge completely due to PPO clipping and negative gradients; and (3) the viability of Self-Play for internalization, proving models can learn from self-generated, noisy tasks when coupled with SFT, but not RL. Overall, SE-Bench establishes a rigorous diagnostic platform for self-evolution with knowledge internalization. Our code and dataset can be found at https://github.com/thunlp/SE-Bench.
comment: Under review
☆ Beyond Rewards in Reinforcement Learning for Cyber Defence
Recent years have seen an explosion of interest in autonomous cyber defence agents trained to defend computer networks using deep reinforcement learning. These agents are typically trained in cyber gym environments using dense, highly engineered reward functions which combine many penalties and incentives for a range of (un)desirable states and costly actions. Dense rewards help alleviate the challenge of exploring complex environments but risk biasing agents towards suboptimal and potentially riskier solutions, a critical issue in complex cyber environments. We thoroughly evaluate the impact of reward function structure on learning and policy behavioural characteristics using a variety of sparse and dense reward functions, two well-established cyber gyms, a range of network sizes, and both policy gradient and value-based RL algorithms. Our evaluation is enabled by a novel ground truth evaluation approach which allows directly comparing between different reward functions, illuminating the nuanced inter-relationships between rewards, action space and the risks of suboptimal policies in cyber environments. Our results show that sparse rewards, provided they are goal aligned and can be encountered frequently, uniquely offer both enhanced training reliability and more effective cyber defence agents with lower-risk policies. Surprisingly, sparse rewards can also yield policies that are better aligned with cyber defender goals and make sparing use of costly defensive actions without explicit reward-based numerical penalties.
☆ Skin Tokens: A Learned Compact Representation for Unified Autoregressive Rigging
The rapid proliferation of generative 3D models has created a critical bottleneck in animation pipelines: rigging. Existing automated methods are fundamentally limited by their approach to skinning, treating it as an ill-posed, high-dimensional regression task that is inefficient to optimize and is typically decoupled from skeleton generation. We posit this is a representation problem and introduce SkinTokens: a learned, compact, and discrete representation for skinning weights. By leveraging an FSQ-CVAE to capture the intrinsic sparsity of skinning, we reframe the task from continuous regression to a more tractable token sequence prediction problem. This representation enables TokenRig, a unified autoregressive framework that models the entire rig as a single sequence of skeletal parameters and SkinTokens, learning the complicated dependencies between skeletons and skin deformations. The unified model is then amenable to a reinforcement learning stage, where tailored geometric and semantic rewards improve generalization to complex, out-of-distribution assets. Quantitatively, the SkinTokens representation leads to a 98%-133% percents improvement in skinning accuracy over state-of-the-art methods, while the full TokenRig framework, refined with RL, enhances bone prediction by 17%-22%. Our work presents a unified, generative approach to rigging that yields higher fidelity and robustness, offering a scalable solution to a long-standing challenge in 3D content creation.
comment: 14 pages, 10 figures
☆ Team, Then Trim: An Assembly-Line LLM Framework for High-Quality Tabular Data Generation
While tabular data is fundamental to many real-world machine learning (ML) applications, acquiring high-quality tabular data is usually labor-intensive and expensive. Limited by the scarcity of observations, tabular datasets often exhibit critical deficiencies, such as class imbalance, selection bias, and low fidelity. To address these challenges, building on recent advances in Large Language Models (LLMs), this paper introduces Team-then-Trim (T$^2$), a framework that synthesizes high-quality tabular data through a collaborative team of LLMs, followed by a rigorous three-stage plug-in data quality control (QC) pipeline. In T$^2$, tabular data generation is conceptualized as a manufacturing process: specialized LLMs, guided by domain knowledge, are tasked with generating different data components sequentially, and the resulting products, i.e., the synthetic data, are systematically evaluated across multiple dimensions of QC. Empirical results on both simulated and real-world datasets demonstrate that T$^2$ outperforms state-of-the-art methods in producing high-quality tabular data, highlighting its potential to support downstream models when direct data collection is practically infeasible.
☆ Billion-Scale Graph Foundation Models
Graph-structured data underpins many critical applications. While foundation models have transformed language and vision via large-scale pretraining and lightweight adaptation, extending this paradigm to general, real-world graphs is challenging. In this work, we present Graph Billion- Foundation-Fusion (GraphBFF): the first end-to-end recipe for building billion-parameter Graph Foundation Models (GFMs) for arbitrary heterogeneous, billion-scale graphs. Central to the recipe is the GraphBFF Transformer, a flexible and scalable architecture designed for practical billion-scale GFMs. Using the GraphBFF, we present the first neural scaling laws for general graphs and show that loss decreases predictably as either model capacity or training data scales, depending on which factor is the bottleneck. The GraphBFF framework provides concrete methodologies for data batching, pretraining, and fine-tuning for building GFMs at scale. We demonstrate the effectiveness of the framework with an evaluation of a 1.4 billion-parameter GraphBFF Transformer pretrained on one billion samples. Across ten diverse, real-world downstream tasks on graphs unseen during training, spanning node- and link-level classification and regression, GraphBFF achieves remarkable zero-shot and probing performance, including in few-shot settings, with large margins of up to 31 PRAUC points. Finally, we discuss key challenges and open opportunities for making GFMs a practical and principled foundation for graph learning at industrial scale.
☆ Active Asymmetric Multi-Agent Multimodal Learning under Uncertainty
Multi-agent systems are increasingly equipped with heterogeneous multimodal sensors, enabling richer perception but introducing modality-specific and agent-dependent uncertainty. Existing multi-agent collaboration frameworks typically reason at the agent level, assume homogeneous sensing, and handle uncertainty implicitly, limiting robustness under sensor corruption. We propose Active Asymmetric Multi-Agent Multimodal Learning under Uncertainty (A2MAML), a principled approach for uncertainty-aware, modality-level collaboration. A2MAML models each modality-specific feature as a stochastic estimate with uncertainty prediction, actively selects reliable agent-modality pairs, and aggregates information via Bayesian inverse-variance weighting. This formulation enables fine-grained, modality-level fusion, supports asymmetric modality availability, and provides a principled mechanism to suppress corrupted or noisy modalities. Extensive experiments on connected autonomous driving scenarios for collaborative accident detection demonstrate that A2MAML consistently outperforms both single-agent and collaborative baselines, achieving up to 18.7% higher accident detection rate.
☆ When Silence Is Golden: Can LLMs Learn to Abstain in Temporal QA and Beyond? ICLR2026
Large language models (LLMs) rarely admit uncertainty, often producing fluent but misleading answers, rather than abstaining (i.e., refusing to answer). This weakness is even evident in temporal question answering, where models frequently ignore time-sensitive evidence and conflate facts across different time-periods. In this paper, we present the first empirical study of training LLMs with an abstention ability while reasoning about temporal QA. Existing approaches such as calibration might be unreliable in capturing uncertainty in complex reasoning. We instead frame abstention as a teachable skill and introduce a pipeline that couples Chain-of-Thought (CoT) supervision with Reinforcement Learning (RL) guided by abstention-aware rewards. Our goal is to systematically analyze how different information types and training techniques affect temporal reasoning with abstention behavior in LLMs. Through extensive experiments studying various methods, we find that RL yields strong empirical gains on reasoning: a model initialized by Qwen2.5-1.5B-Instruct surpasses GPT-4o by $3.46\%$ and $5.80\%$ in Exact Match on TimeQA-Easy and Hard, respectively. Moreover, it improves the True Positive rate on unanswerable questions by $20\%$ over a pure supervised fine-tuned (SFT) variant. Beyond performance, our analysis shows that SFT induces overconfidence and harms reliability, while RL improves prediction accuracy but exhibits similar risks. Finally, by comparing implicit reasoning cues (e.g., original context, temporal sub-context, knowledge graphs) with explicit CoT supervision, we find that implicit information provides limited benefit for reasoning with abstention. Our study provides new insights into how abstention and reasoning can be jointly optimized, providing a foundation for building more reliable LLMs.
comment: Accepted to ICLR2026
☆ Comparative Insights on Adversarial Machine Learning from Industry and Academia: A User-Study Approach
An exponential growth of Machine Learning and its Generative AI applications brings with it significant security challenges, often referred to as Adversarial Machine Learning (AML). In this paper, we conducted two comprehensive studies to explore the perspectives of industry professionals and students on different AML vulnerabilities and their educational strategies. In our first study, we conducted an online survey with professionals revealing a notable correlation between cybersecurity education and concern for AML threats. For our second study, we developed two CTF challenges that implement Natural Language Processing and Generative AI concepts and demonstrate a poisoning attack on the training data set. The effectiveness of these challenges was evaluated by surveying undergraduate and graduate students at Carnegie Mellon University, finding that a CTF-based approach effectively engages interest in AML threats. Based on the responses of the participants in our research, we provide detailed recommendations emphasizing the critical need for integrated security education within the ML curriculum.
☆ Exploiting contextual information to improve stance detection in informal political discourse with LLMs
This study investigates the use of Large Language Models (LLMs) for political stance detection in informal online discourse, where language is often sarcastic, ambiguous, and context-dependent. We explore whether providing contextual information, specifically user profile summaries derived from historical posts, can improve classification accuracy. Using a real-world political forum dataset, we generate structured profiles that summarize users' ideological leaning, recurring topics, and linguistic patterns. We evaluate seven state-of-the-art LLMs across baseline and context-enriched setups through a comprehensive cross-model evaluation. Our findings show that contextual prompts significantly boost accuracy, with improvements ranging from +17.5\% to +38.5\%, achieving up to 74\% accuracy that surpasses previous approaches. We also analyze how profile size and post selection strategies affect performance, showing that strategically chosen political content yields better results than larger, randomly selected contexts. These findings underscore the value of incorporating user-level context to enhance LLM performance in nuanced political classification tasks.
comment: 14 pages, 7 figures
☆ Alignment Drift in Multimodal LLMs: A Two-Phase, Longitudinal Evaluation of Harm Across Eight Model Releases
Multimodal large language models (MLLMs) are increasingly deployed in real-world systems, yet their safety under adversarial prompting remains underexplored. We present a two-phase evaluation of MLLM harmlessness using a fixed benchmark of 726 adversarial prompts authored by 26 professional red teamers. Phase 1 assessed GPT-4o, Claude Sonnet 3.5, Pixtral 12B, and Qwen VL Plus; Phase 2 evaluated their successors (GPT-5, Claude Sonnet 4.5, Pixtral Large, and Qwen Omni) yielding 82,256 human harm ratings. Large, persistent differences emerged across model families: Pixtral models were consistently the most vulnerable, whereas Claude models appeared safest due to high refusal rates. Attack success rates (ASR) showed clear alignment drift: GPT and Claude models exhibited increased ASR across generations, while Pixtral and Qwen showed modest decreases. Modality effects also shifted over time: text-only prompts were more effective in Phase 1, whereas Phase 2 produced model-specific patterns, with GPT-5 and Claude 4.5 showing near-equivalent vulnerability across modalities. These findings demonstrate that MLLM harmlessness is neither uniform nor stable across updates, underscoring the need for longitudinal, multimodal benchmarks to track evolving safety behaviour.
comment: under peer-review
☆ From Data to Behavior: Predicting Unintended Model Behaviors Before Training
Large Language Models (LLMs) can acquire unintended biases from seemingly benign training data even without explicit cues or malicious content. Existing methods struggle to detect such risks before fine-tuning, making post hoc evaluation costly and inefficient. To address this challenge, we introduce Data2Behavior, a new task for predicting unintended model behaviors prior to training. We also propose Manipulating Data Features (MDF), a lightweight approach that summarizes candidate data through their mean representations and injects them into the forward pass of a base model, allowing latent statistical signals in the data to shape model activations and reveal potential biases and safety risks without updating any parameters. MDF achieves reliable prediction while consuming only about 20% of the GPU resources required for fine-tuning. Experiments on Qwen3-14B, Qwen2.5-32B-Instruct, and Gemma-3-12b-it confirm that MDF can anticipate unintended behaviors and provide insight into pre-training vulnerabilities.
comment: Work in progress
☆ Supporting software engineering tasks with agentic AI: Demonstration on document retrieval and test scenario generation
The introduction of large language models ignited great retooling and rethinking of the software development models. The ensuing response of software engineering research yielded a massive body of tools and approaches. In this paper, we join the hassle by introducing agentic AI solutions for two tasks. First, we developed a solution for automatic test scenario generation from a detailed requirements description. This approach relies on specialized worker agents forming a star topology with the supervisor agent in the middle. We demonstrate its capabilities on a real-world example. Second, we developed an agentic AI solution for the document retrieval task in the context of software engineering documents. Our solution enables performing various use cases on a body of documents related to the development of a single software, including search, question answering, tracking changes, and large document summarization. In this case, each use case is handled by a dedicated LLM-based agent, which performs all subtasks related to the corresponding use case. We conclude by hinting at the future perspectives of our line of research.
comment: This is a preprint of a paper that was accepted at the International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA 2026)
☆ Identifying Intervenable and Interpretable Features via Orthogonality Regularization
With recent progress on fine-tuning language models around a fixed sparse autoencoder, we disentangle the decoder matrix into almost orthogonal features. This reduces interference and superposition between the features, while keeping performance on the target dataset essentially unchanged. Our orthogonality penalty leads to identifiable features, ensuring the uniqueness of the decomposition. Further, we find that the distance between embedded feature explanations increases with stricter orthogonality penalty, a desirable property for interpretability. Invoking the $\textit{Independent Causal Mechanisms}$ principle, we argue that orthogonality promotes modular representations amenable to causal intervention. We empirically show that these increasingly orthogonalized features allow for isolated interventions. Our code is available under $\texttt{https://github.com/mrtzmllr/sae-icm}$.
☆ Adaptive Prompt Elicitation for Text-to-Image Generation
Aligning text-to-image generation with user intent remains challenging, for users who provide ambiguous inputs and struggle with model idiosyncrasies. We propose Adaptive Prompt Elicitation (APE), a technique that adaptively asks visual queries to help users refine prompts without extensive writing. Our technical contribution is a formulation of interactive intent inference under an information-theoretic framework. APE represents latent intent as interpretable feature requirements using language model priors, adaptively generates visual queries, and compiles elicited requirements into effective prompts. Evaluation on IDEA-Bench and DesignBench shows that APE achieves stronger alignment with improved efficiency. A user study with challenging user-defined tasks demonstrates 19.8% higher alignment without workload overhead. Our work contributes a principled approach to prompting that, for general users, offers an effective and efficient complement to the prevailing prompt-based interaction paradigm with text-to-image models.
comment: ACM International Conference on Intelligent User Interfaces (IUI) 2026, March 23-26, Paphos, Cyprus
☆ SAR-RAG: ATR Visual Question Answering by Semantic Search, Retrieval, and MLLM Generation
We present a visual-context image retrieval-augmented generation (ImageRAG) assisted AI agent for automatic target recognition (ATR) of synthetic aperture radar (SAR). SAR is a remote sensing method used in defense and security applications to detect and monitor the positions of military vehicles, which may appear indistinguishable in images. Researchers have extensively studied SAR ATR to improve the differentiation and identification of vehicle types, characteristics, and measurements. Test examples can be compared with known vehicle target types to improve recognition tasks. New methods enhance the capabilities of neural networks, transformer attention, and multimodal large language models. An agentic AI method may be developed to utilize a defined set of tools, such as searching through a library of similar examples. Our proposed method, SAR Retrieval-Augmented Generation (SAR-RAG), combines a multimodal large language model (MLLM) with a vector database of semantic embeddings to support contextual search for image exemplars with known qualities. By recovering past image examples with known true target types, our SAR-RAG system can compare similar vehicle categories, achieving improved ATR prediction accuracy. We evaluate this through search and retrieval metrics, categorical classification accuracy, and numeric regression of vehicle dimensions. These metrics all show improvements when SAR-RAG is added to an MLLM baseline method as an attached ATR memory bank.
comment: Submitted to 2026 IEEE Radar Conference
☆ Addressing Corpus Knowledge Poisoning Attacks on RAG Using Sparse Attention
Retrieval Augmented Generation (RAG) is a highly effective paradigm for keeping LLM-based responses up-to-date and reducing the likelihood of hallucinations. Yet, RAG was recently shown to be quite vulnerable to corpus knowledge poisoning: an attacker injects misleading documents to the corpus to steer an LLMs' output to an undesired response. We argue that the standard causal attention mechanism in LLMs enables harmful cross-document interactions, specifically in cases of attacks. Accordingly, we introduce a novel defense approach for RAG: Sparse Document Attention RAG (SDAG). This is a block-sparse attention mechanism that disallows cross-attention between retrieved documents. SDAG requires a minimal inference-time change to the attention mask; furthermore, no fine-tuning or additional architectural changes are needed. We present an empirical evaluation of LLM-based question answering (QA) with a variety of attack strategies on RAG. We show that our SDAG method substantially outperforms the standard causal attention mechanism in terms of attack success rate. We further demonstrate the clear merits of integrating SDAG with state-of-the-art RAG defense methods. Specifically, the integration results in performance that is statistically significantly better than the state-of-the-art.
☆ DRMOT: A Dataset and Framework for RGBD Referring Multi-Object Tracking
Referring Multi-Object Tracking (RMOT) aims to track specific targets based on language descriptions and is vital for interactive AI systems such as robotics and autonomous driving. However, existing RMOT models rely solely on 2D RGB data, making it challenging to accurately detect and associate targets characterized by complex spatial semantics (e.g., ``the person closest to the camera'') and to maintain reliable identities under severe occlusion, due to the absence of explicit 3D spatial information. In this work, we propose a novel task, RGBD Referring Multi-Object Tracking (DRMOT), which explicitly requires models to fuse RGB, Depth (D), and Language (L) modalities to achieve 3D-aware tracking. To advance research on the DRMOT task, we construct a tailored RGBD referring multi-object tracking dataset, named DRSet, designed to evaluate models' spatial-semantic grounding and tracking capabilities. Specifically, DRSet contains RGB images and depth maps from 187 scenes, along with 240 language descriptions, among which 56 descriptions incorporate depth-related information. Furthermore, we propose DRTrack, a MLLM-guided depth-referring tracking framework. DRTrack performs depth-aware target grounding from joint RGB-D-L inputs and enforces robust trajectory association by incorporating depth cues. Extensive experiments on the DRSet dataset demonstrate the effectiveness of our framework.
☆ Audio ControlNet for Fine-Grained Audio Generation and Editing
We study the fine-grained text-to-audio (T2A) generation task. While recent models can synthesize high-quality audio from text descriptions, they often lack precise control over attributes such as loudness, pitch, and sound events. Unlike prior approaches that retrain models for specific control types, we propose to train ControlNet models on top of pre-trained T2A backbones to achieve controllable generation over loudness, pitch, and event roll. We introduce two designs, T2A-ControlNet and T2A-Adapter, and show that the T2A-Adapter model offers a more efficient structure with strong control ability. With only 38M additional parameters, T2A-Adapter achieves state-of-the-art performance on the AudioSet-Strong in both event-level and segment-level F1 scores. We further extend this framework to audio editing, proposing T2A-Editor for removing and inserting audio events at time locations specified by instructions. Models, code, dataset pipelines, and benchmarks will be released to support future research on controllable audio generation and editing.
☆ Let Experts Feel Uncertainty: A Multi-Expert Label Distribution Approach to Probabilistic Time Series Forecasting
Time series forecasting in real-world applications requires both high predictive accuracy and interpretable uncertainty quantification. Traditional point prediction methods often fail to capture the inherent uncertainty in time series data, while existing probabilistic approaches struggle to balance computational efficiency with interpretability. We propose a novel Multi-Expert Learning Distributional Labels (LDL) framework that addresses these challenges through mixture-of-experts architectures with distributional learning capabilities. Our approach introduces two complementary methods: (1) Multi-Expert LDL, which employs multiple experts with different learned parameters to capture diverse temporal patterns, and (2) Pattern-Aware LDL-MoE, which explicitly decomposes time series into interpretable components (trend, seasonality, changepoints, volatility) through specialized sub-experts. Both frameworks extend traditional point prediction to distributional learning, enabling rich uncertainty quantification through Maximum Mean Discrepancy (MMD). We evaluate our methods on aggregated sales data derived from the M5 dataset, demonstrating superior performance compared to baseline approaches. The continuous Multi-Expert LDL achieves the best overall performance, while the Pattern-Aware LDL-MoE provides enhanced interpretability through component-wise analysis. Our frameworks successfully balance predictive accuracy with interpretability, making them suitable for real-world forecasting applications where both performance and actionable insights are crucial.
comment: 11 pages, 2figures
☆ Overstating Attitudes, Ignoring Networks: LLM Biases in Simulating Misinformation Susceptibility
Large language models (LLMs) are increasingly used as proxies for human judgment in computational social science, yet their ability to reproduce patterns of susceptibility to misinformation remains unclear. We test whether LLM-simulated survey respondents, prompted with participant profiles drawn from social survey data measuring network, demographic, attitudinal and behavioral features, can reproduce human patterns of misinformation belief and sharing. Using three online surveys as baselines, we evaluate whether LLM outputs match observed response distributions and recover feature-outcome associations present in the original survey data. LLM-generated responses capture broad distributional tendencies and show modest correlation with human responses, but consistently overstate the association between belief and sharing. Linear models fit to simulated responses exhibit substantially higher explained variance and place disproportionate weight on attitudinal and behavioral features, while largely ignoring personal network characteristics, relative to models fit to human responses. Analyses of model-generated reasoning and LLM training data suggest that these distortions reflect systematic biases in how misinformation-related concepts are represented. Our findings suggest that LLM-based survey simulations are better suited for diagnosing systematic divergences from human judgment than for substituting it.
☆ Delving into Muon and Beyond: Deep Analysis and Extensions
The Muon optimizer has recently attracted considerable attention for its strong empirical performance and use of orthogonalized updates on matrix-shaped parameters, yet its underlying mechanisms and relationship to adaptive optimizers such as Adam remain insufficiently understood. In this work, we aim to address these questions through a unified spectral perspective. Specifically, we view Muon as the p = 0 endpoint of a family of spectral transformations of the form U \boldsymbolΣ^{p} V' , and consider additional variants with p = 1/2 , p = 1/4 , and p = 1 . These transformations are applied to both first-moment updates, as in momentum SGD, and to root-mean-square (RMS) normalized gradient updates as in Adam. To enable efficient computation, we develop a coupled Newton iteration that avoids explicit singular value decomposition. Across controlled experiments, we find that RMS-normalized updates yield more stable optimization than first-moment updates. Moreover, while spectral compression provides strong stabilization benefits under first-moment updates, the Muon update (p = 0) does not consistently outperform Adam. These results suggest that Muon is best understood as an effective form of spectral normalization, but not a universally superior optimization method. Our source code will be released at https://github.com/Ocram7/BeyondMuon.
comment: This paper studies matrix-based optimizers (e.g., Muon) from a spectral perspective and unifies a range of methods under a common spectral framework
☆ Rethinking the Design Space of Reinforcement Learning for Diffusion Models: On the Importance of Likelihood Estimation Beyond Loss Design
Reinforcement learning has been widely applied to diffusion and flow models for visual tasks such as text-to-image generation. However, these tasks remain challenging because diffusion models have intractable likelihoods, which creates a barrier for directly applying popular policy-gradient type methods. Existing approaches primarily focus on crafting new objectives built on already heavily engineered LLM objectives, using ad hoc estimators for likelihood, without a thorough investigation into how such estimation affects overall algorithmic performance. In this work, we provide a systematic analysis of the RL design space by disentangling three factors: i) policy-gradient objectives, ii) likelihood estimators, and iii) rollout sampling schemes. We show that adopting an evidence lower bound (ELBO) based model likelihood estimator, computed only from the final generated sample, is the dominant factor enabling effective, efficient, and stable RL optimization, outweighing the impact of the specific policy-gradient loss functional. We validate our findings across multiple reward benchmarks using SD 3.5 Medium, and observe consistent trends across all tasks. Our method improves the GenEval score from 0.24 to 0.95 in 90 GPU hours, which is $4.6\times$ more efficient than FlowGRPO and $2\times$ more efficient than the SOTA method DiffusionNFT without reward hacking.
comment: 23 pages, 11 figures
☆ Towards Structured, State-Aware, and Execution-Grounded Reasoning for Software Engineering Agents
Software Engineering (SE) agents have shown promising abilities in supporting various SE tasks. Current SE agents remain fundamentally reactive, making decisions mainly based on conversation history and the most recent response. However, this reactive design provides no explicit structure or persistent state within the agent's memory, making long-horizon reasoning challenging. As a result, SE agents struggle to maintain a coherent understanding across reasoning steps, adapt their hypotheses as new evidence emerges, or incorporate execution feedback into the mental reasoning model of the system state. In this position paper, we argue that, to further advance SE agents, we need to move beyond reactive behavior toward a structured, state-aware, and execution-grounded reasoning. We outline how explicit structure, persistent and evolving state, and the integration of execution-grounded feedback can help SE agents perform more coherent and reliable reasoning in long-horizon tasks. We also provide an initial roadmap for developing next-generation SE agents that can more effectively perform real-world tasks.
comment: Position paper accepted in BoatSE
☆ WideSeek-R1: Exploring Width Scaling for Broad Information Seeking via Multi-Agent Reinforcement Learning
Recent advancements in Large Language Models (LLMs) have largely focused on depth scaling, where a single agent solves long-horizon problems with multi-turn reasoning and tool use. However, as tasks grow broader, the key bottleneck shifts from individual competence to organizational capability. In this work, we explore a complementary dimension of width scaling with multi-agent systems to address broad information seeking. Existing multi-agent systems often rely on hand-crafted workflows and turn-taking interactions that fail to parallelize work effectively. To bridge this gap, we propose WideSeek-R1, a lead-agent-subagent framework trained via multi-agent reinforcement learning (MARL) to synergize scalable orchestration and parallel execution. By utilizing a shared LLM with isolated contexts and specialized tools, WideSeek-R1 jointly optimizes the lead agent and parallel subagents on a curated dataset of 20k broad information-seeking tasks. Extensive experiments show that WideSeek-R1-4B achieves an item F1 score of 40.0% on the WideSearch benchmark, which is comparable to the performance of single-agent DeepSeek-R1-671B. Furthermore, WideSeek-R1-4B exhibits consistent performance gains as the number of parallel subagents increases, highlighting the effectiveness of width scaling.
☆ A Human-Centered Privacy Approach (HCP) to AI
As the paradigm of Human-Centered AI (HCAI) gains prominence, its benefits to society are accompanied by significant ethical concerns, one of which is the protection of individual privacy. This chapter provides a comprehensive overview of privacy within HCAI, proposing a human-centered privacy (HCP) framework, providing integrated solution from technology, ethics, and human factors perspectives. The chapter begins by mapping privacy risks across each stage of AI development lifecycle, from data collection to deployment and reuse, highlighting the impact of privacy risks on the entire system. The chapter then introduces privacy-preserving techniques such as federated learning and dif erential privacy. Subsequent chapters integrate the crucial user perspective by examining mental models, alongside the evolving regulatory and ethical landscapes as well as privacy governance. Next, advice on design guidelines is provided based on the human-centered privacy framework. After that, we introduce practical case studies across diverse fields. Finally, the chapter discusses persistent open challenges and future research directions, concluding that a multidisciplinary approach, merging technical, design, policy, and ethical expertise, is essential to successfully embed privacy into the core of HCAI, thereby ensuring these technologies advance in a manner that respects and ensures human autonomy, trust and dignity.
☆ RexBERT: Context Specialized Bidirectional Encoders for E-commerce
Encoder-only transformers remain indispensable in retrieval, classification, and ranking systems where latency, stability, and cost are paramount. Most general purpose encoders, however, are trained on generic corpora with limited coverage of specialized domains. We introduce RexBERT, a family of BERT-style encoders designed specifically for e-commerce semantics. We make three contributions. First, we release Ecom-niverse, a 350 billion token corpus curated from diverse retail and shopping sources. We describe a modular pipeline that isolates and extracts e-commerce content from FineFineWeb and other open web resources, and characterize the resulting domain distribution. Second, we present a reproducible pretraining recipe building on ModernBERT's architectural advances. The recipe consists of three phases: general pre-training, context extension, and annealed domain specialization. Third, we train RexBERT models ranging from 17M to 400M parameters and evaluate them on token classification, semantic similarity, and general natural language understanding tasks using e-commerce datasets. Despite having 2-3x fewer parameters, RexBERT outperforms larger general-purpose encoders and matches or surpasses modern long-context models on domain-specific benchmarks. Our results demonstrate that high quality in-domain data combined with a principled training approach provides a stronger foundation for e-commerce applications than indiscriminate scaling alone.
comment: Blog: https://huggingface.co/blog/thebajajra/rexbert-encoders Models: https://huggingface.co/collections/thebajajra/rexbert Ecom-niverse Dataset: https://huggingface.co/datasets/thebajajra/Ecom-niverse
☆ VILLAIN at AVerImaTeC: Verifying Image-Text Claims via Multi-Agent Collaboration EACL 2026
This paper describes VILLAIN, a multimodal fact-checking system that verifies image-text claims through prompt-based multi-agent collaboration. For the AVerImaTeC shared task, VILLAIN employs vision-language model agents across multiple stages of fact-checking. Textual and visual evidence is retrieved from the knowledge store enriched through additional web collection. To identify key information and address inconsistencies among evidence items, modality-specific and cross-modal agents generate analysis reports. In the subsequent stage, question-answer pairs are produced based on these reports. Finally, the Verdict Prediction agent produces the verification outcome based on the image-text claim and the generated question-answer pairs. Our system ranked first on the leaderboard across all evaluation metrics. The source code is publicly available at https://github.com/ssu-humane/VILLAIN.
comment: A system description paper for the AVerImaTeC shared task at the Ninth FEVER Workshop (co-located with EACL 2026)
☆ Trust The Typical
Current approaches to LLM safety fundamentally rely on a brittle cat-and-mouse game of identifying and blocking known threats via guardrails. We argue for a fresh approach: robust safety comes not from enumerating what is harmful, but from deeply understanding what is safe. We introduce Trust The Typical (T3), a framework that operationalizes this principle by treating safety as an out-of-distribution (OOD) detection problem. T3 learns the distribution of acceptable prompts in a semantic space and flags any significant deviation as a potential threat. Unlike prior methods, it requires no training on harmful examples, yet achieves state-of-the-art performance across 18 benchmarks spanning toxicity, hate speech, jailbreaking, multilingual harms, and over-refusal, reducing false positive rates by up to 40x relative to specialized safety models. A single model trained only on safe English text transfers effectively to diverse domains and over 14 languages without retraining. Finally, we demonstrate production readiness by integrating a GPU-optimized version into vLLM, enabling continuous guardrailing during token generation with less than 6% overhead even under dense evaluation intervals on large-scale workloads.
☆ Vibe AIGC: A New Paradigm for Content Generation via Agentic Orchestration
For the past decade, the trajectory of generative artificial intelligence (AI) has been dominated by a model-centric paradigm driven by scaling laws. Despite significant leaps in visual fidelity, this approach has encountered a ``usability ceiling'' manifested as the Intent-Execution Gap (i.e., the fundamental disparity between a creator's high-level intent and the stochastic, black-box nature of current single-shot models). In this paper, inspired by the Vibe Coding, we introduce the \textbf{Vibe AIGC}, a new paradigm for content generation via agentic orchestration, which represents the autonomous synthesis of hierarchical multi-agent workflows. Under this paradigm, the user's role transcends traditional prompt engineering, evolving into a Commander who provides a Vibe, a high-level representation encompassing aesthetic preferences, functional logic, and etc. A centralized Meta-Planner then functions as a system architect, deconstructing this ``Vibe'' into executable, verifiable, and adaptive agentic pipelines. By transitioning from stochastic inference to logical orchestration, Vibe AIGC bridges the gap between human imagination and machine execution. We contend that this shift will redefine the human-AI collaborative economy, transforming AI from a fragile inference engine into a robust system-level engineering partner that democratizes the creation of complex, long-horizon digital assets.
☆ From Competition to Collaboration: Designing Sustainable Mechanisms Between LLMs and Online Forums
While Generative AI (GenAI) systems draw users away from (Q&A) forums, they also depend on the very data those forums produce to improve their performance. Addressing this paradox, we propose a framework of sequential interaction, in which a GenAI system proposes questions to a forum that can publish some of them. Our framework captures several intricacies of such a collaboration, including non-monetary exchanges, asymmetric information, and incentive misalignment. We bring the framework to life through comprehensive, data-driven simulations using real Stack Exchange data and commonly used LLMs. We demonstrate the incentive misalignment empirically, yet show that players can achieve roughly half of the utility in an ideal full-information scenario. Our results highlight the potential for sustainable collaboration that preserves effective knowledge sharing between AI systems and human knowledge platforms.
☆ Dual Mind World Model Inspired Network Digital Twin for Access Scheduling
Emerging networked systems such as industrial IoT and real-time cyber-physical infrastructures demand intelligent scheduling strategies capable of adapting to dynamic traffic, deadlines, and interference constraints. In this work, we present a novel Digital Twin-enabled scheduling framework inspired by Dual Mind World Model (DMWM) architecture, for learning-informed and imagination-driven network control. Unlike conventional rule-based or purely data-driven policies, the proposed DMWM combines short-horizon predictive planning with symbolic model-based rollout, enabling the scheduler to anticipate future network states and adjust transmission decisions accordingly. We implement the framework in a configurable simulation testbed and benchmark its performance against traditional heuristics and reinforcement learning baselines under varied traffic conditions. Our results show that DMWM achieves superior performance in bursty, interference-limited, and deadline-sensitive environments, while maintaining interpretability and sample efficiency. The proposed design bridges the gap between network-level reasoning and low-overhead learning, marking a step toward scalable and adaptive NDT-based network optimization.
☆ OmniRad: A Radiological Foundation Model for Multi-Task Medical Image Analysis
Radiological analysis increasingly benefits from pretrained visual representations that can support heterogeneous downstream tasks across imaging modalities. In this work, we introduce OmniRad, a self-supervised radiological foundation model pretrained on 1.2 million medical images, designed with radiology-inspired principles emphasizing representation reuse and cross-task transferability. We evaluate the pretrained encoder under multiple downstream adaptation regimes, including lightweight task-specific adapters with a frozen backbone as well as full end-to-end fine-tuning for classification, allowing us to assess both representation quality and task-specific performance. OmniRad is evaluated on a broad suite of public benchmarks spanning classification and segmentation across multiple modalities. On the MedMNISTv2 collection, OmniRad improves classification F1 by up to 2.05% over competing foundation models. For dense prediction, OmniRad attains mean Dice score improvements across six MedSegBench datasets when using frozen representations. Qualitative analyses and latent-space visualizations suggest improved feature clustering and modality-related separation.
comment: 19 pages, 4 figures, 12 tables
☆ Continual Learning through Control Minimization
Catastrophic forgetting remains a fundamental challenge for neural networks when tasks are trained sequentially. In this work, we reformulate continual learning as a control problem where learning and preservation signals compete within neural activity dynamics. We convert regularization penalties into preservation signals that protect prior-task representations. Learning then proceeds by minimizing the control effort required to integrate new tasks while competing with the preservation of prior tasks. At equilibrium, the neural activities produce weight updates that implicitly encode the full prior-task curvature, a property we term the continual-natural gradient, requiring no explicit curvature storage. Experiments confirm that our learning framework recovers true prior-task curvature and enables task discrimination, outperforming existing methods on standard benchmarks without replay.
☆ LycheeDecode: Accelerating Long-Context LLM Inference via Hybrid-Head Sparse Decoding ICLR 2026
The proliferation of long-context large language models (LLMs) exposes a key bottleneck: the rapidly expanding key-value cache during decoding, which imposes heavy memory and latency costs. While recent approaches attempt to alleviate this by sharing a single set of crucial tokens across layers, such coarse-grained sharing undermines model performance by neglecting the functional diversity of attention heads. To address this, we propose LycheeDecode, an efficient decoding method centered on a fine-grained hybrid-head attention mechanism that employs a hardware-efficient top-k selection strategy. Specifically, the novel HardKuma-based mechanism partitions attention heads into a small subset of retrieval heads that dynamically identify crucial tokens and a majority of sparse heads that reuse them for efficient computation. Through extensive experiments on leading models like Llama3 and Qwen3 across diverse benchmarks for long-context understanding (e.g., LongBench, RULER) and complex reasoning (e.g., AIME24, OlympiadBench), we demonstrate that LycheeDecode achieves generative quality comparable to, and at times surpassing even the full-attention baseline. Crucially, this is accomplished with up to a 2.7x speedup at a 128K context length. By preserving the functional diversity of attention heads, our fine-grained strategy overcomes the performance bottlenecks of existing methods, providing a powerful and validated pathway to both efficient and high-quality long-context LLM inference.
comment: ICLR 2026
☆ SLUM-i: Semi-supervised Learning for Urban Mapping of Informal Settlements and Data Quality Benchmarking
Rapid urban expansion has fueled the growth of informal settlements in major cities of low- and middle-income countries, with Lahore and Karachi in Pakistan and Mumbai in India serving as prominent examples. However, large-scale mapping of these settlements is severely constrained not only by the scarcity of annotations but by inherent data quality challenges, specifically high spectral ambiguity between formal and informal structures and significant annotation noise. We address this by introducing a benchmark dataset for Lahore, constructed from scratch, along with companion datasets for Karachi and Mumbai, which were derived from verified administrative boundaries, totaling 1,869 $\text{km}^2$ of area. To evaluate the global robustness of our framework, we extend our experiments to five additional established benchmarks, encompassing eight cities across three continents, and provide comprehensive data quality assessments of all datasets. We also propose a new semi-supervised segmentation framework designed to mitigate the class imbalance and feature degradation inherent in standard semi-supervised learning pipelines. Our method integrates a Class-Aware Adaptive Thresholding mechanism that dynamically adjusts confidence thresholds to prevent minority class suppression and a Prototype Bank System that enforces semantic consistency by anchoring predictions to historically learned high-fidelity feature representations. Extensive experiments across a total of eight cities spanning three continents demonstrate that our approach outperforms state-of-the-art semi-supervised baselines. Most notably, our method demonstrates superior domain transfer capability whereby a model trained on only 10% of source labels reaches a 0.461 mIoU on unseen geographies and outperforms the zero-shot generalization of fully supervised models.
comment: 10 pages, 8 figures, 5 tables
☆ Learning the Value Systems of Agents with Preference-based and Inverse Reinforcement Learning
Agreement Technologies refer to open computer systems in which autonomous software agents interact with one another, typically on behalf of humans, in order to come to mutually acceptable agreements. With the advance of AI systems in recent years, it has become apparent that such agreements, in order to be acceptable to the involved parties, must remain aligned with ethical principles and moral values. However, this is notoriously difficult to ensure, especially as different human users (and their software agents) may hold different value systems, i.e. they may differently weigh the importance of individual moral values. Furthermore, it is often hard to specify the precise meaning of a value in a particular context in a computational manner. Methods to estimate value systems based on human-engineered specifications, e.g. based on value surveys, are limited in scale due to the need for intense human moderation. In this article, we propose a novel method to automatically \emph{learn} value systems from observations and human demonstrations. In particular, we propose a formal model of the \emph{value system learning} problem, its instantiation to sequential decision-making domains based on multi-objective Markov decision processes, as well as tailored preference-based and inverse reinforcement learning algorithms to infer value grounding functions and value systems. The approach is illustrated and evaluated by two simulated use cases.
comment: 42 pages, 5 figures. Published in Journal of Autonomous Agents and Multi-Agent Systems
☆ BrainVista: Modeling Naturalistic Brain Dynamics as Multimodal Next-Token Prediction
Naturalistic fMRI characterizes the brain as a dynamic predictive engine driven by continuous sensory streams. However, modeling the causal forward evolution in realistic neural simulation is impeded by the timescale mismatch between multimodal inputs and the complex topology of cortical networks. To address these challenges, we introduce BrainVista, a multimodal autoregressive framework designed to model the causal evolution of brain states. BrainVista incorporates Network-wise Tokenizers to disentangle system-specific dynamics and a Spatial Mixer Head that captures inter-network information flow without compromising functional boundaries. Furthermore, we propose a novel Stimulus-to-Brain (S2B) masking mechanism to synchronize high-frequency sensory stimuli with hemodynamically filtered signals, enabling strict, history-only causal conditioning. We validate our framework on Algonauts 2025, CineBrain, and HAD, achieving state-of-the-art fMRI encoding performance. In long-horizon rollout settings, our model yields substantial improvements over baselines, increasing pattern correlation by 36.0\% and 33.3\% on relative to the strongest baseline Algonauts 2025 and CineBrain, respectively.
comment: 17 pages, 7 figures, 11 tables
☆ ReThinker: Scientific Reasoning by Rethinking with Guided Reflection and Confidence Control
Expert-level scientific reasoning remains challenging for large language models, particularly on benchmarks such as Humanity's Last Exam (HLE), where rigid tool pipelines, brittle multi-agent coordination, and inefficient test-time scaling often limit performance. We introduce ReThinker, a confidence-aware agentic framework that orchestrates retrieval, tool use, and multi-agent reasoning through a stage-wise Solver-Critic-Selector architecture. Rather than following a fixed pipeline, ReThinker dynamically allocates computation based on model confidence, enabling adaptive tool invocation, guided multi-dimensional reflection, and robust confidence-weighted selection. To support scalable training without human annotation, we further propose a reverse data synthesis pipeline and an adaptive trajectory recycling strategy that transform successful reasoning traces into high-quality supervision. Experiments on HLE, GAIA, and XBench demonstrate that ReThinker consistently outperforms state-of-the-art foundation models with tools and existing deep research systems, achieving state-of-the-art results on expert-level reasoning tasks.
☆ Discovering Mechanistic Models of Neural Activity: System Identification in an in Silico Zebrafish
Constructing mechanistic models of neural circuits is a fundamental goal of neuroscience, yet verifying such models is limited by the lack of ground truth. To rigorously test model discovery, we establish an in silico testbed using neuromechanical simulations of a larval zebrafish as a transparent ground truth. We find that LLM-based tree search autonomously discovers predictive models that significantly outperform established forecasting baselines. Conditioning on sensory drive is necessary but not sufficient for faithful system identification, as models exploit statistical shortcuts. Structural priors prove essential for enabling robust out-of-distribution generalization and recovery of interpretable mechanistic models. Our insights provide guidance for modeling real-world neural recordings and offer a broader template for AI-driven scientific discovery.
LLM-Empowered Cooperative Content Caching in Vehicular Fog Caching-Assisted Platoon Networks
This letter proposes a novel three-tier content caching architecture for Vehicular Fog Caching (VFC)-assisted platoon, where the VFC is formed by the vehicles driving near the platoon. The system strategically coordinates storage across local platoon vehicles, dynamic VFC clusters, and cloud server (CS) to minimize content retrieval latency. To efficiently manage distributed storage, we integrate large language models (LLMs) for real-time and intelligent caching decisions. The proposed approach leverages LLMs' ability to process heterogeneous information, including user profiles, historical data, content characteristics, and dynamic system states. Through a designed prompting framework encoding task objectives and caching constraints, the LLMs formulate caching as a decision-making task, and our hierarchical deterministic caching mapping strategy enables adaptive requests prediction and precise content placement across three tiers without frequent retraining. Simulation results demonstrate the advantages of our proposed caching scheme.
comment: Corresponding author: Qiong Wu (qiongwu@jiangnan.edu.cn)
☆ Is Micro Domain-Adaptive Pre-Training Effective for Real-World Operations? Multi-Step Evaluation Reveals Potential and Bottlenecks EACL2026
When applying LLMs to real-world enterprise operations, LLMs need to handle proprietary knowledge in small domains of specific operations ($\textbf{micro domains}$). A previous study shows micro domain-adaptive pre-training ($\textbf{mDAPT}$) with fewer documents is effective, similarly to DAPT in larger domains. However, it evaluates mDAPT only on multiple-choice questions; thus, its effectiveness for generative tasks in real-world operations remains unknown. We aim to reveal the potential and bottlenecks of mDAPT for generative tasks. To this end, we disentangle the answering process into three subtasks and evaluate the performance of each subtask: (1) $\textbf{eliciting}$ facts relevant to questions from an LLM's own knowledge, (2) $\textbf{reasoning}$ over the facts to obtain conclusions, and (3) $\textbf{composing}$ long-form answers based on the conclusions. We verified mDAPT on proprietary IT product knowledge for real-world questions in IT technical support operations. As a result, mDAPT resolved the elicitation task that the base model struggled with but did not resolve other subtasks. This clarifies mDAPT's effectiveness in the knowledge aspect and its bottlenecks in other aspects. Further analysis empirically shows that resolving the elicitation and reasoning tasks ensures sufficient performance (over 90%), emphasizing the need to enhance reasoning capability.
comment: 13 pages, 9 figures, Accepted by EACL2026 Industry Track
☆ Growth First, Care Second? Tracing the Landscape of LLM Value Preferences in Everyday Dilemmas
People increasingly seek advice online from both human peers and large language model (LLM)-based chatbots. Such advice rarely involves identifying a single correct answer; instead, it typically requires navigating trade-offs among competing values. We aim to characterize how LLMs navigate value trade-offs across different advice-seeking contexts. First, we examine the value trade-off structure underlying advice seeking using a curated dataset from four advice-oriented subreddits. Using a bottom-up approach, we inductively construct a hierarchical value framework by aggregating fine-grained values extracted from individual advice options into higher-level value categories. We construct value co-occurrence networks to characterize how values co-occur within dilemmas and find substantial heterogeneity in value trade-off structures across advice-seeking contexts: a women-focused subreddit exhibits the highest network density, indicating more complex value conflicts; women's, men's, and friendship-related subreddits exhibit highly correlated value-conflict patterns centered on security-related tensions (security vs. respect/connection/commitment); by contrast, career advice forms a distinct structure where security frequently clashes with self-actualization and growth. We then evaluate LLM value preferences against these dilemmas and find that, across models and contexts, LLMs consistently prioritize values related to Exploration & Growth over Benevolence & Connection. This systemically skewed value orientation highlights a potential risk of value homogenization in AI-mediated advice, raising concerns about how such systems may shape decision-making and normative outcomes at scale.
comment: dataset available at https://github.com/Renesmeeczy/Value-Trade-off-in-Reddit-Dilemmas
☆ RASA: Routing-Aware Safety Alignment for Mixture-of-Experts Models
Mixture-of-Experts (MoE) language models introduce unique challenges for safety alignment due to their sparse routing mechanisms, which can enable degenerate optimization behaviors under standard full-parameter fine-tuning. In our preliminary experiments, we observe that naively applying full-parameter safety fine-tuning to MoE models can reduce attack success rates through routing or expert dominance effects, rather than by directly repairing Safety-Critical Experts. To address this challenge, we propose RASA, a routing-aware expert-level alignment framework that explicitly repairs Safety-Critical Experts while preventing routing-based bypasses. RASA identifies experts disproportionately activated by successful jailbreaks, selectively fine-tunes only these experts under fixed routing, and subsequently enforces routing consistency with safety-aligned contexts. Across two representative MoE architectures and a diverse set of jailbreak attacks, RASA achieves near-perfect robustness, strong cross-attack generalization, and substantially reduced over-refusal, while preserving general capabilities on benchmarks such as MMLU, GSM8K, and TruthfulQA. Our results suggest that robust MoE safety alignment benefits from targeted expert repair rather than global parameter updates, offering a practical and architecture-preserving alternative to prior approaches.
comment: 9 pages
☆ Mixture of Masters: Sparse Chess Language Models with Player Routing
Modern chess language models are dense transformers trained on millions of games played by thousands of high-rated individuals. However, these monolithic networks tend to collapse into mode-averaged behavior, where stylistic boundaries are blurred, and rare but effective strategies are suppressed. To counteract homogenization, we introduce Mixture-of-Masters (MoM), the first chess mixture-of-experts model with small-sized GPT experts emulating world-class grandmasters. Each expert is trained with a combination of self-supervised learning and reinforcement learning guided by chess-specific rewards. For each move, a post-hoc learnable gating network selects the most appropriate persona to channel depending on the game state, allowing MoM to switch its style dynamically$--$e.g., Tal's offensive vocation or Petrosian's defensive solidity. When evaluated against Stockfish on unseen standard games, MoM outperforms both dense individual expert networks and popular GPT baselines trained on aggregated data, while ensuring generation variety, control, and interpretability.
☆ No One-Size-Fits-All: Building Systems For Translation to Bashkir, Kazakh, Kyrgyz, Tatar and Chuvash Using Synthetic And Original Data EACL 2026
We explore machine translation for five Turkic language pairs: Russian-Bashkir, Russian-Kazakh, Russian-Kyrgyz, English-Tatar, English-Chuvash. Fine-tuning nllb-200-distilled-600M with LoRA on synthetic data achieved chrF++ 49.71 for Kazakh and 46.94 for Bashkir. Prompting DeepSeek-V3.2 with retrieved similar examples achieved chrF++ 39.47 for Chuvash. For Tatar, zero-shot or retrieval-based approaches achieved chrF++ 41.6, while for Kyrgyz the zero-shot approach reached 45.6. We release the dataset and the obtained weights.
comment: Accepted to EACL 2026 (LoResMT workshop)
☆ SPEAR: An Engineering Case Study of Multi-Agent Coordination for Smart Contract Auditing
We present SPEAR, a multi-agent coordination framework for smart contract auditing that applies established MAS patterns in a realistic security analysis workflow. SPEAR models auditing as a coordinated mission carried out by specialized agents: a Planning Agent prioritizes contracts using risk-aware heuristics, an Execution Agent allocates tasks via the Contract Net protocol, and a Repair Agent autonomously recovers from brittle generated artifacts using a programmatic-first repair policy. Agents maintain local beliefs updated through AGM-compliant revision, coordinate via negotiation and auction protocols, and revise plans as new information becomes available. An empirical study compares the multi-agent design with centralized and pipeline-based alternatives under controlled failure scenarios, focusing on coordination, recovery behavior, and resource use.
☆ EMA Policy Gradient: Taming Reinforcement Learning for LLMs with EMA Anchor and Top-k KL
Reinforcement Learning (RL) has enabled Large Language Models (LLMs) to acquire increasingly complex reasoning and agentic behaviors. In this work, we propose two simple techniques to improve policy gradient algorithms for LLMs. First, we replace the fixed anchor policy during RL with an Exponential Moving Average (EMA), similar to a target network in deep Q-learning. Second, we introduce Top-k KL estimator, which allows for flexible interpolation between exact KL and sampled KL. We derive the stability conditions for using EMA anchor; moreover, we show that our Top-k KL estimator yields both unbiased KL values and unbiased gradients at any k, while bringing the benefits of exact KL. When combined with GRPO, the two techniques (EMA-PG) lead to a significant performance boost. On math reasoning, it allows R1-distilled Qwen-1.5B to reach 53.9% on OlympiadBench compared to 50.8% by GRPO. On agentic RL domains, with Qwen-3B base, EMA-PG improves GRPO by an average of 33.3% across 7 datasets of Q&A with search engines, including 29.7% $\rightarrow$ 44.1% on HotpotQA, 27.4% $\rightarrow$ 40.1% on 2WikiMultiHopQA. Overall, we show that EMA-PG is a simple, principled, and powerful approach to scaling RL for LLMs. Code: https://github.com/LunjunZhang/ema-pg
☆ Med-MMFL: A Multimodal Federated Learning Benchmark in Healthcare
Federated learning (FL) enables collaborative model training across decentralized medical institutions while preserving data privacy. However, medical FL benchmarks remain scarce, with existing efforts focusing mainly on unimodal or bimodal modalities and a limited range of medical tasks. This gap underscores the need for standardized evaluation to advance systematic understanding in medical MultiModal FL (MMFL). To this end, we introduce Med-MMFL, the first comprehensive MMFL benchmark for the medical domain, encompassing diverse modalities, tasks, and federation scenarios. Our benchmark evaluates six representative state-of-the-art FL algorithms, covering different aggregation strategies, loss formulations, and regularization techniques. It spans datasets with 2 to 4 modalities, comprising a total of 10 unique medical modalities, including text, pathology images, ECG, X-ray, radiology reports, and multiple MRI sequences. Experiments are conducted across naturally federated, synthetic IID, and synthetic non-IID settings to simulate real-world heterogeneity. We assess segmentation, classification, modality alignment (retrieval), and VQA tasks. To support reproducibility and fair comparison of future multimodal federated learning (MMFL) methods under realistic medical settings, we release the complete benchmark implementation, including data processing and partitioning pipelines, at https://github.com/bhattarailab/Med-MMFL-Benchmark .
☆ History-Guided Iterative Visual Reasoning with Self-Correction
Self-consistency methods are the core technique for improving the reasoning reliability of multimodal large language models (MLLMs). By generating multiple reasoning results through repeated sampling and selecting the best answer via voting, they play an important role in cross-modal tasks. However, most existing self-consistency methods are limited to a fixed ``repeated sampling and voting'' paradigm and do not reuse historical reasoning information. As a result, models struggle to actively correct visual understanding errors and dynamically adjust their reasoning during iteration. Inspired by the human reasoning behavior of repeated verification and dynamic error correction, we propose the H-GIVR framework. During iterative reasoning, the MLLM observes the image multiple times and uses previously generated answers as references for subsequent steps, enabling dynamic correction of errors and improving answer accuracy. We conduct comprehensive experiments on five datasets and three models. The results show that the H-GIVR framework can significantly improve cross-modal reasoning accuracy while maintaining low computational cost. For instance, using \texttt{Llama3.2-vision:11b} on the ScienceQA dataset, the model requires an average of 2.57 responses per question to achieve an accuracy of 78.90\%, representing a 107\% improvement over the baseline.
☆ Performative Learning Theory
Performative predictions influence the very outcomes they aim to forecast. We study performative predictions that affect a sample (e.g., only existing users of an app) and/or the whole population (e.g., all potential app users). This raises the question of how well models generalize under performativity. For example, how well can we draw insights about new app users based on existing users when both of them react to the app's predictions? We address this question by embedding performative predictions into statistical learning theory. We prove generalization bounds under performative effects on the sample, on the population, and on both. A key intuition behind our proofs is that in the worst case, the population negates predictions, while the sample deceptively fulfills them. We cast such self-negating and self-fulfilling predictions as min-max and min-min risk functionals in Wasserstein space, respectively. Our analysis reveals a fundamental trade-off between performatively changing the world and learning from it: the more a model affects data, the less it can learn from it. Moreover, our analysis results in a surprising insight on how to improve generalization guarantees by retraining on performatively distorted samples. We illustrate our bounds in a case study on prediction-informed assignments of unemployed German residents to job trainings, drawing upon administrative labor market records from 1975 to 2017 in Germany.
comment: 52 pages, 2 figures
☆ Bi-directional Bias Attribution: Debiasing Large Language Models without Modifying Prompts
Large language models (LLMs) have demonstrated impressive capabilities across a wide range of natural language processing tasks. However, their outputs often exhibit social biases, raising fairness concerns. Existing debiasing methods, such as fine-tuning on additional datasets or prompt engineering, face scalability issues or compromise user experience in multi-turn interactions. To address these challenges, we propose a framework for detecting stereotype-inducing words and attributing neuron-level bias in LLMs, without the need for fine-tuning or prompt modification. Our framework first identifies stereotype-inducing adjectives and nouns via comparative analysis across demographic groups. We then attribute biased behavior to specific neurons using two attribution strategies based on integrated gradients. Finally, we mitigate bias by directly intervening on their activations at the projection layer. Experiments on three widely used LLMs demonstrate that our method effectively reduces bias while preserving overall model performance. Code is available at the github link: https://github.com/XMUDeepLIT/Bi-directional-Bias-Attribution.
☆ LoRDO: Distributed Low-Rank Optimization with Infrequent Communication
Distributed training of foundation models via $\texttt{DDP}$ is limited by interconnect bandwidth. While infrequent communication strategies reduce synchronization frequency, they remain bottlenecked by the memory and communication requirements of optimizer states. Low-rank optimizers can alleviate these constraints; however, in the local-update regime, workers lack access to the full-batch gradients required to compute low-rank projections, which degrades performance. We propose $\texttt{LoRDO}$, a principled framework unifying low-rank optimization with infrequent synchronization. We first demonstrate that, while global projections based on pseudo-gradients are theoretically superior, they permanently restrict the optimization trajectory to a low-rank subspace. To restore subspace exploration, we introduce a full-rank quasi-hyperbolic update. $\texttt{LoRDO}$ achieves near-parity with low-rank $\texttt{DDP}$ in language modeling and downstream tasks at model scales of $125$M--$720$M, while reducing communication by $\approx 10 \times$. Finally, we show that $\texttt{LoRDO}$ improves performance even more in very low-memory settings with small rank/batch size.
comment: Preprint; under review
☆ Digital Twins & ZeroConf AI: Structuring Automated Intelligent Pipelines for Industrial Applications
The increasing complexity of Cyber-Physical Systems (CPS), particularly in the industrial domain, has amplified the challenges associated with the effective integration of Artificial Intelligence (AI) and Machine Learning (ML) techniques. Fragmentation across IoT and IIoT technologies, manifested through diverse communication protocols, data formats and device capabilities, creates a substantial gap between low-level physical layers and high-level intelligent functionalities. Recently, Digital Twin (DT) technology has emerged as a promising solution, offering structured, interoperable and semantically rich digital representations of physical assets. Current approaches are often siloed and tightly coupled, limiting scalability and reuse of AI functionalities. This work proposes a modular and interoperable solution that enables seamless AI pipeline integration into CPS by minimizing configuration and decoupling the roles of DTs and AI components. We introduce the concept of Zero Configuration (ZeroConf) AI pipelines, where DTs orchestrate data management and intelligent augmentation. The approach is demonstrated in a MicroFactory scenario, showing support for concurrent ML models and dynamic data processing, effectively accelerating the deployment of intelligent services in complex industrial settings.
comment: Author-accepted manuscript of a paper published in the 2025 IEEE International Conference on Systems, Man and Cybernetics (IEEE SMC), October 2025, doi: 10.1109/SMC58881.2025.11343418
☆ Blockchain Federated Learning for Sustainable Retail: Reducing Waste through Collaborative Demand Forecasting SC
Effective demand forecasting is crucial for reducing food waste. However, data privacy concerns often hinder collaboration among retailers, limiting the potential for improved predictive accuracy. In this study, we explore the application of Federated Learning (FL) in Sustainable Supply Chain Management (SSCM), with a focus on the grocery retail sector dealing with perishable goods. We develop a baseline predictive model for demand forecasting and waste assessment in an isolated retailer scenario. Subsequently, we introduce a Blockchain-based FL model, trained collaboratively across multiple retailers without direct data sharing. Our preliminary results show that FL models have performance almost equivalent to the ideal setting in which parties share data with each other, and are notably superior to models built by individual parties without sharing data, cutting waste and boosting efficiency.
comment: Author-accepted manuscript of a paper published in the IEEE International Symposium on Computers and Communications (ISCC), 2025, pp. 1-6. doi: https://doi.org/10.1109/ISCC65549.2025.11326299
☆ Enabling Real-Time Colonoscopic Polyp Segmentation on Commodity CPUs via Ultra-Lightweight Architecture
Early detection of colorectal cancer hinges on real-time, accurate polyp identification and resection. Yet current high-precision segmentation models rely on GPUs, making them impractical to deploy in primary hospitals, mobile endoscopy units, or capsule robots. To bridge this gap, we present the UltraSeg family, operating in an extreme-compression regime (<0.3 M parameters). UltraSeg-108K (0.108 M parameters) is optimized for single-center data, while UltraSeg-130K (0.13 M parameters) generalizes to multi-center, multi-modal images. By jointly optimizing encoder-decoder widths, incorporating constrained dilated convolutions to enlarge receptive fields, and integrating a cross-layer lightweight fusion module, the models achieve 90 FPS on a single CPU core without sacrificing accuracy. Evaluated on seven public datasets, UltraSeg retains >94% of the Dice score of a 31 M-parameter U-Net while utilizing only 0.4% of its parameters, establishing a strong, clinically viable baseline for the extreme-compression domain and offering an immediately deployable solution for resource-constrained settings. This work provides not only a CPU-native solution for colonoscopy but also a reproducible blueprint for broader minimally invasive surgical vision applications. Source code is publicly available to ensure reproducibility and facilitate future benchmarking.
comment: 19pages, 5 figures
☆ Beyond KL Divergence: Policy Optimization with Flexible Bregman Divergences for LLM Reasoning
Policy optimization methods like Group Relative Policy Optimization (GRPO) and its variants have achieved strong results on mathematical reasoning and code generation tasks. Despite extensive exploration of reward processing strategies and training dynamics, all existing group-based methods exclusively use KL divergence for policy regularization, leaving the choice of divergence function unexplored. We introduce Group-Based Mirror Policy Optimization (GBMPO), a framework that extends group-based policy optimization to flexible Bregman divergences, including hand-designed alternatives (L2 in probability space) and learned neural mirror maps. On GSM8K mathematical reasoning, hand-designed ProbL2-GRPO achieves 86.7% accuracy, improving +5.5 points over the Dr. GRPO baseline. On MBPP code generation, neural mirror maps reach 60.1-60.8% pass@1, with random initialization already capturing most of the benefit. While evolutionary strategies meta-learning provides marginal accuracy improvements, its primary value lies in variance reduction ($\pm$0.2 versus $\pm$0.6) and efficiency gains (15% shorter responses on MBPP), suggesting that random initialization of neural mirror maps is sufficient for most practical applications. These results establish divergence choice as a critical, previously unexplored design dimension in group-based policy optimization for LLM reasoning.
☆ SparVAR: Exploring Sparsity in Visual AutoRegressive Modeling for Training-Free Acceleration
Visual AutoRegressive (VAR) modeling has garnered significant attention for its innovative next-scale prediction paradigm. However, mainstream VAR paradigms attend to all tokens across historical scales at each autoregressive step. As the next scale resolution grows, the computational complexity of attention increases quartically with resolution, causing substantial latency. Prior accelerations often skip high-resolution scales, which speeds up inference but discards high-frequency details and harms image quality. To address these problems, we present SparVAR, a training-free acceleration framework that exploits three properties of VAR attention: (i) strong attention sinks, (ii) cross-scale activation similarity, and (iii) pronounced locality. Specifically, we dynamically predict the sparse attention pattern of later high-resolution scales from a sparse decision scale, and construct scale self-similar sparse attention via an efficient index-mapping mechanism, enabling high-efficiency sparse attention computation at large scales. Furthermore, we propose cross-scale local sparse attention and implement an efficient block-wise sparse kernel, which achieves $\mathbf{> 5\times}$ faster forward speed than FlashAttention. Extensive experiments demonstrate that the proposed SparseVAR can reduce the generation time of an 8B model producing $1024\times1024$ high-resolution images to the 1s, without skipping the last scales. Compared with the VAR baseline accelerated by FlashAttention, our method achieves a $\mathbf{1.57\times}$ speed-up while preserving almost all high-frequency details. When combined with existing scale-skipping strategies, SparseVAR attains up to a $\mathbf{2.28\times}$ acceleration, while maintaining competitive visual generation quality. Code is available at https://github.com/CAS-CLab/SparVAR.
☆ Counterfactual Explanations for Hypergraph Neural Networks
Hypergraph neural networks (HGNNs) effectively model higher-order interactions in many real-world systems but remain difficult to interpret, limiting their deployment in high-stakes settings. We introduce CF-HyperGNNExplainer, a counterfactual explanation method for HGNNs that identifies the minimal structural changes required to alter a model's prediction. The method generates counterfactual hypergraphs using actionable edits limited to removing node-hyperedge incidences or deleting hyperedges, producing concise and structurally meaningful explanations. Experiments on three benchmark datasets show that CF-HyperGNNExplainer generates valid and concise counterfactuals, highlighting the higher-order relations most critical to HGNN decisions.
☆ VecSet-Edit: Unleashing Pre-trained LRM for Mesh Editing from Single Image
3D editing has emerged as a critical research area to provide users with flexible control over 3D assets. While current editing approaches predominantly focus on 3D Gaussian Splatting or multi-view images, the direct editing of 3D meshes remains underexplored. Prior attempts, such as VoxHammer, rely on voxel-based representations that suffer from limited resolution and necessitate labor-intensive 3D mask. To address these limitations, we propose \textbf{VecSet-Edit}, the first pipeline that leverages the high-fidelity VecSet Large Reconstruction Model (LRM) as a backbone for mesh editing. Our approach is grounded on a analysis of the spatial properties in VecSet tokens, revealing that token subsets govern distinct geometric regions. Based on this insight, we introduce Mask-guided Token Seeding and Attention-aligned Token Gating strategies to precisely localize target regions using only 2D image conditions. Also, considering the difference between VecSet diffusion process versus voxel we design a Drift-aware Token Pruning to reject geometric outliers during the denoising process. Finally, our Detail-preserving Texture Baking module ensures that we not only preserve the geometric details of original mesh but also the textural information. More details can be found in our project page: https://github.com/BlueDyee/VecSet-Edit/tree/main
☆ UnMaskFork: Test-Time Scaling for Masked Diffusion via Deterministic Action Branching
Test-time scaling strategies have effectively leveraged inference-time compute to enhance the reasoning abilities of Autoregressive Large Language Models. In this work, we demonstrate that Masked Diffusion Language Models (MDLMs) are inherently amenable to advanced search strategies, owing to their iterative and non-autoregressive generation process. To leverage this, we propose UnMaskFork (UMF), a framework that formulates the unmasking trajectory as a search tree and employs Monte Carlo Tree Search to optimize the generation path. In contrast to standard scaling methods relying on stochastic sampling, UMF explores the search space through deterministic partial unmasking actions performed by multiple MDLMs. Our empirical evaluation demonstrates that UMF consistently outperforms existing test-time scaling baselines on complex coding benchmarks, while also exhibiting strong scalability on mathematical reasoning tasks.
☆ Explicit Uncertainty Modeling for Active CLIP Adaptation with Dual Prompt Tuning
Pre-trained vision-language models such as CLIP exhibit strong transferability, yet adapting them to downstream image classification tasks under limited annotation budgets remains challenging. In active learning settings, the model must select the most informative samples for annotation from a large pool of unlabeled data. Existing approaches typically estimate uncertainty via entropy-based criteria or representation clustering, without explicitly modeling uncertainty from the model perspective. In this work, we propose a robust uncertainty modeling framework for active CLIP adaptation based on dual-prompt tuning. We introduce two learnable prompts in the textual branch of CLIP. The positive prompt enhances the discriminability of task-specific textual embeddings corresponding to light-weight tuned visual embeddings, improving classification reliability. Meanwhile, the negative prompt is trained in an reversed manner to explicitly model the probability that the predicted label is correct, providing a principled uncertainty signal for guiding active sample selection. Extensive experiments across different fine-tuning paradigms demonstrate that our method consistently outperforms existing active learning methods under the same annotation budget.
☆ Fine-tuning Pre-trained Vision-Language Models in a Human-Annotation-Free Manner
Large-scale vision-language models (VLMs) such as CLIP exhibit strong zero-shot generalization, but adapting them to downstream tasks typically requires costly labeled data. Existing unsupervised self-training methods rely on pseudo-labeling, yet often suffer from unreliable confidence filtering, confirmation bias, and underutilization of low-confidence samples. We propose Collaborative Fine-Tuning (CoFT), an unsupervised adaptation framework that leverages unlabeled data through a dual-model, cross-modal collaboration mechanism. CoFT introduces a dual-prompt learning strategy with positive and negative textual prompts to explicitly model pseudo-label cleanliness in a sample-dependent manner, removing the need for hand-crafted thresholds or noise assumptions. The negative prompt also regularizes lightweight visual adaptation modules, improving robustness under noisy supervision. CoFT employs a two-phase training scheme, transitioning from parameter-efficient fine-tuning on high-confidence samples to full fine-tuning guided by collaboratively filtered pseudo-labels. Building on CoFT, CoFT+ further enhances adaptation via iterative fine-tuning, momentum contrastive learning, and LLM-generated prompts. Extensive experiments demonstrate consistent gains over existing unsupervised methods and even few-shot supervised baselines.
☆ From Assumptions to Actions: Turning LLM Reasoning into Uncertainty-Aware Planning for Embodied Agents ICLR 2026
Embodied agents operating in multi-agent, partially observable, and decentralized environments must plan and act despite pervasive uncertainty about hidden objects and collaborators' intentions. Recent advances in applying Large Language Models (LLMs) to embodied agents have addressed many long-standing challenges, such as high-level goal decomposition and online adaptation. Yet, uncertainty is still primarily mitigated through frequent inter-agent communication. This incurs substantial token and time costs, and can disrupt established workflows, when human partners are involved. We introduce PCE, a Planner-Composer-Evaluator framework that converts the fragmented assumptions latent in LLM reasoning traces into a structured decision tree. Internal nodes encode environment assumptions and leaves map to actions; each path is then scored by scenario likelihood, goal-directed gain, and execution cost to guide rational action selection without heavy communication. Across two challenging multi-agent benchmarks (C-WAH and TDW-MAT) and three diverse LLM backbones, PCE consistently outperforms communication-centric baselines in success rate and task efficiency while showing comparable token usage. Ablation results indicate that the performance gains obtained by scaling model capacity or reasoning depth persist even when PCE is applied, while PCE consistently raises the baseline across both capacity and reasoning-depth scales, confirming that structured uncertainty handling complements both forms of scaling. A user study further demonstrates that PCE produces communication patterns that human partners perceive as more efficient and trustworthy. Together, these results establish a principled route for turning latent LLM assumptions into reliable strategies for uncertainty-aware planning.
comment: 31 pages, 10 figures, Accepted ICLR 2026
☆ Efficient Equivariant High-Order Crystal Tensor Prediction via Cartesian Local-Environment Many-Body Coupling
End-to-end prediction of high-order crystal tensor properties from atomic structures remains challenging: while spherical-harmonic equivariant models are expressive, their Clebsch-Gordan tensor products incur substantial compute and memory costs for higher-order targets. We propose the Cartesian Environment Interaction Tensor Network (CEITNet), an approach that constructs a multi-channel Cartesian local environment tensor for each atom and performs flexible many-body mixing via a learnable channel-space interaction. By performing learning in channel space and using Cartesian tensor bases to assemble equivariant outputs, CEITNet enables efficient construction of high-order tensor. Across benchmark datasets for order-2 dielectric, order-3 piezoelectric, and order-4 elastic tensor prediction, CEITNet surpasses prior high-order prediction methods on key accuracy criteria while offering high computational efficiency.
☆ DeFrame: Debiasing Large Language Models Against Framing Effects
As large language models (LLMs) are increasingly deployed in real-world applications, ensuring their fair responses across demographics has become crucial. Despite many efforts, an ongoing challenge is hidden bias: LLMs appear fair under standard evaluations, but can produce biased responses outside those evaluation settings. In this paper, we identify framing -- differences in how semantically equivalent prompts are expressed (e.g., "A is better than B" vs. "B is worse than A") -- as an underexplored contributor to this gap. We first introduce the concept of "framing disparity" to quantify the impact of framing on fairness evaluation. By augmenting fairness evaluation benchmarks with alternative framings, we find that (1) fairness scores vary significantly with framing and (2) existing debiasing methods improve overall (i.e., frame-averaged) fairness, but often fail to reduce framing-induced disparities. To address this, we propose a framing-aware debiasing method that encourages LLMs to be more consistent across framings. Experiments demonstrate that our approach reduces overall bias and improves robustness against framing disparities, enabling LLMs to produce fairer and more consistent responses.
comment: 40 pages, 12 figures
☆ Beyond Static Cropping: Layer-Adaptive Visual Localization and Decoding Enhancement
Large Vision-Language Models (LVLMs) have advanced rapidly by aligning visual patches with the text embedding space, but a fixed visual-token budget forces images to be resized to a uniform pretraining resolution, often erasing fine-grained details and causing hallucinations via over-reliance on language priors. Recent attention-guided enhancement (e.g., cropping or region-focused attention allocation) alleviates this, yet it commonly hinges on a static "magic layer" empirically chosen on simple recognition benchmarks and thus may not transfer to complex reasoning tasks. In contrast to this static assumption, we propose a dynamic perspective on visual grounding. Through a layer-wise sensitivity analysis, we demonstrate that visual grounding is a dynamic process: while simple object recognition tasks rely on middle layers, complex visual search and reasoning tasks require visual information to be reactivated at deeper layers. Based on this observation, we introduce Visual Activation by Query (VAQ), a metric that identifies the layer whose attention map is most relevant to query-specific visual grounding by measuring attention sensitivity to the input query. Building on VAQ, we further propose LASER (Layer-adaptive Attention-guided Selective visual and decoding Enhancement for Reasoning), a training-free inference procedure that adaptively selects task-appropriate layers for visual localization and question answering. Experiments across diverse VQA benchmarks show that LASER significantly improves VQA accuracy across tasks with varying levels of complexity.
comment: 9 pages, 5 figures
☆ Revisiting Prompt Sensitivity in Large Language Models for Text Classification: The Role of Prompt Underspecification
Large language models (LLMs) are widely used as zero-shot and few-shot classifiers, where task behaviour is largely controlled through prompting. A growing number of works have observed that LLMs are sensitive to prompt variations, with small changes leading to large changes in performance. However, in many cases, the investigation of sensitivity is performed using underspecified prompts that provide minimal task instructions and weakly constrain the model's output space. In this work, we argue that a significant portion of the observed prompt sensitivity can be attributed to prompt underspecification. We systematically study and compare the sensitivity of underspecified prompts and prompts that provide specific instructions. Utilising performance analysis, logit analysis, and linear probing, we find that underspecified prompts exhibit higher performance variance and lower logit values for relevant tokens, while instruction-prompts suffer less from such problems. However, linear probing analysis suggests that the effects of prompt underspecification have only a marginal impact on the internal LLM representations, instead emerging in the final layers. Overall, our findings highlight the need for more rigour when investigating and mitigating prompt sensitivity.
♻ ☆ Beyond Fixed Frames: Dynamic Character-Aligned Speech Tokenization
Neural audio codecs are at the core of modern conversational speech technologies, converting continuous speech into sequences of discrete tokens that can be processed by LLMs. However, existing codecs typically operate at fixed frame rates, allocating tokens uniformly in time and producing unnecessarily long sequences. In this work, we introduce DyCAST, a Dynamic Character-Aligned Speech Tokenizer that enables variable-frame-rate tokenization through soft character-level alignment and explicit duration modeling. DyCAST learns to associate tokens with character-level linguistic units during training and supports alignment-free inference with direct control over token durations at decoding time. To improve speech resynthesis quality at low frame rates, we further introduce a retrieval-augmented decoding mechanism that enhances reconstruction fidelity without increasing bitrate. Experiments show that DyCAST achieves competitive speech resynthesis quality and downstream performance while using significantly fewer tokens than fixed-frame-rate codecs. Code and checkpoints will be released publicly at https://github.com/lucadellalib/dycast.
comment: 18 pages, 3 figures
♻ ☆ Group-Adaptive Adversarial Learning for Robust Fake News Detection Against Malicious Comments
Online fake news profoundly distorts public judgment and erodes trust in social platforms. While existing detectors achieve competitive performance on benchmark datasets, they remain notably vulnerable to malicious comments designed specifically to induce misclassification. This evolving threat landscape necessitates detection systems that simultaneously prioritize predictive accuracy and structural robustness. However, current detectors often fail to generalize across diverse and novel comment attack patterns. To bridge this gap, we propose AdComment, an adaptive adversarial training framework for robustness enhancement against diverse malicious comments. Based on cognitive psychology, we categorize adversarial comments into Fact Distortion, Logical Confusion, and Emotional Manipulation, and leverage LLMs to synthesize diverse, category-specific perturbations. Central to our framework is an InfoDirichlet Resampling (IDR) mechanism that dynamically adjusts malicious comment proportions during training, thereby steering optimization toward the model's most susceptible regions. Experimental results demonstrate that our approach achieves state-of-the-art performance on three benchmark datasets, improving the F1 scores by 17.9%, 14.5% and 9.0%, respectively.
comment: 10 pages, 12 figures
♻ ☆ Attention Consistency Regularization for Interpretable Early-Exit Neural Networks
Early-exit neural networks enable adaptive inference by allowing predictions at intermediate layers, reducing computational cost. However, early exits often lack interpretability and may focus on different features than deeper layers, limiting trust and explainability. This paper presents Explanation-Guided Training (EGT), a multi-objective framework that improves interpretability and consistency in early-exit networks through attention-based regularization. EGT introduces an attention consistency loss that aligns early-exit attention maps with the final exit. The framework jointly optimizes classification accuracy and attention consistency through a weighted combination of losses. Experiments on a real-world image classification dataset demonstrate that EGT achieves up to 98.97% overall accuracy (matching baseline performance) with a 1.97x inference speedup through early exits, while improving attention consistency by up to 18.5% compared to baseline models. The proposed method provides more interpretable and consistent explanations across all exit points, making early-exit networks more suitable for explainable AI applications in resource-constrained environments.
comment: 2 pages, 1 figure
♻ ☆ TRACE: Transparent Web Reliability Assessment with Contextual Explanations
In an era of AI-generated misinformation flooding the web, existing tools struggle to empower users with nuanced, transparent assessments of content credibility. They often default to binary (true/false) classifications without contextual justifications, leaving users vulnerable to disinformation. We address this gap by introducing TRACE: Transparent Reliability Assessment with Contextual Explanations, a unified framework that performs two key tasks: (1) it assigns a fine-grained, continuous reliability score (from 0.1 to 1.0) to web content, and (2) it generates a contextual explanation for its assessment. The core of TRACE is the TrueGL-1B model, fine-tuned on a novel, large-scale dataset of over 140,000 articles. This dataset's primary contribution is its annotation with 35 distinct continuous reliability scores, created using a Human-LLM co-creation and data poisoning paradigm. This method overcomes the limitations of binary-labeled datasets by populating the mid-ranges of reliability. In our evaluation, TrueGL-1B consistently outperforms other small-scale LLM baselines and rule-based approaches on key regression metrics, including MAE, RMSE, and R2. The model's high accuracy and interpretable justifications make trustworthy information more accessible. To foster future research, our code and model are made publicly available here: github.com/zade90/TrueGL.
♻ ☆ Y-Shaped Generative Flows
Modern continuous-time generative models typically induce \emph{V-shaped} flows: each sample travels independently along a nearly straight trajectory from the prior to the data. Although effective, this independent movement overlooks the hierarchical structures that exist in real-world data. To address this, we introduce \emph{Y-shaped generative flows}, a framework in which samples travel together along shared pathways before branching off to target-specific endpoints. Our formulation is theoretically justified, yet remains practical, requiring only minimal modifications to standard velocity-driven models. We implement this through a scalable, neural network-based training objective. Experiments on synthetic, image, and biological datasets demonstrate that our method recovers hierarchy-aware structures, improves distributional metrics over strong flow-based baselines, and reaches targets in fewer steps.
♻ ☆ Accurate and scalable exchange-correlation with deep learning
Density Functional Theory (DFT) is the most widely used electronic structure method for predicting the properties of molecules and materials. Although DFT is, in principle, an exact reformulation of the Schrödinger equation, practical applications rely on approximations to the unknown exchange-correlation (XC) functional. Most existing XC functionals are constructed using a limited set of increasingly complex, hand-crafted features that improve accuracy at the expense of computational efficiency. Yet, no current approximation achieves the accuracy and generality for predictive modeling of laboratory experiments at chemical accuracy -- typically defined as errors below 1 kcal/mol. In this work, we present Skala, a modern deep learning-based XC functional that bypasses expensive hand-designed features by learning representations directly from data. Skala achieves chemical accuracy for atomization energies of small molecules while retaining the computational efficiency typical of semi-local DFT. This performance is enabled by training on an unprecedented volume of high-accuracy reference data generated using computationally intensive wavefunction-based methods. Notably, Skala systematically improves with additional training data covering diverse chemistry. By incorporating a modest amount of additional high-accuracy data tailored to chemistry beyond atomization energies, Skala achieves accuracy competitive with the best-performing hybrid functionals across general main group chemistry, at the cost of semi-local DFT. As the training dataset continues to expand, Skala is poised to further enhance the predictive power of first-principles simulations.
comment: Main: 13 pages plus references, 11 figures and tables. Supplementary information: 19 pages, 12 figures and tables. v2 update: fix rendering of figure 1 and part of figure 5 in Safari PDF viewer. v3 update: update author information and fix typo. v4 update: The Skala model and inference code are available under MIT license at https://github.com/microsoft/skala
♻ ☆ UniReason 1.0: A Unified Reasoning Framework for World Knowledge Aligned Image Generation and Editing
Unified multimodal models often struggle with complex synthesis tasks that demand deep reasoning, and typically treat text-to-image generation and image editing as isolated capabilities rather than interconnected reasoning steps. To address this, we propose UniReason, a unified framework that harmonizes these two tasks through two complementary reasoning paradigms. We incorporate world knowledge-enhanced textual reasoning into generation to infer implicit knowledge, and leverage editing capabilities for fine-grained editing-like visual refinement to further correct visual errors via self-reflection. This approach unifies generation and editing within a shared architecture, mirroring the human cognitive process of planning followed by refinement. We support this framework by systematically constructing a large-scale reasoning-centric dataset (~300k samples) covering five major knowledge domains (e.g., cultural commonsense, physics, etc.) for textual reasoning, alongside an agent-generated corpus for visual refinement. Extensive experiments demonstrate that UniReason achieves advanced performance on reasoning-intensive benchmarks such as WISE, KrisBench and UniREditBench, while maintaining superior general synthesis capabilities.
♻ ☆ GPU-Accelerated ANNS: Quantized for Speed, Built for Change
Approximate nearest neighbor search (ANNS) is a core problem in machine learning and information retrieval applications. GPUs offer a promising path to high-performance ANNS: they provide massive parallelism for distance computations, are readily available, and can co-locate with downstream applications. Despite these advantages, current GPU-accelerated ANNS systems face three key limitations. First, real-world applications operate on evolving datasets that require fast batch updates, yet most GPU indices must be rebuilt from scratch when new data arrives. Second, high-dimensional vectors strain memory bandwidth, but current GPU systems lack efficient quantization techniques that reduce data movement without introducing costly random memory accesses. Third, the data-dependent memory accesses inherent to greedy search make overlapping compute and memory difficult, leading to reduced performance. We present Jasper, a GPU-native ANNS system with both high query throughput and updatability. Jasper builds on the Vamana graph index and overcomes existing bottlenecks via three contributions: (1) a CUDA batch-parallel construction algorithm that enables lock-free streaming insertions, (2) a GPU-efficient implementation of RaBitQ quantization that reduces memory footprint up to 8x without the random access penalties, and (3) an optimized greedy search kernel that increases compute utilization, resulting in better latency hiding and higher throughput. Our evaluation across five datasets shows that Jasper achieves up to 1.93x higher query throughput than CAGRA and achieves up to 80% peak utilization as measured by the roofline model. Jasper's construction scales efficiently and constructs indices an average of 2.4x faster than CAGRA while providing updatability that CAGRA lacks. Compared to BANG, the previous fastest GPU Vamana implementation, Jasper delivers 19-131x faster queries.
♻ ☆ MixGRPO: Unlocking Flow-based GRPO Efficiency with Mixed ODE-SDE
Although GRPO substantially enhances flow matching models in human preference alignment of image generation, methods such as FlowGRPO and DanceGRPO still exhibit inefficiency due to the necessity of sampling and optimizing over all denoising steps specified by the Markov Decision Process (MDP). In this paper, we propose $\textbf{MixGRPO}$, a novel framework that leverages the flexibility of mixed sampling strategies through the integration of stochastic differential equations (SDE) and ordinary differential equations (ODE). This streamlines the optimization process within the MDP to improve efficiency and boost performance. Specifically, MixGRPO introduces a sliding window mechanism, using SDE sampling and GRPO-guided optimization only within the window, while applying ODE sampling outside. This design confines sampling randomness to the time-steps within the window, thereby reducing the optimization overhead, and allowing for more focused gradient updates to accelerate convergence. Additionally, as time-steps beyond the sliding window are not involved in optimization, higher-order solvers are supported for faster sampling. So we present a faster variant, termed $\textbf{MixGRPO-Flash}$, which further improves training efficiency while achieving comparable performance. MixGRPO exhibits substantial gains across multiple dimensions of human preference alignment, outperforming DanceGRPO in both effectiveness and efficiency, with nearly 50% lower training time. Notably, MixGRPO-Flash further reduces training time by 71%.
♻ ☆ Multi-Excitation Projective Simulation with a Many-Body Physics Inspired Inductive Bias
With the impressive progress of deep learning, applications relying on machine learning are increasingly being integrated into daily life. However, most deep learning models have an opaque, oracle-like nature making it difficult to interpret and understand their decisions. This problem led to the development of the field known as eXplainable Artificial Intelligence (XAI). One method in this field known as Projective Simulation (PS) models a chain-of-thought as a random walk of a particle on a graph with vertices that have concepts attached to them. While this description has various benefits, including the possibility of quantization, it cannot be naturally used to model thoughts that combine several concepts simultaneously. To overcome this limitation, we introduce Multi-Excitation Projective Simulation (mePS), a generalization that considers a chain-of-thought to be a random walk of several particles on a hypergraph. A definition for a dynamic hypergraph is put forward to describe the agent's training history along with applications to AI and hypergraph visualization. An inductive bias inspired by the remarkably successful few-body interaction models used in quantum many-body physics is formalized for our classical mePS framework and employed to tackle the exponential complexity associated with naive implementations of hypergraphs. We prove that our inductive bias reduces the complexity from exponential to polynomial, with the exponent representing the cutoff on how many particles can interact. We numerically apply our method to two toy environments and a more complex scenario modelling the diagnosis of a broken computer. These environments demonstrate the resource savings provided by an appropriate choice of inductive bias, as well as showcasing aspects of interpretability. A quantum model for mePS is also briefly outlined and some future directions for it are discussed.
comment: 41 pages, 9 figures; Code repository at https://github.com/MariusKrumm/ManyBodyMEPS. Updated to be consistent with AIJ version
♻ ☆ Self-Improving Pretraining: using post-trained models to pretrain better models
Ensuring safety, factuality and overall quality in the generations of large language models is a critical challenge, especially as these models are increasingly deployed in real-world applications. The prevailing approach to addressing these issues involves collecting expensive, carefully curated datasets and applying multiple stages of fine-tuning and alignment. However, even this complex pipeline cannot guarantee the correction of patterns learned during pretraining. Therefore, addressing these issues during pretraining is crucial, as it shapes a model's core behaviors and prevents unsafe or hallucinated outputs from becoming deeply embedded. To tackle this issue, we introduce a new pretraining method that streams documents and uses reinforcement learning (RL) to improve the next K generated tokens at each step. A strong, post-trained model judges candidate generations -- including model rollouts, the original suffix, and a rewritten suffix -- for quality, safety, and factuality. Early in training, the process relies on the original and rewritten suffixes; as the model improves, RL rewards high-quality rollouts. This approach builds higher quality, safer, and more factual models from the ground up. In experiments, our method gives 36.2% and 18.5% relative improvements over standard pretraining in terms of factuality and safety, and up to 86.3% win rate improvements in overall generation quality.
♻ ☆ Unifying Re-Identification, Attribute Inference, and Data Reconstruction Risks in Differential Privacy NeurIPS 2025
Differentially private (DP) mechanisms are difficult to interpret and calibrate because existing methods for mapping standard privacy parameters to concrete privacy risks -- re-identification, attribute inference, and data reconstruction -- are both overly pessimistic and inconsistent. In this work, we use the hypothesis-testing interpretation of DP ($f$-DP), and determine that bounds on attack success can take the same unified form across re-identification, attribute inference, and data reconstruction risks. Our unified bounds are (1) consistent across a multitude of attack settings, and (2) tunable, enabling practitioners to evaluate risk with respect to arbitrary, including worst-case, levels of baseline risk. Empirically, our results are tighter than prior methods using $\varepsilon$-DP, Rényi DP, and concentrated DP. As a result, calibrating noise using our bounds can reduce the required noise by 20% at the same risk level, which yields, e.g., an accuracy increase from 52% to 70% in a text classification task. Overall, this unifying perspective provides a principled framework for interpreting and calibrating the degree of protection in DP against specific levels of re-identification, attribute inference, or data reconstruction risk.
comment: NeurIPS 2025
♻ ☆ Causal-Adapter: Taming Text-to-Image Diffusion for Faithful Counterfactual Generation
We present Causal-Adapter, a modular framework that adapts frozen text-to-image diffusion backbones for counterfactual image generation. Our method supports causal interventions on target attributes and consistently propagates their effects to causal dependents while preserving the core identity of the image. Unlike prior approaches that rely on prompt engineering without explicit causal structure, Causal-Adapter leverages structural causal modeling with two attribute-regularization strategies: (i) prompt-aligned injection, which aligns causal attributes with textual embeddings for precise semantic control, and (ii) a conditioned token contrastive loss that disentangles attribute factors and reduces spurious correlations. Causal-Adapter achieves state-of-the-art performance on both synthetic and real-world datasets, including up to a 91% reduction in MAE on Pendulum for accurate attribute control and up to an 87% reduction in FID on ADNI for high-fidelity MRI generation. These results demonstrate robust, generalizable counterfactual editing with faithful attribute modification and strong identity preservation. Code and models will be released at: https://leitong02.github.io/causaladapter/.
comment: Project Page: https://leitong02.github.io/causaladapter/
♻ ☆ Optimization, Generalization and Differential Privacy Bounds for Gradient Descent on Kolmogorov-Arnold Networks
Kolmogorov--Arnold Networks (KANs) have recently emerged as a structured alternative to standard MLPs, yet a principled theory for their training dynamics, generalization, and privacy properties remains limited. In this paper, we analyze gradient descent (GD) for training two-layer KANs and derive general bounds that characterize their training dynamics, generalization, and utility under differential privacy (DP). As a concrete instantiation, we specialize our analysis to logistic loss under an NTK-separable assumption, where we show that polylogarithmic network width suffices for GD to achieve an optimization rate of order $1/T$ and a generalization rate of order $1/n$, with $T$ denoting the number of GD iterations and $n$ the sample size. In the private setting, we characterize the noise required for $(ε,δ)$-DP and obtain a utility bound of order $\sqrt{d}/(nε)$ (with $d$ the input dimension), matching the classical lower bound for general convex Lipschitz problems. Our results imply that polylogarithmic width is not only sufficient but also necessary under differential privacy, revealing a qualitative gap between non-private (sufficiency only) and private (necessity also emerges) training regimes. Experiments further illustrate how these theoretical insights can guide practical choices, including network width selection and early stopping.
comment: 41 pages, 3 figures
♻ ☆ TxRay: Agentic Postmortem of Live Blockchain Attacks
Decentralized Finance (DeFi) has turned blockchains into financial infrastructure, allowing anyone to trade, lend, and build protocols without intermediaries, but this openness exposes pools of value controlled by code. Within five years, the DeFi ecosystem has lost over 15.75B USD to reported exploits. Many exploits arise from permissionless opportunities that any participant can trigger using only public state and standard interfaces, which we call Anyone-Can-Take (ACT) opportunities. Despite on-chain transparency, postmortem analysis remains slow and manual: investigations start from limited evidence, sometimes only a single transaction hash, and must reconstruct the exploit lifecycle by recovering related transactions, contract code, and state dependencies. We present TxRay, a Large Language Model (LLM) agentic postmortem system that uses tool calls to reconstruct live ACT attacks from limited evidence. Starting from one or more seed transactions, TxRay recovers the exploit lifecycle, derives an evidence-backed root cause, and generates a runnable, self-contained Proof of Concept (PoC) that deterministically reproduces the incident. TxRay self-checks postmortems by encoding incident-specific semantic oracles as executable assertions. To evaluate PoC correctness and quality, we develop PoCEvaluator, an independent agentic execution-and-review evaluator. On 114 incidents from DeFiHackLabs, TxRay produces an expert-aligned root cause and an executable PoC for 105 incidents, achieving 92.11% end-to-end reproduction. Under PoCEvaluator, 98.1% of TxRay PoCs avoid hard-coding attacker addresses, a +22.9pp lift over DeFiHackLabs. In a live deployment, TxRay delivers validated root causes in 40 minutes and PoCs in 59 minutes at median latency. TxRay's oracle-validated PoCs enable attack imitation, improving coverage by 15.6% and 65.5% over STING and APE.
comment: 24 pages, 8 figures
♻ ☆ UNO: Unifying One-stage Video Scene Graph Generation via Object-Centric Visual Representation Learning WACV 2026
Video Scene Graph Generation (VidSGG) aims to represent dynamic visual content by detecting objects and modeling their temporal interactions as structured graphs. Prior studies typically target either coarse-grained box-level or fine-grained panoptic pixel-level VidSGG, often requiring task-specific architectures and multi-stage training pipelines. In this paper, we present UNO (UNified Object-centric VidSGG), a single-stage, unified framework that jointly addresses both tasks within an end-to-end architecture. UNO is designed to minimize task-specific modifications and maximize parameter sharing, enabling generalization across different levels of visual granularity. The core of UNO is an extended slot attention mechanism that decomposes visual features into object and relation slots. To ensure robust temporal modeling, we introduce object temporal consistency learning, which enforces consistent object representations across frames without relying on explicit tracking modules. Additionally, a dynamic triplet prediction module links relation slots to corresponding object pairs, capturing evolving interactions over time. We evaluate UNO on standard box-level and pixel-level VidSGG benchmarks. Results demonstrate that UNO not only achieves competitive performance across both tasks but also offers improved efficiency through a unified, object-centric design. Code is available at: https://github.com/Fsoft-AIC/UNO
comment: 11 pages, 7 figures. Accepted at WACV 2026
♻ ☆ Graph Persistence goes Spectral NeurIPS 2025
Including intricate topological information (e.g., cycles) provably enhances the expressivity of message-passing graph neural networks (GNNs) beyond the Weisfeiler-Leman (WL) hierarchy. Consequently, Persistent Homology (PH) methods are increasingly employed for graph representation learning. In this context, recent works have proposed decorating classical PH diagrams with vertex and edge features for improved expressivity. However, these methods still fail to capture basic graph structural information. In this paper, we propose SpectRe -- a new topological descriptor for graphs that integrates spectral information into PH diagrams. Notably, SpectRe is strictly more expressive than PH and spectral information on graphs alone. We also introduce notions of global and local stability to analyze existing descriptors and establish that SpectRe is locally stable. Finally, experiments on synthetic and real-world datasets demonstrate the effectiveness of SpectRe and its potential to enhance the capabilities of graph models in relevant learning tasks. Code is available at https://github.com/Aalto-QuML/SpectRe/.
comment: 32 pages, 4 figures, 7 tables. Accepted at NeurIPS 2025. Final version, clarified minor bug
♻ ☆ M^3-Bench: Multi-Modal, Multi-Hop, Multi-Threaded Tool-Using MLLM Agent Benchmark
We present M^3-Bench, the first benchmark for evaluating multimodal tool use under the Model Context Protocol. The benchmark targets realistic, multi-hop and multi-threaded workflows that require visual grounding and textual reasoning, cross-tool dependencies, and persistence of intermediate resources across steps. We introduce a similarity-driven alignment that serializes each tool call, embeds signatures with a sentence encoder, and performs similarity-bucketed Hungarian matching to obtain auditable one-to-one correspondences. On top of this alignment, we report interpretable metrics that decouple semantic fidelity from workflow consistency. The benchmark spans 28 servers with 231 tools, and provides standardized trajectories curated through an Executor & Judge pipeline with human verification; an auxiliary four large language models (LLMs) judge ensemble reports end-task Task Completion and information grounding. Evaluations of representative state-of-the-art Multimodal LLMs (MLLMs) reveal persistent gaps in multimodal MCP tool use, particularly in argument fidelity and structure consistency, underscoring the need for methods that jointly reason over images, text, and tool graphs. Our Benchmark's anonymous repository is at https://github.com/EtaYang10th/Open-M3-Bench
♻ ☆ Mutually Assured Deregulation
We have convinced ourselves that the way to make AI safe is to make it unsafe. Since 2022, policymakers worldwide have embraced the Regulation Sacrifice - the belief that dismantling safety oversight will deliver security through AI dominance. Fearing China or USA will gain advantage, nations rush to eliminate safeguards that might slow progress. This Essay reveals the fatal flaw: though AI poses national security challenges, the solution demands stronger regulatory frameworks, not weaker ones. A race without guardrails breeds shared danger, not competitive strength. The Regulation Sacrifice makes three false promises. First, it promises durable technological leads. But AI capabilities spread rapidly - performance gaps between U.S. and Chinese systems collapsed from 9 percent to 2 percent in thirteen months. When advantages evaporate in months, sacrificing permanent safety for temporary speed makes no sense. Second, it promises deregulation accelerates innovation. The opposite often proves true. Companies report well-designed governance streamlines development. Investment flows toward regulated markets. Clear rules reduce uncertainty; uncertain liability creates paralysis. Environmental standards did not kill the auto industry; they created Tesla and BYD. Third, enhanced national security through deregulation actually undermines security across all timeframes. Near term: it hands adversaries information warfare tools. Medium term: it democratizes bioweapon capabilities. Long term: it guarantees deployment of uncontrollable AGI systems. The Regulation Sacrifice persists because it serves powerful interests, not security. Tech companies prefer freedom to accountability. Politicians prefer simple stories to complex truths. This creates mutually assured deregulation, where each nation's sprint for advantage guarantees collective vulnerability. The only way to win is not to play.
♻ ☆ Quantifying Risks in Multi-turn Conversation with Large Language Models ICLR 2026
Large Language Models (LLMs) can produce catastrophic responses in conversational settings that pose serious risks to public safety and security.Existing evaluations often fail to fully reveal these vulnerabilities because they rely on fixed attack prompt sequences, lack statistical guarantees, and do not scale to the vast space of multi-turn conversations.In this work, we propose C$^3$LLM, a novel, principled statistical Certification framework for Catastrophic risks in multi-turn Conversation for LLMs that bounds the probability of an LLM generating catastrophic responses under multi-turn conversation distributions with statistical guarantees.We model multi-turn conversations as probability distributions over query sequences, represented by a Markov process on a query graph whose edges encode semantic similarity to capture realistic conversational flow, and quantify catastrophic risks using confidence intervals. We define several inexpensive and practical distributions--random node, graph path, and adaptive with rejection. Our results demonstrate that these distributions can reveal substantial catastrophic risks in frontier models, with certified lower bounds as high as 70\% for the worst model, highlighting the urgent need for improved safety training strategies in frontier LLMs.
comment: Accepted by ICLR 2026
♻ ☆ Analysis of Fourier Neural Operators via Effective Field Theory
Fourier Neural Operators (FNOs) have emerged as leading surrogates for solver operators for various functional problems, yet their stability, generalization and frequency behavior lack a principled explanation. We present a systematic effective field theory analysis of FNOs in an infinite-dimensional function space, deriving closed recursion relations for the layer kernel and four-point vertex and then examining three practically important settings-analytic activations, scale-invariant cases and architectures with residual connections. The theory shows that nonlinear activations inevitably couple frequency inputs to high frequency modes that are otherwise discarded by spectral truncation, and experiments confirm this frequency transfer. For wide networks, we derive explicit criticality conditions on the weight initialization ensemble that ensure small input perturbations maintain a uniform scale across depth, and we confirm experimentally that the theoretically predicted ratio of kernel perturbations matches the measurements. Taken together, our results quantify how nonlinearity enables neural operators to capture non-trivial features, supply criteria for hyperparameter selection via criticality analysis, and explain why scale-invariant activations and residual connections enhance feature learning in FNOs. Finally, we translate the criticality theory into a practical criterion-matched initialization (calibration) procedure; on a standard PDEBench Burgers benchmark, the calibrated FNO exhibits markedly more stable optimization, faster convergence, and improved test error relative to a vanilla FNO.
comment: 39 pages, 12 figures
♻ ☆ Anticipatory Evaluation of Language Models
Progress in large language models is increasingly constrained by an evaluation bottleneck: benchmarks must be built and models run before iteration can begin. We investigate whether evaluation outcomes can be forecast before any experiments are conducted. Specifically, we study text-only performance prediction, where models estimate performance from task descriptions and experimental configurations alone, without access to dataset instances. To support systematic study, we curate PRECOG, a corpus of description-performance pairs spanning diverse tasks, domains, and metrics. We scrape task and configuration descriptions from arXiv, yielding 2,290 instances covering 1,519 papers, and construct a test split using papers published after the evaluated models' knowledge cutoff. Experiments show the task is challenging but feasible: reasoning models achieve a non-trivial forecasting skill reaching mean absolute error as low as 9.9 at high-confidence thresholds. Overall, our corpus and analyses offer an initial step toward open-ended anticipatory evaluation, supporting difficulty estimation and smarter resource allocation.
comment: 30 pages, 7 figures
♻ ☆ Latent Chain-of-Thought as Planning: Decoupling Reasoning from Verbalization
Chain-of-Thought (CoT) empowers Large Language Models (LLMs) to tackle complex problems, but remains constrained by the computational cost and reasoning path collapse when grounded in discrete token spaces. Recent latent reasoning approaches attempt to optimize efficiency by performing reasoning within continuous hidden states. However, these methods typically operate as opaque end-to-end mappings from explicit reasoning steps to latent states, and often require a pre-defined number of latent steps during inference. In this work, we introduce PLaT (Planning with Latent Thoughts), a framework that reformulates latent reasoning as planning by fundamentally decouple reasoning from verbalization. We model reasoning as a deterministic trajectory of latent planning states, while a separate Decoder grounds these thoughts into text when necessary. This decoupling allows the model to dynamically determine when to terminate reasoning rather than relying on fixed hyperparameters. Empirical results on mathematical benchmarks reveal a distinct trade-off: while PLaT achieves lower greedy accuracy than baselines, it demonstrates superior scalability in terms of reasoning diversity. This indicates that PLaT learns a robust, broader solution space, offering a transparent and scalable foundation for inference-time search. Our code can be found in https://github.com/yunsaijc/PLaT.
♻ ☆ When Do Credal Sets Stabilize? Fixed-Point Theorems for Credal Set Updates
Many machine learning algorithms rely on iterative updates of uncertainty representations, ranging from variational inference and expectation-maximization, to reinforcement learning, continual learning, and multi-agent learning. In the presence of imprecision and ambiguity, credal sets -- closed, convex sets of probability distributions -- have emerged as a popular framework for representing imprecise probabilistic beliefs. Under such imprecision, many learning problems in imprecise probabilistic machine learning (IPML) may be viewed as processes involving successive applications of update rules on credal sets. This naturally raises the question of whether this iterative process converges to stable fixed points -- or, more generally, under what conditions on the updating mechanism such fixed points exist, and whether they can be attained. We provide the first analysis of this problem, and illustrate our findings using Credal Bayesian Deep Learning as a concrete example. Our work demonstrates that incorporating imprecision into the learning process not only enriches the representation of uncertainty, but also reveals structural conditions under which stability emerges, thereby offering new insights into the dynamics of iterative learning under imprecision.
♻ ☆ Information Templates: A New Paradigm for Intelligent Active Feature Acquisition
Active feature acquisition (AFA) is an instance-adaptive paradigm in which, at inference time, a policy sequentially chooses which features to acquire (at a cost) before predicting. Existing approaches either train reinforcement learning policies, which deal with a difficult MDP, or greedy policies that cannot account for the joint informativeness of features or require knowledge about the underlying data distribution. To overcome this, we propose Template-based AFA (TAFA), a non-greedy framework that learns a small library of feature templates -- sets of features that are jointly informative -- and uses this library of templates to guide the next feature acquisitions. Through identifying feature templates, the proposed framework not only significantly reduces the action space considered by the policy but also alleviates the need to estimate the underlying data distribution. Extensive experiments on synthetic and real-world datasets show that TAFA outperforms the existing state-of-the-art baselines while achieving lower overall acquisition cost and computation.
♻ ☆ Benchmarking Large Language Models for Diagnosing Students' Cognitive Skills from Handwritten Math Work
Students' handwritten math work provides a rich resource for diagnosing cognitive skills, as it captures intermediate reasoning beyond final answers. We investigate how current large language models (LLMs) perform in diagnosing cognitive skills from such work. However, student responses vary widely, often omitting steps or providing only vague, contextually implicit evidence. Despite recent advances in LLMs' multimodal and reasoning capabilities, their performance under such conditions remains underexplored. To address this gap, we constructed MathCog, a benchmark dataset containing 3,036 diagnostic verdicts across 639 student responses to 110 math problems, annotated by teachers using TIMSS-grounded cognitive skill checklists with evidential strength labels (Evident/Vague). Evaluating 18 LLMs, we find that (1) all models underperform (F1 < 0.5) regardless of capability, and (2) performance degrades sharply under vague evidence. Error analysis reveals systematic patterns: models frequently misattribute Vague evidence as Evident, overthink minimal cues, and hallucinate nonexistent evidence. We discuss implications for evidence-aware, teacher-in-the-loop designs for LLM-based cognitive diagnosis in educational settings.
♻ ☆ AI-Powered CPS-Enabled Vulnerable-User-Aware Urban Transportation Digital Twin: Methods and Applications
We present methods and applications for the development of digital twins (DT) for urban traffic management. While the majority of studies on the DT focus on its ``eyes," which is the emerging sensing and perception like object detection and tracking, what really distinguishes the DT from a traditional simulator lies in its ``brain," the prediction and decision making capabilities of extracting patterns and making informed decisions from what has been seen and perceived. In order to add value to urban transportation management, DTs need to be powered by artificial intelligence and complement with low-latency high-bandwidth sensing and networking technologies, in other words, cyberphysical systems. This paper can be a pointer to help researchers and practitioners identify challenges and opportunities for the development of DTs; a bridge to initiate conversations across disciplines; and a road map to exploiting potentials of DTs for diverse urban transportation applications.
♻ ☆ Breaking the MoE LLM Trilemma: Dynamic Expert Clustering with Structured Compression ICML 2026
Mixture-of-Experts (MoE) Large Language Models (LLMs) face a trilemma of load imbalance, parameter redundancy, and communication overhead. We introduce a unified framework based on dynamic expert clustering and structured compression to address these issues cohesively. Our method employs an online clustering procedure that periodically regroups experts using a fused metric of parameter and activation similarity, which stabilizes expert utilization. To our knowledge, this is one of the first frameworks to leverage the semantic embedding capability of the router to dynamically reconfigure the model's architecture during training for substantial efficiency gains. Within each cluster, we decompose expert weights into a shared base matrix and extremely low-rank residual adapters, achieving up to fivefold parameter reduction per group while preserving specialization. This structure enables a two-stage hierarchical routing strategy: tokens are first assigned to a cluster, then to specific experts within it, drastically reducing the routing search space and the volume of all-to-all communication. Furthermore, a heterogeneous precision scheme, which stores shared bases in FP16 and residual factors in INT4, coupled with dynamic offloading of inactive clusters, reduces peak memory consumption to levels comparable to dense models. Evaluated on GLUE and WikiText-103, our framework matches the quality of standard MoE models while reducing total parameters by approximately 80%, improving throughput by 10% to 20%, and lowering expert load variance by a factor of over three. Our work demonstrates that structural reorganization is a principled path toward scalable, efficient, and memory-effective MoE LLMs. Code is available at https://github.com/szdtzpj/Breaking_the_moe_trilemma
comment: 10 pages, 2 figures, 8 tables. Under review as a conference paper at ICML 2026
♻ ☆ A Novel Framework for Uncertainty-Driven Adaptive Exploration AAMAS 2026
Adaptive exploration methods propose ways to learn complex policies via alternating between exploration and exploitation. An important question for such methods is to determine the appropriate moment to switch between exploration and exploitation and vice versa. This is critical in domains that require the learning of long and complex sequences of actions. In this work, we present a generic adaptive exploration framework that employs uncertainty to address this important issue in a principled manner. Our framework includes previous adaptive exploration approaches as special cases. Moreover, we can incorporate in our framework any uncertainty-measuring mechanism of choice, for instance mechanisms used in intrinsic motivation or epistemic uncertainty-based exploration methods. We experimentally demonstrate that our framework gives rise to adaptive exploration strategies that outperform standard ones across several environments.
comment: This is an extended version (full paper + appendix) of the paper titled "A Novel Framework for Uncertainty-Driven Adaptive Exploration" accepted as a full paper at AAMAS 2026. The accepted paper can be found in https://openreview.net/forum?id=j5awxzdsU9
♻ ☆ GSAE: Graph-Regularized Sparse Autoencoders for Robust LLM Safety Steering
Large language models (LLMs) face critical safety challenges, as they can be manipulated to generate harmful content through adversarial prompts and jailbreak attacks. Many defenses are typically either black-box guardrails that filter outputs, or internals-based methods that steer hidden activations by operationalizing safety as a single latent feature or dimension. While effective for simple concepts, this assumption is limiting, as recent evidence shows that abstract concepts such as refusal and temporality are distributed across multiple features rather than isolated in one. To address this limitation, we introduce Graph-Regularized Sparse Autoencoders (GSAEs), which extends SAEs with a Laplacian smoothness penalty on the neuron co-activation graph. Unlike standard SAEs that assign each concept to a single latent feature, GSAEs recover smooth, distributed safety representations as coherent patterns spanning multiple features. We empirically demonstrate that GSAE enables effective runtime safety steering, assembling features into a weighted set of safety-relevant directions and controlling them with a two-stage gating mechanism that activates interventions only when harmful prompts or continuations are detected during generation. This approach enforces refusals adaptively while preserving utility on benign queries. Across safety and QA benchmarks, GSAE steering achieves an average 82% selective refusal rate, substantially outperforming standard SAE steering (42%), while maintaining strong task accuracy (70% on TriviaQA, 65% on TruthfulQA, 74% on GSM8K). Robustness experiments further show generalization across LLaMA-3, Mistral, Qwen, and Phi families and resilience against jailbreak attacks (GCG, AutoDAN), consistently maintaining >= 90% refusal of harmful content.
♻ ☆ Mixed-Density Diffuser: Efficient Planning with Non-Uniform Temporal Resolution
Recent studies demonstrate that diffusion planners benefit from sparse-step planning over single-step planning. Training models to skip steps in their trajectories helps capture long-term dependencies without additional memory or computational cost. However, predicting excessively sparse plans degrades performance. We hypothesize this temporal density threshold is non-uniform across a planning horizon and that certain parts of a predicted trajectory should be more densely generated. We propose Mixed-Density Diffuser (MDD), a diffusion planner where the densities throughout the horizon are tunable hyperparameters. We show that MDD surpasses the SOTA Diffusion Veteran (DV) framework across the Maze2D, Franka Kitchen, and Antmaze Datasets for Deep Data-Driven Reinforcement Learning (D4RL) task domains, achieving a new SOTA on the D4RL benchmark.
comment: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN) (under review)
♻ ☆ PromotionGo at SemEval-2025 Task 11: A Feature-Centric Framework for Cross-Lingual Multi-Emotion Detection in Short Texts
This paper presents our system for SemEval 2025 Task 11: Bridging the Gap in Text-Based Emotion Detection (Track A), which focuses on multi-label emotion detection in short texts. We propose a feature-centric framework that dynamically adapts document representations and learning algorithms to optimize language-specific performance. Our study evaluates three key components: document representation, dimensionality reduction, and model training in 28 languages, highlighting five for detailed analysis. The results show that TF-IDF remains highly effective for low-resource languages, while contextual embeddings like FastText and transformer-based document representations, such as those produced by Sentence-BERT, exhibit language-specific strengths. Principal Component Analysis (PCA) reduces training time without compromising performance, particularly benefiting FastText and neural models such as Multi-Layer Perceptrons (MLP). Computational efficiency analysis underscores the trade-off between model complexity and processing cost. Our framework provides a scalable solution for multilingual emotion detection, addressing the challenges of linguistic diversity and resource constraints.
♻ ☆ EvoFSM: Controllable Self-Evolution for Deep Research with Finite State Machines
While LLM-based agents have shown promise for deep research, most existing approaches rely on fixed workflows that struggle to adapt to real-world, open-ended queries. Recent work therefore explores self-evolution by allowing agents to rewrite their own code or prompts to improve problem-solving ability, but unconstrained optimization often triggers instability, hallucinations, and instruction drift. We propose EvoFSM, a structured self-evolving framework that achieves both adaptability and control by evolving an explicit Finite State Machine (FSM) instead of relying on free-form rewriting. EvoFSM decouples the optimization space into macroscopic Flow (state-transition logic) and microscopic Skill (state-specific behaviors), enabling targeted improvements under clear behavioral boundaries. Guided by a critic mechanism, EvoFSM refines the FSM through a small set of constrained operations, and further incorporates a self-evolving memory that distills successful trajectories as reusable priors and failure patterns as constraints for future queries. Extensive evaluations on five multi-hop QA benchmarks demonstrate the effectiveness of EvoFSM. In particular, EvoFSM reaches 58.0% accuracy on the DeepSearch benchmark. Additional results on interactive decision-making tasks further validate its generalization.
♻ ☆ Neural Concept Verifier: Scaling Prover-Verifier Games via Concept Encodings ICML 2025
While Prover-Verifier Games (PVGs) offer a promising path toward verifiability in nonlinear classification models, they have not yet been applied to complex inputs such as high-dimensional images. Conversely, expressive concept encodings effectively allow to translate such data into interpretable concepts but are often utilised in the context of low-capacity linear predictors. In this work, we push towards real-world verifiability by combining the strengths of both approaches. We introduce Neural Concept Verifier (NCV), a unified framework combining PVGs for formal verifiability with concept encodings to handle complex, high-dimensional inputs in an interpretable way. NCV achieves this by utilizing recent minimally supervised concept discovery models to extract structured concept encodings from raw inputs. A prover then selects a subset of these encodings, which a verifier, implemented as a nonlinear predictor, uses exclusively for decision-making. Our evaluations show that NCV outperforms classic concept-based models and pixel-based PVG classifier baselines on high-dimensional, logically complex datasets and helps mitigate shortcut behavior. Overall, we demonstrate NCV as a promising step toward concept-level, verifiable AI.
comment: 24 pages, 5 figures, 11 tables, revised references. An earlier version of this work was presented at the ICML 2025 Workshop on Actionable Interpretability
♻ ☆ Comparing Task-Agnostic Embedding Models for Tabular Data
Recent foundation models for tabular data achieve strong task-specific performance via in-context learning. Nevertheless, they focus on direct prediction by encapsulating both representation learning and task-specific inference inside a single, resource-intensive network. This work specifically focuses on representation learning, i.e., on transferable, task-agnostic embeddings. We systematically evaluate task-agnostic representations extracted from tabular foundation models (TabPFN, TabICL and TabSTAR) alongside classical feature engineering (TableVectorizer and a sphere model) across a variety of application tasks as outlier detection (ADBench) and supervised learning (TabArena Lite). We find that simple feature engineering methods achieve comparable or superior performance while requiring significantly less computational resources than tabular foundation models.
♻ ☆ Toward Substantive Intersectional Algorithmic Fairness: Desiderata for a Feminist Approach
People's experiences of discrimination are often shaped by multiple intersecting factors, yet algorithmic fairness research rarely reflects this complexity. While intersectionality offers tools for understanding how forms of oppression interact, current approaches to intersectional algorithmic fairness tend to focus on narrowly defined demographic subgroups. These methods contribute important insights but risk oversimplifying social reality and neglecting structural inequalities. In this paper, we outline how a substantive approach to intersectional algorithmic fairness can reorient this research and practice. In particular, we propose Substantive Intersectional Algorithmic Fairness, extending Green's (2022) notion of substantive algorithmic fairness with insights from intersectional feminist theory. Aiming to provide as actionable guidance as possible, our approach is articulated as ten desiderata to guide the design, assessment, and deployment of algorithmic systems that address systemic inequities while mitigating harms to intersectionally marginalized communities. Rather than prescribing fixed operationalizations, these desiderata invite AI practitioners and experts to reflect on assumptions of neutrality, the use of protected attributes, the inclusion of multiply marginalized groups, and the transformative potential of algorithmic systems. By bridging computational and social science perspectives, the approach emphasizes that fairness cannot be separated from social context, and that in some cases, principled non-deployment may be necessary.
comment: 28 pages
♻ ☆ Generative Adversarial Evasion and Out-of-Distribution Detection for UAV Cyber-Attacks
The growing integration of UAVs into civilian airspace underscores the need for resilient and intelligent intrusion detection systems (IDS), as traditional anomaly detection methods often fail to identify novel threats. A common approach treats unfamiliar attacks as out-of-distribution (OOD) samples; however, this leaves systems vulnerable when mitigation is inadequate. Moreover, conventional OOD detectors struggle to distinguish stealthy adversarial attacks from genuine OOD events. This paper introduces a conditional generative adversarial network (cGAN)-based framework for crafting stealthy adversarial attacks that evade IDS mechanisms. We first design a robust multi-class IDS classifier trained on benign UAV telemetry and known cyber-attacks, including Denial of Service (DoS), false data injection (FDI), man-in-the-middle (MiTM), and replay attacks. Using this classifier, our cGAN perturbs known attacks to generate adversarial samples that misclassify as benign while retaining statistical resemblance to OOD distributions. These adversarial samples are iteratively refined to achieve high stealth and success rates. To detect such perturbations, we implement a conditional variational autoencoder (CVAE), leveraging negative log-likelihood to separate adversarial inputs from authentic OOD samples. Comparative evaluation shows that CVAE-based regret scores significantly outperform traditional Mahalanobis distance-based detectors in identifying stealthy adversarial threats. Our findings emphasize the importance of advanced probabilistic modeling to strengthen IDS capabilities against adaptive, generative-model-based cyber intrusions.
♻ ☆ Guarding the Guardrails: A Taxonomy-Driven Approach to Jailbreak Detection SC
Jailbreaking techniques pose a significant threat to the safety of Large Language Models (LLMs). Existing defenses typically focus on single-turn attacks, lack coverage across languages, and rely on limited taxonomies that either fail to capture the full diversity of attack strategies or emphasize risk categories rather than jailbreaking techniques. To advance the understanding of the effectiveness of jailbreaking techniques, we conducted a structured red-teaming challenge. The outcomes of our experiments are fourfold. First, we developed a comprehensive hierarchical taxonomy of jailbreak strategies that systematically consolidates techniques previously studied in isolation and harmonizes existing, partially overlapping classifications with explicit cross-references to prior categorizations. The taxonomy organizes jailbreak strategies into seven mechanism-oriented families: impersonation, persuasion, privilege escalation, cognitive overload, obfuscation, goal conflict, and data poisoning. Second, we analyzed the data collected from the challenge to examine the prevalence and success rates of different attack types, providing insights into how specific jailbreak strategies exploit model vulnerabilities and induce misalignment. Third, we benchmarked GPT-5 as a judge for jailbreak detection, evaluating the benefits of taxonomy-guided prompting for improving automatic detection. Finally, we compiled a new Italian dataset of 1364 multi-turn adversarial dialogues, annotated with our taxonomy, enabling the study of interactions where adversarial intent emerges gradually and succeeds in bypassing traditional safeguards.
comment: 2nd Conference on International Association for Safe & Ethical AI (IASEAI 2026), 24-26 February 2026, UNESCO House, Paris, France
♻ ☆ Stingy Context: 18:1 Hierarchical Code Compression for LLM Auto-Coding
We introduce Stingy Context, a hierarchical tree-based compression scheme achieving 18:1 reduction in LLM context for auto-coding tasks. Using our TREEFRAG exploit decomposition, we reduce a real source code base of 239k tokens to 11k tokens while preserving task fidelity. Empirical results across 12 Frontier models show 94 to 97% success on 40 real-world issues at low cost, outperforming flat methods and mitigating lost-in-the-middle effects.
comment: 28 pages, 10 tables, 2 figures, 10 bibliographical references and 6 appendices
♻ ☆ Why Steering Works: Toward a Unified View of Language Model Parameter Dynamics
Methods for controlling large language models (LLMs), including local weight fine-tuning, LoRA-based adaptation, and activation-based interventions, are often studied in isolation, obscuring their connections and making comparison difficult. In this work, we present a unified view that frames these interventions as dynamic weight updates induced by a control signal, placing them within a single conceptual framework. Building on this view, we propose a unified preference-utility analysis that separates control effects into preference, defined as the tendency toward a target concept, and utility, defined as coherent and task-valid generation, and measures both on a shared log-odds scale using polarity-paired contrastive examples. Across methods, we observe a consistent trade-off between preference and utility: stronger control increases preference while predictably reducing utility. We further explain this behavior through an activation manifold perspective, in which control shifts representations along target-concept directions to enhance preference, while utility declines primarily when interventions push representations off the model's valid-generation manifold. Finally, we introduce a new steering approach SPLIT guided by this analysis that improves preference while better preserving utility. Code is available at https://github.com/zjunlp/EasyEdit/blob/main/examples/SPLIT.md.
comment: Work in progress
♻ ☆ Quantization-Aware Neuromorphic Architecture for Skin Disease Classification on Resource-Constrained Devices
On-device skin lesion analysis is constrained by the compute and energy cost of conventional CNN inference and by the need to update models as new patient data become available. Neuromorphic processors provide event-driven sparse computation and support on-chip incremental learning, yet deployment is often hindered by CNN-to-SNN conversion failures, including non-spike-compatible operators and accuracy degradation under class imbalance. We propose QANA, a quantization-aware CNN backbone embedded in an end-to-end pipeline engineered for conversion-stable neuromorphic execution. QANA replaces conversion-fragile components with spike-compatible transformations by bounding intermediate activations and aligning normalization with low-bit quantization, reducing conversion-induced distortion that disproportionately impacts rare classes. Efficiency is achieved through Ghost-based feature generation under tight FLOP budgets, while spatially-aware efficient channel attention and squeeze-and-excitation recalibrate channels without heavy global operators that are difficult to map to spiking cores. The resulting quantized projection head produces SNN-ready logits and enables incremental updates on edge hardware without full retraining or data offloading. On HAM10000, QANA achieves 91.6% Top-1 accuracy and 91.0% macro F1, improving the strongest converted SNN baseline by 3.5 percentage points in Top-1 accuracy (a 4.0% relative gain) and by 12.0 points in macro F1 (a 15.2% relative gain). On a clinical dataset, QANA achieves 90.8% Top-1 accuracy and 81.7% macro F1, improving the strongest converted SNN baseline by 3.2 points in Top-1 accuracy (a 3.7% relative gain) and by 3.6 points in macro F1 (a 4.6% relative gain). When deployed on BrainChip Akida, QANA runs in 1.5 ms per image with 1.7 mJ per image, corresponding to 94.6% lower latency and 99.0% lower energy than its GPU-based CNN implementation.
♻ ☆ Sample from What You See: Visuomotor Policy Learning via Diffusion Bridge with Observation-Embedded Stochastic Differential Equation
Imitation learning with diffusion models has advanced robotic control by capturing the multi-modal action distributions. However, existing methods typically treat observations only as high-level conditions to the denoising network, rather than integrating them into the stochastic dynamics of the diffusion process itself. As a result, the sampling is forced to begin from random noise, weakening the coupling between perception and control and often yielding suboptimal performance. We propose BridgePolicy, a generative visuomotor policy that directly integrates observations into the stochastic dynamics via a diffusion-bridge formulation. By constructing an observation-informed trajectory, BridgePolicy enables sampling to start from a rich and informative prior rather than random noise, substantially improving precision and reliability in control. A key difficulty is that diffusion bridge normally connects distributions of matched dimensionality, while robotic observations are heterogeneous and not naturally aligned with actions. To overcome this, we introduce a multi-modal fusion module and a semantic aligner to unify the visual and state inputs and align the observations with action representations, making diffusion bridge applicable to heterogeneous robot data. Extensive experiments across 52 simulation tasks on three benchmarks and 5 real-world tasks demonstrate that BridgePolicy consistently outperforms state-of-the-art generative policies.
♻ ☆ LLM Agents for Education: Advances and Applications EMNLP 2025
Large Language Model (LLM) agents are transforming education by automating complex pedagogical tasks and enhancing both teaching and learning processes. In this survey, we present a systematic review of recent advances in applying LLM agents to address key challenges in educational settings, such as feedback comment generation, curriculum design, etc. We analyze the technologies enabling these agents, including representative datasets, benchmarks, and algorithmic frameworks. Additionally, we highlight key challenges in deploying LLM agents in educational settings, including ethical issues, hallucination and overreliance, and integration with existing educational ecosystems. Beyond the core technical focus, we include in Appendix A a comprehensive overview of domain-specific educational agents, covering areas such as science learning, language learning, and professional development.
comment: Accepted by EMNLP 2025 Findings
♻ ☆ LiDAR-based 3D Change Detection at City Scale
High-definition 3D city maps enable city planning and change detection, which is essential for municipal compliance, map maintenance, and asset monitoring, including both built structures and urban greenery. Conventional Digital Surface Model (DSM) and image differencing are sensitive to vertical bias and viewpoint mismatch, while original point cloud or voxel models require large memory, assume perfect alignment, and degrade thin structures. We propose an uncertainty-aware, object-centric method for city-scale LiDAR-based change detection. Our method aligns data from different time periods using multi-resolution Normal Distributions Transform (NDT) and a point-to-plane Iterative Closest Point (ICP) method, normalizes elevation, and computes a per-point level of detection from registration covariance and surface roughness to calibrate change decisions. Geometry-based associations are refined by semantic and instance segmentation and optimized using class-constrained bipartite assignment with augmented dummies to handle split-merge cases. Tiled processing bounds memory and preserves narrow ground changes, while instance-level decisions integrate overlap, displacement, and volumetric differences under local detection gating. We perform experiments on a Subiaco (Western Australia) dataset captured in 2023 and again in 2025. Our method achieves 95.3% accuracy, 90.8% mF1, and 82.9% mIoU, improving over the strongest baseline, Triplet KPConv, by 0.3, 0.6, and 1.1 points, respectively. The datasets are available on IEEE DataPort (2023: https://ieee-dataport.org/documents/2023-subiaco-wa-3d-hd-lidar-point-cloud-maps-dataset and 2025: https://ieee-dataport.org/documents/2025-subiaco-wa-3d-hd-lidar-gnss-point-cloud-maps-dataset). The source code is available at https://github.com/HaitianWang/IEEE-Sensor-Journal-Changing-Detection.
♻ ☆ Large Language Model as Meta-Surrogate for Data-Driven Many-Task Optimization: A Proof-of-Principle Study
In many-task optimization scenarios, surrogate models are valuable for mitigating the computational burden of repeated fitness evaluations across tasks. This study proposes a novel meta-surrogate framework to assist many-task optimization, by leveraging the knowledge transfer strengths and emergent capabilities of large language models (LLMs). We formulate a unified framework for many-task fitness prediction, by defining a universal model with metadata to fit a group of problems. Fitness prediction is performed on metadata and decision variables, enabling efficient knowledge sharing across tasks and adaptability to new tasks. The LLM-based meta-surrogate treats fitness prediction as conditional probability estimation, employing a unified token sequence representation for task metadata, inputs, and outputs. This approach facilitates efficient inter-task knowledge sharing through shared token embeddings and captures complex task dependencies via multi-task model training. Experimental results demonstrate the model's emergent generalization ability, including zero-shot performance on problems with unseen dimensions. When integrated into evolutionary transfer optimization (ETO), our framework supports dual-level knowledge transfer -- at both the surrogate and individual levels -- enhancing optimization efficiency and robustness. This work establishes a novel foundation for applying LLMs in surrogate modeling, offering a versatile solution for many-task optimization.
comment: 39 pages
♻ ☆ RoboMemory: A Brain-inspired Multi-memory Agentic Framework for Interactive Environmental Learning in Physical Embodied Systems
Embodied intelligence aims to enable robots to learn, reason, and generalize robustly across complex real-world environments. However, existing approaches often struggle with partial observability, fragmented spatial reasoning, and inefficient integration of heterogeneous memories, limiting their capacity for long-horizon adaptation. To address this, we introduce RoboMemory, a brain-inspired framework that unifies Spatial, Temporal, Episodic, and Semantic memory within a parallelized architecture for efficient long-horizon planning and interactive learning. Its core innovations are a dynamic spatial knowledge graph for scalable, consistent memory updates and a closed-loop planner with a critic module for adaptive decision-making. Extensive experiments on EmbodiedBench show that RoboMemory, instantiated with Qwen2.5-VL-72B-Ins, improves the average success rate by 26.5% over its strong baseline and even surpasses the closed-source SOTA, Claude-3.5-Sonnet. Real-world trials further confirm its capability for cumulative learning, with performance consistently improving over repeated tasks. Our results position RoboMemory as a scalable foundation for memory-augmented embodied agents, bridging insights from cognitive neuroscience with practical robotic autonomy.
♻ ☆ User-Feedback-Driven Adaptation for Vision-and-Language Navigation
Real-world deployment of Vision-and-Language Navigation (VLN) agents is constrained by the scarcity of reliable supervision after offline training. While recent adaptation methods attempt to mitigate distribution shifts via environment-driven self-supervision (e.g., entropy minimization), these signals are often noisy and can cause the agent to amplify its own mistakes during long-horizon sequential decision-making. In this paper, we propose a paradigm shift that positions user feedback, specifically episode-level success confirmations and goal-level corrections, as a primary and general-purpose supervision signal for VLN. Unlike internal confidence scores, user feedback is intent-aligned and in-situ consistent, directly correcting the agent's decoupling from user instructions. To effectively leverage this supervision, we introduce a user-feedback-driven learning framework featuring a topology-aware trajectory construction pipeline. This mechanism lifts sparse, goal-level corrections into dense path-level supervision by generating feasible paths on the agent's incrementally built topological graph, enabling sample-efficient imitation learning without requiring step-by-step human demonstrations. Furthermore, we develop a persistent memory bank mechanism for warm-start initialization, supporting the reuse of previously acquired topology and cached representations across navigation sessions. Extensive experiments on the GSA-R2R benchmark demonstrate that our approach transforms sparse interaction into robust supervision, consistently outperforming environment-driven baselines while exhibiting strong adaptability across diverse instruction styles.
♻ ☆ Dynamic and Distributed Routing in IoT Networks based on Multi-Objective Q-Learning
IoT networks often face conflicting routing goals such as maximizing packet delivery, minimizing delay, and conserving limited battery energy. These priorities can also change dynamically: for example, an emergency alert requires high reliability, while routine monitoring prioritizes energy efficiency to prolong network lifetime. Existing works, including many deep reinforcement learning approaches, are typically centralized and assume static objectives, making them slow to adapt when preferences shift. We propose a dynamic and fully distributed multi-objective Q-learning routing algorithm that learns multiple per-preference Q-tables in parallel and introduces a novel greedy interpolation policy to act near-optimally for unseen preferences without retraining or central coordination. A theoretical analysis further shows that the optimal value function is Lipschitz-continuous in the preference parameter, ensuring that the proposed greedy interpolation policy yields provably near-optimal behavior. Simulations show that our approach adapts in real time to shifting priorities and achieves up to 80-90\% lower energy consumption and more than 2-5x higher cumulative rewards and packet delivery compared to six baseline protocols, under dynamic and distributed settings. Sensitivity analysis across varying preference window lengths confirms that the proposed DPQ framework consistently achieves higher composite reward than all baseline methods, demonstrating robustness to changes in operating conditions.
♻ ☆ Vid-LLM: A Compact Video-based 3D Multimodal LLM with Reconstruction-Reasoning Synergy
Recent developments in Multimodal Large Language Models (MLLMs) have significantly improved Vision-Language (VL) reasoning in 2D domains. However, extending these capabilities to 3D scene understanding remains a major challenge. Existing 3D Multimodal Large Language Models (3D-MLLMs) often depend on 3D data inputs, which limits scalability and generalization. To address this limitation, we propose Vid-LLM, a video-based 3D-MLLM that directly processes video inputs without requiring external 3D data, making it practical for real-world deployment. In our method, the geometric prior are directly used to improve the performance of the sceen perception. To integrate the geometric cues into the MLLM compactly, we design a Cross-Task Adapter (CTA) module to align the 3D geometric priors with the vision-language representations. To ensure geometric consistency and integrity, we introduce a Metric Depth Model that recovers real-scale geometry from the reconstruction outputs. Finally, the model is fine-tuned with a two-stage distillation optimization strategy, realizing fast convergence and stabilizes training. Extensive experiments across diverse benchmarks verified the effectiveness of our method on 3D Question Answering, 3D Dense Captioning and 3D Visual Grounding tasks, demonstrating the superior multi-task capabilities.
♻ ☆ Agentic Explainable Artificial Intelligence (Agentic XAI) Approach To Explore Better Explanation
Explainable artificial intelligence (XAI) enables data-driven understanding of factor associations with response variables, yet communicating XAI outputs to laypersons remains challenging, hindering trust in AI-based predictions. Large language models (LLMs) have emerged as promising tools for translating technical explanations into accessible narratives, yet the integration of agentic AI, where LLMs operate as autonomous agents through iterative refinement, with XAI remains unexplored. This study proposes an agentic XAI framework combining SHAP-based explainability with multimodal LLM-driven iterative refinement to generate progressively enhanced explanations. As a use case, we tested this framework as an agricultural recommendation system using rice yield data from 26 fields in Japan. The Agentic XAI initially provided a SHAP result and explored how to improve the explanation through additional analysis iteratively across 11 refinement rounds (Rounds 0-10). Explanations were evaluated by human experts (crop scientists) (n=12) and LLMs (n=14) against seven metrics: Specificity, Clarity, Conciseness, Practicality, Contextual Relevance, Cost Consideration, and Crop Science Credibility. Both evaluator groups confirmed that the framework successfully enhanced recommendation quality with an average score increase of 30-33% from Round 0, peaking at Rounds 3-4. However, excessive refinement showed a substantial drop in recommendation quality, indicating a bias-variance trade-off where early rounds lacked explanation depth (bias) while excessive iteration introduced verbosity and ungrounded abstraction (variance), as revealed by metric-specific analysis. These findings suggest that strategic early stopping (regularization) is needed for optimizing practical utility, challenging assumptions about monotonic improvement and providing evidence-based design principles for agentic XAI systems.
♻ ☆ DEEPMED: Building a Medical DeepResearch Agent via Multi-hop Med-Search Data and Turn-Controlled Agentic Training & Inference
Medical reasoning models remain constrained by parametric knowledge and are thus susceptible to forgetting and hallucinations. DeepResearch (DR) models ground outputs in verifiable evidence from tools and perform strongly in general domains, but their direct transfer to medical field yields relatively limited gains. We attribute this to two gaps: task characteristic and tool-use scaling. Medical questions require evidence interpretation in a knowledge-intensive clinical context; while general DR models can retrieve information, they often lack clinical-context reasoning and thus "find it but fail to use it," leaving performance limited by medical abilities. Moreover, in medical scenarios, blindly scaling tool-call can inject noisy context, derailing sensitive medical reasoning and prompting repetitive evidence-seeking along incorrect paths. Therefore, we propose DeepMed. For data, we deploy a multi-hop med-search QA synthesis method supporting the model to apply the DR paradigm in medical contexts. For training, we introduce a difficulty-aware turn-penalty to suppress excessive tool-call growth. For inference, we bring a monitor to help validate hypotheses within a controlled number of steps and avoid context rot. Overall, on seven medical benchmarks, DeepMed improves its base model by 9.79\% on average and outperforms larger medical reasoning and DR models.
♻ ☆ Synergizing Kolmogorov-Arnold Networks with Dynamic Adaptive Weighting for High-Frequency and Multi-Scale PDE Solutions
PINNs enhance scientific computing by incorporating physical laws into neural network structures, leading to significant advancements in scientific computing. However, PINNs struggle with multi-scale and high-frequency problems due to pathological gradient flow and spectral bias, which severely limit their predictive power. By combining an enhanced network architecture with a dynamically adaptive weighting mechanism featuring upper-bound constraints, we propose the Dynamic Balancing Adaptive Weighting Physics-Informed Kolmogorov-Arnold Network (DBAW-PIKAN). The proposed method effectively mitigates gradient-related failure modes and overcomes bottlenecks in function representation. Compared to baseline models, the proposed method accelerates the convergence process and improves solution accuracy by at least an order of magnitude without introducing additional computational complexity. Numerical results on the Klein-Gordon, Burgers, and Helmholtz equations demonstrate that DBAW-PIKAN achieves superior accuracy and generalization performance.
♻ ☆ Learning to Explore with Lagrangians for Bandits under Unknown Linear Constraints
Pure exploration in bandits formalises multiple real-world problems, such as tuning hyper-parameters or conducting user studies to test a set of items, where different safety, resource, and fairness constraints on the decision space naturally appear. We study these problems as pure exploration in multi-armed bandits with unknown linear constraints, where the aim is to identify an $r$-optimal and feasible policy as fast as possible with a given level of confidence. First, we propose a Lagrangian relaxation of the sample complexity lower bound for pure exploration under constraints. Second, we leverage properties of convex optimisation in the Lagrangian lower bound to propose two computationally efficient extensions of Track-and-Stop and Gamified Explorer, namely LATS and LAGEX. Then, we propose a constraint-adaptive stopping rule, and while tracking the lower bound, use optimistic estimate of the feasible set at each step. We show that LAGEX achieves asymptotically optimal sample complexity upper bound, while LATS shows asymptotic optimality up to novel constraint-dependent constants. Finally, we conduct numerical experiments with different reward distributions and constraints that validate efficient performance of LATS and LAGEX.
♻ ☆ CreditAudit: 2$^\text{nd}$ Dimension for LLM Evaluation and Selection
Leaderboard scores on public benchmarks have been steadily rising and converging, with many frontier language models now separated by only marginal differences. However, these scores often fail to match users' day to day experience, because system prompts, output protocols, and interaction modes evolve under routine iteration, and in agentic multi step pipelines small protocol shifts can trigger disproportionate failures, leaving practitioners uncertain about which model to deploy. We propose CreditAudit, a deployment oriented credit audit framework that evaluates models under a family of semantically aligned and non adversarial system prompt templates across multiple benchmarks, reporting mean ability as average performance across scenarios and scenario induced fluctuation sigma as a stability risk signal, and further mapping volatility into interpretable credit grades from AAA to BBB via cross model quantiles with diagnostics that mitigate template difficulty drift. Controlled experiments on GPQA, TruthfulQA, and MMLU Pro show that models with similar mean ability can exhibit substantially different fluctuation, and stability risk can overturn prioritization decisions in agentic or high failure cost regimes. By providing a 2D and grade based language for regime specific selection, CreditAudit supports tiered deployment and more disciplined allocation of testing and monitoring effort, enabling more objective and trustworthy model evaluation for real world use.
comment: Second update
♻ ☆ Tabula RASA: Exposing and Breaking the Relational Bottleneck in Transformers
Transformers achieve remarkable performance across many domains, yet struggle with tasks requiring multi-hop relational reasoning over structured data. We analyze this limitation through circuit complexity: standard transformers are $\mathsf{TC}^0$-complete and cannot solve graph connectivity in constant depth, implying $Ω(k)$ layers are necessary for $k$-hop reasoning regardless of model size or training data. We introduce RASA (Relation-Aware Sparse Attention), a minimal architectural modification that provides structural inductive bias for relational reasoning. RASA adds: (1) sparse adjacency masking that restricts attention to graph-connected positions, reducing the attention pattern search space from $O(2^{n^2})$ to $O(2^m)$ for graphs with $m$ edges; and (2) learnable edge-type biases that encode relation-specific attention preferences. While RASA does not circumvent asymptotic depth requirements, the exponential reduction in attention pattern space provides stronger inductive bias for learning graph-structured functions. Empirically, on the MetaQA knowledge graph QA benchmark, RASA achieves 97.7% accuracy on 3-hop questions, outperforming EmbedKGQA (94.8%) by 2.9 percentage points. Notably, RASA's advantage grows with reasoning depth, validating that structural inductive bias is most beneficial for complex multi-hop queries. Our results demonstrate that minimal architectural modifications, grounded in complexity-theoretic analysis, can substantially improve multi-hop reasoning.
comment: 16 pages, 4 figures, 8 tables
♻ ☆ Building Interpretable Models for Moral Decision-Making AAAI'26
We build a custom transformer model to study how neural networks make moral decisions on trolley-style dilemmas. The model processes structured scenarios using embeddings that encode who is affected, how many people, and which outcome they belong to. Our 2-layer architecture achieves 77% accuracy on Moral Machine data while remaining small enough for detailed analysis. We use different interpretability techniques to uncover how moral reasoning distributes across the network, demonstrating that biases localize to distinct computational stages among other findings.
comment: 8 pages, 4 figures, accepted to AAAI'26 Machine Ethics Workshop
♻ ☆ GRAM: Spatial general-purpose audio representation models for real-world applications
Audio foundation models learn general-purpose audio representations that facilitate a wide range of downstream tasks. While the performance of these models has greatly increased for conventional single-channel, dry audio clips, their success in real-world acoustic environments with reverberation and noise is limited. Furthermore, most audio foundation models ignore the spatial dimension of real-world acoustic environments, ruling out tasks involving sound localization. To address these limitations, we propose GRAM: a general-purpose real-world audio model that employs a multi-channel masked autoencoder to efficiently learn spatial audio representations. We evaluated GRAM and other audio foundation models in a standardized manner on high-quality simulations of naturalistic, spatial acoustic environments as well as recordings of real-world environments and release these two complementary benchmark task suites: NatHEAR and RealSELD. Our results demonstrate that GRAM outperforms all state-of-the-art self-supervised audio foundation models on NatHEAR and the clean, single-channel version HEAR, while using only a fraction of the training data. GRAM also shows state-of-the-art localization performance in simulated environments and generalizes efficiently to real-world recordings in RealSELD. Taken together, GRAM presents a significant advance toward robust spatial audio foundation models for real-world environments.
comment: Revise with RealSELD
♻ ☆ Look Back to Reason Forward: Revisitable Memory for Long-Context LLM Agents
Large language models face challenges in long-context question answering, where key evidence of a query may be dispersed across millions of tokens. Existing works equip large language models with a memory buffer that is dynamically updated via a linear document scan, also known as the "memorize while reading" methods. While this approach scales efficiently, it suffers from pruning of latent evidence, information loss through overwriting, and sparse reinforcement learning signals. To tackle these challenges, we present ReMemR1, which integrates the mechanism of memory retrieval into the memory update process, enabling the agent to selectively callback historical memories for non-linear reasoning. To further strengthen training, we propose a multi-level reward design, which combines final-answer rewards with dense, step-level signals that guide effective memory use. Together, these contributions mitigate information degradation, improve supervision, and support complex multi-hop reasoning. Extensive experiments demonstrate that ReMemR1 significantly outperforms state-of-the-art baselines on long-context question answering while incurring negligible computational overhead, validating its ability to trade marginal cost for robust long-context reasoning.
♻ ☆ Less Precise Can Be More Reliable: A Systematic Evaluation of Quantization's Impact on CLIP Beyond Accuracy
Vision-Language Models (VLMs) such as CLIP have revolutionized zero-shot classification and safety-critical tasks, including Out-of-Distribution (OOD) detection. However, their high computational cost hinders efficient real-world deployment. While quantization is a standard solution for efficiency, its broader impact on reliability metrics beyond simple Top-1 accuracy remains critically under-explored. In this study, we conduct a large-scale evaluation of VLM quantization across a comprehensive experimental suite of over 700k evaluation runs with varying configurations. We find that, contrary to the assumption that quantization's noise degrades performance, it can simultaneously improve accuracy, calibration, OOD detection, and robustness to noise, though not to covariate shift or spurious correlations. We leverage these counterintuitive findings to characterize the mechanics of quantization beyond simple regularization: we show that quantization dampens high-rank spectral components, compelling the model to rely more heavily on robust, low-rank features. Ultimately, this spectral filtering effect drives the observed improvements in generalization and noise tolerance, establishing a pathway to deploy faster, more reliable VLMs by utilizing quantization beyond its conventional role.
comment: Preprint
♻ ☆ Beyond speculation: Measuring the growing presence of LLM-generated texts in multilingual disinformation
Increased sophistication of large language models (LLMs) and the consequent quality of generated multilingual text raises concerns about potential disinformation misuse. While humans struggle to distinguish LLM-generated content from human-written texts, the scholarly debate about their impact remains divided. Some argue that heightened fears are overblown due to natural ecosystem limitations, while others contend that specific "longtail" contexts face overlooked risks. Our study bridges this debate by providing the first empirical evidence of LLM presence in the latest real-world disinformation datasets, documenting the increase of machine-generated content following ChatGPT's release, and revealing crucial patterns across languages, platforms, and time periods.
comment: accepted to Computer magazine
♻ ☆ DPO Unchained: Your Training Algorithm is Secretly Disentangled in Human Choice Theory
Normative theories allow one to elicit key parts of a ML algorithm from first principles, which is crucial at a time of championed scrutiny for ML work. Direct Preference Optimization (DPO) cleverly bypasses reward modeling by making an explicit link with a specific normative model of human choice. Our paper elevates this connection to the full generality of DPO's normative framework. Getting there requires reworking human choice theory's textbook path for a better RLHF/ML fit. It elevates the connection to a remarkably broad viewpoint on preference optimization, considering the current panorama of DPO follow-ups. It also unveils unexpected riches for ML, chief among which the support for non-convex losses, the fact that any compliant ML analytical choice can be embedded with any human choice model, and a normative framework's umbrella wide enough to safeguard DPO's extensions (margins, length correction, ...). A toy experiment ``far away'' from the DPO crowd is given.
♻ ☆ Investigating Redundancy in Multimodal Large Language Models with Multiple Vision Encoders ICLR2026
Recent multimodal large language models (MLLMs) increasingly integrate multiple vision encoders to improve performance on various benchmarks, assuming that diverse pretraining objectives yield complementary visual signals. However, we show this assumption often fails in practice. Through systematic encoder masking across representative multi encoder MLLMs, we find that performance typically degrades gracefully and sometimes even improves when selected encoders are masked, revealing pervasive encoder redundancy. To quantify this effect, we introduce two principled metrics: the Conditional Utilization Rate (CUR), which measures an encoders marginal contribution in the presence of others, and the Information Gap (IG), which captures heterogeneity in encoder utility within a model. Using these tools, we observe (i) strong specialization on tasks like OCR and Chart, where a single encoder can dominate with a CUR greater than 90%, (ii) high redundancy on general VQA and knowledge-based tasks, where encoders are largely interchangeable, (iii) instances of detrimental encoders with negative CUR. Notably, masking specific encoders can yield up to 16% higher accuracy on a specific task category and 3.6% overall performance boost compared to the full model.Furthermore, single and dual encoder variants recover over 90% of baseline on most non OCR tasks. Our analysis challenges the more encoders are better heuristic in MLLMs and provides actionable diagnostics for developing more efficient and effective multimodal architectures.
comment: accepted by ICLR2026
♻ ☆ InfoTok: Adaptive Discrete Video Tokenizer via Information-Theoretic Compression
Accurate and efficient discrete video tokenization is essential for long video sequences processing. Yet, the inherent complexity and variable information density of videos present a significant bottleneck for current tokenizers, which rigidly compress all content at a fixed rate, leading to redundancy or information loss. Drawing inspiration from Shannon's information theory, this paper introduces InfoTok, a principled framework for adaptive video tokenization. We rigorously prove that existing data-agnostic training methods are suboptimal in representation length, and present a novel evidence lower bound (ELBO)-based algorithm that approaches theoretical optimality. Leveraging this framework, we develop a transformer-based adaptive compressor that enables adaptive tokenization. Empirical results demonstrate state-of-the-art compression performance, saving 20% tokens without influence on performance, and achieving 2.3x compression rates while still outperforming prior heuristic adaptive approaches. By allocating tokens according to informational richness, InfoTok enables a more compressed yet accurate tokenization for video representation, offering valuable insights for future research.
♻ ☆ AccidentSim: Generating Vehicle Collision Videos with Physically Realistic Collision Trajectories from Real-World Accident Reports
Collecting real-world vehicle accident videos for autonomous driving research is challenging due to their rarity and complexity. While existing driving video generation methods may produce visually realistic videos, they often fail to deliver physically realistic simulations because they lack the capability to generate accurate post-collision trajectories. In this paper, we introduce AccidentSim, a novel framework that generates physically realistic vehicle collision videos by extracting and utilizing the physical clues and contextual information available in real-world vehicle accident reports. Specifically, AccidentSim leverages a reliable physical simulator to replicate post-collision vehicle trajectories from the physical and contextual information in the accident reports and to build a vehicle collision trajectory dataset. This dataset is then used to fine-tune a language model, enabling it to respond to user prompts and predict physically consistent post-collision trajectories across various driving scenarios based on user descriptions. Finally, we employ Neural Radiance Fields (NeRF) to render high-quality backgrounds, merging them with the foreground vehicles that exhibit physically realistic trajectories to generate vehicle collision videos. Experimental results demonstrate that the videos produced by AccidentSim excel in both visual and physical authenticity.
comment: 15 pages, 9 figures, 5 tables
♻ ☆ ConvexBench: Can LLMs Recognize Convex Functions?
Convex analysis is a modern branch of mathematics with many applications. As Large Language Models (LLMs) start to automate research-level math and sciences, it is important for LLMs to demonstrate the ability to understand and reason with convexity. We introduce \cb, a scalable and mechanically verifiable benchmark for testing \textit{whether LLMs can identify the convexity of a symbolic objective under deep functional composition.} Experiments on frontier LLMs reveal a sharp compositional reasoning gap: performance degrades rapidly with increasing depth, dropping from an F1-score of $1.0$ at depth $2$ to approximately $0.2$ at depth $100$. Inspection of models' reasoning traces indicates two failure modes: \textit{parsing failure} and \textit{lazy reasoning}. To address these limitations, we propose an agentic divide-and-conquer framework that (i) offloads parsing to an external tool to construct an abstract syntax tree (AST) and (ii) enforces recursive reasoning over each intermediate sub-expression with focused context. This framework reliably mitigates deep-composition failures, achieving substantial performance improvement at large depths (e.g., F1-Score $= 1.0$ at depth $100$).
♻ ☆ DeepAgent: A General Reasoning Agent with Scalable Toolsets WWW 2026
Large reasoning models have demonstrated strong problem-solving abilities, yet real-world tasks often require external tools and long-horizon interactions. Existing agent frameworks typically follow predefined workflows, which limit autonomous and global task completion. In this paper, we introduce DeepAgent, an end-to-end deep reasoning agent that performs autonomous thinking, tool discovery, and action execution within a single, coherent reasoning process. To address the challenges of long-horizon interactions, particularly the context length explosion from multiple tool calls and the accumulation of interaction history, we introduce an autonomous memory folding mechanism that compresses past interactions into structured episodic, working, and tool memories, reducing error accumulation while preserving critical information. To teach general-purpose tool use efficiently and stably, we develop an end-to-end reinforcement learning strategy, namely ToolPO, that leverages LLM-simulated APIs and applies tool-call advantage attribution to assign fine-grained credit to the tool invocation tokens. Extensive experiments on eight benchmarks, including general tool-use tasks (ToolBench, API-Bank, TMDB, Spotify, ToolHop) and downstream applications (ALFWorld, WebShop, GAIA, HLE), demonstrate that DeepAgent consistently outperforms baselines across both labeled-tool and open-set tool retrieval scenarios. This work takes a step toward more general and capable agents for real-world applications. The code and demo are available at https://github.com/RUC-NLPIR/DeepAgent.
comment: Accepted by WWW 2026
♻ ☆ A Research Roadmap for Augmenting Software Engineering Processes and Software Products with Generative AI
Generative AI (GenAI) is rapidly transforming software engineering (SE) practices, influencing how SE processes are executed, as well as how software systems are developed, operated, and evolved. This paper applies design science research to build a roadmap for GenAI-augmented SE. The process consists of three cycles that incrementally integrate multiple sources of evidence, including collaborative discussions from the FSE 2025 "Software Engineering 2030" workshop, rapid literature reviews, and external feedback sessions involving peers. McLuhan's tetrads were used as a conceptual instrument to systematically capture the transforming effects of GenAI on SE processes and software products. The resulting roadmap identifies four fundamental forms of GenAI augmentation in SE and systematically characterizes their related research challenges and opportunities. These insights are then consolidated into a set of future research directions. By grounding the roadmap in a rigorous multi-cycle process and cross-validating it among independent author teams and peers, the study provides a transparent and reproducible foundation for analyzing how GenAI affects SE processes, methods and tools, and for framing future research within this rapidly evolving area.
Machine Learning 150
☆ Reinforced Attention Learning
Post-training with Reinforcement Learning (RL) has substantially improved reasoning in Large Language Models (LLMs) via test-time scaling. However, extending this paradigm to Multimodal LLMs (MLLMs) through verbose rationales yields limited gains for perception and can even degrade performance. We propose Reinforced Attention Learning (RAL), a policy-gradient framework that directly optimizes internal attention distributions rather than output token sequences. By shifting optimization from what to generate to where to attend, RAL promotes effective information allocation and improved grounding in complex multimodal inputs. Experiments across diverse image and video benchmarks show consistent gains over GRPO and other baselines. We further introduce On-Policy Attention Distillation, demonstrating that transferring latent attention behaviors yields stronger cross-modal alignment than standard knowledge distillation. Our results position attention policies as a principled and general alternative for multimodal post-training.
☆ Protein Autoregressive Modeling via Multiscale Structure Generation
We present protein autoregressive modeling (PAR), the first multi-scale autoregressive framework for protein backbone generation via coarse-to-fine next-scale prediction. Using the hierarchical nature of proteins, PAR generates structures that mimic sculpting a statue, forming a coarse topology and refining structural details over scales. To achieve this, PAR consists of three key components: (i) multi-scale downsampling operations that represent protein structures across multiple scales during training; (ii) an autoregressive transformer that encodes multi-scale information and produces conditional embeddings to guide structure generation; (iii) a flow-based backbone decoder that generates backbone atoms conditioned on these embeddings. Moreover, autoregressive models suffer from exposure bias, caused by the training and the generation procedure mismatch, and substantially degrades structure generation quality. We effectively alleviate this issue by adopting noisy context learning and scheduled sampling, enabling robust backbone generation. Notably, PAR exhibits strong zero-shot generalization, supporting flexible human-prompted conditional generation and motif scaffolding without requiring fine-tuning. On the unconditional generation benchmark, PAR effectively learns protein distributions and produces backbones of high design quality, and exhibits favorable scaling behavior. Together, these properties establish PAR as a promising framework for protein structure generation.
comment: ByteDance Seed Tech Report; Page: https://par-protein.github.io/
☆ Contrastive Continual Learning for Model Adaptability in Internet of Things
Internet of Things (IoT) deployments operate in nonstationary, dynamic environments where factors such as sensor drift, evolving user behavior, and heterogeneous user privacy requirements can affect application utility. Continual learning (CL) addresses this by adapting models over time without catastrophic forgetting. Meanwhile, contrastive learning has emerged as a powerful representation-learning paradigm that improves robustness and sample efficiency in a self-supervised manner. This paper reviews the usage of \emph{contrastive continual learning} (CCL) for IoT, connecting algorithmic design (replay, regularization, distillation, prompts) with IoT system realities (TinyML constraints, intermittent connectivity, privacy). We present a unifying problem formulation, derive common objectives that blend contrastive and distillation losses, propose an IoT-oriented reference architecture for on-device, edge, and cloud-based CCL, and provide guidance on evaluation protocols and metrics. Finally, we highlight open unique challenges with respect to the IoT domain, such as spanning tabular and streaming IoT data, concept drift, federated settings, and energy-aware training.
☆ Rethinking the Trust Region in LLM Reinforcement Learning
Reinforcement learning (RL) has become a cornerstone for fine-tuning Large Language Models (LLMs), with Proximal Policy Optimization (PPO) serving as the de facto standard algorithm. Despite its ubiquity, we argue that the core ratio clipping mechanism in PPO is structurally ill-suited for the large vocabularies inherent to LLMs. PPO constrains policy updates based on the probability ratio of sampled tokens, which serves as a noisy single-sample Monte Carlo estimate of the true policy divergence. This creates a sub-optimal learning dynamic: updates to low-probability tokens are aggressively over-penalized, while potentially catastrophic shifts in high-probability tokens are under-constrained, leading to training inefficiency and instability. To address this, we propose Divergence Proximal Policy Optimization (DPPO), which substitutes heuristic clipping with a more principled constraint based on a direct estimate of policy divergence (e.g., Total Variation or KL). To avoid huge memory footprint, we introduce the efficient Binary and Top-K approximations to capture the essential divergence with negligible overhead. Extensive empirical evaluations demonstrate that DPPO achieves superior training stability and efficiency compared to existing methods, offering a more robust foundation for RL-based LLM fine-tuning.
☆ Multi-layer Cross-Attention is Provably Optimal for Multi-modal In-context Learning
Recent progress has rapidly advanced our understanding of the mechanisms underlying in-context learning in modern attention-based neural networks. However, existing results focus exclusively on unimodal data; in contrast, the theoretical underpinnings of in-context learning for multi-modal data remain poorly understood. We introduce a mathematically tractable framework for studying multi-modal learning and explore when transformer-like architectures can recover Bayes-optimal performance in-context. To model multi-modal problems, we assume the observed data arises from a latent factor model. Our first result comprises a negative take on expressibility: we prove that single-layer, linear self-attention fails to recover the Bayes-optimal predictor uniformly over the task distribution. To address this limitation, we introduce a novel, linearized cross-attention mechanism, which we study in the regime where both the number of cross-attention layers and the context length are large. We show that this cross-attention mechanism is provably Bayes optimal when optimized using gradient flow. Our results underscore the benefits of depth for in-context learning and establish the provable utility of cross-attention for multi-modal distributions.
☆ Multi-Head LatentMoE and Head Parallel: Communication-Efficient and Deterministic MoE Parallelism
Large language models have transformed many applications but remain expensive to train. Sparse Mixture of Experts (MoE) addresses this through conditional computation, with Expert Parallel (EP) as the standard distributed training method. However, EP has three limitations: communication cost grows linearly with the number of activated experts $k$, load imbalance affects latency and memory usage, and data-dependent communication requires metadata exchange. We propose Multi-Head LatentMoE and Head Parallel (HP), a new architecture and parallelism achieving $O(1)$ communication cost regardless of $k$, completely balanced traffic, and deterministic communication, all while remaining compatible with EP. To accelerate Multi-Head LatentMoE, we propose IO-aware routing and expert computation. Compared to MoE with EP, Multi-Head LatentMoE with HP trains up to $1.61\times$ faster while having identical performance. With doubled granularity, it achieves higher overall performance while still being $1.11\times$ faster. Our method makes multi-billion-parameter foundation model research more accessible.
☆ CRoSS: A Continual Robotic Simulation Suite for Scalable Reinforcement Learning with High Task Diversity and Realistic Physics Simulation
Continual reinforcement learning (CRL) requires agents to learn from a sequence of tasks without forgetting previously acquired policies. In this work, we introduce a novel benchmark suite for CRL based on realistically simulated robots in the Gazebo simulator. Our Continual Robotic Simulation Suite (CRoSS) benchmarks rely on two robotic platforms: a two-wheeled differential-drive robot with lidar, camera and bumper sensor, and a robotic arm with seven joints. The former represent an agent in line-following and object-pushing scenarios, where variation of visual and structural parameters yields a large number of distinct tasks, whereas the latter is used in two goal-reaching scenarios with high-level cartesian hand position control (modeled after the Continual World benchmark), and low-level control based on joint angles. For the robotic arm benchmarks, we provide additional kinematics-only variants that bypass the need for physical simulation (as long as no sensor readings are required), and which can be run two orders of magnitude faster. CRoSS is designed to be easily extensible and enables controlled studies of continual reinforcement learning in robotic settings with high physical realism, and in particular allow the use of almost arbitrary simulated sensors. To ensure reproducibility and ease of use, we provide a containerized setup (Apptainer) that runs out-of-the-box, and report performances of standard RL algorithms, including Deep Q-Networks (DQN) and policy gradient methods. This highlights the suitability as a scalable and reproducible benchmark for CRL research.
☆ Subliminal Effects in Your Data: A General Mechanism via Log-Linearity
Training modern large language models (LLMs) has become a veritable smorgasbord of algorithms and datasets designed to elicit particular behaviors, making it critical to develop techniques to understand the effects of datasets on the model's properties. This is exacerbated by recent experiments that show datasets can transmit signals that are not directly observable from individual datapoints, posing a conceptual challenge for dataset-centric understandings of LLM training and suggesting a missing fundamental account of such phenomena. Towards understanding such effects, inspired by recent work on the linear structure of LLMs, we uncover a general mechanism through which hidden subtexts can arise in generic datasets. We introduce Logit-Linear-Selection (LLS), a method that prescribes how to select subsets of a generic preference dataset to elicit a wide range of hidden effects. We apply LLS to discover subsets of real-world datasets so that models trained on them exhibit behaviors ranging from having specific preferences, to responding to prompts in a different language not present in the dataset, to taking on a different persona. Crucially, the effect persists for the selected subset, across models with varying architectures, supporting its generality and universality.
comment: Code available at https://github.com/ishaqadenali/logit-linear-selection
☆ From Evaluation to Design: Using Potential Energy Surface Smoothness Metrics to Guide Machine Learning Interatomic Potential Architectures
Machine Learning Interatomic Potentials (MLIPs) sometimes fail to reproduce the physical smoothness of the quantum potential energy surface (PES), leading to erroneous behavior in downstream simulations that standard energy and force regression evaluations can miss. Existing evaluations, such as microcanonical molecular dynamics (MD), are computationally expensive and primarily probe near-equilibrium states. To improve evaluation metrics for MLIPs, we introduce the Bond Smoothness Characterization Test (BSCT). This efficient benchmark probes the PES via controlled bond deformations and detects non-smoothness, including discontinuities, artificial minima, and spurious forces, both near and far from equilibrium. We show that BSCT correlates strongly with MD stability while requiring a fraction of the cost of MD. To demonstrate how BSCT can guide iterative model design, we utilize an unconstrained Transformer backbone as a testbed, illustrating how refinements such as a new differentiable $k$-nearest neighbors algorithm and temperature-controlled attention reduce artifacts identified by our metric. By optimizing model design systematically based on BSCT, the resulting MLIP simultaneously achieves a low conventional E/F regression error, stable MD simulations, and robust atomistic property predictions. Our results establish BSCT as both a validation metric and as an "in-the-loop" model design proxy that alerts MLIP developers to physical challenges that cannot be efficiently evaluated by current MLIP benchmarks.
comment: 13 pages main text, 10 pages reference & appendix, 8 figures
☆ The Key to State Reduction in Linear Attention: A Rank-based Perspective
Linear attention offers a computationally efficient yet expressive alternative to softmax attention. However, recent empirical results indicate that the state of trained linear attention models often exhibits a low-rank structure, suggesting that these models underexploit their capacity in practice. To illuminate this phenomenon, we provide a theoretical analysis of the role of rank in linear attention, revealing that low effective rank can affect retrieval error by amplifying query noise. In addition to these theoretical insights, we conjecture that the low-rank states can be substantially reduced post-training with only minimal performance degradation, yielding faster and more memory-efficient models. To this end, we propose a novel hardware-aware approach that structurally prunes key and query matrices, reducing the state size while retaining compatibility with existing CUDA kernels. We adapt several existing pruning strategies to fit our framework and, building on our theoretical analysis, propose a novel structured pruning method based on a rank-revealing QR decomposition. Our empirical results, evaluated across models of varying sizes and on various downstream tasks, demonstrate the effectiveness of our state reduction framework. We highlight that our framework enables the removal of 50% of the query and key channels at only a marginal increase in perplexity. The code for this project can be found at https://github.com/camail-official/LinearAttentionPruning.
☆ It's not a Lottery, it's a Race: Understanding How Gradient Descent Adapts the Network's Capacity to the Task
Our theoretical understanding of neural networks is lagging behind their empirical success. One of the important unexplained phenomena is why and how, during the process of training with gradient descent, the theoretical capacity of neural networks is reduced to an effective capacity that fits the task. We here investigate the mechanism by which gradient descent achieves this through analyzing the learning dynamics at the level of individual neurons in single hidden layer ReLU networks. We identify three dynamical principles -- mutual alignment, unlocking and racing -- that together explain why we can often successfully reduce capacity after training through the merging of equivalent neurons or the pruning of low norm weights. We specifically explain the mechanism behind the lottery ticket conjecture, or why the specific, beneficial initial conditions of some neurons lead them to obtain higher weight norms.
☆ Safe Urban Traffic Control via Uncertainty-Aware Conformal Prediction and World-Model Reinforcement Learning
Urban traffic management demands systems that simultaneously predict future conditions, detect anomalies, and take safe corrective actions -- all while providing reliability guarantees. We present STREAM-RL, a unified framework that introduces three novel algorithmic contributions: (1) PU-GAT+, an Uncertainty-Guided Adaptive Conformal Forecaster that uses prediction uncertainty to dynamically reweight graph attention via confidence-monotonic attention, achieving distribution-free coverage guarantees; (2) CRFN-BY, a Conformal Residual Flow Network that models uncertainty-normalized residuals via normalizing flows with Benjamini-Yekutieli FDR control under arbitrary dependence; and (3) LyCon-WRL+, an Uncertainty-Guided Safe World-Model RL agent with Lyapunov stability certificates, certified Lipschitz bounds, and uncertainty-propagated imagination rollouts. To our knowledge, this is the first framework to propagate calibrated uncertainty from forecasting through anomaly detection to safe policy learning with end-to-end theoretical guarantees. Experiments on multiple real-world traffic trajectory data demonstrate that STREAM-RL achieves 91.4\% coverage efficiency, controls FDR at 4.1\% under verified dependence, and improves safety rate to 95.2\% compared to 69\% for standard PPO while achieving higher reward, with 23ms end-to-end inference latency.
☆ Toward Reliable and Explainable Nail Disease Classification: Leveraging Adversarial Training and Grad-CAM Visualization
Human nail diseases are gradually observed over all age groups, especially among older individuals, often going ignored until they become severe. Early detection and accurate diagnosis of such conditions are important because they sometimes reveal our body's health problems. But it is challenging due to the inferred visual differences between disease types. This paper presents a machine learning-based model for automated classification of nail diseases based on a publicly available dataset, which contains 3,835 images scaling six categories. In 224x224 pixels, all images were resized to ensure consistency. To evaluate performance, four well-known CNN models-InceptionV3, DenseNet201, EfficientNetV2, and ResNet50 were trained and analyzed. Among these, InceptionV3 outperformed the others with an accuracy of 95.57%, while DenseNet201 came next with 94.79%. To make the model stronger and less likely to make mistakes on tricky or noisy images, we used adversarial training. To help understand how the model makes decisions, we used SHAP to highlight important features in the predictions. This system could be a helpful support for doctors, making nail disease diagnosis more accurate and faster.
comment: 6 pages, 12 figures. This is the author's accepted manuscript of a paper accepted for publication in the Proceedings of the 16th International IEEE Conference on Computing, Communication and Networking Technologies (ICCCNT 2025). The final published version will be available via IEEE Xplore
☆ XtraLight-MedMamba for Classification of Neoplastic Tubular Adenomas
Accurate risk stratification of precancerous polyps during routine colonoscopy screenings is essential for lowering the risk of developing colorectal cancer (CRC). However, assessment of low-grade dysplasia remains limited by subjective histopathologic interpretation. Advancements in digital pathology and deep learning provide new opportunities to identify subtle and fine morphologic patterns associated with malignant progression that may be imperceptible to the human eye. In this work, we propose XtraLight-MedMamba, an ultra-lightweight state-space-based deep learning framework for classifying neoplastic tubular adenomas from whole-slide images (WSIs). The architecture is a blend of ConvNext based shallow feature extractor with parallel vision mamba to efficiently model both long- and short-range dependencies and image generalization. An integration of Spatial and Channel Attention Bridge (SCAB) module enhances multiscale feature extraction, while Fixed Non-Negative Orthogonal Classifier (FNOClassifier) enables substantial parameter reduction and improved generalization. The model was evaluated on a curated dataset acquired from patients with low-grade tubular adenomas, stratified into case and control cohorts based on subsequent CRC development. XtraLight-MedMamba achieved an accuracy of 97.18% and an F1-score of 0.9767 using approximately 32,000 parameters, outperforming transformer-based and conventional Mamba architectures with significantly higher model complexity.
comment: 13 pages, 8 figures
☆ Robust Generalizable Heterogeneous Legal Link Prediction
Recent work has applied link prediction to large heterogeneous legal citation networks \new{with rich meta-features}. We find that this approach can be improved by including edge dropout and feature concatenation for the learning of more robust representations, which reduces error rates by up to 45%. We also propose an approach based on multilingual node features with an improved asymmetric decoder for compatibility, which allows us to generalize and extend the prediction to more, geographically and linguistically disjoint, data from New Zealand. Our adaptations also improve inductive transferability between these disjoint legal systems.
comment: 9 Pages
☆ SE-Bench: Benchmarking Self-Evolution with Knowledge Internalization
True self-evolution requires agents to act as lifelong learners that internalize novel experiences to solve future problems. However, rigorously measuring this foundational capability is hindered by two obstacles: the entanglement of prior knowledge, where ``new'' knowledge may appear in pre-training data, and the entanglement of reasoning complexity, where failures may stem from problem difficulty rather than an inability to recall learned knowledge. We introduce SE-Bench, a diagnostic environment that obfuscates the NumPy library and its API doc into a pseudo-novel package with randomized identifiers. Agents are trained to internalize this package and evaluated on simple coding tasks without access to documentation, yielding a clean setting where tasks are trivial with the new API doc but impossible for base models without it. Our investigation reveals three insights: (1) the Open-Book Paradox, where training with reference documentation inhibits retention, requiring "Closed-Book Training" to force knowledge compression into weights; (2) the RL Gap, where standard RL fails to internalize new knowledge completely due to PPO clipping and negative gradients; and (3) the viability of Self-Play for internalization, proving models can learn from self-generated, noisy tasks when coupled with SFT, but not RL. Overall, SE-Bench establishes a rigorous diagnostic platform for self-evolution with knowledge internalization. Our code and dataset can be found at https://github.com/thunlp/SE-Bench.
comment: Under review
☆ Beyond Rewards in Reinforcement Learning for Cyber Defence
Recent years have seen an explosion of interest in autonomous cyber defence agents trained to defend computer networks using deep reinforcement learning. These agents are typically trained in cyber gym environments using dense, highly engineered reward functions which combine many penalties and incentives for a range of (un)desirable states and costly actions. Dense rewards help alleviate the challenge of exploring complex environments but risk biasing agents towards suboptimal and potentially riskier solutions, a critical issue in complex cyber environments. We thoroughly evaluate the impact of reward function structure on learning and policy behavioural characteristics using a variety of sparse and dense reward functions, two well-established cyber gyms, a range of network sizes, and both policy gradient and value-based RL algorithms. Our evaluation is enabled by a novel ground truth evaluation approach which allows directly comparing between different reward functions, illuminating the nuanced inter-relationships between rewards, action space and the risks of suboptimal policies in cyber environments. Our results show that sparse rewards, provided they are goal aligned and can be encountered frequently, uniquely offer both enhanced training reliability and more effective cyber defence agents with lower-risk policies. Surprisingly, sparse rewards can also yield policies that are better aligned with cyber defender goals and make sparing use of costly defensive actions without explicit reward-based numerical penalties.
☆ Evolving Afferent Architectures: Biologically-inspired Models for Damage-Avoidance Learning
We introduce Afferent Learning, a framework that produces Computational Afferent Traces (CATs) as adaptive, internal risk signals for damage-avoidance learning. Inspired by biological systems, the framework uses a two-level architecture: evolutionary optimization (outer loop) discovers afferent sensing architectures that enable effective policy learning, while reinforcement learning (inner loop) trains damage-avoidance policies using these signals. This formalizes afferent sensing as providing an inductive bias for efficient learning: architectures are selected based on their ability to enable effective learning (rather than directly minimizing damage). We provide theoretical convergence guarantees under smoothness and bounded-noise assumptions. We illustrate the general approach in the challenging context of biomechanical digital twins operating over long time horizons (multiple decades of the life-course). Here, we find that CAT-based evolved architectures achieve significantly higher efficiency and better age-robustness than hand-designed baselines, enabling policies that exhibit age-dependent behavioral adaptation (23% reduction in high-risk actions). Ablation studies validate CAT signals, evolution, and predictive discrepancy as essential. We release code and data for reproducibility.
comment: 16 pages, 6 figures
☆ Maximum-Volume Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a popular data embedding technique. Given a nonnegative data matrix $X$, it aims at finding two lower dimensional matrices, $W$ and $H$, such that $X\approx WH$, where the factors $W$ and $H$ are constrained to be element-wise nonnegative. The factor $W$ serves as a basis for the columns of $X$. In order to obtain more interpretable and unique solutions, minimum-volume NMF (MinVol NMF) minimizes the volume of $W$. In this paper, we consider the dual approach, where the volume of $H$ is maximized instead; this is referred to as maximum-volume NMF (MaxVol NMF). MaxVol NMF is identifiable under the same conditions as MinVol NMF in the noiseless case, but it behaves rather differently in the presence of noise. In practice, MaxVol NMF is much more effective to extract a sparse decomposition and does not generate rank-deficient solutions. In fact, we prove that the solutions of MaxVol NMF with the largest volume correspond to clustering the columns of $X$ in disjoint clusters, while the solutions of MinVol NMF with smallest volume are rank deficient. We propose two algorithms to solve MaxVol NMF. We also present a normalized variant of MaxVol NMF that exhibits better performance than MinVol NMF and MaxVol NMF, and can be interpreted as a continuum between standard NMF and orthogonal NMF. We illustrate our results in the context of hyperspectral unmixing.
comment: arXiv admin note: substantial text overlap with arXiv:2412.06380
☆ Team, Then Trim: An Assembly-Line LLM Framework for High-Quality Tabular Data Generation
While tabular data is fundamental to many real-world machine learning (ML) applications, acquiring high-quality tabular data is usually labor-intensive and expensive. Limited by the scarcity of observations, tabular datasets often exhibit critical deficiencies, such as class imbalance, selection bias, and low fidelity. To address these challenges, building on recent advances in Large Language Models (LLMs), this paper introduces Team-then-Trim (T$^2$), a framework that synthesizes high-quality tabular data through a collaborative team of LLMs, followed by a rigorous three-stage plug-in data quality control (QC) pipeline. In T$^2$, tabular data generation is conceptualized as a manufacturing process: specialized LLMs, guided by domain knowledge, are tasked with generating different data components sequentially, and the resulting products, i.e., the synthetic data, are systematically evaluated across multiple dimensions of QC. Empirical results on both simulated and real-world datasets demonstrate that T$^2$ outperforms state-of-the-art methods in producing high-quality tabular data, highlighting its potential to support downstream models when direct data collection is practically infeasible.
☆ From independent patches to coordinated attention: Controlling information flow in vision transformers
We make the information transmitted by attention an explicit, measurable quantity in vision transformers. By inserting variational information bottlenecks on all attention-mediated writes to the residual stream -- without other architectural changes -- we train models with an explicit information cost and obtain a controllable spectrum from independent patch processing to fully expressive global attention. On ImageNet-100, we characterize how classification behavior and information routing evolve across this spectrum, and provide initial insights into how global visual representations emerge from local patch processing by analyzing the first attention heads that transmit information. By biasing learning toward solutions with constrained internal communication, our approach yields models that are more tractable for mechanistic analysis and more amenable to control.
comment: Code at https://github.com/murphyka/vit_ib
☆ Legendre Memory Unit with A Multi-Slice Compensation Model for Short-Term Wind Speed Forecasting Based on Wind Farm Cluster Data
With more wind farms clustered for integration, the short-term wind speed prediction of such wind farm clusters is critical for normal operation of power systems. This paper focuses on achieving accurate, fast, and robust wind speed prediction by full use of cluster data with spatial-temporal correlation. First, weighted mean filtering (WMF) is applied to denoise wind speed data at the single-farm level. The Legendre memory unit (LMU) is then innovatively applied for the wind speed prediction, in combination with the Compensating Parameter based on Kendall rank correlation coefficient (CPK) of wind farm cluster data, to construct the multi-slice LMU (MSLMU). Finally, an innovative ensemble model WMF-CPK-MSLMU is proposed herein, with three key blocks: data pre-processing, forecasting, and multi-slice compensation. Advantages include: 1) LMU jointly models linear and nonlinear dependencies among farms to capture spatial-temporal correlations through backpropagation; 2) MSLMU enhances forecasting by using CPK-derived weights instead of random initialization, allowing spatial correlations to fully activate hidden nodes across clustered wind farms.; 3) CPK adaptively weights the compensation model in MSLMU and complements missing data spatially, to facilitate the whole model highly accurate and robust. Test results on different wind farm clusters indicate the effectiveness and superiority of proposed ensemble model WMF-CPK-MSLMU in the short-term prediction of wind farm clusters compared to the existing models.
comment: 10 pages, 11 figures,
☆ Dynamical Regimes of Multimodal Diffusion Models
Diffusion based generative models have achieved unprecedented fidelity in synthesizing high dimensional data, yet the theoretical mechanisms governing multimodal generation remain poorly understood. Here, we present a theoretical framework for coupled diffusion models, using coupled Ornstein-Uhlenbeck processes as a tractable model. By using the nonequilibrium statistical physics of dynamical phase transitions, we demonstrate that multimodal generation is governed by a spectral hierarchy of interaction timescales rather than simultaneous resolution. A key prediction is the ``synchronization gap'', a temporal window during the reverse generative process where distinct eigenmodes stabilize at different rates, providing a theoretical explanation for common desynchronization artifacts. We derive analytical conditions for speciation and collapse times under both symmetric and anisotropic coupling regimes, establishing strict bounds for coupling strength to avoid unstable symmetry breaking. We show that the coupling strength acts as a spectral filter that enforces a tunable temporal hierarchy on generation. We support these predictions through controlled experiments with diffusion models trained on MNIST datasets and exact score samplers. These results motivate time dependent coupling schedules that target mode specific timescales, offering a potential alternative to ad hoc guidance tuning.
comment: 40 pages, 14 figures
☆ Interval-Based AUC (iAUC): Extending ROC Analysis to Uncertainty-Aware Classification
In high-stakes risk prediction, quantifying uncertainty through interval-valued predictions is essential for reliable decision-making. However, standard evaluation tools like the receiver operating characteristic (ROC) curve and the area under the curve (AUC) are designed for point scores and fail to capture the impact of predictive uncertainty on ranking performance. We propose an uncertainty-aware ROC framework specifically for interval-valued predictions, introducing two new measures: $AUC_L$ and $AUC_U$. This framework enables an informative three-region decomposition of the ROC plane, partitioning pairwise rankings into correct, incorrect, and uncertain orderings. This approach naturally supports selective prediction by allowing models to abstain from ranking cases with overlapping intervals, thereby optimizing the trade-off between abstention rate and discriminative reliability. We prove that under valid class-conditional coverage, $AUC_L$ and $AUC_U$ provide formal lower and upper bounds on the theoretical optimal AUC ($AUC^*$), characterizing the physical limit of achievable discrimination. The proposed framework applies broadly to interval-valued prediction models, regardless of the interval construction method. Experiments on real-world benchmark datasets, using bootstrap-based intervals as one instantiation, validate the framework's correctness and demonstrate its practical utility for uncertainty-aware evaluation and decision-making.
☆ Theory of Optimal Learning Rate Schedules and Scaling Laws for a Random Feature Model
Setting the learning rate for a deep learning model is a critical part of successful training, yet choosing this hyperparameter is often done empirically with trial and error. In this work, we explore a solvable model of optimal learning rate schedules for a powerlaw random feature model trained with stochastic gradient descent (SGD). We consider the optimal schedule $η_T^\star(t)$ where $t$ is the current iterate and $T$ is the total training horizon. This schedule is computed both numerically and analytically (when possible) using optimal control methods. Our analysis reveals two regimes which we term the easy phase and hard phase. In the easy phase the optimal schedule is a polynomial decay $η_T^\star(t) \simeq T^{-ξ} (1-t/T)^δ$ where $ξ$ and $δ$ depend on the properties of the features and task. In the hard phase, the optimal schedule resembles warmup-stable-decay with constant (in $T$) initial learning rate and annealing performed over a vanishing (in $T$) fraction of training steps. We investigate joint optimization of learning rate and batch size, identifying a degenerate optimality condition. Our model also predicts the compute-optimal scaling laws (where model size and training steps are chosen optimally) in both easy and hard regimes. Going beyond SGD, we consider optimal schedules for the momentum $β(t)$, where speedups in the hard phase are possible. We compare our optimal schedule to various benchmarks in our task including (1) optimal constant learning rates $η_T(t) \sim T^{-ξ}$ (2) optimal power laws $η_T(t) \sim T^{-ξ} t^{-χ}$, finding that our schedule achieves better rates than either of these. Our theory suggests that learning rate transfer across training horizon depends on the structure of the model and task. We explore these ideas in simple experimental pretraining setups.
☆ Generative Modeling via Drifting
Generative modeling can be formulated as learning a mapping f such that its pushforward distribution matches the data distribution. The pushforward behavior can be carried out iteratively at inference time, for example in diffusion and flow-based models. In this paper, we propose a new paradigm called Drifting Models, which evolve the pushforward distribution during training and naturally admit one-step inference. We introduce a drifting field that governs the sample movement and achieves equilibrium when the distributions match. This leads to a training objective that allows the neural network optimizer to evolve the distribution. In experiments, our one-step generator achieves state-of-the-art results on ImageNet at 256 x 256 resolution, with an FID of 1.54 in latent space and 1.61 in pixel space. We hope that our work opens up new opportunities for high-quality one-step generation.
comment: Project page: https://lambertae.github.io/projects/drifting/
☆ NeuroCanvas: VLLM-Powered Robust Seizure Detection by Reformulating Multichannel EEG as Image
Accurate and timely seizure detection from Electroencephalography (EEG) is critical for clinical intervention, yet manual review of long-term recordings is labor-intensive. Recent efforts to encode EEG signals into large language models (LLMs) show promise in handling neural signals across diverse patients, but two significant challenges remain: (1) multi-channel heterogeneity, as seizure-relevant information varies substantially across EEG channels, and (2) computing inefficiency, as the EEG signals need to be encoded into a massive number of tokens for the prediction. To address these issues, we draw the EEG signal and propose the novel NeuroCanvas framework. Specifically, NeuroCanvas consists of two modules: (i) The Entropy-guided Channel Selector (ECS) selects the seizure-relevant channels input to LLM and (ii) the following Canvas of Neuron Signal (CNS) converts selected multi-channel heterogeneous EEG signals into structured visual representations. The ECS module alleviates the multi-channel heterogeneity issue, and the CNS uses compact visual tokens to represent the EEG signals that improve the computing efficiency. We evaluate NeuroCanvas across multiple seizure detection datasets, demonstrating a significant improvement of $20\%$ in F1 score and reductions of $88\%$ in inference latency. These results highlight NeuroCanvas as a scalable and effective solution for real-time and resource-efficient seizure detection in clinical practice.The code will be released at https://github.com/Yanchen30247/seizure_detect.
☆ Billion-Scale Graph Foundation Models
Graph-structured data underpins many critical applications. While foundation models have transformed language and vision via large-scale pretraining and lightweight adaptation, extending this paradigm to general, real-world graphs is challenging. In this work, we present Graph Billion- Foundation-Fusion (GraphBFF): the first end-to-end recipe for building billion-parameter Graph Foundation Models (GFMs) for arbitrary heterogeneous, billion-scale graphs. Central to the recipe is the GraphBFF Transformer, a flexible and scalable architecture designed for practical billion-scale GFMs. Using the GraphBFF, we present the first neural scaling laws for general graphs and show that loss decreases predictably as either model capacity or training data scales, depending on which factor is the bottleneck. The GraphBFF framework provides concrete methodologies for data batching, pretraining, and fine-tuning for building GFMs at scale. We demonstrate the effectiveness of the framework with an evaluation of a 1.4 billion-parameter GraphBFF Transformer pretrained on one billion samples. Across ten diverse, real-world downstream tasks on graphs unseen during training, spanning node- and link-level classification and regression, GraphBFF achieves remarkable zero-shot and probing performance, including in few-shot settings, with large margins of up to 31 PRAUC points. Finally, we discuss key challenges and open opportunities for making GFMs a practical and principled foundation for graph learning at industrial scale.
☆ Active Asymmetric Multi-Agent Multimodal Learning under Uncertainty
Multi-agent systems are increasingly equipped with heterogeneous multimodal sensors, enabling richer perception but introducing modality-specific and agent-dependent uncertainty. Existing multi-agent collaboration frameworks typically reason at the agent level, assume homogeneous sensing, and handle uncertainty implicitly, limiting robustness under sensor corruption. We propose Active Asymmetric Multi-Agent Multimodal Learning under Uncertainty (A2MAML), a principled approach for uncertainty-aware, modality-level collaboration. A2MAML models each modality-specific feature as a stochastic estimate with uncertainty prediction, actively selects reliable agent-modality pairs, and aggregates information via Bayesian inverse-variance weighting. This formulation enables fine-grained, modality-level fusion, supports asymmetric modality availability, and provides a principled mechanism to suppress corrupted or noisy modalities. Extensive experiments on connected autonomous driving scenarios for collaborative accident detection demonstrate that A2MAML consistently outperforms both single-agent and collaborative baselines, achieving up to 18.7% higher accident detection rate.
☆ Improved Dimension Dependence for Bandit Convex Optimization with Gradient Variations
Gradient-variation online learning has drawn increasing attention due to its deep connections to game theory, optimization, etc. It has been studied extensively in the full-information setting, but is underexplored with bandit feedback. In this work, we focus on gradient variation in Bandit Convex Optimization (BCO) with two-point feedback. By proposing a refined analysis on the non-consecutive gradient variation, a fundamental quantity in gradient variation with bandits, we improve the dimension dependence for both convex and strongly convex functions compared with the best known results (Chiang et al., 2013). Our improved analysis for the non-consecutive gradient variation also implies other favorable problem-dependent guarantees, such as gradient-variance and small-loss regrets. Beyond the two-point setup, we demonstrate the versatility of our technique by achieving the first gradient-variation bound for one-point bandit linear optimization over hyper-rectangular domains. Finally, we validate the effectiveness of our results in more challenging tasks such as dynamic/universal regret minimization and bandit games, establishing the first gradient-variation dynamic and universal regret bounds for two-point BCO and fast convergence rates in bandit games.
☆ A Dual-TransUNet Deep Learning Framework for Multi-Source Precipitation Merging and Improving Seasonal and Extreme Estimates
Multi-source precipitation products (MSPs) from satellite retrievals and reanalysis are widely used for hydroclimatic monitoring, yet spatially heterogeneous biases and limited skill for extremes still constrain their hydrologic utility. Here we develop a dual-stage TransUNet-based multi-source precipitation merging framework (DDL-MSPMF) that integrates six MSPs with four ERA5 near-surface physical predictors. A first-stage classifier estimates daily precipitation occurrence probability, and a second-stage regressor fuses the classifier outputs together with all predictors to estimate daily precipitation amount at 0.25 degree resolution over China for 2001-2020. Benchmarking against multiple deep learning and hybrid baselines shows that the TransUNet - TransUNet configuration yields the best seasonal performance (R = 0.75; RMSE = 2.70 mm/day) and improves robustness relative to a single-regressor setting. For heavy precipitation (>25 mm/day), DDL-MSPMF increases equitable threat scores across most regions of eastern China and better reproduces the spatial pattern of the July 2021 Zhengzhou rainstorm, indicating enhanced extreme-event detection beyond seasonal-mean corrections. Independent evaluation over the Qinghai-Tibet Plateau using TPHiPr further supports its applicability in data-scarce regions. SHAP analysis highlights the importance of precipitation occurrence probabilities and surface pressure, providing physically interpretable diagnostics. The proposed framework offers a scalable and explainable approach for precipitation fusion and extreme-event assessment.
comment: 75 pages,20 figures
☆ Decomposing Query-Key Feature Interactions Using Contrastive Covariances
Despite the central role of attention heads in Transformers, we lack tools to understand why a model attends to a particular token. To address this, we study the query-key (QK) space -- the bilinear joint embedding space between queries and keys. We present a contrastive covariance method to decompose the QK space into low-rank, human-interpretable components. It is when features in keys and queries align in these low-rank subspaces that high attention scores are produced. We first study our method both analytically and empirically in a simplified setting. We then apply our method to large language models to identify human-interpretable QK subspaces for categorical semantic features and binding features. Finally, we demonstrate how attention scores can be attributed to our identified features.
☆ Rationality Measurement and Theory for Reinforcement Learning Agents
This paper proposes a suite of rationality measures and associated theory for reinforcement learning agents, a property increasingly critical yet rarely explored. We define an action in deployment to be perfectly rational if it maximises the hidden true value function in the steepest direction. The expected value discrepancy of a policy's actions against their rational counterparts, culminating over the trajectory in deployment, is defined to be expected rational risk; an empirical average version in training is also defined. Their difference, termed as rational risk gap, is decomposed into (1) an extrinsic component caused by environment shifts between training and deployment, and (2) an intrinsic one due to the algorithm's generalisability in a dynamic environment. They are upper bounded by, respectively, (1) the $1$-Wasserstein distance between transition kernels and initial state distributions in training and deployment, and (2) the empirical Rademacher complexity of the value function class. Our theory suggests hypotheses on the benefits from regularisers (including layer normalisation, $\ell_2$ regularisation, and weight normalisation) and domain randomisation, as well as the harm from environment shifts. Experiments are in full agreement with these hypotheses. The code is available at https://github.com/EVIEHub/Rationality.
☆ Conditional Counterfactual Mean Embeddings: Doubly Robust Estimation and Learning Rates
A complete understanding of heterogeneous treatment effects involves characterizing the full conditional distribution of potential outcomes. To this end, we propose the Conditional Counterfactual Mean Embeddings (CCME), a framework that embeds conditional distributions of counterfactual outcomes into a reproducing kernel Hilbert space (RKHS). Under this framework, we develop a two-stage meta-estimator for CCME that accommodates any RKHS-valued regression in each stage. Based on this meta-estimator, we develop three practical CCME estimators: (1) Ridge Regression estimator, (2) Deep Feature estimator that parameterizes the feature map by a neural network, and (3) Neural-Kernel estimator that performs RKHS-valued regression, with the coefficients parameterized by a neural network. We provide finite-sample convergence rates for all estimators, establishing that they possess the double robustness property. Our experiments demonstrate that our estimators accurately recover distributional features including multimodal structure of conditional counterfactual distributions.
comment: Code is available at https://github.com/donlap/Conditional-Counterfactual-Mean-Embeddings
☆ From Data to Behavior: Predicting Unintended Model Behaviors Before Training
Large Language Models (LLMs) can acquire unintended biases from seemingly benign training data even without explicit cues or malicious content. Existing methods struggle to detect such risks before fine-tuning, making post hoc evaluation costly and inefficient. To address this challenge, we introduce Data2Behavior, a new task for predicting unintended model behaviors prior to training. We also propose Manipulating Data Features (MDF), a lightweight approach that summarizes candidate data through their mean representations and injects them into the forward pass of a base model, allowing latent statistical signals in the data to shape model activations and reveal potential biases and safety risks without updating any parameters. MDF achieves reliable prediction while consuming only about 20% of the GPU resources required for fine-tuning. Experiments on Qwen3-14B, Qwen2.5-32B-Instruct, and Gemma-3-12b-it confirm that MDF can anticipate unintended behaviors and provide insight into pre-training vulnerabilities.
comment: Work in progress
☆ DMFlow: Disordered Materials Generation by Flow Matching
The design of materials with tailored properties is crucial for technological progress. However, most deep generative models focus exclusively on perfectly ordered crystals, neglecting the important class of disordered materials. To address this gap, we introduce DMFlow, a generative framework specifically designed for disordered crystals. Our approach introduces a unified representation for ordered, Substitutionally Disordered (SD), and Positionally Disordered (PD) crystals, and employs a flow matching model to jointly generate all structural components. A key innovation is a Riemannian flow matching framework with spherical reparameterization, which ensures physically valid disorder weights on the probability simplex. The vector field is learned by a novel Graph Neural Network (GNN) that incorporates physical symmetries and a specialized message-passing scheme. Finally, a two-stage discretization procedure converts the continuous weights into multi-hot atomic assignments. To support research in this area, we release a benchmark containing SD, PD, and mixed structures curated from the Crystallography Open Database. Experiments on Crystal Structure Prediction (CSP) and De Novo Generation (DNG) tasks demonstrate that DMFlow significantly outperforms state-of-the-art baselines adapted from ordered crystal generation. We hope our work provides a foundation for the AI-driven discovery of disordered materials.
☆ Less Finetuning, Better Retrieval: Rethinking LLM Adaptation for Biomedical Retrievers via Synthetic Data and Model Merging
Retrieval-augmented generation (RAG) has become the backbone of grounding Large Language Models (LLMs), improving knowledge updates and reducing hallucinations. Recently, LLM-based retriever models have shown state-of-the-art performance for RAG applications. However, several technical aspects remain underexplored on how to adapt general-purpose LLMs into effective domain-specific retrievers, especially in specialized domains such as biomedicine. We present Synthesize-Train-Merge (STM), a modular framework that enhances decoder-only LLMs with synthetic hard negatives, retrieval prompt optimization, and model merging. Experiments on a subset of 12 medical and general tasks from the MTEB benchmark show STM boosts task-specific experts by up to 23.5\% (average 7.5\%) and produces merged models that outperform both single experts and strong baselines without extensive pretraining. Our results demonstrate a scalable, efficient path for turning general LLMs into high-performing, domain-specialized retrievers, preserving general-domain capabilities while excelling on specialized tasks.
comment: Preprint
☆ Cross-Attention Transformer for Joint Multi-Receiver Uplink Neural Decoding
We propose a cross-attention Transformer for joint decoding of uplink OFDM signals received by multiple coordinated access points. A shared per-receiver encoder learns time-frequency structure within each received grid, and a token-wise cross-attention module fuses the receivers to produce soft log-likelihood ratios for a standard channel decoder, without requiring explicit per-receiver channel estimates. Trained with a bit-metric objective, the model adapts its fusion to per-receiver reliability, tolerates missing or degraded links, and remains robust when pilots are sparse. Across realistic Wi-Fi channels, it consistently outperforms classical pipelines and strong convolutional baselines, frequently matching (and in some cases surpassing) a powerful baseline that assumes perfect channel knowledge per access point. Despite its expressiveness, the architecture is compact, has low computational cost (low GFLOPs), and achieves low latency on GPUs, making it a practical building block for next-generation Wi-Fi receivers.
comment: 6 pages, 3 figures, 3 tables, conference submission
☆ Benchmarking and Enhancing PPG-Based Cuffless Blood Pressure Estimation Methods
Cuffless blood pressure screening based on easily acquired photoplethysmography (PPG) signals offers a practical pathway toward scalable cardiovascular health assessment. Despite rapid progress, existing PPG-based blood pressure estimation models have not consistently achieved the established clinical numerical limits such as AAMI/ISO 81060-2, and prior evaluations often lack the rigorous experimental controls necessary for valid clinical assessment. Moreover, the publicly available datasets commonly used are heterogeneous and lack physiologically controlled conditions for fair benchmarking. To enable fair benchmarking under physiologically controlled conditions, we created a standardized benchmarking subset NBPDB comprising 101,453 high-quality PPG segments from 1,103 healthy adults, derived from MIMIC-III and VitalDB. Using this dataset, we systematically benchmarked several state-of-the-art PPG-based models. The results showed that none of the evaluated models met the AAMI/ISO 81060-2 accuracy requirements (mean error $<$ 5 mmHg and standard deviation $<$ 8 mmHg). To improve model accuracy, we modified these models and added patient demographic data such as age, sex, and body mass index as additional inputs. Our modifications consistently improved performance across all models. In particular, the MInception model reduced error by 23\% after adding the demographic data and yielded mean absolute errors of 4.75 mmHg (SBP) and 2.90 mmHg (DBP), achieves accuracy comparable to the numerical limits defined by AAMI/ISO accuracy standards. Our results show that existing PPG-based BP estimation models lack clinical practicality under standardized conditions, while incorporating demographic information markedly improves their accuracy and physiological validity.
☆ Identifying Intervenable and Interpretable Features via Orthogonality Regularization
With recent progress on fine-tuning language models around a fixed sparse autoencoder, we disentangle the decoder matrix into almost orthogonal features. This reduces interference and superposition between the features, while keeping performance on the target dataset essentially unchanged. Our orthogonality penalty leads to identifiable features, ensuring the uniqueness of the decomposition. Further, we find that the distance between embedded feature explanations increases with stricter orthogonality penalty, a desirable property for interpretability. Invoking the $\textit{Independent Causal Mechanisms}$ principle, we argue that orthogonality promotes modular representations amenable to causal intervention. We empirically show that these increasingly orthogonalized features allow for isolated interventions. Our code is available under $\texttt{https://github.com/mrtzmllr/sae-icm}$.
☆ Bounded-Abstention Multi-horizon Time-series Forecasting
Multi-horizon time-series forecasting involves simultaneously making predictions for a consecutive sequence of subsequent time steps. This task arises in many application domains, such as healthcare and finance, where mispredictions can have a high cost and reduce trust. The learning with abstention framework tackles these problems by allowing a model to abstain from offering a prediction when it is at an elevated risk of making a misprediction. Unfortunately, existing abstention strategies are ill-suited for the multi-horizon setting: they target problems where a model offers a single prediction for each instance. Hence, they ignore the structured and correlated nature of the predictions offered by a multi-horizon forecaster. We formalize the problem of learning with abstention for multi-horizon forecasting setting and show that its structured nature admits a richer set of abstention problems. Concretely, we propose three natural notions of how a model could abstain for multi-horizon forecasting. We theoretically analyze each problem to derive the optimal abstention strategy and propose an algorithm that implements it. Extensive evaluation on 24 datasets shows that our proposed algorithms significantly outperforms existing baselines.
☆ Towards Understanding and Avoiding Limitations of Convolutions on Graphs
While message-passing neural networks (MPNNs) have shown promising results, their real-world impact remains limited. Although various limitations have been identified, their theoretical foundations remain poorly understood, leading to fragmented research efforts. In this thesis, we provide an in-depth theoretical analysis and identify several key properties limiting the performance of MPNNs. Building on these findings, we propose several frameworks that address these shortcomings. We identify two properties exhibited by many MPNNs: shared component amplification (SCA), where each message-passing iteration amplifies the same components across all feature channels, and component dominance (CD), where a single component gets increasingly amplified as more message-passing steps are applied. These properties lead to the observable phenomenon of rank collapse of node representations, which generalizes the established over-smoothing phenomenon. By generalizing and decomposing over-smoothing, we enable a deeper understanding of MPNNs, more targeted solutions, and more precise communication within the field. To avoid SCA, we show that utilizing multiple computational graphs or edge relations is necessary. Our multi-relational split (MRS) framework transforms any existing MPNN into one that leverages multiple edge relations. Additionally, we introduce the spectral graph convolution for multiple feature channels (MIMO-GC), which naturally uses multiple computational graphs. A localized variant, LMGC, approximates the MIMO-GC while inheriting its beneficial properties. To address CD, we demonstrate a close connection between MPNNs and the PageRank algorithm. Based on personalized PageRank, we propose a variant of MPNNs that allows for infinitely many message-passing iterations, while preserving initial node features. Collectively, these results deepen the theoretical understanding of MPNNs.
comment: dissertation
☆ Knowledge Distillation for mmWave Beam Prediction Using Sub-6 GHz Channels ICASSP
Beamforming in millimeter-wave (mmWave) high-mobility environments typically incurs substantial training overhead. While prior studies suggest that sub-6 GHz channels can be exploited to predict optimal mmWave beams, existing methods depend on large deep learning (DL) models with prohibitive computational and memory requirements. In this paper, we propose a computationally efficient framework for sub-6 GHz channel-mmWave beam mapping based on the knowledge distillation (KD) technique. We develop two compact student DL architectures based on individual and relational distillation strategies, which retain only a few hidden layers yet closely mimic the performance of large teacher DL models. Extensive simulations demonstrate that the proposed student models achieve the teacher's beam prediction accuracy and spectral efficiency while reducing trainable parameters and computational complexity by 99%.
comment: 5 pages, 4 figures. Accepted for publication at IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2026
☆ Beyond Learning on Molecules by Weakly Supervising on Molecules
Molecular representations are inherently task-dependent, yet most pre-trained molecular encoders are not. Task conditioning promises representations that reorganize based on task descriptions, but existing approaches rely on expensive labeled data. We show that weak supervision on programmatically derived molecular motifs is sufficient. Our Adaptive Chemical Embedding Model (ACE-Mol) learns from hundreds of motifs paired with natural language descriptors that are cheap to compute, trivial to scale. Conventional encoders slowly search the embedding space for task-relevant structure, whereas ACE-Mol immediately aligns its representations with the task. ACE-Mol achieves state-of-the-art performance across molecular property prediction benchmarks with interpretable, chemically meaningful representations.
☆ Static and auto-regressive neural emulation of phytoplankton biomass dynamics from physical predictors in the global ocean
Phytoplankton is the basis of marine food webs, driving both ecological processes and global biogeochemical cycles. Despite their ecological and climatic significance, accurately simulating phytoplankton dynamics remains a major challenge for biogeochemical numerical models due to limited parameterizations, sparse observational data, and the complexity of oceanic processes. Here, we explore how deep learning models can be used to address these limitations predicting the spatio-temporal distribution of phytoplankton biomass in the global ocean based on satellite observations and environmental conditions. First, we investigate several deep learning architectures. Among the tested models, the UNet architecture stands out for its ability to reproduce the seasonal and interannual patterns of phytoplankton biomass more accurately than other models like CNNs, ConvLSTM, and 4CastNet. When using one to two months of environmental data as input, UNet performs better, although it tends to underestimate the amplitude of low-frequency changes in phytoplankton biomass. Thus, to improve predictions over time, an auto-regressive version of UNet was also tested, where the model uses its own previous predictions to forecast future conditions. This approach works well for short-term forecasts (up to five months), though its performance decreases for longer time scales. Overall, our study shows that combining ocean physical predictors with deep learning allows for reconstruction and short-term prediction of phytoplankton dynamics. These models could become powerful tools for monitoring ocean health and supporting marine ecosystem management, especially in the context of climate change.
☆ Let Experts Feel Uncertainty: A Multi-Expert Label Distribution Approach to Probabilistic Time Series Forecasting
Time series forecasting in real-world applications requires both high predictive accuracy and interpretable uncertainty quantification. Traditional point prediction methods often fail to capture the inherent uncertainty in time series data, while existing probabilistic approaches struggle to balance computational efficiency with interpretability. We propose a novel Multi-Expert Learning Distributional Labels (LDL) framework that addresses these challenges through mixture-of-experts architectures with distributional learning capabilities. Our approach introduces two complementary methods: (1) Multi-Expert LDL, which employs multiple experts with different learned parameters to capture diverse temporal patterns, and (2) Pattern-Aware LDL-MoE, which explicitly decomposes time series into interpretable components (trend, seasonality, changepoints, volatility) through specialized sub-experts. Both frameworks extend traditional point prediction to distributional learning, enabling rich uncertainty quantification through Maximum Mean Discrepancy (MMD). We evaluate our methods on aggregated sales data derived from the M5 dataset, demonstrating superior performance compared to baseline approaches. The continuous Multi-Expert LDL achieves the best overall performance, while the Pattern-Aware LDL-MoE provides enhanced interpretability through component-wise analysis. Our frameworks successfully balance predictive accuracy with interpretability, making them suitable for real-world forecasting applications where both performance and actionable insights are crucial.
comment: 11 pages, 2figures
☆ REDistill: Robust Estimator Distillation for Balancing Robustness and Efficiency
Knowledge Distillation (KD) transfers knowledge from a large teacher model to a smaller student by aligning their predictive distributions. However, conventional KD formulations - typically based on Kullback-Leibler divergence - assume that the teacher provides reliable soft targets. In practice, teacher predictions are often noisy or overconfident, and existing correction-based approaches rely on ad-hoc heuristics and extensive hyper-parameter tuning, which hinders generalization. We introduce REDistill (Robust Estimator Distillation), a simple yet principled framework grounded in robust statistics. REDistill replaces the standard KD objective with a power divergence loss, a generalization of KL divergence that adaptively downweights unreliable teacher output while preserving informative logit relationships. This formulation provides a unified and interpretable treatment of teacher noise, requires only logits, integrates seamlessly into existing KD pipelines, and incurs negligible computational overhead. Extensive experiments on CIFAR-100 and ImageNet-1k demonstrate that REDistill consistently improves student accuracy in diverse teacher-student architectures. Remarkably, it achieves these gains without model-specific hyper-parameter tuning, underscoring its robustness and strong generalization to unseen teacher-student pairs.
☆ Generalized Schrödinger Bridge on Graphs
Transportation on graphs is a fundamental challenge across many domains, where decisions must respect topological and operational constraints. Despite the need for actionable policies, existing graph-transport methods lack this expressivity. They rely on restrictive assumptions, fail to generalize across sparse topologies, and scale poorly with graph size and time horizon. To address these issues, we introduce Generalized Schrödinger Bridge on Graphs (GSBoG), a novel scalable data-driven framework for learning executable controlled continuous-time Markov chain (CTMC) policies on arbitrary graphs under state cost augmented dynamics. Notably, GSBoG learns trajectory-level policies, avoiding dense global solvers and thereby enhancing scalability. This is achieved via a likelihood optimization approach, satisfying the endpoint marginals, while simultaneously optimizing intermediate behavior under state-dependent running costs. Extensive experimentation on challenging real-world graph topologies shows that GSBoG reliably learns accurate, topology-respecting policies while optimizing application-specific intermediate state costs, highlighting its broad applicability and paving new avenues for cost-aware dynamical transport on general graphs.
☆ Delving into Muon and Beyond: Deep Analysis and Extensions
The Muon optimizer has recently attracted considerable attention for its strong empirical performance and use of orthogonalized updates on matrix-shaped parameters, yet its underlying mechanisms and relationship to adaptive optimizers such as Adam remain insufficiently understood. In this work, we aim to address these questions through a unified spectral perspective. Specifically, we view Muon as the p = 0 endpoint of a family of spectral transformations of the form U \boldsymbolΣ^{p} V' , and consider additional variants with p = 1/2 , p = 1/4 , and p = 1 . These transformations are applied to both first-moment updates, as in momentum SGD, and to root-mean-square (RMS) normalized gradient updates as in Adam. To enable efficient computation, we develop a coupled Newton iteration that avoids explicit singular value decomposition. Across controlled experiments, we find that RMS-normalized updates yield more stable optimization than first-moment updates. Moreover, while spectral compression provides strong stabilization benefits under first-moment updates, the Muon update (p = 0) does not consistently outperform Adam. These results suggest that Muon is best understood as an effective form of spectral normalization, but not a universally superior optimization method. Our source code will be released at https://github.com/Ocram7/BeyondMuon.
comment: This paper studies matrix-based optimizers (e.g., Muon) from a spectral perspective and unifies a range of methods under a common spectral framework
☆ Causal explanations of outliers in systems with lagged time-dependencies
Root-cause analysis in controlled time dependent systems poses a major challenge in applications. Especially energy systems are difficult to handle as they exhibit instantaneous as well as delayed effects and if equipped with storage, do have a memory. In this paper we adapt the causal root-cause analysis method of Budhathoki et al. [2022] to general time-dependent systems, as it can be regarded as a strictly causal definition of the term "root-cause". Particularly, we discuss two truncation approaches to handle the infinite dependency graphs present in time-dependent systems. While one leaves the causal mechanisms intact, the other approximates the mechanisms at the start nodes. The effectiveness of the different approaches is benchmarked using a challenging data generation process inspired by a problem in factory energy management: the avoidance of peaks in the power consumption. We show that given enough lags our extension is able to localize the root-causes in the feature and time domain. Further the effect of mechanism approximation is discussed.
☆ Rethinking the Design Space of Reinforcement Learning for Diffusion Models: On the Importance of Likelihood Estimation Beyond Loss Design
Reinforcement learning has been widely applied to diffusion and flow models for visual tasks such as text-to-image generation. However, these tasks remain challenging because diffusion models have intractable likelihoods, which creates a barrier for directly applying popular policy-gradient type methods. Existing approaches primarily focus on crafting new objectives built on already heavily engineered LLM objectives, using ad hoc estimators for likelihood, without a thorough investigation into how such estimation affects overall algorithmic performance. In this work, we provide a systematic analysis of the RL design space by disentangling three factors: i) policy-gradient objectives, ii) likelihood estimators, and iii) rollout sampling schemes. We show that adopting an evidence lower bound (ELBO) based model likelihood estimator, computed only from the final generated sample, is the dominant factor enabling effective, efficient, and stable RL optimization, outweighing the impact of the specific policy-gradient loss functional. We validate our findings across multiple reward benchmarks using SD 3.5 Medium, and observe consistent trends across all tasks. Our method improves the GenEval score from 0.24 to 0.95 in 90 GPU hours, which is $4.6\times$ more efficient than FlowGRPO and $2\times$ more efficient than the SOTA method DiffusionNFT without reward hacking.
comment: 23 pages, 11 figures
☆ Inference-Time Backdoors via Hidden Instructions in LLM Chat Templates
Open-weight language models are increasingly used in production settings, raising new security challenges. One prominent threat in this context is backdoor attacks, in which adversaries embed hidden behaviors in language models that activate under specific conditions. Previous work has assumed that adversaries have access to training pipelines or deployment infrastructure. We propose a novel attack surface requiring neither, which utilizes the chat template. Chat templates are executable Jinja2 programs invoked at every inference call, occupying a privileged position between user input and model processing. We show that an adversary who distributes a model with a maliciously modified template can implant an inference-time backdoor without modifying model weights, poisoning training data, or controlling runtime infrastructure. We evaluated this attack vector by constructing template backdoors targeting two objectives: degrading factual accuracy and inducing emission of attacker-controlled URLs, and applied them across eighteen models spanning seven families and four inference engines. Under triggered conditions, factual accuracy drops from 90% to 15% on average while attacker-controlled URLs are emitted with success rates exceeding 80%; benign inputs show no measurable degradation. Backdoors generalize across inference runtimes and evade all automated security scans applied by the largest open-weight distribution platform. These results establish chat templates as a reliable and currently undefended attack surface in the LLM supply chain.
☆ SAFE: Stable Alignment Finetuning with Entropy-Aware Predictive Control for RLHF
Optimization (PPO) has been positioned by recent literature as the canonical method for the RL part of RLHF. PPO performs well empirically but has a heuristic motivation and handles the KL-divergence constraint used in LM-RLHF in an ad-hoc manner and suffers form reward oscillations, entropy collapse, value function drift, and sudden policy divergence that require frequent restarts and extensive hyperparameter tuning. In this paper, we develop a new pure on policy actor-critic RL method for the LM-RLHF setting. We present SAFE (Stable Alignment Finetuning with Entropy-aware control),a novel RLHF algorithm that combines a Double Soft-Min Critic for pessimistic value estimation with a new multi-layer stabilization framework combining entropy-gated KL regulation, and PID-controlled adaptive thresholds. Unlike standard PPO's symmetric KL penalties, SAFE distinguishes high-entropy exploration from low-entropy mode collapse and adjusts penalties dynamically based on reward velocity. Experiments on a 3B parameter model show SAFE achieves +5.15\% training-average reward than PPO (0.725 vs 0.689), negligible reward crashes, and superior KL control than ppo . Our method adds minimal computational overhead and provides an interpretable, crash-resistant RLHF framework that maintains aggressive learning speed while ensuring stable long-horizon optimization suitable for production deployment. Code is available at https://github.com/ryyzn9/SAFE
☆ Learning to Separate RF Signals Under Uncertainty: Detect-Then-Separate vs. Unified Joint Models
The increasingly crowded radio frequency (RF) spectrum forces communication signals to coexist, creating heterogeneous interferers whose structure often departs from Gaussian models. Recovering the interference-contaminated signal of interest in such settings is a central challenge, especially in single-channel RF processing. Existing data-driven methods often assume that the interference type is known, yielding ensembles of specialized models that scale poorly with the number of interferers. We show that detect-then-separate (DTS) strategies admit an analytical justification: within a Gaussian mixture framework, a plug-in maximum a posteriori detector followed by type-conditioned optimal estimation achieves asymptotic minimum mean-square error optimality under a mild temporal-diversity condition. This makes DTS a principled benchmark, but its reliance on multiple type-specific models limits scalability. Motivated by this, we propose a unified joint model (UJM), in which a single deep neural architecture learns to jointly detect and separate when applied directly to the received signal. Using tailored UNet architectures for baseband (complex-valued) RF signals, we compare DTS and UJM on synthetic and recorded interference types, showing that a capacity-matched UJM can match oracle-aided DTS performance across diverse signal-to-interference-and-noise ratios, interference types, and constellation orders, including mismatched training and testing type-uncertainty proportions. These findings highlight UJM as a scalable and practical alternative to DTS, while opening new directions for unified separation under broader regimes.
comment: 6 pages, 6 figures, 1 table, accepted at the 2026 IEEE International Conference on Communications
☆ MTS-JEPA: Multi-Resolution Joint-Embedding Predictive Architecture for Time-Series Anomaly Prediction
Multivariate time series underpin modern critical infrastructure, making the prediction of anomalies a vital necessity for proactive risk mitigation. While Joint-Embedding Predictive Architectures (JEPA) offer a promising framework for modeling the latent evolution of these systems, their application is hindered by representation collapse and an inability to capture precursor signals across varying temporal scales. To address these limitations, we propose MTS-JEPA, a specialized architecture that integrates a multi-resolution predictive objective with a soft codebook bottleneck. This design explicitly decouples transient shocks from long-term trends, and utilizes the codebook to capture discrete regime transitions. Notably, we find this constraint also acts as an intrinsic regularizer to ensure optimization stability. Empirical evaluations on standard benchmarks confirm that our approach effectively prevents degenerate solutions and achieves state-of-the-art performance under the early-warning protocol.
☆ RIGA-Fold: A General Framework for Protein Inverse Folding via Recurrent Interaction and Geometric Awareness
Protein inverse folding, the task of predicting amino acid sequences for desired structures, is pivotal for de novo protein design. However, existing GNN-based methods typically suffer from restricted receptive fields that miss long-range dependencies and a "single-pass" inference paradigm that leads to error accumulation. To address these bottlenecks, we propose RIGA-Fold, a framework that synergizes Recurrent Interaction with Geometric Awareness. At the micro-level, we introduce a Geometric Attention Update (GAU) module where edge features explicitly serve as attention keys, ensuring strictly SE(3)-invariant local encoding. At the macro-level, we design an attention-based Global Context Bridge that acts as a soft gating mechanism to dynamically inject global topological information. Furthermore, to bridge the gap between structural and sequence modalities, we introduce an enhanced variant, RIGA-Fold*, which integrates trainable geometric features with frozen evolutionary priors from ESM-2 and ESM-IF via a dual-stream architecture. Finally, a biologically inspired ``predict-recycle-refine'' strategy is implemented to iteratively denoise sequence distributions. Extensive experiments on CATH 4.2, TS50, and TS500 benchmarks demonstrate that our geometric framework is highly competitive, while RIGA-Fold* significantly outperforms state-of-the-art baselines in both sequence recovery and structural consistency.
comment: 16 pages, 4 figures. Includes appendix. Preprint under review
☆ WideSeek-R1: Exploring Width Scaling for Broad Information Seeking via Multi-Agent Reinforcement Learning
Recent advancements in Large Language Models (LLMs) have largely focused on depth scaling, where a single agent solves long-horizon problems with multi-turn reasoning and tool use. However, as tasks grow broader, the key bottleneck shifts from individual competence to organizational capability. In this work, we explore a complementary dimension of width scaling with multi-agent systems to address broad information seeking. Existing multi-agent systems often rely on hand-crafted workflows and turn-taking interactions that fail to parallelize work effectively. To bridge this gap, we propose WideSeek-R1, a lead-agent-subagent framework trained via multi-agent reinforcement learning (MARL) to synergize scalable orchestration and parallel execution. By utilizing a shared LLM with isolated contexts and specialized tools, WideSeek-R1 jointly optimizes the lead agent and parallel subagents on a curated dataset of 20k broad information-seeking tasks. Extensive experiments show that WideSeek-R1-4B achieves an item F1 score of 40.0% on the WideSearch benchmark, which is comparable to the performance of single-agent DeepSeek-R1-671B. Furthermore, WideSeek-R1-4B exhibits consistent performance gains as the number of parallel subagents increases, highlighting the effectiveness of width scaling.
☆ QUATRO: Query-Adaptive Trust Region Policy Optimization for LLM Fine-tuning
GRPO-style reinforcement learning (RL)-based LLM fine-tuning algorithms have recently gained popularity. Relying on heuristic trust-region approximations, however, they can lead to brittle optimization behavior, as global importance-ratio clipping and group-wise normalization fail to regulate samples whose importance ratios fall outside the clipping range. We propose Query-Adaptive Trust-Region policy Optimization (QUATRO), which directly enforces trust-region constraints through a principled optimization. This yields a clear and interpretable objective that enables explicit control over policy updates and stable, entropy-controlled optimization, with a stabilizer terms arising intrinsically from the exact trust-region formulation. Empirically verified on diverse mathematical reasoning benchmarks, QUATRO shows stable training under increased policy staleness and aggressive learning rates, maintaining well-controlled entropy throughout training.
☆ A Human-Centered Privacy Approach (HCP) to AI
As the paradigm of Human-Centered AI (HCAI) gains prominence, its benefits to society are accompanied by significant ethical concerns, one of which is the protection of individual privacy. This chapter provides a comprehensive overview of privacy within HCAI, proposing a human-centered privacy (HCP) framework, providing integrated solution from technology, ethics, and human factors perspectives. The chapter begins by mapping privacy risks across each stage of AI development lifecycle, from data collection to deployment and reuse, highlighting the impact of privacy risks on the entire system. The chapter then introduces privacy-preserving techniques such as federated learning and dif erential privacy. Subsequent chapters integrate the crucial user perspective by examining mental models, alongside the evolving regulatory and ethical landscapes as well as privacy governance. Next, advice on design guidelines is provided based on the human-centered privacy framework. After that, we introduce practical case studies across diverse fields. Finally, the chapter discusses persistent open challenges and future research directions, concluding that a multidisciplinary approach, merging technical, design, policy, and ethical expertise, is essential to successfully embed privacy into the core of HCAI, thereby ensuring these technologies advance in a manner that respects and ensures human autonomy, trust and dignity.
☆ Targeted Synthetic Control Method
The synthetic control method (SCM) estimates causal effects in panel data with a single-treated unit by constructing a counterfactual outcome as a weighted combination of untreated control units that matches the pre-treatment trajectory. In this paper, we introduce the targeted synthetic control (TSC) method, a new two-stage estimator that directly estimates the counterfactual outcome. Specifically, our TSC method (1) yields a targeted debiasing estimator, in the sense that the targeted updating refines the initial weights to produce more stable weights; and (2) ensures that the final counterfactual estimation is a convex combination of observed control outcomes to enable direct interpretation of the synthetic control weights. TSC is flexible and can be instantiated with arbitrary machine learning models. Methodologically, TSC starts from an initial set of synthetic-control weights via a one-dimensional targeted update through the weight-tilting submodel, which calibrates the weights to reduce bias of weights estimation arising from pre-treatment fit. Furthermore, TSC avoids key shortcomings of existing methods (e.g., the augmented SCM), which can produce unbounded counterfactual estimates. Across extensive synthetic and real-world experiments, TSC consistently improves estimation accuracy over state-of-the-art SCM baselines.
☆ Resilient Load Forecasting under Climate Change: Adaptive Conditional Neural Processes for Few-Shot Extreme Load Forecasting
Extreme weather can substantially change electricity consumption behavior, causing load curves to exhibit sharp spikes and pronounced volatility. If forecasts are inaccurate during those periods, power systems are more likely to face supply shortfalls or localized overloads, forcing emergency actions such as load shedding and increasing the risk of service disruptions and public-safety impacts. This problem is inherently difficult because extreme events can trigger abrupt regime shifts in load patterns, while relevant extreme samples are rare and irregular, making reliable learning and calibration challenging. We propose AdaCNP, a probabilistic forecasting model for data-scarce condition. AdaCNP learns similarity in a shared embedding space. For each target data, it evaluates how relevant each historical context segment is to the current condition and reweights the context information accordingly. This design highlights the most informative historical evidence even when extreme samples are rare. It enables few-shot adaptation to previously unseen extreme patterns. AdaCNP also produces predictive distributions for risk-aware decision-making without expensive fine-tuning on the target domain. We evaluate AdaCNP on real-world power-system load data and compare it against a range of representative baselines. The results show that AdaCNP is more robust during extreme periods, reducing the mean squared error by 22\% relative to the strongest baseline while achieving the lowest negative log-likelihood, indicating more reliable probabilistic outputs. These findings suggest that AdaCNP can effectively mitigate the combined impact of abrupt distribution shifts and scarce extreme samples, providing a more trustworthy forecasting for resilient power system operation under extreme events.
☆ Jacobian Regularization Stabilizes Long-Term Integration of Neural Differential Equations
Hybrid models and Neural Differential Equations (NDE) are getting increasingly important for the modeling of physical systems, however they often encounter stability and accuracy issues during long-term integration. Training on unrolled trajectories is known to limit these divergences but quickly becomes too expensive due to the need for computing gradients over an iterative process. In this paper, we demonstrate that regularizing the Jacobian of the NDE model via its directional derivatives during training stabilizes long-term integration in the challenging context of short training rollouts. We design two regularizations, one for the case of known dynamics where we can directly derive the directional derivatives of the dynamic and one for the case of unknown dynamics where they are approximated using finite differences. Both methods, while having a far lower cost compared to long rollouts during training, are successful in improving the stability of long-term simulations for several ordinary and partial differential equations, opening up the door to training NDE methods for long-term integration of large scale systems.
☆ Focus-LIME: Surgical Interpretation of Long-Context Large Language Models via Proxy-Based Neighborhood Selection
As Large Language Models (LLMs) scale to handle massive context windows, achieving surgical feature-level interpretation is essential for high-stakes tasks like legal auditing and code debugging. However, existing local model-agnostic explanation methods face a critical dilemma in these scenarios: feature-based methods suffer from attribution dilution due to high feature dimensionality, thus failing to provide faithful explanations. In this paper, we propose Focus-LIME, a coarse-to-fine framework designed to restore the tractability of surgical interpretation. Focus-LIME utilizes a proxy model to curate the perturbation neighborhood, allowing the target model to perform fine-grained attribution exclusively within the optimized context. Empirical evaluations on long-context benchmarks demonstrate that our method makes surgical explanations practicable and provides faithful explanations to users.
☆ Stochastic Decision Horizons for Constrained Reinforcement Learning
Constrained Markov decision processes (CMDPs) provide a principled model for handling constraints, such as safety and other auxiliary objectives, in reinforcement learning. The common approach of using additive-cost constraints and dual variables often hinders off-policy scalability. We propose a Control as Inference formulation based on stochastic decision horizons, where constraint violations attenuate reward contributions and shorten the effective planning horizon via state-action-dependent continuation. This yields survival-weighted objectives that remain replay-compatible for off-policy actor-critic learning. We propose two violation semantics, absorbing and virtual termination, that share the same survival-weighted return but result in distinct optimization structures that lead to SAC/MPO-style policy improvement. Experiments demonstrate improved sample efficiency and favorable return-violation trade-offs on standard benchmarks. Moreover, MPO with virtual termination (VT-MPO) scales effectively to our high-dimensional musculoskeletal Hyfydy setup.
☆ A principled framework for uncertainty decomposition in TabPFN
TabPFN is a transformer that achieves state-of-the-art performance on supervised tabular tasks by amortizing Bayesian prediction into a single forward pass. However, there is currently no method for uncertainty decomposition in TabPFN. Because it behaves, in an idealised limit, as a Bayesian in-context learner, we cast the decomposition challenge as a Bayesian predictive inference (BPI) problem. The main computational tool in BPI, predictive Monte Carlo, is challenging to apply here as it requires simulating unmodeled covariates. We therefore pursue the asymptotic alternative, filling a gap in the theory for supervised settings by proving a predictive CLT under quasi-martingale conditions. We derive variance estimators determined by the volatility of predictive updates along the context. The resulting credible bands are fast to compute, target epistemic uncertainty, and achieve near-nominal frequentist coverage. For classification, we further obtain an entropy-based uncertainty decomposition.
comment: 9 pages (+2 reference, +34 appendix). Code in https://github.com/weiyaw/ud4pfn
☆ Trust The Typical
Current approaches to LLM safety fundamentally rely on a brittle cat-and-mouse game of identifying and blocking known threats via guardrails. We argue for a fresh approach: robust safety comes not from enumerating what is harmful, but from deeply understanding what is safe. We introduce Trust The Typical (T3), a framework that operationalizes this principle by treating safety as an out-of-distribution (OOD) detection problem. T3 learns the distribution of acceptable prompts in a semantic space and flags any significant deviation as a potential threat. Unlike prior methods, it requires no training on harmful examples, yet achieves state-of-the-art performance across 18 benchmarks spanning toxicity, hate speech, jailbreaking, multilingual harms, and over-refusal, reducing false positive rates by up to 40x relative to specialized safety models. A single model trained only on safe English text transfers effectively to diverse domains and over 14 languages without retraining. Finally, we demonstrate production readiness by integrating a GPU-optimized version into vLLM, enabling continuous guardrailing during token generation with less than 6% overhead even under dense evaluation intervals on large-scale workloads.
☆ Probabilistic Label Spreading: Efficient and Consistent Estimation of Soft Labels with Epistemic Uncertainty on Graphs
Safe artificial intelligence for perception tasks remains a major challenge, partly due to the lack of data with high-quality labels. Annotations themselves are subject to aleatoric and epistemic uncertainty, which is typically ignored during annotation and evaluation. While crowdsourcing enables collecting multiple annotations per image to estimate these uncertainties, this approach is impractical at scale due to the required annotation effort. We introduce a probabilistic label spreading method that provides reliable estimates of aleatoric and epistemic uncertainty of labels. Assuming label smoothness over the feature space, we propagate single annotations using a graph-based diffusion method. We prove that label spreading yields consistent probability estimators even when the number of annotations per data point converges to zero. We present and analyze a scalable implementation of our method. Experimental results indicate that, compared to baselines, our approach substantially reduces the annotation budget required to achieve a desired label quality on common image datasets and achieves a new state of the art on the Data-Centric Image Classification benchmark.
☆ Rethinking Weight Tying: Pseudo-Inverse Tying for Stable LM Training and Updates
Weight tying is widely used in compact language models to reduce parameters by sharing the token table between the input embedding and the output projection. However, weight sharing does not guarantee a stable token interface: during training, the correspondence between encoding tokens into hidden states and decoding hidden states into logits can drift, worsening optimization sensitivity and making post-training interventions such as editing, patching, and lightweight adaptation less predictable. We propose Pseudo-Inverse Tying (PIT), which synchronizes embedding and unembedding as coupled projections of a shared latent token memory, guaranteeing a pseudo-inverse-consistent interface throughout training. PIT maintains an orthonormal shared memory, obtained by thin polar decomposition for teacher initialization or random orthonormal initialization from scratch, and introduces a fully learned symmetric positive definite hidden-space transform parameterized via a Cholesky factor. The output head applies this transform to hidden states before the vocabulary projection, while the embedding applies the inverse transform to token vectors using stable triangular solves, avoiding explicit pseudo-inverse recomputation and any vocabulary-sized auxiliary parameters. We evaluate PIT on on-device models spanning 256M-1.3B parameters across pretraining and adaptation, and consistently observe improved training stability, stronger layerwise semantic consistency, and substantially reduced side effects.
comment: an early-stage version
☆ Finding Structure in Continual Learning NeurIPS 2025
Learning from a stream of tasks usually pits plasticity against stability: acquiring new knowledge often causes catastrophic forgetting of past information. Most methods address this by summing competing loss terms, creating gradient conflicts that are managed with complex and often inefficient strategies such as external memory replay or parameter regularization. We propose a reformulation of the continual learning objective using Douglas-Rachford Splitting (DRS). This reframes the learning process not as a direct trade-off, but as a negotiation between two decoupled objectives: one promoting plasticity for new tasks and the other enforcing stability of old knowledge. By iteratively finding a consensus through their proximal operators, DRS provides a more principled and stable learning dynamic. Our approach achieves an efficient balance between stability and plasticity without the need for auxiliary modules or complex add-ons, providing a simpler yet more powerful paradigm for continual learning systems.
comment: Submitted to NeurIPS 2025
☆ Gradient Flow Through Diagram Expansions: Learning Regimes and Explicit Solutions ICML'2026
We develop a general mathematical framework to analyze scaling regimes and derive explicit analytic solutions for gradient flow (GF) in large learning problems. Our key innovation is a formal power series expansion of the loss evolution, with coefficients encoded by diagrams akin to Feynman diagrams. We show that this expansion has a well-defined large-size limit that can be used to reveal different learning phases and, in some cases, to obtain explicit solutions of the nonlinear GF. We focus on learning Canonical Polyadic (CP) decompositions of high-order tensors, and show that this model has several distinct extreme lazy and rich GF regimes such as free evolution, NTK and under- and over-parameterized mean-field. We show that these regimes depend on the parameter scaling, tensor order, and symmetry of the model in a specific and subtle way. Moreover, we propose a general approach to summing the formal loss expansion by reducing it to a PDE; in a wide range of scenarios, it turns out to be 1st order and solvable by the method of characteristics. We observe a very good agreement of our theoretical predictions with experiment.
comment: 48 pages, under review for ICML'2026
☆ Continual Learning through Control Minimization
Catastrophic forgetting remains a fundamental challenge for neural networks when tasks are trained sequentially. In this work, we reformulate continual learning as a control problem where learning and preservation signals compete within neural activity dynamics. We convert regularization penalties into preservation signals that protect prior-task representations. Learning then proceeds by minimizing the control effort required to integrate new tasks while competing with the preservation of prior tasks. At equilibrium, the neural activities produce weight updates that implicitly encode the full prior-task curvature, a property we term the continual-natural gradient, requiring no explicit curvature storage. Experiments confirm that our learning framework recovers true prior-task curvature and enables task discrimination, outperforming existing methods on standard benchmarks without replay.
☆ Forget to Generalize: Iterative Adaptation for Generalization in Federated Learning
The Web is naturally heterogeneous with user devices, geographic regions, browsing patterns, and contexts all leading to highly diverse, unique datasets. Federated Learning (FL) is an important paradigm for the Web because it enables privacy-preserving, collaborative machine learning across diverse user devices, web services and clients without needing to centralize sensitive data. However, its performance degrades severely under non-IID client distributions that is prevalent in real-world web systems. In this work, we propose a new training paradigm - Iterative Federated Adaptation (IFA) - that enhances generalization in heterogeneous federated settings through generation-wise forget and evolve strategy. Specifically, we divide training into multiple generations and, at the end of each, select a fraction of model parameters (a) randomly or (b) from the later layers of the model and reinitialize them. This iterative forget and evolve schedule allows the model to escape local minima and preserve globally relevant representations. Extensive experiments on CIFAR-10, MIT-Indoors, and Stanford Dogs datasets show that the proposed approach improves global accuracy, especially when the data cross clients are Non-IID. This method can be implemented on top any federated algorithm to improve its generalization performance. We observe an average of 21.5%improvement across datasets. This work advances the vision of scalable, privacy-preserving intelligence for real-world heterogeneous and distributed web systems.
☆ Learning the Value Systems of Agents with Preference-based and Inverse Reinforcement Learning
Agreement Technologies refer to open computer systems in which autonomous software agents interact with one another, typically on behalf of humans, in order to come to mutually acceptable agreements. With the advance of AI systems in recent years, it has become apparent that such agreements, in order to be acceptable to the involved parties, must remain aligned with ethical principles and moral values. However, this is notoriously difficult to ensure, especially as different human users (and their software agents) may hold different value systems, i.e. they may differently weigh the importance of individual moral values. Furthermore, it is often hard to specify the precise meaning of a value in a particular context in a computational manner. Methods to estimate value systems based on human-engineered specifications, e.g. based on value surveys, are limited in scale due to the need for intense human moderation. In this article, we propose a novel method to automatically \emph{learn} value systems from observations and human demonstrations. In particular, we propose a formal model of the \emph{value system learning} problem, its instantiation to sequential decision-making domains based on multi-objective Markov decision processes, as well as tailored preference-based and inverse reinforcement learning algorithms to infer value grounding functions and value systems. The approach is illustrated and evaluated by two simulated use cases.
comment: 42 pages, 5 figures. Published in Journal of Autonomous Agents and Multi-Agent Systems
☆ Discovering Mechanistic Models of Neural Activity: System Identification in an in Silico Zebrafish
Constructing mechanistic models of neural circuits is a fundamental goal of neuroscience, yet verifying such models is limited by the lack of ground truth. To rigorously test model discovery, we establish an in silico testbed using neuromechanical simulations of a larval zebrafish as a transparent ground truth. We find that LLM-based tree search autonomously discovers predictive models that significantly outperform established forecasting baselines. Conditioning on sensory drive is necessary but not sufficient for faithful system identification, as models exploit statistical shortcuts. Structural priors prove essential for enabling robust out-of-distribution generalization and recovery of interpretable mechanistic models. Our insights provide guidance for modeling real-world neural recordings and offer a broader template for AI-driven scientific discovery.
☆ Greedy-Gnorm: A Gradient Matrix Norm-Based Alternative to Attention Entropy for Head Pruning
Attention head pruning has emerged as an effective technique for transformer model compression, an increasingly important goal in the era of Green AI. However, existing pruning methods often rely on static importance scores, which fail to capture the evolving role of attention heads during iterative removal. We propose Greedy-Gradient norm (Greedy-Gnorm), a novel head pruning algorithm that dynamically recalculates head importance after each pruning step. Specifically, each head is scored by the elementwise product of the l2-norms of its Q/K/V gradient blocks, as estimated from a hold-out validation set and updated at every greedy iteration. This dynamic approach to scoring mitigates against stale rankings and better reflects gradient-informed importance as pruning progresses. Extensive experiments on BERT, ALBERT, RoBERTa, and XLM-RoBERTa demonstrate that Greedy-Gnorm consistently preserves accuracy under substantial head removal, outperforming attention entropy. By effectively reducing model size while maintaining task performance, Greedy-Gnorm offers a promising step toward more energy-efficient transformer model deployment.
comment: 24 pages, 5 figures, 5 tables
☆ Universality of General Spiked Tensor Models
We study the rank-one spiked tensor model in the high-dimensional regime, where the noise entries are independent and identically distributed with zero mean, unit variance, and finite fourth moment.This setting extends the classical Gaussian framework to a substantially broader class of noise distributions.Focusing on asymmetric tensors of order $d$ ($\ge 3$), we analyze the maximum likelihood estimator of the best rank-one approximation.Under a mild assumption isolating informative critical points of the associated optimization landscape, we show that the empirical spectral distribution of a suitably defined block-wise tensor contraction converges almost surely to a deterministic limit that coincides with the Gaussian case.As a consequence, the asymptotic singular value and the alignments between the estimated and true spike directions admit explicit characterizations identical to those obtained under Gaussian noise. These results establish a universality principle for spiked tensor models, demonstrating that their high-dimensional spectral behavior and statistical limits are robust to non-Gaussian noise. Our analysis relies on resolvent methods from random matrix theory, cumulant expansions valid under finite moment assumptions, and variance bounds based on Efron-Stein-type arguments. A key challenge in the proof is how to handle the statistical dependence between the signal term and the noise term.
comment: 102pages
☆ Bayesian PINNs for uncertainty-aware inverse problems (BPINN-IP) ICIP 2006
The main contribution of this paper is to develop a hierarchical Bayesian formulation of PINNs for linear inverse problems, which is called BPINN-IP. The proposed methodology extends PINN to account for prior knowledge on the nature of the expected NN output, as well as its weights. Also, as we can have access to the posterior probability distributions, naturally uncertainties can be quantified. Also, variational inference and Monte Carlo dropout are employed to provide predictive means and variances for reconstructed images. Un example of applications to deconvolution and super-resolution is considered, details of the different steps of implementations are given, and some preliminary results are presented.
comment: submitted to ICIP 2006 conference
☆ Journey to the Centre of Cluster: Harnessing Interior Nodes for A/B Testing under Network Interference ICLR 2026
A/B testing on platforms often faces challenges from network interference, where a unit's outcome depends not only on its own treatment but also on the treatments of its network neighbors. To address this, cluster-level randomization has become standard, enabling the use of network-aware estimators. These estimators typically trim the data to retain only a subset of informative units, achieving low bias under suitable conditions but often suffering from high variance. In this paper, we first demonstrate that the interior nodes - units whose neighbors all lie within the same cluster - constitute the vast majority of the post-trimming subpopulation. In light of this, we propose directly averaging over the interior nodes to construct the mean-in-interior (MII) estimator, which circumvents the delicate reweighting required by existing network-aware estimators and substantially reduces variance in classical settings. However, we show that interior nodes are often not representative of the full population, particularly in terms of network-dependent covariates, leading to notable bias. We then augment the MII estimator with a counterfactual predictor trained on the entire network, allowing us to adjust for covariate distribution shifts between the interior nodes and full population. By rearranging the expression, we reveal that our augmented MII estimator embodies an analytical form of the point estimator within prediction-powered inference framework. This insight motivates a semi-supervised lens, wherein interior nodes are treated as labeled data subject to selection bias. Extensive and challenging simulation studies demonstrate the outstanding performance of our augmented MII estimator across various settings.
comment: ICLR 2026
☆ RASA: Routing-Aware Safety Alignment for Mixture-of-Experts Models
Mixture-of-Experts (MoE) language models introduce unique challenges for safety alignment due to their sparse routing mechanisms, which can enable degenerate optimization behaviors under standard full-parameter fine-tuning. In our preliminary experiments, we observe that naively applying full-parameter safety fine-tuning to MoE models can reduce attack success rates through routing or expert dominance effects, rather than by directly repairing Safety-Critical Experts. To address this challenge, we propose RASA, a routing-aware expert-level alignment framework that explicitly repairs Safety-Critical Experts while preventing routing-based bypasses. RASA identifies experts disproportionately activated by successful jailbreaks, selectively fine-tunes only these experts under fixed routing, and subsequently enforces routing consistency with safety-aligned contexts. Across two representative MoE architectures and a diverse set of jailbreak attacks, RASA achieves near-perfect robustness, strong cross-attack generalization, and substantially reduced over-refusal, while preserving general capabilities on benchmarks such as MMLU, GSM8K, and TruthfulQA. Our results suggest that robust MoE safety alignment benefits from targeted expert repair rather than global parameter updates, offering a practical and architecture-preserving alternative to prior approaches.
comment: 9 pages
☆ Mixture of Masters: Sparse Chess Language Models with Player Routing
Modern chess language models are dense transformers trained on millions of games played by thousands of high-rated individuals. However, these monolithic networks tend to collapse into mode-averaged behavior, where stylistic boundaries are blurred, and rare but effective strategies are suppressed. To counteract homogenization, we introduce Mixture-of-Masters (MoM), the first chess mixture-of-experts model with small-sized GPT experts emulating world-class grandmasters. Each expert is trained with a combination of self-supervised learning and reinforcement learning guided by chess-specific rewards. For each move, a post-hoc learnable gating network selects the most appropriate persona to channel depending on the game state, allowing MoM to switch its style dynamically$--$e.g., Tal's offensive vocation or Petrosian's defensive solidity. When evaluated against Stockfish on unseen standard games, MoM outperforms both dense individual expert networks and popular GPT baselines trained on aggregated data, while ensuring generation variety, control, and interpretability.
☆ No One-Size-Fits-All: Building Systems For Translation to Bashkir, Kazakh, Kyrgyz, Tatar and Chuvash Using Synthetic And Original Data EACL 2026
We explore machine translation for five Turkic language pairs: Russian-Bashkir, Russian-Kazakh, Russian-Kyrgyz, English-Tatar, English-Chuvash. Fine-tuning nllb-200-distilled-600M with LoRA on synthetic data achieved chrF++ 49.71 for Kazakh and 46.94 for Bashkir. Prompting DeepSeek-V3.2 with retrieved similar examples achieved chrF++ 39.47 for Chuvash. For Tatar, zero-shot or retrieval-based approaches achieved chrF++ 41.6, while for Kyrgyz the zero-shot approach reached 45.6. We release the dataset and the obtained weights.
comment: Accepted to EACL 2026 (LoResMT workshop)
☆ Hand Gesture Recognition from Doppler Radar Signals Using Echo State Networks IJCNN 2026
Hand gesture recognition (HGR) is a fundamental technology in human computer interaction (HCI).In particular, HGR based on Doppler radar signals is suited for in-vehicle interfaces and robotic systems, necessitating lightweight and computationally efficient recognition techniques. However, conventional deep learning-based methods still suffer from high computational costs. To address this issue, we propose an Echo State Network (ESN) approach for radar-based HGR, using frequency-modulated-continuous-wave (FMCW) radar signals. Raw radar data is first converted into feature maps, such as range-time and Doppler-time maps, which are then fed into one or more recurrent neural network-based reservoirs. The obtained reservoir states are processed by readout classifiers, including ridge regression, support vector machines, and random forests. Comparative experiments demonstrate that our method outperforms existing approaches on an 11-class HGR task using the Soli dataset and surpasses existing deep learning models on a 4-class HGR task using the Dop-NET dataset. The results indicate that parallel processing using multi-reservoir ESNs are effective for recognizing temporal patterns from the multiple different feature maps in the time-space and time-frequency domains. Our ESN approaches achieve high recognition performance with low computational cost in HGR, showing great potential for more advanced HCI technologies, especially in resource-constrained environments.
comment: Submitted to IJCNN 2026. 21 pages, 10figures
♻ ☆ Robust inverse material design with physical guarantees using the Voigt-Reuss Net
We propose a spectrally normalized surrogate for forward and inverse mechanical homogenization with hard physical guarantees. Leveraging the Voigt-Reuss bounds, we factor their difference via a Cholesky-like operator and learn a dimensionless, symmetric positive semi-definite representation with eigenvalues in $[0,1]$; the inverse map returns symmetric positive-definite predictions that lie between the bounds in the Löwner sense. In 3D linear elasticity on an open dataset of stochastic biphasic microstructures, a fully connected Voigt-Reuss net trained on $>\!7.5\times 10^{5}$ FFT-based labels with 236 isotropy-invariant descriptors and three contrast parameters recovers the isotropic projection with near-perfect fidelity (isotropy-related entries: $R^2 \ge 0.998$), while anisotropy-revealing couplings are unidentifiable from $SO(3)$-invariant inputs. Tensor-level relative Frobenius errors have median $\approx 1.7\%$ and mean $\approx 3.4\%$ across splits. For 2D plane strain on thresholded trigonometric microstructures, coupling spectral normalization with a differentiable renderer and a CNN yields $R^2>0.99$ on all components, subpercent normalized losses, accurate tracking of percolation-induced eigenvalue jumps, and robust generalization to out-of-distribution images. Treating the parametric microstructure as design variables, batched first-order optimization with a single surrogate matches target tensors within a few percent and returns diverse near-optimal designs. Overall, the Voigt-Reuss net unifies accurate, physically admissible forward prediction with large-batch, constraint-consistent inverse design, and is generic to elliptic operators and coupled-physics settings.
♻ ☆ Combining Residual U-Net and Data Augmentation for Dense Temporal Segmentation of Spike Wave Discharges in Single-Channel EEG
Manual annotation of spike-wave discharges (SWDs), the electrographic hallmark of absence seizures, is labor-intensive for long-term electroencephalography (EEG) monitoring studies. While machine learning approaches show promise for automated detection, they often struggle with cross-subject generalization due to high inter-individual variability in seizure morphology and signal characteristics. In this study we compare the performance of 15 machine learning classifiers on our own manually annotated dataset of 961 hours of EEG recordings from C3H/HeJ mice, including 22,637 labeled SWDs and find that a 1D U-Net performs the best. We then improve its performance by employing residual connections and data augmentation strategies combining amplitude scaling, Gaussian noise injection, and signal inversion during training to enhance cross-subject generalization. We also compare our method, named AugUNet1D, to a recently published time- and frequency-based algorithmic approach called "Twin Peaks" and show that AugUNet1D performs better on our dataset. AugUNet1D, pretrained on our manually annotated data or untrained, is made public for other users.
♻ ☆ Comparing statistical and deep learning techniques for parameter estimation of continuous-time stochastic differentiable equations
Stochastic differential equations such as the Ornstein-Uhlenbeck process have long been used to model realworld probablistic events such as stock prices and temperature fluctuations. While statistical methods such as Maximum Likelihood Estimation (MLE), Kalman Filtering, Inverse Variable Method, and more have historically been used to estimate the parameters of stochastic differential equations, the recent explosion of deep learning technology suggests that models such as a Recurrent Neural Network (RNN) could produce more precise estimators. We present a series of experiments that compare the estimation accuracy and computational expensiveness of a statistical method (MLE) with a deep learning model (RNN) for the parameters of the Ornstein-Uhlenbeck process.
comment: 6 pages, 2 figures, 2 tables
♻ ☆ Beyond Fixed Frames: Dynamic Character-Aligned Speech Tokenization
Neural audio codecs are at the core of modern conversational speech technologies, converting continuous speech into sequences of discrete tokens that can be processed by LLMs. However, existing codecs typically operate at fixed frame rates, allocating tokens uniformly in time and producing unnecessarily long sequences. In this work, we introduce DyCAST, a Dynamic Character-Aligned Speech Tokenizer that enables variable-frame-rate tokenization through soft character-level alignment and explicit duration modeling. DyCAST learns to associate tokens with character-level linguistic units during training and supports alignment-free inference with direct control over token durations at decoding time. To improve speech resynthesis quality at low frame rates, we further introduce a retrieval-augmented decoding mechanism that enhances reconstruction fidelity without increasing bitrate. Experiments show that DyCAST achieves competitive speech resynthesis quality and downstream performance while using significantly fewer tokens than fixed-frame-rate codecs. Code and checkpoints will be released publicly at https://github.com/lucadellalib/dycast.
comment: 18 pages, 3 figures
♻ ☆ Personalized Image Generation via Human-in-the-loop Bayesian Optimization
Imagine Alice has a specific image $x^\ast$ in her mind, say, the view of the street in which she grew up during her childhood. To generate that exact image, she guides a generative model with multiple rounds of prompting and arrives at an image $x^{p*}$. Although $x^{p*}$ is reasonably close to $x^\ast$, Alice finds it difficult to close that gap using language prompts. This paper aims to narrow this gap by observing that even after language has reached its limits, humans can still tell when a new image $x^+$ is closer to $x^\ast$ than $x^{p*}$. Leveraging this observation, we develop MultiBO (Multi-Choice Preferential Bayesian Optimization) that carefully generates $K$ new images as a function of $x^{p*}$, gets preferential feedback from the user, uses the feedback to guide the diffusion model, and ultimately generates a new set of $K$ images. We show that within $B$ rounds of user feedback, it is possible to arrive much closer to $x^\ast$, even though the generative model has no information about $x^\ast$. Qualitative scores from $30$ users, combined with quantitative metrics compared across $5$ baselines, show promising results, suggesting that multi-choice feedback from humans can be effectively harnessed for personalized image generation.
♻ ☆ OverThink: Slowdown Attacks on Reasoning LLMs
Most flagship language models generate explicit reasoning chains, enabling inference-time scaling. However, producing these reasoning chains increases token usage (i.e., reasoning tokens), which in turn increases latency and costs. Our OverThink attack increases overhead for applications that rely on reasoning language models (RLMs) and external context by forcing them to spend substantially more reasoning tokens while still producing contextually correct answers. An adversary mounts an attack by injecting decoy reasoning problems into public content that is consumed by RLM at inference time. Because our decoys (e.g., Markov decision processes, Sudokus, etc.) are benign, they evade safety filters. We evaluate OverThink on both closed-source and open-source reasoning models across the FreshQA, SQuAD, and MuSR datasets. We also explore the attack in multi-modal settings by creating images that cause excessive reasoning. We show that the resulting slowdown transfers across models. Finally, we explore both LLM-based and systems-level defenses, and discuss the societal, financial, and energy implications of the OverThink attacks.
♻ ☆ Grammatical Error Correction for Low-Resource Languages: The Case of Zarma
Grammatical error correction (GEC) aims to improve text quality and readability. Previous work on the task focused primarily on high-resource languages, while low-resource languages lack robust tools. To address this shortcoming, we present a study on GEC for Zarma, a language spoken by over five million people in West Africa. We compare three approaches: rule-based methods, machine translation (MT) models, and large language models (LLMs). We evaluated GEC models using a dataset of more than 250,000 examples, including synthetic and human-annotated data. Our results showed that the MT-based approach using M2M100 outperforms others, with a detection rate of 95.82% and a suggestion accuracy of 78.90% in automatic evaluations (AE) and an average score of 3.0 out of 5.0 in manual evaluation (ME) from native speakers for grammar and logical corrections. The rule-based method was effective for spelling errors but failed on complex context-level errors. LLMs -- Gemma 2b and MT5-small -- showed moderate performance. Our work supports use of MT models to enhance GEC in low-resource settings, and we validated these results with Bambara, another West African language.
♻ ☆ Group-Adaptive Adversarial Learning for Robust Fake News Detection Against Malicious Comments
Online fake news profoundly distorts public judgment and erodes trust in social platforms. While existing detectors achieve competitive performance on benchmark datasets, they remain notably vulnerable to malicious comments designed specifically to induce misclassification. This evolving threat landscape necessitates detection systems that simultaneously prioritize predictive accuracy and structural robustness. However, current detectors often fail to generalize across diverse and novel comment attack patterns. To bridge this gap, we propose AdComment, an adaptive adversarial training framework for robustness enhancement against diverse malicious comments. Based on cognitive psychology, we categorize adversarial comments into Fact Distortion, Logical Confusion, and Emotional Manipulation, and leverage LLMs to synthesize diverse, category-specific perturbations. Central to our framework is an InfoDirichlet Resampling (IDR) mechanism that dynamically adjusts malicious comment proportions during training, thereby steering optimization toward the model's most susceptible regions. Experimental results demonstrate that our approach achieves state-of-the-art performance on three benchmark datasets, improving the F1 scores by 17.9%, 14.5% and 9.0%, respectively.
comment: 10 pages, 12 figures
♻ ☆ Guardrailed Uplift Targeting: A Causal Optimization Playbook for Marketing Strategy
This paper introduces a marketing decision framework that optimizes customer targeting by integrating heterogeneous treatment effect estimation with explicit business guardrails. The objective is to maximize revenue and retention while adhering to constraints such as budget, revenue protection, and customer experience. The framework first estimates Conditional Average Treatment Effects (CATE) using uplift learners, then solves a constrained allocation problem to decide whom to target and which offer to deploy. It supports decisions in retention messaging, event rewards, and spend-threshold assignment. Validated through offline simulations and online A/B tests, the approach consistently outperforms propensity and static baselines, offering a reusable playbook for causal targeting at scale.
♻ ☆ Domain Generalization Under Posterior Drift
Domain generalization (DG) is the problem of generalizing from several distributions (or domains), for which labeled training data are available, to a new test domain for which no labeled data is available. For the prevailing benchmark datasets in DG, there exists a single classifier that performs well across all domains. In this work, we study a fundamentally different regime where the domains satisfy a \emph{posterior drift} assumption, in which the optimal classifier might vary substantially with domain. We establish a decision-theoretic framework for DG under posterior drift, and investigate the practical implications of this framework through experiments on language and vision tasks.
♻ ☆ Attention Consistency Regularization for Interpretable Early-Exit Neural Networks
Early-exit neural networks enable adaptive inference by allowing predictions at intermediate layers, reducing computational cost. However, early exits often lack interpretability and may focus on different features than deeper layers, limiting trust and explainability. This paper presents Explanation-Guided Training (EGT), a multi-objective framework that improves interpretability and consistency in early-exit networks through attention-based regularization. EGT introduces an attention consistency loss that aligns early-exit attention maps with the final exit. The framework jointly optimizes classification accuracy and attention consistency through a weighted combination of losses. Experiments on a real-world image classification dataset demonstrate that EGT achieves up to 98.97% overall accuracy (matching baseline performance) with a 1.97x inference speedup through early exits, while improving attention consistency by up to 18.5% compared to baseline models. The proposed method provides more interpretable and consistent explanations across all exit points, making early-exit networks more suitable for explainable AI applications in resource-constrained environments.
comment: 2 pages, 1 figure
♻ ☆ A Generalization Bound for a Family of Implicit Networks
Implicit networks are a class of neural networks whose outputs are defined by the fixed point of a parameterized operator. They have enjoyed success in many applications including natural language processing, image processing, and numerous other applications. While they have found abundant empirical success, theoretical work on its generalization is still under-explored. In this work, we consider a large family of implicit networks defined parameterized contractive fixed point operators. We show a generalization bound for this class based on a covering number argument for the Rademacher complexity of these architectures.
♻ ☆ Y-Shaped Generative Flows
Modern continuous-time generative models typically induce \emph{V-shaped} flows: each sample travels independently along a nearly straight trajectory from the prior to the data. Although effective, this independent movement overlooks the hierarchical structures that exist in real-world data. To address this, we introduce \emph{Y-shaped generative flows}, a framework in which samples travel together along shared pathways before branching off to target-specific endpoints. Our formulation is theoretically justified, yet remains practical, requiring only minimal modifications to standard velocity-driven models. We implement this through a scalable, neural network-based training objective. Experiments on synthetic, image, and biological datasets demonstrate that our method recovers hierarchy-aware structures, improves distributional metrics over strong flow-based baselines, and reaches targets in fewer steps.
♻ ☆ Verification and Identification in ECG biometric on large-scale
This work studies electrocardiogram (ECG) biometrics at large scale, directly addressing a critical gap in the literature: the scarcity of large-scale evaluations with operational metrics and protocols that enable meaningful standardization and comparison across studies. We show that identity information is already present in tabular representations (fiducial features): even a simple MLP-based embedding network yields non-trivial performance, establishing a strong baseline before waveform modeling. We then adopt embedding-based deep learning models (ArcFace), first on features and then on ECG waveforms, showing a clear performance jump when moving from tabular inputs to waveforms, and a further gain with larger training sets and consistent normalization across train/val/test. On a large-scale test set, verification achieves high TAR at strict FAR thresholds (TAR=0.908 @ FAR=1e-3; TAR=0.820 @ FAR=1e-4) with EER=2.53\% (all-vs-all); closed-set identification yields Rank@1=0.812 and Rank@10=0.910. In open-set, a two-stage pipeline (top-$K$ shortlist on embeddings + re-ranking) reaches DIR@FAR up to 0.976 at FAR=1e-3 and 1e-4. Overall, the results show that ECG carries a measurable individual signature and that large-scale testing is essential to obtain realistic, comparable metrics. The study provides an operationally grounded benchmark that helps standardize evaluation across protocols.
♻ ☆ Accurate and scalable exchange-correlation with deep learning
Density Functional Theory (DFT) is the most widely used electronic structure method for predicting the properties of molecules and materials. Although DFT is, in principle, an exact reformulation of the Schrödinger equation, practical applications rely on approximations to the unknown exchange-correlation (XC) functional. Most existing XC functionals are constructed using a limited set of increasingly complex, hand-crafted features that improve accuracy at the expense of computational efficiency. Yet, no current approximation achieves the accuracy and generality for predictive modeling of laboratory experiments at chemical accuracy -- typically defined as errors below 1 kcal/mol. In this work, we present Skala, a modern deep learning-based XC functional that bypasses expensive hand-designed features by learning representations directly from data. Skala achieves chemical accuracy for atomization energies of small molecules while retaining the computational efficiency typical of semi-local DFT. This performance is enabled by training on an unprecedented volume of high-accuracy reference data generated using computationally intensive wavefunction-based methods. Notably, Skala systematically improves with additional training data covering diverse chemistry. By incorporating a modest amount of additional high-accuracy data tailored to chemistry beyond atomization energies, Skala achieves accuracy competitive with the best-performing hybrid functionals across general main group chemistry, at the cost of semi-local DFT. As the training dataset continues to expand, Skala is poised to further enhance the predictive power of first-principles simulations.
comment: Main: 13 pages plus references, 11 figures and tables. Supplementary information: 19 pages, 12 figures and tables. v2 update: fix rendering of figure 1 and part of figure 5 in Safari PDF viewer. v3 update: update author information and fix typo. v4 update: The Skala model and inference code are available under MIT license at https://github.com/microsoft/skala
♻ ☆ It's all In the (Exponential) Family: An Equivalence between Maximum Likelihood Estimation and Control Variates for Sketching Algorithms AISTATS 2026
Maximum likelihood estimators (MLE) and control variate estimators (CVE) have been used in conjunction with known information across sketching algorithms and applications in machine learning. We prove that under certain conditions in an exponential family, an optimal CVE will achieve the same asymptotic variance as the MLE, giving an Expectation-Maximization (EM) algorithm for the MLE. Experiments show the EM algorithm is faster and numerically stable compared to other root finding algorithms for the MLE for the bivariate Normal distribution, and we expect this to hold across distributions satisfying these conditions. We show how the EM algorithm leads to reproducibility for algorithms using MLE / CVE, and demonstrate how the EM algorithm leads to finding the MLE when the CV weights are known.
comment: 36 pages, 15 figures, accepted to AISTATS 2026 (poster)
♻ ☆ Multi-Excitation Projective Simulation with a Many-Body Physics Inspired Inductive Bias
With the impressive progress of deep learning, applications relying on machine learning are increasingly being integrated into daily life. However, most deep learning models have an opaque, oracle-like nature making it difficult to interpret and understand their decisions. This problem led to the development of the field known as eXplainable Artificial Intelligence (XAI). One method in this field known as Projective Simulation (PS) models a chain-of-thought as a random walk of a particle on a graph with vertices that have concepts attached to them. While this description has various benefits, including the possibility of quantization, it cannot be naturally used to model thoughts that combine several concepts simultaneously. To overcome this limitation, we introduce Multi-Excitation Projective Simulation (mePS), a generalization that considers a chain-of-thought to be a random walk of several particles on a hypergraph. A definition for a dynamic hypergraph is put forward to describe the agent's training history along with applications to AI and hypergraph visualization. An inductive bias inspired by the remarkably successful few-body interaction models used in quantum many-body physics is formalized for our classical mePS framework and employed to tackle the exponential complexity associated with naive implementations of hypergraphs. We prove that our inductive bias reduces the complexity from exponential to polynomial, with the exponent representing the cutoff on how many particles can interact. We numerically apply our method to two toy environments and a more complex scenario modelling the diagnosis of a broken computer. These environments demonstrate the resource savings provided by an appropriate choice of inductive bias, as well as showcasing aspects of interpretability. A quantum model for mePS is also briefly outlined and some future directions for it are discussed.
comment: 41 pages, 9 figures; Code repository at https://github.com/MariusKrumm/ManyBodyMEPS. Updated to be consistent with AIJ version
♻ ☆ Mugi: Value Level Parallelism For Efficient LLMs
Value level parallelism (VLP) has been proposed to improve the efficiency of large-batch, low-precision general matrix multiply (GEMM) between symmetric activations and weights. In transformer based large language models (LLMs), there exist more sophisticated operations beyond activation-weight GEMM. In this paper, we explore how VLP benefits LLMs. First, we generalize VLP for nonlinear approximations, outperforming existing nonlinear approximations in end-to-end LLM accuracy, performance, and efficiency. Our VLP approximation follows a value-centric approach, where important values are assigned with greater accuracy. Second, we optimize VLP for small-batch GEMMs with asymmetric inputs efficiently, which leverages timely LLM optimizations, including weight-only quantization, key-value (KV) cache quantization, and group query attention. Finally, we design a new VLP architecture, Mugi, to encapsulate the innovations above and support full LLM workloads, while providing better performance, efficiency and sustainability. Our experimental results show that Mugi can offer significant improvements on throughput and energy efficiency, up to $45\times$ and $668\times$ for nonlinear softmax operations, and $2.07\times$ and $3.11\times$ for LLMs, and also decrease operational carbon for LLM operation by $1.45\times$ and embodied carbon by $1.48\times$.
comment: 2026 International Conference on Architectural Support for Programming Languages and Operating Systems
♻ ☆ Self-Improving Pretraining: using post-trained models to pretrain better models
Ensuring safety, factuality and overall quality in the generations of large language models is a critical challenge, especially as these models are increasingly deployed in real-world applications. The prevailing approach to addressing these issues involves collecting expensive, carefully curated datasets and applying multiple stages of fine-tuning and alignment. However, even this complex pipeline cannot guarantee the correction of patterns learned during pretraining. Therefore, addressing these issues during pretraining is crucial, as it shapes a model's core behaviors and prevents unsafe or hallucinated outputs from becoming deeply embedded. To tackle this issue, we introduce a new pretraining method that streams documents and uses reinforcement learning (RL) to improve the next K generated tokens at each step. A strong, post-trained model judges candidate generations -- including model rollouts, the original suffix, and a rewritten suffix -- for quality, safety, and factuality. Early in training, the process relies on the original and rewritten suffixes; as the model improves, RL rewards high-quality rollouts. This approach builds higher quality, safer, and more factual models from the ground up. In experiments, our method gives 36.2% and 18.5% relative improvements over standard pretraining in terms of factuality and safety, and up to 86.3% win rate improvements in overall generation quality.
♻ ☆ Unifying Re-Identification, Attribute Inference, and Data Reconstruction Risks in Differential Privacy NeurIPS 2025
Differentially private (DP) mechanisms are difficult to interpret and calibrate because existing methods for mapping standard privacy parameters to concrete privacy risks -- re-identification, attribute inference, and data reconstruction -- are both overly pessimistic and inconsistent. In this work, we use the hypothesis-testing interpretation of DP ($f$-DP), and determine that bounds on attack success can take the same unified form across re-identification, attribute inference, and data reconstruction risks. Our unified bounds are (1) consistent across a multitude of attack settings, and (2) tunable, enabling practitioners to evaluate risk with respect to arbitrary, including worst-case, levels of baseline risk. Empirically, our results are tighter than prior methods using $\varepsilon$-DP, Rényi DP, and concentrated DP. As a result, calibrating noise using our bounds can reduce the required noise by 20% at the same risk level, which yields, e.g., an accuracy increase from 52% to 70% in a text classification task. Overall, this unifying perspective provides a principled framework for interpreting and calibrating the degree of protection in DP against specific levels of re-identification, attribute inference, or data reconstruction risk.
comment: NeurIPS 2025
♻ ☆ Minimax and Bayes Optimal Best-Arm Identification
This study investigates minimax and Bayes optimal strategies for fixed-budget best-arm identification. We consider an adaptive procedure consisting of a sampling phase followed by a recommendation phase, and we design an adaptive experiment within this framework to efficiently identify the best arm, defined as the one with the highest expected outcome. In our proposed strategy, the sampling phase consists of two stages. The first stage is a pilot phase, in which we allocate samples uniformly across arms to eliminate clearly suboptimal arms and to estimate outcome variances. Before entering the second stage, we solve a Gaussian minimax game, which yields a sampling ratio and a decision rule. In the second stage, samples are allocated according to this sampling ratio. After the sampling phase, the procedure enters the recommendation phase, where we select an arm using the decision rule. We prove that this single strategy is simultaneously asymptotically minimax and Bayes optimal for the simple regret, and we establish upper bounds that coincide exactly with our lower bounds, including the constant terms.
♻ ☆ Optimization, Generalization and Differential Privacy Bounds for Gradient Descent on Kolmogorov-Arnold Networks
Kolmogorov--Arnold Networks (KANs) have recently emerged as a structured alternative to standard MLPs, yet a principled theory for their training dynamics, generalization, and privacy properties remains limited. In this paper, we analyze gradient descent (GD) for training two-layer KANs and derive general bounds that characterize their training dynamics, generalization, and utility under differential privacy (DP). As a concrete instantiation, we specialize our analysis to logistic loss under an NTK-separable assumption, where we show that polylogarithmic network width suffices for GD to achieve an optimization rate of order $1/T$ and a generalization rate of order $1/n$, with $T$ denoting the number of GD iterations and $n$ the sample size. In the private setting, we characterize the noise required for $(ε,δ)$-DP and obtain a utility bound of order $\sqrt{d}/(nε)$ (with $d$ the input dimension), matching the classical lower bound for general convex Lipschitz problems. Our results imply that polylogarithmic width is not only sufficient but also necessary under differential privacy, revealing a qualitative gap between non-private (sufficiency only) and private (necessity also emerges) training regimes. Experiments further illustrate how these theoretical insights can guide practical choices, including network width selection and early stopping.
comment: 41 pages, 3 figures
♻ ☆ Backward Conformal Prediction
We introduce $\textit{Backward Conformal Prediction}$, a method that guarantees conformal coverage while providing flexible control over the size of prediction sets. Unlike standard conformal prediction, which fixes the coverage level and allows the conformal set size to vary, our approach defines a rule that constrains how prediction set sizes behave based on the observed data, and adapts the coverage level accordingly. Our method builds on two key foundations: (i) recent results by Gauthier et al. [2025] on post-hoc validity using e-values, which ensure marginal coverage of the form $\mathbb{P}(Y_{\rm test} \in \hat C_n^{\tildeα}(X_{\rm test})) \ge 1 - \mathbb{E}[\tildeα]$ for any data-dependent miscoverage $\tildeα$, and (ii) a novel leave-one-out estimator $\hatα^{\rm LOO}$ of the marginal miscoverage $\mathbb{E}[\tildeα]$ based on the calibration set, ensuring that the theoretical guarantees remain computable in practice. This approach is particularly useful in applications where large prediction sets are impractical such as medical diagnosis. We provide theoretical results and empirical evidence supporting the validity of our method, demonstrating that it maintains computable coverage guarantees while ensuring interpretable, well-controlled prediction set sizes.
comment: Code available at: https://github.com/GauthierE/backward-cp
♻ ☆ Non-Intrusive Graph-Based Bot Detection for E-Commerce Using Inductive Graph Neural Networks
Malicious bots pose a growing threat to e-commerce platforms by scraping data, hoarding inventory, and perpetrating fraud. Traditional bot mitigation techniques, including IP blacklists and CAPTCHA-based challenges, are increasingly ineffective or intrusive, as modern bots leverage proxies, botnets, and AI-assisted evasion strategies. This work proposes a non-intrusive graph-based bot detection framework for e-commerce that models user session behavior through a graph representation and applies an inductive graph neural network for classification. The approach captures both relational structure and behavioral semantics, enabling accurate identification of subtle automated activity that evades feature-based methods. Experiments on real-world e-commerce traffic demonstrate that the proposed inductive graph model outperforms a strong session-level multilayer perceptron baseline in terms of AUC and F1 score. Additional adversarial perturbation and cold-start simulations show that the model remains robust under moderate graph modifications and generalizes effectively to previously unseen sessions and URLs. The proposed framework is deployment-friendly, integrates with existing systems without client-side instrumentation, and supports real-time inference and incremental updates, making it suitable for practical e-commerce security deployments.
♻ ☆ Unlocking hidden biomolecular conformational landscapes in diffusion models at inference time
The function of biomolecules such as proteins depends on their ability to interconvert between a wide range of structures or "conformations." Researchers have endeavored for decades to develop computational methods to predict the distribution of conformations, which is far harder to determine experimentally than a static folded structure. We present ConforMix, an inference-time algorithm that enhances sampling of conformational distributions using a combination of classifier guidance, filtering, and free energy estimation. Our approach upgrades diffusion models -- whether trained for static structure prediction or conformational generation -- to enable more efficient discovery of conformational variability without requiring prior knowledge of major degrees of freedom. ConforMix is orthogonal to improvements in model pretraining and would benefit even a hypothetical model that perfectly reproduced the Boltzmann distribution. Remarkably, when applied to a diffusion model trained for static structure prediction, ConforMix captures structural changes including domain motion, cryptic pocket flexibility, and transporter cycling, while avoiding unphysical states. Case studies of biologically critical proteins demonstrate the scalability, accuracy, and utility of this method.
comment: Project page: https://github.com/drorlab/conformix
♻ ☆ Graph Persistence goes Spectral NeurIPS 2025
Including intricate topological information (e.g., cycles) provably enhances the expressivity of message-passing graph neural networks (GNNs) beyond the Weisfeiler-Leman (WL) hierarchy. Consequently, Persistent Homology (PH) methods are increasingly employed for graph representation learning. In this context, recent works have proposed decorating classical PH diagrams with vertex and edge features for improved expressivity. However, these methods still fail to capture basic graph structural information. In this paper, we propose SpectRe -- a new topological descriptor for graphs that integrates spectral information into PH diagrams. Notably, SpectRe is strictly more expressive than PH and spectral information on graphs alone. We also introduce notions of global and local stability to analyze existing descriptors and establish that SpectRe is locally stable. Finally, experiments on synthetic and real-world datasets demonstrate the effectiveness of SpectRe and its potential to enhance the capabilities of graph models in relevant learning tasks. Code is available at https://github.com/Aalto-QuML/SpectRe/.
comment: 32 pages, 4 figures, 7 tables. Accepted at NeurIPS 2025. Final version, clarified minor bug
♻ ☆ Open-Source Multimodal Moxin Models with Moxin-VLM and Moxin-VLA
Recently, Large Language Models (LLMs) have undergone a significant transformation, marked by a rapid rise in both their popularity and capabilities. Leading this evolution are proprietary LLMs like GPT-4 and GPT-o1, which have captured widespread attention in the AI community due to their remarkable performance and versatility. Simultaneously, open-source LLMs, such as LLaMA and Mistral, have made great contributions to the ever-increasing popularity of LLMs due to the ease to customize and deploy the models across diverse applications. Moxin 7B is introduced as a fully open-source LLM developed in accordance with the Model Openness Framework, which moves beyond the simple sharing of model weights to embrace complete transparency in training, datasets, and implementation detail, thus fostering a more inclusive and collaborative research environment that can sustain a healthy open-source ecosystem. To further equip Moxin with various capabilities in different tasks, we develop three variants based on Moxin, including Moxin-VLM, Moxin-VLA, and Moxin-Chinese, which target the vision-language, vision-language-action, and Chinese capabilities, respectively. Experiments show that our models achieve superior performance in various evaluations. We adopt open-source framework and open data for the training. We release our models, along with the available data and code to derive these models.
♻ ☆ Quantifying Risks in Multi-turn Conversation with Large Language Models ICLR 2026
Large Language Models (LLMs) can produce catastrophic responses in conversational settings that pose serious risks to public safety and security.Existing evaluations often fail to fully reveal these vulnerabilities because they rely on fixed attack prompt sequences, lack statistical guarantees, and do not scale to the vast space of multi-turn conversations.In this work, we propose C$^3$LLM, a novel, principled statistical Certification framework for Catastrophic risks in multi-turn Conversation for LLMs that bounds the probability of an LLM generating catastrophic responses under multi-turn conversation distributions with statistical guarantees.We model multi-turn conversations as probability distributions over query sequences, represented by a Markov process on a query graph whose edges encode semantic similarity to capture realistic conversational flow, and quantify catastrophic risks using confidence intervals. We define several inexpensive and practical distributions--random node, graph path, and adaptive with rejection. Our results demonstrate that these distributions can reveal substantial catastrophic risks in frontier models, with certified lower bounds as high as 70\% for the worst model, highlighting the urgent need for improved safety training strategies in frontier LLMs.
comment: Accepted by ICLR 2026
♻ ☆ Analysis of Fourier Neural Operators via Effective Field Theory
Fourier Neural Operators (FNOs) have emerged as leading surrogates for solver operators for various functional problems, yet their stability, generalization and frequency behavior lack a principled explanation. We present a systematic effective field theory analysis of FNOs in an infinite-dimensional function space, deriving closed recursion relations for the layer kernel and four-point vertex and then examining three practically important settings-analytic activations, scale-invariant cases and architectures with residual connections. The theory shows that nonlinear activations inevitably couple frequency inputs to high frequency modes that are otherwise discarded by spectral truncation, and experiments confirm this frequency transfer. For wide networks, we derive explicit criticality conditions on the weight initialization ensemble that ensure small input perturbations maintain a uniform scale across depth, and we confirm experimentally that the theoretically predicted ratio of kernel perturbations matches the measurements. Taken together, our results quantify how nonlinearity enables neural operators to capture non-trivial features, supply criteria for hyperparameter selection via criticality analysis, and explain why scale-invariant activations and residual connections enhance feature learning in FNOs. Finally, we translate the criticality theory into a practical criterion-matched initialization (calibration) procedure; on a standard PDEBench Burgers benchmark, the calibrated FNO exhibits markedly more stable optimization, faster convergence, and improved test error relative to a vanilla FNO.
comment: 39 pages, 12 figures
♻ ☆ Anticipatory Evaluation of Language Models
Progress in large language models is increasingly constrained by an evaluation bottleneck: benchmarks must be built and models run before iteration can begin. We investigate whether evaluation outcomes can be forecast before any experiments are conducted. Specifically, we study text-only performance prediction, where models estimate performance from task descriptions and experimental configurations alone, without access to dataset instances. To support systematic study, we curate PRECOG, a corpus of description-performance pairs spanning diverse tasks, domains, and metrics. We scrape task and configuration descriptions from arXiv, yielding 2,290 instances covering 1,519 papers, and construct a test split using papers published after the evaluated models' knowledge cutoff. Experiments show the task is challenging but feasible: reasoning models achieve a non-trivial forecasting skill reaching mean absolute error as low as 9.9 at high-confidence thresholds. Overall, our corpus and analyses offer an initial step toward open-ended anticipatory evaluation, supporting difficulty estimation and smarter resource allocation.
comment: 30 pages, 7 figures
♻ ☆ Fast and Stable Riemannian Metrics on SPD Manifolds via Cholesky Product Geometry ICLR 2026
Recent advances in Symmetric Positive Definite (SPD) matrix learning show that Riemannian metrics are fundamental to effective SPD neural networks. Motivated by this, we revisit the geometry of the Cholesky factors and uncover a simple product structure that enables convenient metric design. Building on this insight, we propose two fast and stable SPD metrics, Power--Cholesky Metric (PCM) and Bures--Wasserstein--Cholesky Metric (BWCM), derived via Cholesky decomposition. Compared with existing SPD metrics, the proposed metrics provide closed-form operators, computational efficiency, and improved numerical stability. We further apply our metrics to construct Riemannian Multinomial Logistic Regression (MLR) classifiers and residual blocks for SPD neural networks. Experiments on SPD deep learning, numerical stability analyses, and tensor interpolation demonstrate the effectiveness, efficiency, and robustness of our metrics. The code is available at https://github.com/GitZH-Chen/PCM_BWCM.
comment: Accepted to ICLR 2026
♻ ☆ Towards Scaling Laws for Symbolic Regression NeurIPS 2025
Symbolic regression (SR) aims to discover the underlying mathematical expressions that explain observed data. This holds promise for both gaining scientific insight and for producing inherently interpretable and generalizable models for tabular data. In this work we focus on the basics of SR. Deep learning-based SR has recently become competitive with genetic programming approaches, but the role of scale has remained largely unexplored. Inspired by scaling laws in language modeling, we present the first systematic investigation of scaling in SR, using a scalable end-to-end transformer pipeline and carefully generated training data. Across five different model sizes and spanning three orders of magnitude in compute, we find that both validation loss and solved rate follow clear power-law trends with compute. We further identify compute-optimal hyperparameter scaling: optimal batch size and learning rate grow with model size, and a token-to-parameter ratio of $\approx$15 is optimal in our regime, with a slight upward trend as compute increases. These results demonstrate that SR performance is largely predictable from compute and offer important insights for training the next generation of SR models.
comment: Accepted at the NeurIPS 2025 Math-AI Workshop and the EurIPS 2025 AITD Workshop
♻ ☆ STAND: Self-Aware Precondition Induction for Interactive Task Learning
In interactive task learning (ITL), AI agents learn new capabilities from limited human instruction provided during task execution. STAND is a new method of data-efficient rule precondition induction specifically designed for these human-in-the-loop training scenarios. A key feature of STAND is its self-awareness of its own learning -- it can provide accurate metrics of training progress back to users. STAND beats popular methods like XGBoost, decision trees, random forests, and version spaces at small-data precondition induction tasks, and is highly accurate at estimating when its performance improves on holdout examples. In our evaluations, we find that STAND shows more monotonic improvement than other models with low rates of error recurrence. These features of STAND support a more consistent training experience, enabling human instructors to estimate when they are finished training and providing active-learning support by identifying trouble spots where more training is required.
♻ ☆ When Do Credal Sets Stabilize? Fixed-Point Theorems for Credal Set Updates
Many machine learning algorithms rely on iterative updates of uncertainty representations, ranging from variational inference and expectation-maximization, to reinforcement learning, continual learning, and multi-agent learning. In the presence of imprecision and ambiguity, credal sets -- closed, convex sets of probability distributions -- have emerged as a popular framework for representing imprecise probabilistic beliefs. Under such imprecision, many learning problems in imprecise probabilistic machine learning (IPML) may be viewed as processes involving successive applications of update rules on credal sets. This naturally raises the question of whether this iterative process converges to stable fixed points -- or, more generally, under what conditions on the updating mechanism such fixed points exist, and whether they can be attained. We provide the first analysis of this problem, and illustrate our findings using Credal Bayesian Deep Learning as a concrete example. Our work demonstrates that incorporating imprecision into the learning process not only enriches the representation of uncertainty, but also reveals structural conditions under which stability emerges, thereby offering new insights into the dynamics of iterative learning under imprecision.
♻ ☆ Breaking the MoE LLM Trilemma: Dynamic Expert Clustering with Structured Compression ICML 2026
Mixture-of-Experts (MoE) Large Language Models (LLMs) face a trilemma of load imbalance, parameter redundancy, and communication overhead. We introduce a unified framework based on dynamic expert clustering and structured compression to address these issues cohesively. Our method employs an online clustering procedure that periodically regroups experts using a fused metric of parameter and activation similarity, which stabilizes expert utilization. To our knowledge, this is one of the first frameworks to leverage the semantic embedding capability of the router to dynamically reconfigure the model's architecture during training for substantial efficiency gains. Within each cluster, we decompose expert weights into a shared base matrix and extremely low-rank residual adapters, achieving up to fivefold parameter reduction per group while preserving specialization. This structure enables a two-stage hierarchical routing strategy: tokens are first assigned to a cluster, then to specific experts within it, drastically reducing the routing search space and the volume of all-to-all communication. Furthermore, a heterogeneous precision scheme, which stores shared bases in FP16 and residual factors in INT4, coupled with dynamic offloading of inactive clusters, reduces peak memory consumption to levels comparable to dense models. Evaluated on GLUE and WikiText-103, our framework matches the quality of standard MoE models while reducing total parameters by approximately 80%, improving throughput by 10% to 20%, and lowering expert load variance by a factor of over three. Our work demonstrates that structural reorganization is a principled path toward scalable, efficient, and memory-effective MoE LLMs. Code is available at https://github.com/szdtzpj/Breaking_the_moe_trilemma
comment: 10 pages, 2 figures, 8 tables. Under review as a conference paper at ICML 2026
♻ ☆ Generative Modeling of Neural Dynamics via Latent Stochastic Differential Equations
We propose a probabilistic framework for developing computational models of biological neural systems. In this framework, physiological recordings are viewed as discrete-time partial observations of an underlying continuous-time stochastic dynamical system which implements computations through its state evolution. To model this dynamical system, we employ a system of coupled stochastic differential equations with differentiable drift and diffusion functions and use variational inference to infer its states and parameters. This formulation enables seamless integration of existing mathematical models in the literature, neural networks, or a hybrid of both to learn and compare different models. We demonstrate this in our framework by developing a generative model that combines coupled oscillators with neural networks to capture latent population dynamics from single-cell recordings. Evaluation across three neuroscience datasets spanning different species, brain regions, and behavioral tasks show that these hybrid models achieve competitive performance in predicting stimulus-evoked neural and behavioral responses compared to sophisticated black-box approaches while requiring an order of magnitude fewer parameters, providing uncertainty estimates, and offering a natural language for interpretation.
comment: 14 pages, 3 figures, 1 table
♻ ☆ A Novel Framework for Uncertainty-Driven Adaptive Exploration AAMAS 2026
Adaptive exploration methods propose ways to learn complex policies via alternating between exploration and exploitation. An important question for such methods is to determine the appropriate moment to switch between exploration and exploitation and vice versa. This is critical in domains that require the learning of long and complex sequences of actions. In this work, we present a generic adaptive exploration framework that employs uncertainty to address this important issue in a principled manner. Our framework includes previous adaptive exploration approaches as special cases. Moreover, we can incorporate in our framework any uncertainty-measuring mechanism of choice, for instance mechanisms used in intrinsic motivation or epistemic uncertainty-based exploration methods. We experimentally demonstrate that our framework gives rise to adaptive exploration strategies that outperform standard ones across several environments.
comment: This is an extended version (full paper + appendix) of the paper titled "A Novel Framework for Uncertainty-Driven Adaptive Exploration" accepted as a full paper at AAMAS 2026. The accepted paper can be found in https://openreview.net/forum?id=j5awxzdsU9
♻ ☆ GSAE: Graph-Regularized Sparse Autoencoders for Robust LLM Safety Steering
Large language models (LLMs) face critical safety challenges, as they can be manipulated to generate harmful content through adversarial prompts and jailbreak attacks. Many defenses are typically either black-box guardrails that filter outputs, or internals-based methods that steer hidden activations by operationalizing safety as a single latent feature or dimension. While effective for simple concepts, this assumption is limiting, as recent evidence shows that abstract concepts such as refusal and temporality are distributed across multiple features rather than isolated in one. To address this limitation, we introduce Graph-Regularized Sparse Autoencoders (GSAEs), which extends SAEs with a Laplacian smoothness penalty on the neuron co-activation graph. Unlike standard SAEs that assign each concept to a single latent feature, GSAEs recover smooth, distributed safety representations as coherent patterns spanning multiple features. We empirically demonstrate that GSAE enables effective runtime safety steering, assembling features into a weighted set of safety-relevant directions and controlling them with a two-stage gating mechanism that activates interventions only when harmful prompts or continuations are detected during generation. This approach enforces refusals adaptively while preserving utility on benign queries. Across safety and QA benchmarks, GSAE steering achieves an average 82% selective refusal rate, substantially outperforming standard SAE steering (42%), while maintaining strong task accuracy (70% on TriviaQA, 65% on TruthfulQA, 74% on GSM8K). Robustness experiments further show generalization across LLaMA-3, Mistral, Qwen, and Phi families and resilience against jailbreak attacks (GCG, AutoDAN), consistently maintaining >= 90% refusal of harmful content.
♻ ☆ Asynchronous Reasoning: Training-Free Interactive Thinking LLMs
Many state-of-the-art LLMs are trained to think before giving their answer. Reasoning can greatly improve language model capabilities, but it also makes them less interactive: given a new input, a model must stop thinking before it can respond. Real-world use cases such as voice-based or embodied assistants require an LLM agent to respond and adapt to additional information in real time, which is incompatible with sequential interactions. In contrast, humans can listen, think, and act asynchronously: we begin thinking about the problem while reading it and continue thinking while formulating the answer. In this work, we augment LLMs capable of reasoning to operate in a similar way without additional training. Our method uses the properties of positional embeddings to enable LLMs built for sequential generation to simultaneously think, listen, and write outputs. We evaluate our approach on math, commonsense, and safety reasoning: it allows models to generate accurate thinking-augmented answers while reducing time to first non-thinking token from minutes to ${\le}$ 5s and the overall real-time delays by up to $12{\times}$.
comment: Preprint, work in progress
♻ ☆ Representation-Aware Unlearning via Activation Signatures: From Suppression to Knowledge-Signature Erasure
Selective knowledge erasure from LLMs is critical for GDPR compliance and model safety, yet current unlearning methods conflate behavioral suppression with true knowledge removal, allowing latent capabilities to persist beneath surface-level refusals. In this work, we address this challenge by introducing Knowledge Immunization Framework (KIF), a representation-aware architecture that distinguishes genuine erasure from obfuscation by targeting internal activation signatures rather than surface outputs. Our approach combines dynamic suppression of subject-specific representations with parameter-efficient adaptation, enabling durable unlearning without full model retraining. KIF achieves near-oracle erasure (FQ approx 0.99 vs. 1.00) while preserving utility at oracle levels (MU = 0.62), effectively breaking the stability-erasure tradeoff that has constrained all prior work. We evaluate both standard foundation models (Llama and Mistral) and reasoning-prior models (Qwen and DeepSeek) across 3B to 14B parameters. Our observation shows that standard models exhibit scale-independent true erasure (<3% utility drift), while reasoning-prior models reveal fundamental architectural divergence. Our comprehensive dual-metric evaluation protocol, combining surface-level leakage with latent trace persistence, operationalizes the obfuscation - erasure distinction and enables the first systematic diagnosis of mechanism-level forgetting behavior across model families and scales.
comment: 16 pages, 4 figures
♻ ☆ Discrete Diffusion-Based Model-Level Explanation of Heterogeneous GNNs with Node Features WWW 2026
Many real-world datasets, such as citation networks, social networks, and molecular structures, are naturally represented as heterogeneous graphs, where nodes belong to different types and have additional features. For example, in a citation network, nodes representing "Paper" or "Author" may include attributes like keywords or affiliations. A critical machine learning task on these graphs is node classification, which is useful for applications such as fake news detection, corporate risk assessment, and molecular property prediction. Although Heterogeneous Graph Neural Networks (HGNNs) perform well in these contexts, their predictions remain opaque. Existing post-hoc explanation methods lack support for actual node features beyond one-hot encoding of node type and often fail to generate realistic, faithful explanations. To address these gaps, we propose DiGNNExplainer, a model-level explanation approach that synthesizes heterogeneous graphs with realistic node features via discrete denoising diffusion. In particular, we generate realistic discrete features (e.g., bag-of-words features) using diffusion models within a discrete space, whereas previous approaches are limited to continuous spaces. We evaluate our approach on multiple datasets and show that DiGNNExplainer produces explanations that are realistic and faithful to the model's decision-making, outperforming state-of-the-art methods.
comment: Accepted at WWW 2026. Camera-ready version
♻ ☆ Neural Concept Verifier: Scaling Prover-Verifier Games via Concept Encodings ICML 2025
While Prover-Verifier Games (PVGs) offer a promising path toward verifiability in nonlinear classification models, they have not yet been applied to complex inputs such as high-dimensional images. Conversely, expressive concept encodings effectively allow to translate such data into interpretable concepts but are often utilised in the context of low-capacity linear predictors. In this work, we push towards real-world verifiability by combining the strengths of both approaches. We introduce Neural Concept Verifier (NCV), a unified framework combining PVGs for formal verifiability with concept encodings to handle complex, high-dimensional inputs in an interpretable way. NCV achieves this by utilizing recent minimally supervised concept discovery models to extract structured concept encodings from raw inputs. A prover then selects a subset of these encodings, which a verifier, implemented as a nonlinear predictor, uses exclusively for decision-making. Our evaluations show that NCV outperforms classic concept-based models and pixel-based PVG classifier baselines on high-dimensional, logically complex datasets and helps mitigate shortcut behavior. Overall, we demonstrate NCV as a promising step toward concept-level, verifiable AI.
comment: 24 pages, 5 figures, 11 tables, revised references. An earlier version of this work was presented at the ICML 2025 Workshop on Actionable Interpretability
♻ ☆ From Trace to Line: LLM Agent for Real-World OSS Vulnerability Localization
Large language models show promise for vulnerability discovery, yet prevailing methods inspect code in isolation, struggle with long contexts, and focus on coarse function- or file-level detections that offer limited guidance to engineers who need precise line-level localization for targeted patches. We introduce T2L, an executable framework for project-level, line-level vulnerability localization that progressively narrows scope from repository modules to exact vulnerable lines via AST-based chunking and evidence-guided refinement. We provide a baseline agent with an Agentic Trace Analyzer (ATA) that fuses runtime evidence such as crash points and stack traces to translate failure symptoms into actionable diagnoses. To enable rigorous evaluation, we introduce T2L-ARVO, an expert-verified 50-case benchmark spanning five crash families in real-world projects. On T2L-ARVO, our baseline achieves up to 58.0% detection and 54.8% line-level localization rate. Together, T2L framework advance LLM-based vulnerability detection toward deployable, precision diagnostics in open-source software workflows.
♻ ☆ Unified Unbiased Variance Estimation for Maximum Mean Discrepancy: Robust Finite-Sample Performance with Imbalanced Data and Exact Acceleration under Null and Alternative Hypotheses
The maximum mean discrepancy (MMD) is a kernel-based nonparametric statistic for two-sample testing, whose inferential accuracy depends critically on variance characterization. Existing work provides various finite-sample estimators of the MMD variance, often differing under the null and alternative hypotheses and across balanced or imbalanced sampling schemes. In this paper, we study the variance of the MMD statistic through its U-statistic representation and Hoeffding decomposition, and establish a unified finite-sample characterization covering different hypotheses and sample configurations. Building on this analysis, we propose an exact acceleration method for the univariate case under the Laplacian kernel, which reduces the overall computational complexity from $\mathcal O(n^2)$ to $\mathcal O(n \log n)$.
♻ ☆ Flatness is Necessary, Neural Collapse is Not: Rethinking Generalization via Grokking NeurIPS 2025
Neural collapse, i.e., the emergence of highly symmetric, class-wise clustered representations, is frequently observed in deep networks and is often assumed to reflect or enable generalization. In parallel, flatness of the loss landscape has been theoretically and empirically linked to generalization. Yet, the causal role of either phenomenon remains unclear: Are they prerequisites for generalization, or merely by-products of training dynamics? We disentangle these questions using grokking, a training regime in which memorization precedes generalization, allowing us to temporally separate generalization from training dynamics and we find that while both neural collapse and relative flatness emerge near the onset of generalization, only flatness consistently predicts it. Models encouraged to collapse or prevented from collapsing generalize equally well, whereas models regularized away from flat solutions exhibit delayed generalization, resembling grokking, even in architectures and datasets where it does not typically occur. Furthermore, we show theoretically that neural collapse leads to relative flatness under classical assumptions, explaining their empirical co-occurrence. Our results support the view that relative flatness is a potentially necessary and more fundamental property for generalization, and demonstrate how grokking can serve as a powerful probe for isolating its geometric underpinnings.
comment: NeurIPS 2025, Camera ready version
♻ ☆ Comparing Task-Agnostic Embedding Models for Tabular Data
Recent foundation models for tabular data achieve strong task-specific performance via in-context learning. Nevertheless, they focus on direct prediction by encapsulating both representation learning and task-specific inference inside a single, resource-intensive network. This work specifically focuses on representation learning, i.e., on transferable, task-agnostic embeddings. We systematically evaluate task-agnostic representations extracted from tabular foundation models (TabPFN, TabICL and TabSTAR) alongside classical feature engineering (TableVectorizer and a sphere model) across a variety of application tasks as outlier detection (ADBench) and supervised learning (TabArena Lite). We find that simple feature engineering methods achieve comparable or superior performance while requiring significantly less computational resources than tabular foundation models.
♻ ☆ Accelerating Conjugate Gradient Solvers for Homogenization Problems with Unitary Neural Operators
Rapid and reliable solvers for parametric partial differential equations (PDEs) are needed in many scientific and engineering disciplines. For example, there is a growing demand for composites and architected materials with heterogeneous microstructures. Designing such materials and predicting their behavior in practical applications requires solving homogenization problems for a wide range of material parameters and microstructures. While classical numerical solvers offer reliable and accurate solutions supported by a solid theoretical foundation, their high computational costs and slow convergence remain limiting factors. As a result, scientific machine learning is emerging as a promising alternative. However, such approaches often lack guaranteed accuracy and physical consistency. This raises the question of whether it is possible to develop hybrid approaches that combine the advantages of both data-driven methods and classical solvers. To address this, we introduce UNO-CG, a hybrid solver that accelerates conjugate gradient (CG) solvers using specially designed machine-learned preconditioners, while ensuring convergence by construction. As a preconditioner, we propose Unitary Neural Operators as a modification of Fourier Neural Operators. Our method can be interpreted as a data-driven discovery of Green's functions, which are then used to accelerate iterative solvers. We evaluate UNO-CG on various homogenization problems involving heterogeneous microstructures and millions of degrees of freedom. Our results demonstrate that UNO-CG enables a substantial reduction in the number of iterations and is competitive with handcrafted preconditioners for homogenization problems that involve expert knowledge. Moreover, UNO-CG maintains strong performance across a variety of boundary conditions, where many specialized solvers are not applicable, highlighting its versatility and robustness.
comment: Accepted for publication in the International Journal for Numerical Methods in Engineering (IJNME)
♻ ☆ Scalable physical source-to-field inference with hypernetworks
We present a generative model that amortises computation for the field and potential around e.g.~gravitational or electromagnetic sources. Exact numerical calculation has either computational complexity $\mathcal{O}(M\times{}N)$ in the number of sources $M$ and evaluation points $N$, or requires a fixed evaluation grid to exploit fast Fourier transforms. Using an architecture where a hypernetwork produces an implicit representation of the field or potential around a source collection, our model instead performs as $\mathcal{O}(M + N)$, achieves relative error of $\sim\!4\%-6\%$, and allows evaluation at arbitrary locations for arbitrary numbers of sources, greatly increasing the speed of e.g.~physics simulations. We compare with existing models and develop two-dimensional examples, including cases where sources overlap or have more complex geometries, to demonstrate its application.
comment: Version accepted at TMLR
♻ ☆ DP-SPRT: Differentially Private Sequential Probability Ratio Tests AISTATS 2026
We revisit Wald's celebrated Sequential Probability Ratio Test for sequential tests of two simple hypotheses, under privacy constraints. We propose DP-SPRT, a wrapper that can be calibrated to achieve desired error probabilities and privacy constraints, addressing a significant gap in previous work. DP-SPRT relies on a private mechanism that processes a sequence of queries and stops after privately determining when the query results fall outside a predefined interval. This OutsideInterval mechanism improves upon naive composition of existing techniques like AboveThreshold, achieving a factor-of-2 privacy improvement and thus potentially benefiting other continual monitoring procedures. We prove generic upper bounds on the error and sample complexity of DP-SPRT that can accommodate various noise distributions based on the practitioner's privacy needs. We exemplify them in two settings: Laplace noise (pure Differential Privacy) and Gaussian noise (Rényi differential privacy). In the former setting, by providing a lower bound on the sample complexity of any $\varepsilon$-DP test with prescribed type I and type II errors, we show that DP-SPRT is near optimal when both errors are small and the two hypotheses are close. Moreover, we conduct an experimental study revealing its good practical performance.
comment: Accepted for spotlight presentation at AISTATS 2026. 36 pages, 5 figures, 1 table
♻ ☆ metabeta -- A fast neural model for Bayesian mixed-effects regression
Hierarchical data with multiple observations per group is ubiquitous in empirical sciences and is often analyzed using mixed-effects regression. In such models, Bayesian inference gives an estimate of uncertainty but is analytically intractable and requires costly approximation using Markov Chain Monte Carlo (MCMC) methods. Neural posterior estimation shifts the bulk of computation from inference time to pre-training time, amortizing over simulated datasets with known ground truth targets. We propose metabeta, a neural network model for Bayesian mixed-effects regression. Using simulated and real data, we show that it reaches stable and comparable performance to MCMC-based parameter estimation at a fraction of the usually required time, enabling new use cases for Bayesian mixed-effects modeling.
comment: 19 pages, 9 main text, 8 figures
♻ ☆ Dictionary Learning under Symmetries via Group Representations
The dictionary learning problem can be viewed as a data-driven process to learn a suitable transformation so that data is sparsely represented directly from example data. In this paper, we examine the problem of learning a dictionary that is invariant under a pre-specified group of transformations. Natural settings include Cryo-EM, multi-object tracking, synchronization, pose estimation, etc. We specifically study this problem under the lens of mathematical representation theory. Leveraging the power of non-abelian Fourier analysis for functions over compact groups, we prescribe an algorithmic recipe for learning dictionaries that obey such invariances. We relate the dictionary learning problem in the physical domain, which is naturally modelled as being infinite dimensional, with the associated computational problem, which is necessarily finite dimensional. We establish that the dictionary learning problem can be effectively understood as an optimization instance over certain matrix orbitopes having a particular block-diagonal structure governed by the irreducible representations of the group of symmetries. This perspective enables us to introduce a band-limiting procedure which obtains dimensionality reduction in applications. We provide guarantees for our computational ansatz to provide a desirable dictionary learning outcome. We apply our paradigm to investigate the dictionary learning problem for the groups SO(2) and SO(3). While the SO(2)-orbitope admits an exact spectrahedral description, substantially less is understood about the SO(3)-orbitope. We describe a tractable spectrahedral outer approximation of the SO(3)-orbitope, and contribute an alternating minimization paradigm to perform optimization in this setting. We provide numerical experiments to highlight the efficacy of our approach in learning SO(3)-invariant dictionaries, both on synthetic and on real world data.
comment: 33 pages, 3 figures
♻ ☆ Edit-Based Flow Matching for Temporal Point Processes
Temporal point processes (TPPs) are a fundamental tool for modeling event sequences in continuous time, but most existing approaches rely on autoregressive parameterizations that are limited by their sequential sampling. Recent non-autoregressive, diffusion-style models mitigate these issues by jointly interpolating between noise and data through event insertions and deletions in a discrete Markov chain. In this work, we generalize this perspective and introduce an Edit Flow process for TPPs that transports noise to data via insert, delete, and substitute edit operations. By learning the instantaneous edit rates within a continuous-time Markov chain framework, we attain a flexible and efficient model that effectively reduces the total number of necessary edit operations during generation. Empirical results demonstrate the generative flexibility of our unconditionally trained model in a wide range of unconditional and conditional generation tasks on benchmark TPPs.
♻ ☆ Revisiting the Evaluation of Deep Neural Networks for Pedestrian Detection
Reliable pedestrian detection represents a crucial step towards automated driving systems. However, the current performance benchmarks exhibit weaknesses. The currently applied metrics for various subsets of a validation dataset prohibit a realistic performance evaluation of a DNN for pedestrian detection. As image segmentation supplies fine-grained information about a street scene, it can serve as a starting point to automatically distinguish between different types of errors during the evaluation of a pedestrian detector. In this work, eight different error categories for pedestrian detection are proposed and new metrics are proposed for performance comparison along these error categories. We use the new metrics to compare various backbones for a simplified version of the APD, and show a more fine-grained and robust way to compare models with each other especially in terms of safety-critical performance. We achieve SOTA on CityPersons-reasonable (without extra training data) by using a rather simple architecture.
♻ ☆ Generative Adversarial Evasion and Out-of-Distribution Detection for UAV Cyber-Attacks
The growing integration of UAVs into civilian airspace underscores the need for resilient and intelligent intrusion detection systems (IDS), as traditional anomaly detection methods often fail to identify novel threats. A common approach treats unfamiliar attacks as out-of-distribution (OOD) samples; however, this leaves systems vulnerable when mitigation is inadequate. Moreover, conventional OOD detectors struggle to distinguish stealthy adversarial attacks from genuine OOD events. This paper introduces a conditional generative adversarial network (cGAN)-based framework for crafting stealthy adversarial attacks that evade IDS mechanisms. We first design a robust multi-class IDS classifier trained on benign UAV telemetry and known cyber-attacks, including Denial of Service (DoS), false data injection (FDI), man-in-the-middle (MiTM), and replay attacks. Using this classifier, our cGAN perturbs known attacks to generate adversarial samples that misclassify as benign while retaining statistical resemblance to OOD distributions. These adversarial samples are iteratively refined to achieve high stealth and success rates. To detect such perturbations, we implement a conditional variational autoencoder (CVAE), leveraging negative log-likelihood to separate adversarial inputs from authentic OOD samples. Comparative evaluation shows that CVAE-based regret scores significantly outperform traditional Mahalanobis distance-based detectors in identifying stealthy adversarial threats. Our findings emphasize the importance of advanced probabilistic modeling to strengthen IDS capabilities against adaptive, generative-model-based cyber intrusions.
♻ ☆ medR: Reward Engineering for Clinical Offline Reinforcement Learning via Tri-Drive Potential Functions
Reinforcement Learning (RL) offers a powerful framework for optimizing dynamic treatment regimes (DTRs). However, clinical RL is fundamentally bottlenecked by reward engineering: the challenge of defining signals that safely and effectively guide policy learning in complex, sparse offline environments. Existing approaches often rely on manual heuristics that fail to generalize across diverse pathologies. To address this, we propose an automated pipeline leveraging Large Language Models (LLMs) for offline reward design and verification. We formulate the reward function using potential functions consisted of three core components: survival, confidence, and competence. We further introduce quantitative metrics to rigorously evaluate and select the optimal reward structure prior to deployment. By integrating LLM-driven domain knowledge, our framework automates the design of reward functions for specific diseases while significantly enhancing the performance of the resulting policies.
♻ ☆ DAISI: Data Assimilation with Inverse Sampling using Stochastic Interpolants
Data assimilation (DA) is a cornerstone of scientific and engineering applications, combining model forecasts with sparse and noisy observations to estimate latent system states. Classical high-dimensional DA methods, such as the ensemble Kalman filter, rely on Gaussian approximations that are violated for complex dynamics or observation operators. To address this limitation, we introduce DAISI, a scalable filtering algorithm built on flow-based generative models that enables flexible probabilistic inference using data-driven priors. The core idea is to use a stationary, pre-trained generative prior that first incorporates forecast information through a novel inverse-sampling step, before assimilating observations via guidance-based conditional sampling. This allows us to leverage any forecasting model as part of the DA pipeline without having to retrain or fine-tune the generative prior at each assimilation step. Experiments on challenging nonlinear systems show that DAISI achieves accurate filtering results in regimes with sparse, noisy, and nonlinear observations where traditional methods struggle.
comment: 44 pages, 26 figures
♻ ☆ Neural network-driven domain decomposition for efficient solutions to the Helmholtz equation
Accurately simulating wave propagation is crucial in fields such as acoustics, electromagnetism, and seismic analysis. Traditional numerical methods, like finite difference and finite element approaches, are widely used to solve governing partial differential equations (PDEs) such as the Helmholtz equation. However, these methods face significant computational challenges when applied to high-frequency wave problems in complex two-dimensional domains. This work investigates Finite Basis Physics-Informed Neural Networks (FBPINNs) and their multilevel extensions as a promising alternative. These methods leverage domain decomposition, partitioning the computational domain into overlapping sub-domains, each governed by a local neural network. We assess their accuracy and computational efficiency in solving the Helmholtz equation for the homogeneous case, demonstrating their potential to mitigate the limitations of traditional approaches.
♻ ☆ Why Steering Works: Toward a Unified View of Language Model Parameter Dynamics
Methods for controlling large language models (LLMs), including local weight fine-tuning, LoRA-based adaptation, and activation-based interventions, are often studied in isolation, obscuring their connections and making comparison difficult. In this work, we present a unified view that frames these interventions as dynamic weight updates induced by a control signal, placing them within a single conceptual framework. Building on this view, we propose a unified preference-utility analysis that separates control effects into preference, defined as the tendency toward a target concept, and utility, defined as coherent and task-valid generation, and measures both on a shared log-odds scale using polarity-paired contrastive examples. Across methods, we observe a consistent trade-off between preference and utility: stronger control increases preference while predictably reducing utility. We further explain this behavior through an activation manifold perspective, in which control shifts representations along target-concept directions to enhance preference, while utility declines primarily when interventions push representations off the model's valid-generation manifold. Finally, we introduce a new steering approach SPLIT guided by this analysis that improves preference while better preserving utility. Code is available at https://github.com/zjunlp/EasyEdit/blob/main/examples/SPLIT.md.
comment: Work in progress
♻ ☆ Bayesian Transfer Operators in Reproducing Kernel Hilbert Spaces
The Koopman operator, as a linear representation of a nonlinear dynamical system, has been attracting attention in many fields of science. Recently, Koopman operator theory has been combined with another concept that is popular in data science: reproducing kernel Hilbert spaces. We follow this thread into Gaussian process methods, and illustrate how these methods can alleviate two pervasive problems with kernel-based Koopman algorithms. The first being sparsity: most kernel methods do not scale well and require an approximation to become practical. We show that not only can the computational demands be reduced, but also demonstrate improved resilience against sensor noise. The second problem involves hyperparameter optimization and dictionary learning to adapt the model to the dynamical system. In summary, the main contribution of this work is the unification of Gaussian process regression and dynamic mode decomposition.
♻ ☆ Sample from What You See: Visuomotor Policy Learning via Diffusion Bridge with Observation-Embedded Stochastic Differential Equation
Imitation learning with diffusion models has advanced robotic control by capturing the multi-modal action distributions. However, existing methods typically treat observations only as high-level conditions to the denoising network, rather than integrating them into the stochastic dynamics of the diffusion process itself. As a result, the sampling is forced to begin from random noise, weakening the coupling between perception and control and often yielding suboptimal performance. We propose BridgePolicy, a generative visuomotor policy that directly integrates observations into the stochastic dynamics via a diffusion-bridge formulation. By constructing an observation-informed trajectory, BridgePolicy enables sampling to start from a rich and informative prior rather than random noise, substantially improving precision and reliability in control. A key difficulty is that diffusion bridge normally connects distributions of matched dimensionality, while robotic observations are heterogeneous and not naturally aligned with actions. To overcome this, we introduce a multi-modal fusion module and a semantic aligner to unify the visual and state inputs and align the observations with action representations, making diffusion bridge applicable to heterogeneous robot data. Extensive experiments across 52 simulation tasks on three benchmarks and 5 real-world tasks demonstrate that BridgePolicy consistently outperforms state-of-the-art generative policies.
♻ ☆ Sparse Attention as Compact Kernel Regression
Recent work has revealed a link between self-attention mechanisms in transformers and test-time kernel regression via the Nadaraya-Watson estimator, with standard softmax attention corresponding to a Gaussian kernel. However, a kernel-theoretic understanding of sparse attention mechanisms is currently missing. In this paper, we establish a formal correspondence between sparse attention and compact (bounded support) kernels. We show that normalized ReLU and sparsemax attention arise from Epanechnikov kernel regression under fixed and adaptive normalizations, respectively. More generally, we demonstrate that widely used kernels in nonparametric density estimation -- including Epanechnikov, biweight, and triweight -- correspond to $α$-entmax attention with $α= 1 + \frac{1}{n}$ for $n \in \mathbb{N}$, while the softmax/Gaussian relationship emerges in the limit $n \to \infty$. This unified perspective explains how sparsity naturally emerges from kernel design and provides principled alternatives to heuristic top-$k$ attention and other associative memory mechanisms. Experiments with a kernel-regression-based variant of transformers -- Memory Mosaics -- show that kernel-based sparse attention achieves competitive performance on language modeling, in-context learning, and length generalization tasks, offering a principled framework for designing attention mechanisms.
comment: 16 pages, 5 figures
♻ ☆ Large Language Model as Meta-Surrogate for Data-Driven Many-Task Optimization: A Proof-of-Principle Study
In many-task optimization scenarios, surrogate models are valuable for mitigating the computational burden of repeated fitness evaluations across tasks. This study proposes a novel meta-surrogate framework to assist many-task optimization, by leveraging the knowledge transfer strengths and emergent capabilities of large language models (LLMs). We formulate a unified framework for many-task fitness prediction, by defining a universal model with metadata to fit a group of problems. Fitness prediction is performed on metadata and decision variables, enabling efficient knowledge sharing across tasks and adaptability to new tasks. The LLM-based meta-surrogate treats fitness prediction as conditional probability estimation, employing a unified token sequence representation for task metadata, inputs, and outputs. This approach facilitates efficient inter-task knowledge sharing through shared token embeddings and captures complex task dependencies via multi-task model training. Experimental results demonstrate the model's emergent generalization ability, including zero-shot performance on problems with unseen dimensions. When integrated into evolutionary transfer optimization (ETO), our framework supports dual-level knowledge transfer -- at both the surrogate and individual levels -- enhancing optimization efficiency and robustness. This work establishes a novel foundation for applying LLMs in surrogate modeling, offering a versatile solution for many-task optimization.
comment: 39 pages
♻ ☆ Dynamic and Distributed Routing in IoT Networks based on Multi-Objective Q-Learning
IoT networks often face conflicting routing goals such as maximizing packet delivery, minimizing delay, and conserving limited battery energy. These priorities can also change dynamically: for example, an emergency alert requires high reliability, while routine monitoring prioritizes energy efficiency to prolong network lifetime. Existing works, including many deep reinforcement learning approaches, are typically centralized and assume static objectives, making them slow to adapt when preferences shift. We propose a dynamic and fully distributed multi-objective Q-learning routing algorithm that learns multiple per-preference Q-tables in parallel and introduces a novel greedy interpolation policy to act near-optimally for unseen preferences without retraining or central coordination. A theoretical analysis further shows that the optimal value function is Lipschitz-continuous in the preference parameter, ensuring that the proposed greedy interpolation policy yields provably near-optimal behavior. Simulations show that our approach adapts in real time to shifting priorities and achieves up to 80-90\% lower energy consumption and more than 2-5x higher cumulative rewards and packet delivery compared to six baseline protocols, under dynamic and distributed settings. Sensitivity analysis across varying preference window lengths confirms that the proposed DPQ framework consistently achieves higher composite reward than all baseline methods, demonstrating robustness to changes in operating conditions.
♻ ☆ Telegrapher's Generative Model via Kac Flows
We break the mold in flow-based generative modeling by proposing a new model based on the damped wave equation, also known as telegrapher's equation. Similar to the diffusion equation and Brownian motion, there is a Feynman-Kac type relation between the telegrapher's equation and the stochastic Kac process in 1D. The Kac flow evolves stepwise linearly in time, so that the probability flow is Lipschitz continuous in the Wasserstein distance and, in contrast to diffusion flows, the norm of the velocity is globally bounded. Furthermore, the Kac model has the diffusion model as its asymptotic limit. We extend these considerations to a multi-dimensional stochastic process which consists of independent 1D Kac processes in each spatial component. We show that this process gives rise to an absolutely continuous curve in the Wasserstein space and compute the conditional velocity field starting in a Dirac point analytically. Using the framework of flow matching, we train a neural network that approximates the velocity field and use it for sample generation. Our numerical experiments demonstrate the scalability of our approach, and show its advantages over diffusion models.
comment: V2: We added CIFAR experiments. V3: Old FID scores & CIFAR images of the Kac model corresponded to schedule g(t) = t. We updated them with both schedules t and t^2. V4: We corrected a minor implementation error and updated the CIFAR results. V5: We prove that the mean-reverting Kac process is Lipschitz, give a rigorous proof of decomp. Lemma 6.1, and a nearest neighbor analysis. V6: Polishing
♻ ☆ Synergizing Kolmogorov-Arnold Networks with Dynamic Adaptive Weighting for High-Frequency and Multi-Scale PDE Solutions
PINNs enhance scientific computing by incorporating physical laws into neural network structures, leading to significant advancements in scientific computing. However, PINNs struggle with multi-scale and high-frequency problems due to pathological gradient flow and spectral bias, which severely limit their predictive power. By combining an enhanced network architecture with a dynamically adaptive weighting mechanism featuring upper-bound constraints, we propose the Dynamic Balancing Adaptive Weighting Physics-Informed Kolmogorov-Arnold Network (DBAW-PIKAN). The proposed method effectively mitigates gradient-related failure modes and overcomes bottlenecks in function representation. Compared to baseline models, the proposed method accelerates the convergence process and improves solution accuracy by at least an order of magnitude without introducing additional computational complexity. Numerical results on the Klein-Gordon, Burgers, and Helmholtz equations demonstrate that DBAW-PIKAN achieves superior accuracy and generalization performance.
♻ ☆ RETENTION: Resource-Efficient Tree-Based Ensemble Model Acceleration with Content-Addressable Memory
Although deep learning has demonstrated remarkable capability in learning from unstructured data, modern tree-based ensemble models remain superior in extracting relevant information and learning from structured datasets. While several efforts have been made to accelerate tree-based models, the inherent characteristics of the models pose significant challenges for conventional accelerators. Recent research leveraging content-addressable memory (CAM) offers a promising solution for accelerating tree-based models, yet existing designs suffer from excessive memory consumption and low utilization. This work addresses these challenges by introducing RETENTION, an end-to-end framework that significantly reduces CAM capacity requirement for tree-based model inference. We propose an iterative pruning algorithm with a novel pruning criterion tailored for bagging-based models (e.g., Random Forest), which minimizes model complexity while ensuring controlled accuracy degradation. Additionally, we present a tree mapping scheme that incorporates two innovative data placement strategies to alleviate the memory redundancy caused by the widespread use of don't care states in CAM. Experimental results show that implementing the tree mapping scheme alone reduces CAM capacity requirement by $1.46\times$ to $21.30 \times$, while the full RETENTION framework achieves $4.35\times$ to $207.12\times$ reduction with less than 3\% accuracy loss. These results demonstrate that RETENTION is highly effective in minimizing CAM resource demand, providing a resource-efficient direction for tree-based model acceleration.
comment: Under review by IEEE Transactions on Computer-Aided Design of Integrated Circuits & Systems
♻ ☆ Learning to Explore with Lagrangians for Bandits under Unknown Linear Constraints
Pure exploration in bandits formalises multiple real-world problems, such as tuning hyper-parameters or conducting user studies to test a set of items, where different safety, resource, and fairness constraints on the decision space naturally appear. We study these problems as pure exploration in multi-armed bandits with unknown linear constraints, where the aim is to identify an $r$-optimal and feasible policy as fast as possible with a given level of confidence. First, we propose a Lagrangian relaxation of the sample complexity lower bound for pure exploration under constraints. Second, we leverage properties of convex optimisation in the Lagrangian lower bound to propose two computationally efficient extensions of Track-and-Stop and Gamified Explorer, namely LATS and LAGEX. Then, we propose a constraint-adaptive stopping rule, and while tracking the lower bound, use optimistic estimate of the feasible set at each step. We show that LAGEX achieves asymptotically optimal sample complexity upper bound, while LATS shows asymptotic optimality up to novel constraint-dependent constants. Finally, we conduct numerical experiments with different reward distributions and constraints that validate efficient performance of LATS and LAGEX.
♻ ☆ CreditAudit: 2$^\text{nd}$ Dimension for LLM Evaluation and Selection
Leaderboard scores on public benchmarks have been steadily rising and converging, with many frontier language models now separated by only marginal differences. However, these scores often fail to match users' day to day experience, because system prompts, output protocols, and interaction modes evolve under routine iteration, and in agentic multi step pipelines small protocol shifts can trigger disproportionate failures, leaving practitioners uncertain about which model to deploy. We propose CreditAudit, a deployment oriented credit audit framework that evaluates models under a family of semantically aligned and non adversarial system prompt templates across multiple benchmarks, reporting mean ability as average performance across scenarios and scenario induced fluctuation sigma as a stability risk signal, and further mapping volatility into interpretable credit grades from AAA to BBB via cross model quantiles with diagnostics that mitigate template difficulty drift. Controlled experiments on GPQA, TruthfulQA, and MMLU Pro show that models with similar mean ability can exhibit substantially different fluctuation, and stability risk can overturn prioritization decisions in agentic or high failure cost regimes. By providing a 2D and grade based language for regime specific selection, CreditAudit supports tiered deployment and more disciplined allocation of testing and monitoring effort, enabling more objective and trustworthy model evaluation for real world use.
comment: Second update
Information Retrieval 32
☆ Robust Generalizable Heterogeneous Legal Link Prediction
Recent work has applied link prediction to large heterogeneous legal citation networks \new{with rich meta-features}. We find that this approach can be improved by including edge dropout and feature concatenation for the learning of more robust representations, which reduces error rates by up to 45%. We also propose an approach based on multilingual node features with an improved asymmetric decoder for compatibility, which allows us to generalize and extend the prediction to more, geographically and linguistically disjoint, data from New Zealand. Our adaptations also improve inductive transferability between these disjoint legal systems.
comment: 9 Pages
☆ From Data to Behavior: Predicting Unintended Model Behaviors Before Training
Large Language Models (LLMs) can acquire unintended biases from seemingly benign training data even without explicit cues or malicious content. Existing methods struggle to detect such risks before fine-tuning, making post hoc evaluation costly and inefficient. To address this challenge, we introduce Data2Behavior, a new task for predicting unintended model behaviors prior to training. We also propose Manipulating Data Features (MDF), a lightweight approach that summarizes candidate data through their mean representations and injects them into the forward pass of a base model, allowing latent statistical signals in the data to shape model activations and reveal potential biases and safety risks without updating any parameters. MDF achieves reliable prediction while consuming only about 20% of the GPU resources required for fine-tuning. Experiments on Qwen3-14B, Qwen2.5-32B-Instruct, and Gemma-3-12b-it confirm that MDF can anticipate unintended behaviors and provide insight into pre-training vulnerabilities.
comment: Work in progress
☆ Addressing Corpus Knowledge Poisoning Attacks on RAG Using Sparse Attention
Retrieval Augmented Generation (RAG) is a highly effective paradigm for keeping LLM-based responses up-to-date and reducing the likelihood of hallucinations. Yet, RAG was recently shown to be quite vulnerable to corpus knowledge poisoning: an attacker injects misleading documents to the corpus to steer an LLMs' output to an undesired response. We argue that the standard causal attention mechanism in LLMs enables harmful cross-document interactions, specifically in cases of attacks. Accordingly, we introduce a novel defense approach for RAG: Sparse Document Attention RAG (SDAG). This is a block-sparse attention mechanism that disallows cross-attention between retrieved documents. SDAG requires a minimal inference-time change to the attention mask; furthermore, no fine-tuning or additional architectural changes are needed. We present an empirical evaluation of LLM-based question answering (QA) with a variety of attack strategies on RAG. We show that our SDAG method substantially outperforms the standard causal attention mechanism in terms of attack success rate. We further demonstrate the clear merits of integrating SDAG with state-of-the-art RAG defense methods. Specifically, the integration results in performance that is statistically significantly better than the state-of-the-art.
☆ Multi-Source Retrieval and Reasoning for Legal Sentencing Prediction
Legal judgment prediction (LJP) aims to predict judicial outcomes from case facts and typically includes law article, charge, and sentencing prediction. While recent methods perform well on the first two subtasks, legal sentencing prediction (LSP) remains difficult due to its need for fine-grained objective knowledge and flexible subjective reasoning. To address these limitations, we propose $MSR^2$, a framework that integrates multi-source retrieval and reasoning in LLMs with reinforcement learning. $MSR^2$ enables LLMs to perform multi-source retrieval based on reasoning needs and applies a process-level reward to guide intermediate subjective reasoning steps. Experiments on two real-world datasets show that $MSR^2$ improves both accuracy and interpretability in LSP, providing a promising step toward practical legal AI. Our code is available at https://anonymous.4open.science/r/MSR2-FC3B.
☆ AIANO: Enhancing Information Retrieval with AI-Augmented Annotation
The rise of Large Language Models (LLMs) and Retrieval-Augmented Generation (RAG) has rapidly increased the need for high-quality, curated information retrieval datasets. These datasets, however, are currently created with off-the-shelf annotation tools that make the annotation process complex and inefficient. To streamline this process, we developed a specialized annotation tool - AIANO. By adopting an AI-augmented annotation workflow that tightly integrates human expertise with LLM assistance, AIANO enables annotators to leverage AI suggestions while retaining full control over annotation decisions. In a within-subject user study ($n = 15$), participants created question-answering datasets using both a baseline tool and AIANO. AIANO nearly doubled annotation speed compared to the baseline while being easier to use and improving retrieval accuracy. These results demonstrate that AIANO's AI-augmented approach accelerates and enhances dataset creation for information retrieval tasks, advancing annotation capabilities in retrieval-intensive domains.
☆ VK-LSVD: A Large-Scale Industrial Dataset for Short-Video Recommendation WWW '26
Short-video recommendation presents unique challenges, such as modeling rapid user interest shifts from implicit feedback, but progress is constrained by a lack of large-scale open datasets that reflect real-world platform dynamics. To bridge this gap, we introduce the VK Large Short-Video Dataset (VK-LSVD), the largest publicly available industrial dataset of its kind. VK-LSVD offers an unprecedented scale of over 40 billion interactions from 10 million users and almost 20 million videos over six months, alongside rich features including content embeddings, diverse feedback signals, and contextual metadata. Our analysis supports the dataset's quality and diversity. The dataset's immediate impact is confirmed by its central role in the live VK RecSys Challenge 2025. VK-LSVD provides a vital, open dataset to use in building realistic benchmarks to accelerate research in sequential recommendation, cold-start scenarios, and next-generation recommender systems.
comment: Accepted to The ACM Web Conference 2026 (WWW '26). Preprint of conference paper. 7 pages, 2 (7) figures, 4 tables. Dataset available at: https://huggingface.co/datasets/deepvk/VK-LSVD
☆ Unmasking Superspreaders: Data-Driven Approaches for Identifying and Comparing Key Influencers of Conspiracy Theories on X.com
Conspiracy theories can threaten society by spreading misinformation, deepening polarization, and eroding trust in democratic institutions. Social media often fuels the spread of conspiracies, primarily driven by two key actors: Superspreaders -- influential individuals disseminating conspiracy content at disproportionately high rates, and Bots -- automated accounts designed to amplify conspiracies strategically. To counter the spread of conspiracy theories, it is critical to both identify these actors and to better understand their behavior. However, a systematic analysis of these actors as well as real-world-applicable identification methods are still lacking. In this study, we leverage over seven million tweets from the COVID-19 pandemic to analyze key differences between Human Superspreaders and Bots across dimensions such as linguistic complexity, toxicity, and hashtag usage. Our analysis reveals distinct communication strategies: Superspreaders tend to use more complex language and substantive content while relying less on structural elements like hashtags and emojis, likely to enhance credibility and authority. By contrast, Bots favor simpler language and strategic cross-usage of hashtags, likely to increase accessibility, facilitate infiltration into trending discussions, and amplify reach. To counter both Human Superspreaders and Bots, we propose and evaluate 27 novel metrics for quantifying the severity of conspiracy theory spread. Our findings highlight the effectiveness of an adapted H-Index for computationally feasible identification of Human Superspreaders. By identifying behavioral patterns unique to Human Superspreaders and Bots as well as providing suitable identification methods, this study provides a foundation for mitigation strategies, including platform moderation policies, temporary and permanent account suspensions, and public awareness campaigns.
☆ DOS: Dual-Flow Orthogonal Semantic IDs for Recommendation in Meituan WWW2026
Semantic IDs serve as a key component in generative recommendation systems. They not only incorporate open-world knowledge from large language models (LLMs) but also compress the semantic space to reduce generation difficulty. However, existing methods suffer from two major limitations: (1) the lack of contextual awareness in generation tasks leads to a gap between the Semantic ID codebook space and the generation space, resulting in suboptimal recommendations; and (2) suboptimal quantization methods exacerbate semantic loss in LLMs. To address these issues, we propose Dual-Flow Orthogonal Semantic IDs (DOS) method. Specifically, DOS employs a user-item dual flow-framework that leverages collaborative signals to align the Semantic ID codebook space with the generation space. Furthermore, we introduce an orthogonal residual quantization scheme that rotates the semantic space to an appropriate orientation, thereby maximizing semantic preservation. Extensive offline experiments and online A/B testing demonstrate the effectiveness of DOS. The proposed method has been successfully deployed in Meituan's mobile application, serving hundreds of millions of users.
comment: Accepted by WWW2026 (short paper)
☆ SDR-CIR: Semantic Debias Retrieval Framework for Training-Free Zero-Shot Composed Image Retrieval
Composed Image Retrieval (CIR) aims to retrieve a target image from a query composed of a reference image and modification text. Recent training-free zero-shot methods often employ Multimodal Large Language Models (MLLMs) with Chain-of-Thought (CoT) to compose a target image description for retrieval. However, due to the fuzzy matching nature of ZS-CIR, the generated description is prone to semantic bias relative to the target image. We propose SDR-CIR, a training-free Semantic Debias Ranking method based on CoT reasoning. First, Selective CoT guides the MLLM to extract visual content relevant to the modification text during image understanding, thereby reducing visual noise at the source. We then introduce a Semantic Debias Ranking with two steps, Anchor and Debias, to mitigate semantic bias. In the Anchor step, we fuse reference image features with target description features to reinforce useful semantics and supplement omitted cues. In the Debias step, we explicitly model the visual semantic contribution of the reference image to the description and incorporate it into the similarity score as a penalty term. By supplementing omitted cues while suppressing redundancy, SDR-CIR mitigates semantic bias and improves retrieval performance. Experiments on three standard CIR benchmarks show that SDR-CIR achieves state-of-the-art results among one-stage methods while maintaining high efficiency. The code is publicly available at https://github.com/suny105/SDR-CIR.
☆ MiniRec: Data-Efficient Reinforcement Learning for LLM-based Recommendation
The integration of reinforcement learning (RL) into large language models (LLMs) has opened new opportunities for recommender systems by eliciting reasoning and improving user preference modeling. However, RL-based LLM recommendation faces significant efficiency challenges, making full-data training costly. Existing data selection methods define sample value based on learnability or representativeness, yet their loss- or gradient-driven or dataset coverage-driven criteria often misalign with RL learning dynamics, resulting in suboptimal performance. To address this, we propose MiniRec, a data selection framework tailored for RL-based LLM recommendation. MiniRec evaluates sample learnability using key RL signals -- rewards -- pruning samples that are too easy (too high reward) or too difficult (consistently low reward). It assesses representativeness by aligning sample gradients with the approximated "ideal" global RL optimization trajectory, selecting samples that mainly drive model updates, and it also enforces diversity to reduce redundancy. Combined with a curriculum learning strategy from easy to hard samples, MiniRec significantly reduces training cost while largely preserving performance. Extensive experiments demonstrate MiniRec's effectiveness, highlighting the importance of reward-aligned, trajectory-informed data selection in RL-based LLM recommendation.
☆ LILaC: Late Interacting in Layered Component Graph for Open-domain Multimodal Multihop Retrieval
Multimodal document retrieval aims to retrieve query-relevant components from documents composed of textual, tabular, and visual elements. An effective multimodal retriever needs to handle two main challenges: (1) mitigate the effect of irrelevant contents caused by fixed, single-granular retrieval units, and (2) support multihop reasoning by effectively capturing semantic relationships among components within and across documents. To address these challenges, we propose LILaC, a multimodal retrieval framework featuring two core innovations. First, we introduce a layered component graph, explicitly representing multimodal information at two layers - each representing coarse and fine granularity - facilitating efficient yet precise reasoning. Second, we develop a late-interaction-based subgraph retrieval method, an edge-based approach that initially identifies coarse-grained nodes for efficient candidate generation, then performs fine-grained reasoning via late interaction. Extensive experiments demonstrate that LILaC achieves state-of-the-art retrieval performance on all five benchmarks, notably without additional fine-tuning. We make the artifacts publicly available at github.com/joohyung00/lilac.
comment: Project page: https://lilac-emnlp2025.github.io/
☆ Following the TRAIL: Predicting and Explaining Tomorrow's Hits with a Fine-Tuned LLM
Large Language Models (LLMs) have been widely applied across multiple domains for their broad knowledge and strong reasoning capabilities. However, applying them to recommendation systems is challenging since it is hard for LLMs to extract user preferences from large, sparse user-item logs, and real-time per-user ranking over the full catalog is too time-consuming to be practical. Moreover, many existing recommender systems focus solely on ranking items while overlooking explanations, which could help improve predictive accuracy and make recommendations more convincing to users. Inspired by recent works that achieve strong recommendation performance by forecasting near-term item popularity, we propose TRAIL (TRend and explAnation Integrated Learner). TRAIL is a fine-tuned LLM that jointly predicts short-term item popularity and generates faithful natural-language explanations. It employs contrastive learning with positive and negative pairs to align its scores and explanations with structured trend signals, yielding accurate and explainable popularity predictions. Extensive experiments show that TRAIL outperforms strong baselines and produces coherent, well-grounded explanations.
☆ GenMRP: A Generative Multi-Route Planning Framework for Efficient and Personalized Real-Time Industrial Navigation
Existing industrial-scale navigation applications contend with massive road networks, typically employing two main categories of approaches for route planning. The first relies on precomputed road costs for optimal routing and heuristic algorithms for generating alternatives, while the second, generative methods, has recently gained significant attention. However, the former struggles with personalization and route diversity, while the latter fails to meet the efficiency requirements of large-scale real-time scenarios. To address these limitations, we propose GenMRP, a generative framework for multi-route planning. To ensure generation efficiency, GenMRP first introduces a skeleton-to-capillary approach that dynamically constructs a relevant sub-network significantly smaller than the full road network. Within this sub-network, routes are generated iteratively. The first iteration identifies the optimal route, while the subsequent ones generate alternatives that balance quality and diversity using the newly proposed correctional boosting approach. Each iteration incorporates road features, user historical sequences, and previously generated routes into a Link Cost Model to update road costs, followed by route generation using the Dijkstra algorithm. Extensive experiments show that GenMRP achieves state-of-the-art performance with high efficiency in both offline and online environments. To facilitate further research, we have publicly released the training and evaluation dataset. GenMRP has been fully deployed in a real-world navigation app, demonstrating its effectiveness and benefits.
☆ HugRAG: Hierarchical Causal Knowledge Graph Design for RAG
Retrieval augmented generation (RAG) has enhanced large language models by enabling access to external knowledge, with graph-based RAG emerging as a powerful paradigm for structured retrieval and reasoning. However, existing graph-based methods often over-rely on surface-level node matching and lack explicit causal modeling, leading to unfaithful or spurious answers. Prior attempts to incorporate causality are typically limited to local or single-document contexts and also suffer from information isolation that arises from modular graph structures, which hinders scalability and cross-module causal reasoning. To address these challenges, we propose HugRAG, a framework that rethinks knowledge organization for graph-based RAG through causal gating across hierarchical modules. HugRAG explicitly models causal relationships to suppress spurious correlations while enabling scalable reasoning over large-scale knowledge graphs. Extensive experiments demonstrate that HugRAG consistently outperforms competitive graph-based RAG baselines across multiple datasets and evaluation metrics. Our work establishes a principled foundation for structured, scalable, and causally grounded RAG systems.
☆ Autodiscover: A reinforcement learning recommendation system for the cold-start imbalance challenge in active learning, powered by graph-aware thompson sampling
Systematic literature reviews (SLRs) are fundamental to evidence-based research, but manual screening is an increasing bottleneck as scientific output grows. Screening features low prevalence of relevant studies and scarce, costly expert decisions. Traditional active learning (AL) systems help, yet typically rely on fixed query strategies for selecting the next unlabeled documents. These static strategies do not adapt over time and ignore the relational structure of scientific literature networks. This thesis introduces AutoDiscover, a framework that reframes AL as an online decision-making problem driven by an adaptive agent. Literature is modeled as a heterogeneous graph capturing relationships among documents, authors, and metadata. A Heterogeneous Graph Attention Network (HAN) learns node representations, which a Discounted Thompson Sampling (DTS) agent uses to dynamically manage a portfolio of query strategies. With real-time human-in-the-loop labels, the agent balances exploration and exploitation under non-stationary review dynamics, where strategy utility changes over time. On the 26-dataset SYNERGY benchmark, AutoDiscover achieves higher screening efficiency than static AL baselines. Crucially, the agent mitigates cold start by bootstrapping discovery from minimal initial labels where static approaches fail. We also introduce TS-Insight, an open-source visual analytics dashboard to interpret, verify, and diagnose the agent's decisions. Together, these contributions accelerate SLR screening under scarce expert labels and low prevalence of relevant studies.
comment: Master's Thesis, University of Luxembourg in collaboration with Luxembourg Institute of Science and Technology (LIST). Supervised by Prof. Jun Pang and Dr. Eloi Durant
☆ Scaling Laws for Embedding Dimension in Information Retrieval
Dense retrieval, which encodes queries and documents into a single dense vector, has become the dominant neural retrieval approach due to its simplicity and compatibility with fast approximate nearest neighbor algorithms. As the tasks dense retrieval performs grow in complexity, the fundamental limitations of the underlying data structure and similarity metric -- namely vectors and inner-products -- become more apparent. Prior recent work has shown theoretical limitations inherent to single vectors and inner-products that are generally tied to the embedding dimension. Given the importance of embedding dimension for retrieval capacity, understanding how dense retrieval performance changes as embedding dimension is scaled is fundamental to building next generation retrieval models that balance effectiveness and efficiency. In this work, we conduct a comprehensive analysis of the relationship between embedding dimension and retrieval performance. Our experiments include two model families and a range of model sizes from each to construct a detailed picture of embedding scaling behavior. We find that the scaling behavior fits a power law, allowing us to derive scaling laws for performance given only embedding dimension, as well as a joint law accounting for embedding dimension and model size. Our analysis shows that for evaluation tasks aligned with the training task, performance continues to improve as embedding size increases, though with diminishing returns. For evaluation data that is less aligned with the training task, we find that performance is less predictable, with performance degrading with larger embedding dimensions for certain tasks. We hope our work provides additional insight into the limitations of embeddings and their behavior as well as offers a practical guide for selecting model and embedding dimension to achieve optimal performance with reduced storage and compute costs.
comment: 9 Pages, 7 figures
☆ DeepRead: Document Structure-Aware Reasoning to Enhance Agentic Search
With the rapid progress of tool-using and agentic large language models (LLMs), Retrieval-Augmented Generation (RAG) is evolving from one-shot, passive retrieval into multi-turn, decision-driven evidence acquisition. Despite strong results in open-domain settings, existing agentic search frameworks commonly treat long documents as flat collections of chunks, underutilizing document-native priors such as hierarchical organization and sequential discourse structure. We introduce DeepRead, a structure-aware, multi-turn document reasoning agent that explicitly operationalizes these priors for long-document question answering. DeepRead leverages LLM-based OCR model to convert PDFs into structured Markdown that preserves headings and paragraph boundaries. It then indexes documents at the paragraph level and assigns each paragraph a coordinate-style metadata key encoding its section identity and in-section order. Building on this representation, DeepRead equips the LLM with two complementary tools: a Retrieve tool that localizes relevant paragraphs while exposing their structural coordinates (with lightweight scanning context), and a ReadSection tool that enables contiguous, order-preserving reading within a specified section and paragraph range. Our experiments demonstrate that DeepRead achieves significant improvements over Search-o1-style agentic search in document question answering. The synergistic effect between retrieval and reading tools is also validated. Our fine-grained behavioral analysis reveals a reading and reasoning paradigm resembling human-like ``locate then read'' behavior.
comment: working in progress
☆ Deterministic Retrieval at Scale: Optimal-Space LCP Indexing and 308x Energy Reduction on Modern GPUs
We study deterministic top-k retrieval under Longest Common Prefix (LCP) similarity for N sequences of length L. We prove a tight Omega(N) space lower bound (cell-probe model) and present a trie-based index using O(N*L) space with O(L+k) query time. We contrast this with pairwise materialization (Theta(N^2)), which hits a practical OOM wall at scale, while our indexed approach remains O(N) in memory. We then introduce Thermal-Aware Logic (TAL), which turns prefix structure into range-bounded scans. In hardware measurements, TAL reduces energy per query by 308x (0.0145 J vs 4.46 J) and cuts p95 latency by 329x (0.114 ms vs 37.5 ms) on a 20M-item range-scan benchmark, while sustaining near-peak utilization (~99%) under long runs. The result is a deterministic retrieval primitive with receipts in regimes where approximate methods are unacceptable.
☆ Atomic Information Flow: A Network Flow Model for Tool Attributions in RAG Systems
Many tool-based Retrieval Augmented Generation (RAG) systems lack precise mechanisms for tracing final responses back to specific tool components -- a critical gap as systems scale to complex multi-agent architectures. We present \textbf{Atomic Information Flow (AIF)}, a graph-based network flow model that decomposes tool outputs and LLM calls into atoms: indivisible, self-contained units of information. By modeling LLM orchestration as a directed flow of atoms from tool and LLM nodes to a response super-sink, AIF enables granular attribution metrics for AI explainability. Motivated by the max-flow min-cut theorem in network flow theory, we train a lightweight Gemma3 (4B parameter) language model as a context compressor to approximate the minimum cut of tool atoms using flow signals computed offline by AIF. We note that the base Gemma3-4B model struggles to identify critical information with \textbf{54.7\%} accuracy on HotpotQA, barely outperforming lexical baselines (BM25). However, post-training on AIF signals boosts accuracy to \textbf{82.71\%} (+28.01 points) while achieving \textbf{87.52\%} (+1.85\%) context token compression -- bridging the gap with the Gemma3-27B variant, a model nearly $7\times$ larger.
♻ ☆ TRACE: Transparent Web Reliability Assessment with Contextual Explanations
In an era of AI-generated misinformation flooding the web, existing tools struggle to empower users with nuanced, transparent assessments of content credibility. They often default to binary (true/false) classifications without contextual justifications, leaving users vulnerable to disinformation. We address this gap by introducing TRACE: Transparent Reliability Assessment with Contextual Explanations, a unified framework that performs two key tasks: (1) it assigns a fine-grained, continuous reliability score (from 0.1 to 1.0) to web content, and (2) it generates a contextual explanation for its assessment. The core of TRACE is the TrueGL-1B model, fine-tuned on a novel, large-scale dataset of over 140,000 articles. This dataset's primary contribution is its annotation with 35 distinct continuous reliability scores, created using a Human-LLM co-creation and data poisoning paradigm. This method overcomes the limitations of binary-labeled datasets by populating the mid-ranges of reliability. In our evaluation, TrueGL-1B consistently outperforms other small-scale LLM baselines and rule-based approaches on key regression metrics, including MAE, RMSE, and R2. The model's high accuracy and interpretable justifications make trustworthy information more accessible. To foster future research, our code and model are made publicly available here: github.com/zade90/TrueGL.
♻ ☆ An Ecosystem for Ontology Interoperability
Ontology interoperability is one of the complicated issues that restricts the use of ontologies in knowledge graphs (KGs). Different ontologies with conflicting and overlapping concepts make it difficult to design, develop, and deploy an interoperable ontology for downstream tasks. We propose an ecosystem for ontology interoperability. The ecosystem employs three state-of-the-art semantic techniques in different phases of the ontology engineering life cycle: ontology design patterns (ODPs) in the design phase, ontology matching and versioning (OM\&OV) in the develop phase, and data-driven ontology validation (DOVA) in the deploy phase, to achieve better ontology interoperability and data integration in real-world applications. A case study of sensor observation in the building domain validates the usefulness of the proposed ecosystem.
comment: 16 pages
♻ ☆ Why Steering Works: Toward a Unified View of Language Model Parameter Dynamics
Methods for controlling large language models (LLMs), including local weight fine-tuning, LoRA-based adaptation, and activation-based interventions, are often studied in isolation, obscuring their connections and making comparison difficult. In this work, we present a unified view that frames these interventions as dynamic weight updates induced by a control signal, placing them within a single conceptual framework. Building on this view, we propose a unified preference-utility analysis that separates control effects into preference, defined as the tendency toward a target concept, and utility, defined as coherent and task-valid generation, and measures both on a shared log-odds scale using polarity-paired contrastive examples. Across methods, we observe a consistent trade-off between preference and utility: stronger control increases preference while predictably reducing utility. We further explain this behavior through an activation manifold perspective, in which control shifts representations along target-concept directions to enhance preference, while utility declines primarily when interventions push representations off the model's valid-generation manifold. Finally, we introduce a new steering approach SPLIT guided by this analysis that improves preference while better preserving utility. Code is available at https://github.com/zjunlp/EasyEdit/blob/main/examples/SPLIT.md.
comment: Work in progress
♻ ☆ Bringing Reasoning to Generative Recommendation Through the Lens of Cascaded Ranking WWW2026
Generative Recommendation (GR) has become a promising end-to-end approach with high FLOPS utilization for resource-efficient recommendation. Despite the effectiveness, we show that current GR models suffer from a critical \textbf{bias amplification} issue, where token-level bias escalates as token generation progresses, ultimately limiting the recommendation diversity and hurting the user experience. By comparing against the key factor behind the success of traditional multi-stage pipelines, we reveal two limitations in GR that can amplify the bias: homogeneous reliance on the encoded history, and fixed computational budgets that prevent deeper user preference understanding. To combat the bias amplification issue, it is crucial for GR to 1) incorporate more heterogeneous information, and 2) allocate greater computational resources at each token generation step. To this end, we propose CARE, a simple yet effective cascaded reasoning framework for debiased GR. To incorporate heterogeneous information, we introduce a progressive history encoding mechanism, which progressively incorporates increasingly fine-grained history information as the generation process advances. To allocate more computations, we propose a query-anchored reasoning mechanism, which seeks to perform a deeper understanding of historical information through parallel reasoning steps. We instantiate CARE on three GR backbones. Empirical results on four datasets show the superiority of CARE in recommendation accuracy, diversity, efficiency, and promising scalability. The codes and datasets are available at https://github.com/Linxyhaha/CARE.
comment: Accepted by WWW2026
♻ ☆ DeepAgent: A General Reasoning Agent with Scalable Toolsets WWW 2026
Large reasoning models have demonstrated strong problem-solving abilities, yet real-world tasks often require external tools and long-horizon interactions. Existing agent frameworks typically follow predefined workflows, which limit autonomous and global task completion. In this paper, we introduce DeepAgent, an end-to-end deep reasoning agent that performs autonomous thinking, tool discovery, and action execution within a single, coherent reasoning process. To address the challenges of long-horizon interactions, particularly the context length explosion from multiple tool calls and the accumulation of interaction history, we introduce an autonomous memory folding mechanism that compresses past interactions into structured episodic, working, and tool memories, reducing error accumulation while preserving critical information. To teach general-purpose tool use efficiently and stably, we develop an end-to-end reinforcement learning strategy, namely ToolPO, that leverages LLM-simulated APIs and applies tool-call advantage attribution to assign fine-grained credit to the tool invocation tokens. Extensive experiments on eight benchmarks, including general tool-use tasks (ToolBench, API-Bank, TMDB, Spotify, ToolHop) and downstream applications (ALFWorld, WebShop, GAIA, HLE), demonstrate that DeepAgent consistently outperforms baselines across both labeled-tool and open-set tool retrieval scenarios. This work takes a step toward more general and capable agents for real-world applications. The code and demo are available at https://github.com/RUC-NLPIR/DeepAgent.
comment: Accepted by WWW 2026
♻ ☆ OpenOneRec Technical Report
While the OneRec series has successfully unified the fragmented recommendation pipeline into an end-to-end generative framework, a significant gap remains between recommendation systems and general intelligence. Constrained by isolated data, they operate as domain specialists-proficient in pattern matching but lacking world knowledge, reasoning capabilities, and instruction following. This limitation is further compounded by the lack of a holistic benchmark to evaluate such integrated capabilities. To address this, our contributions are: 1) RecIF Bench & Open Data: We propose RecIF-Bench, a holistic benchmark covering 8 diverse tasks that thoroughly evaluate capabilities from fundamental prediction to complex reasoning. Concurrently, we release a massive training dataset comprising 96 million interactions from 160,000 users to facilitate reproducible research. 2) Framework & Scaling: To ensure full reproducibility, we open-source our comprehensive training pipeline, encompassing data processing, co-pretraining, and post-training. Leveraging this framework, we demonstrate that recommendation capabilities can scale predictably while mitigating catastrophic forgetting of general knowledge. 3) OneRec-Foundation: We release OneRec Foundation (1.7B and 8B), a family of models establishing new state-of-the-art (SOTA) results across all tasks in RecIF-Bench. Furthermore, when transferred to the Amazon benchmark, our models surpass the strongest baselines with an average 26.8% improvement in Recall@10 across 10 diverse datasets (Figure 1). This work marks a step towards building truly intelligent recommender systems. Nonetheless, realizing this vision presents significant technical and theoretical challenges, highlighting the need for broader research engagement in this promising direction.
♻ ☆ CoSQA+: Pioneering the Multi-Choice Code Search Benchmark with Test-Driven Agents
Semantic code search, retrieving code that matches a given natural language query, is an important task to improve productivity in software engineering. Existing code search datasets face limitations: they rely on human annotators who assess code primarily through semantic understanding rather than functional verification, leading to potential inaccuracies and scalability issues. Additionally, current evaluation metrics often overlook the multi-choice nature of code search. This paper introduces CoSQA+, pairing high-quality queries from CoSQA with multiple suitable codes. We develop an automated pipeline featuring multiple model-based candidate selections and the novel test-driven agent annotation system. Among a single Large Language Model (LLM) annotator and Python expert annotators (without test-based verification), agents leverage test-based verification and achieve the highest accuracy of 93.9%. Through extensive experiments, CoSQA+ has demonstrated superior quality over CoSQA. Models trained on CoSQA+ exhibit improved performance. We publicly release both CoSQA+_all, which contains 412,080 agent-annotated pairs, and CoSQA+_verified, which contains 1,000 human-verified pairs, at https://github.com/DeepSoftwareAnalytics/CoSQA_Plus.
comment: Accepted to TSE 2025. We provide the code and data at https://github.com/DeepSoftwareAnalytics/CoSQA_Plus
♻ ☆ LoVR: A Benchmark for Long Video Retrieval in Multimodal Contexts
Long videos contain a vast amount of information, making video-text retrieval an essential and challenging task in multimodal learning. However, existing benchmarks suffer from limited video duration, low-quality captions, and coarse annotation granularity, which hinder the evaluation of advanced video-text retrieval methods. To address these limitations, we introduce LoVR, a benchmark specifically designed for long video-text retrieval. LoVR contains 467 long videos and over 40,804 fine-grained clips with high-quality captions. To overcome the issue of poor machine-generated annotations, we propose an efficient caption generation framework that integrates VLM automatic generation, caption quality scoring, and dynamic refinement. This pipeline improves annotation accuracy while maintaining scalability. Furthermore, we introduce a semantic fusion method to generate coherent full-video captions without losing important contextual information. Our benchmark introduces longer videos, more detailed captions, and a larger-scale dataset, presenting new challenges for video understanding and retrieval. Extensive experiments on various advanced embedding models demonstrate that LoVR is a challenging benchmark, revealing the limitations of current approaches and providing valuable insights for future research. We release the code and dataset link at https://lovrbench.github.io/
♻ ☆ SCASRec: A Self-Correcting and Auto-Stopping Model for Generative Route List Recommendation
Route recommendation systems commonly adopt a multi-stage pipeline involving fine-ranking and re-ranking to produce high-quality ordered recommendations. However, this paradigm faces three critical limitations. First, there is a misalignment between offline training objectives and online metrics. Offline gains do not necessarily translate to online improvements. Actual performance must be validated through A/B testing, which may potentially compromise the user experience. Second, redundancy elimination relies on rigid, handcrafted rules that lack adaptability to the high variance in user intent and the unstructured complexity of real-world scenarios. Third, the strict separation between fine-ranking and re-ranking stages leads to sub-optimal performance. Since each module is optimized in isolation, the fine-ranking stage remains oblivious to the list-level objectives (e.g., diversity) targeted by the re-ranker, thereby preventing the system from achieving a jointly optimized global optimum. To overcome these intertwined challenges, we propose SCASRec (Self-Correcting and Auto-Stopping Recommendation), a unified generative framework that integrates ranking and redundancy elimination into a single end-to-end process. SCASRec introduces a stepwise corrective reward (SCR) to guide list-wise refinement by focusing on hard samples, and employs a learnable End-of-Recommendation (EOR) token to terminate generation adaptively when no further improvement is expected. Experiments on two large-scale, open-sourced route recommendation datasets demonstrate that SCASRec establishes an SOTA in offline and online settings. SCASRec has been fully deployed in a real-world navigation app, demonstrating its effectiveness.
♻ ☆ Scalable Dynamic Embedding Size Search for Streaming Recommendation CIKM 2024
Recommender systems typically represent users and items by learning their embeddings, which are usually set to uniform dimensions and dominate the model parameters. However, real-world recommender systems often operate in streaming recommendation scenarios, where the number of users and items continues to grow, leading to substantial storage resource consumption for these embeddings. Although a few methods attempt to mitigate this by employing embedding size search strategies to assign different embedding dimensions in streaming recommendations, they assume that the embedding size grows with the frequency of users/items, which eventually still exceeds the predefined memory budget over time. To address this issue, this paper proposes to learn Scalable Lightweight Embeddings for streaming recommendation, called SCALL, which can adaptively adjust the embedding sizes of users/items within a given memory budget over time. Specifically, we propose to sample embedding sizes from a probabilistic distribution, with the guarantee to meet any predefined memory budget. By fixing the memory budget, the proposed embedding size sampling strategy can increase and decrease the embedding sizes in accordance to the frequency of the corresponding users or items. Furthermore, we develop a reinforcement learning-based search paradigm that models each state with mean pooling to keep the length of the state vectors fixed, invariant to the changing number of users and items. As a result, the proposed method can provide embedding sizes to unseen users and items. Comprehensive empirical evaluations on two public datasets affirm the advantageous effectiveness of our proposed method.
comment: Accepted to CIKM 2024 Code is available at https://github.com/qykcq/Scalable-Dynamic-Embedding-Size-Search-for-Streaming-Recommendation
♻ ☆ Budgeted Embedding Table For Recommender Systems WSDM 2024
At the heart of contemporary recommender systems (RSs) are latent factor models that provide quality recommendation experience to users. These models use embedding vectors, which are typically of a uniform and fixed size, to represent users and items. As the number of users and items continues to grow, this design becomes inefficient and hard to scale. Recent lightweight embedding methods have enabled different users and items to have diverse embedding sizes, but are commonly subject to two major drawbacks. Firstly, they limit the embedding size search to optimizing a heuristic balancing the recommendation quality and the memory complexity, where the trade-off coefficient needs to be manually tuned for every memory budget requested. The implicitly enforced memory complexity term can even fail to cap the parameter usage, making the resultant embedding table fail to meet the memory budget strictly. Secondly, most solutions, especially reinforcement learning based ones derive and optimize the embedding size for each each user/item on an instance-by-instance basis, which impedes the search efficiency. In this paper, we propose Budgeted Embedding Table (BET), a novel method that generates table-level actions (i.e., embedding sizes for all users and items) that is guaranteed to meet pre-specified memory budgets. Furthermore, by leveraging a set-based action formulation and engaging set representation learning, we present an innovative action search strategy powered by an action fitness predictor that efficiently evaluates each table-level action. Experiments have shown state-of-the-art performance on two real-world datasets when BET is paired with three popular recommender models under different memory budgets.
comment: Accepted to WSDM 2024. Code is available at https://github.com/qykcq/Budgeted-Embedding-Table-For-Recommender-Systems
♻ ☆ Continuous Input Embedding Size Search For Recommender Systems SIGIR'23
Latent factor models are the most popular backbones for today's recommender systems owing to their prominent performance. Latent factor models represent users and items as real-valued embedding vectors for pairwise similarity computation, and all embeddings are traditionally restricted to a uniform size that is relatively large (e.g., 256-dimensional). With the exponentially expanding user base and item catalog in contemporary e-commerce, this design is admittedly becoming memory-inefficient. To facilitate lightweight recommendation, reinforcement learning (RL) has recently opened up opportunities for identifying varying embedding sizes for different users/items. However, challenged by search efficiency and learning an optimal RL policy, existing RL-based methods are restricted to highly discrete, predefined embedding size choices. This leads to a largely overlooked potential of introducing finer granularity into embedding sizes to obtain better recommendation effectiveness under a given memory budget. In this paper, we propose continuous input embedding size search (CIESS), a novel RL-based method that operates on a continuous search space with arbitrary embedding sizes to choose from. In CIESS, we further present an innovative random walk-based exploration strategy to allow the RL policy to efficiently explore more candidate embedding sizes and converge to a better decision. CIESS is also model-agnostic and hence generalizable to a variety of latent factor RSs, whilst experiments on two real-world datasets have shown state-of-the-art performance of CIESS under different memory budgets when paired with three popular recommendation models.
comment: Accepted to SIGIR'23. Code is available at https://github.com/qykcq/Continuous-Input-Embedding-Size-Search-For-Recommender-Systems
♻ ☆ 10 Simple Rules for Improving Your Standardized Fields and Terms
Contextual metadata is the unsung hero of research data. When done right, standardized and structured vocabularies make your data findable, shareable, and reusable. When done wrong, they turn a well intended effort into data cleanup and curation nightmares. In this paper we tackle the surprisingly tricky process of vocabulary standardization with a mix of practical advice and grounded examples. Drawing from real-world experience in contextual data harmonization, we highlight common challenges (e.g., semantic noise and concept bombs) and provide actionable strategies to address them. Our rules emphasize alignment with Findability, Accessibility, Interoperability, and Reusability (FAIR) principles while remaining adaptable to evolving user and research needs. Whether you are curating datasets, designing a schema, or contributing to a standards body, these rules aim to help you create metadata that is not only technically sound but also meaningful to users.
comment: 17 pages, 1 figure Author Contributions: Conceptualization by EG and RC. Manuscript writing by RC. Revisions and Editing by RC, EG, DD, and WH. Acknowledgements: Charlotte Barclay Version 2: Added missing word on page 10
Computation and Language 150
☆ Parallel-Probe: Towards Efficient Parallel Thinking via 2D Probing
Parallel thinking has emerged as a promising paradigm for reasoning, yet it imposes significant computational burdens. Existing efficiency methods primarily rely on local, per-trajectory signals and lack principled mechanisms to exploit global dynamics across parallel branches. We introduce 2D probing, an interface that exposes the width-depth dynamics of parallel thinking by periodically eliciting intermediate answers from all branches. Our analysis reveals three key insights: non-monotonic scaling across width-depth allocations, heterogeneous reasoning branch lengths, and early stabilization of global consensus. Guided by these insights, we introduce $\textbf{Parallel-Probe}$, a training-free controller designed to optimize online parallel thinking. Parallel-Probe employs consensus-based early stopping to regulate reasoning depth and deviation-based branch pruning to dynamically adjust width. Extensive experiments across three benchmarks and multiple models demonstrate that Parallel-Probe establishes a superior Pareto frontier for test-time scaling. Compared to standard majority voting, it reduces sequential tokens by up to $\textbf{35.8}$% and total token cost by over $\textbf{25.8}$% while maintaining competitive accuracy.
comment: 14 pages
☆ Accelerating Scientific Research with Gemini: Case Studies and Common Techniques
Recent advances in large language models (LLMs) have opened new avenues for accelerating scientific research. While models are increasingly capable of assisting with routine tasks, their ability to contribute to novel, expert-level mathematical discovery is less understood. We present a collection of case studies demonstrating how researchers have successfully collaborated with advanced AI models, specifically Google's Gemini-based models (in particular Gemini Deep Think and its advanced variants), to solve open problems, refute conjectures, and generate new proofs across diverse areas in theoretical computer science, as well as other areas such as economics, optimization, and physics. Based on these experiences, we extract common techniques for effective human-AI collaboration in theoretical research, such as iterative refinement, problem decomposition, and cross-disciplinary knowledge transfer. While the majority of our results stem from this interactive, conversational methodology, we also highlight specific instances that push beyond standard chat interfaces. These include deploying the model as a rigorous adversarial reviewer to detect subtle flaws in existing proofs, and embedding it within a "neuro-symbolic" loop that autonomously writes and executes code to verify complex derivations. Together, these examples highlight the potential of AI not just as a tool for automation, but as a versatile, genuine partner in the creative process of scientific discovery.
☆ AutoFigure: Generating and Refining Publication-Ready Scientific Illustrations ICLR 2026
High-quality scientific illustrations are crucial for effectively communicating complex scientific and technical concepts, yet their manual creation remains a well-recognized bottleneck in both academia and industry. We present FigureBench, the first large-scale benchmark for generating scientific illustrations from long-form scientific texts. It contains 3,300 high-quality scientific text-figure pairs, covering diverse text-to-illustration tasks from scientific papers, surveys, blogs, and textbooks. Moreover, we propose AutoFigure, the first agentic framework that automatically generates high-quality scientific illustrations based on long-form scientific text. Specifically, before rendering the final result, AutoFigure engages in extensive thinking, recombination, and validation to produce a layout that is both structurally sound and aesthetically refined, outputting a scientific illustration that achieves both structural completeness and aesthetic appeal. Leveraging the high-quality data from FigureBench, we conduct extensive experiments to test the performance of AutoFigure against various baseline methods. The results demonstrate that AutoFigure consistently surpasses all baseline methods, producing publication-ready scientific illustrations. The code, dataset and huggingface space are released in https://github.com/ResearAI/AutoFigure.
comment: Accepted at the ICLR 2026
☆ They Said Memes Were Harmless-We Found the Ones That Hurt: Decoding Jokes, Symbols, and Cultural References
Meme-based social abuse detection is challenging because harmful intent often relies on implicit cultural symbolism and subtle cross-modal incongruence. Prior approaches, from fusion-based methods to in-context learning with Large Vision-Language Models (LVLMs), have made progress but remain limited by three factors: i) cultural blindness (missing symbolic context), ii) boundary ambiguity (satire vs. abuse confusion), and iii) lack of interpretability (opaque model reasoning). We introduce CROSS-ALIGN+, a three-stage framework that systematically addresses these limitations: (1) Stage I mitigates cultural blindness by enriching multimodal representations with structured knowledge from ConceptNet, Wikidata, and Hatebase; (2) Stage II reduces boundary ambiguity through parameter-efficient LoRA adapters that sharpen decision boundaries; and (3) Stage III enhances interpretability by generating cascaded explanations. Extensive experiments on five benchmarks and eight LVLMs demonstrate that CROSS-ALIGN+ consistently outperforms state-of-the-art methods, achieving up to 17% relative F1 improvement while providing interpretable justifications for each decision.
comment: Accepted at the The Web Conference 2026 (Research Track)
☆ Antidistillation Fingerprinting
Model distillation enables efficient emulation of frontier large language models (LLMs), creating a need for robust mechanisms to detect when a third-party student model has trained on a teacher model's outputs. However, existing fingerprinting techniques that could be used to detect such distillation rely on heuristic perturbations that impose a steep trade-off between generation quality and fingerprinting strength, often requiring significant degradation of utility to ensure the fingerprint is effectively internalized by the student. We introduce antidistillation fingerprinting (ADFP), a principled approach that aligns the fingerprinting objective with the student's learning dynamics. Building upon the gradient-based framework of antidistillation sampling, ADFP utilizes a proxy model to identify and sample tokens that directly maximize the expected detectability of the fingerprint in the student after fine-tuning, rather than relying on the incidental absorption of the un-targeted biases of a more naive watermark. Experiments on GSM8K and OASST1 benchmarks demonstrate that ADFP achieves a significant Pareto improvement over state-of-the-art baselines, yielding stronger detection confidence with minimal impact on utility, even when the student model's architecture is unknown.
comment: 26 pages, 11 figures
☆ Bridging Online and Offline RL: Contextual Bandit Learning for Multi-Turn Code Generation
Recently, there have been significant research interests in training large language models (LLMs) with reinforcement learning (RL) on real-world tasks, such as multi-turn code generation. While online RL tends to perform better than offline RL, its higher training cost and instability hinders wide adoption. In this paper, we build on the observation that multi-turn code generation can be formulated as a one-step recoverable Markov decision process and propose contextual bandit learning with offline trajectories (Cobalt), a new method that combines the benefits of online and offline RL. Cobalt first collects code generation trajectories using a reference LLM and divides them into partial trajectories as contextual prompts. Then, during online bandit learning, the LLM is trained to complete each partial trajectory prompt through single-step code generation. Cobalt outperforms two multi-turn online RL baselines based on GRPO and VeRPO, and substantially improves R1-Distill 8B and Qwen3 8B by up to 9.0 and 6.2 absolute Pass@1 scores on LiveCodeBench. Also, we analyze LLMs' in-context reward hacking behaviors and augment Cobalt training with perturbed trajectories to mitigate this issue. Overall, our results demonstrate Cobalt as a promising solution for iterative decision-making tasks like multi-turn code generation. Our code and data are available at https://github.com/OSU-NLP-Group/cobalt.
☆ FullStack-Agent: Enhancing Agentic Full-Stack Web Coding via Development-Oriented Testing and Repository Back-Translation
Assisting non-expert users to develop complex interactive websites has become a popular task for LLM-powered code agents. However, existing code agents tend to only generate frontend web pages, masking the lack of real full-stack data processing and storage with fancy visual effects. Notably, constructing production-level full-stack web applications is far more challenging than only generating frontend web pages, demanding careful control of data flow, comprehensive understanding of constantly updating packages and dependencies, and accurate localization of obscure bugs in the codebase. To address these difficulties, we introduce FullStack-Agent, a unified agent system for full-stack agentic coding that consists of three parts: (1) FullStack-Dev, a multi-agent framework with strong planning, code editing, codebase navigation, and bug localization abilities. (2) FullStack-Learn, an innovative data-scaling and self-improving method that back-translates crawled and synthesized website repositories to improve the backbone LLM of FullStack-Dev. (3) FullStack-Bench, a comprehensive benchmark that systematically tests the frontend, backend and database functionalities of the generated website. Our FullStack-Dev outperforms the previous state-of-the-art method by 8.7%, 38.2%, and 15.9% on the frontend, backend, and database test cases respectively. Additionally, FullStack-Learn raises the performance of a 30B model by 9.7%, 9.5%, and 2.8% on the three sets of test cases through self-improvement, demonstrating the effectiveness of our approach. The code is released at https://github.com/mnluzimu/FullStack-Agent.
☆ WebSentinel: Detecting and Localizing Prompt Injection Attacks for Web Agents
Prompt injection attacks manipulate webpage content to cause web agents to execute attacker-specified tasks instead of the user's intended ones. Existing methods for detecting and localizing such attacks achieve limited effectiveness, as their underlying assumptions often do not hold in the web-agent setting. In this work, we propose WebSentinel, a two-step approach for detecting and localizing prompt injection attacks in webpages. Given a webpage, Step I extracts \emph{segments of interest} that may be contaminated, and Step II evaluates each segment by checking its consistency with the webpage content as context. We show that WebSentinel is highly effective, substantially outperforming baseline methods across multiple datasets of both contaminated and clean webpages that we collected. Our code is available at: https://github.com/wxl-lxw/WebSentinel.
☆ AOrchestra: Automating Sub-Agent Creation for Agentic Orchestration
Language agents have shown strong promise for task automation. Realizing this promise for increasingly complex, long-horizon tasks has driven the rise of a sub-agent-as-tools paradigm for multi-turn task solving. However, existing designs still lack a dynamic abstraction view of sub-agents, thereby hurting adaptability. We address this challenge with a unified, framework-agnostic agent abstraction that models any agent as a tuple Instruction, Context, Tools, Model. This tuple acts as a compositional recipe for capabilities, enabling the system to spawn specialized executors for each task on demand. Building on this abstraction, we introduce an agentic system AOrchestra, where the central orchestrator concretizes the tuple at each step: it curates task-relevant context, selects tools and models, and delegates execution via on-the-fly automatic agent creation. Such designs enable reducing human engineering efforts, and remain framework-agnostic with plug-and-play support for diverse agents as task executors. It also enables a controllable performance-cost trade-off, allowing the system to approach Pareto-efficient. Across three challenging benchmarks (GAIA, SWE-Bench, Terminal-Bench), AOrchestra achieves 16.28% relative improvement against the strongest baseline when paired with Gemini-3-Flash. The code is available at: https://github.com/FoundationAgents/AOrchestra
☆ Context Compression via Explicit Information Transmission
Long-context inference with Large Language Models (LLMs) is costly due to quadratic attention and growing key-value caches, motivating context compression. In this work, we study soft context compression, where a long context is condensed into a small set of continuous representations. Existing methods typically re-purpose the LLM itself as a trainable compressor, relying on layer-by-layer self-attention to iteratively aggregate information. We argue that this paradigm suffers from two structural limitations: (i) progressive representation overwriting across layers (ii) uncoordinated allocation of compression capacity across tokens. We propose ComprExIT (Context Compression via Explicit Information Transmission), a lightweight framework that formulates soft compression into a new paradigm: explicit information transmission over frozen LLM hidden states. This decouples compression from the model's internal self-attention dynamics. ComprExIT performs (i) depth-wise transmission to selectively transmit multi-layer information into token anchors, mitigating progressive overwriting, and (ii) width-wise transmission to aggregate anchors into a small number of slots via a globally optimized transmission plan, ensuring coordinated allocation of information. Across six question-answering benchmarks, ComprExIT consistently outperforms state-of-the-art context compression methods while introducing only ~1% additional parameters, demonstrating that explicit and coordinated information transmission enables more effective and robust long-context compression.
☆ Efficient Estimation of Kernel Surrogate Models for Task Attribution ICLR 2026
Modern AI agents such as large language models are trained on diverse tasks -- translation, code generation, mathematical reasoning, and text prediction -- simultaneously. A key question is to quantify how each individual training task influences performance on a target task, a problem we refer to as task attribution. The direct approach, leave-one-out retraining, measures the effect of removing each task, but is computationally infeasible at scale. An alternative approach that builds surrogate models to predict a target task's performance for any subset of training tasks has emerged in recent literature. Prior work focuses on linear surrogate models, which capture first-order relationships, but miss nonlinear interactions such as synergy, antagonism, or XOR-type effects. In this paper, we first consider a unified task weighting framework for analyzing task attribution methods, and show a new connection between linear surrogate models and influence functions through a second-order analysis. Then, we introduce kernel surrogate models, which more effectively represent second-order task interactions. To efficiently learn the kernel surrogate, we develop a gradient-based estimation procedure that leverages a first-order approximation of pretrained models; empirically, this yields accurate estimates with less than $2\%$ relative error without repeated retraining. Experiments across multiple domains -- including math reasoning in transformers, in-context learning, and multi-objective reinforcement learning -- demonstrate the effectiveness of kernel surrogate models. They achieve a $25\%$ higher correlation with the leave-one-out ground truth than linear surrogates and influence-function baselines. When used for downstream task selection, kernel surrogate models yield a $40\%$ improvement in demonstration selection for in-context learning and multi-objective reinforcement learning benchmarks.
comment: 27 pages. To appear in ICLR 2026
☆ CUBO: Self-Contained Retrieval-Augmented Generation on Consumer Laptops 10 GB Corpora, 16 GB RAM, Single-Device Deployment
Organizations handling sensitive documents face a tension: cloud-based AI risks GDPR violations, while local systems typically require 18-32 GB RAM. This paper presents CUBO, a systems-oriented RAG platform for consumer laptops with 16 GB shared memory. CUBO's novelty lies in engineering integration of streaming ingestion (O(1) buffer overhead), tiered hybrid retrieval, and hardware-aware orchestration that enables competitive Recall@10 (0.48-0.97 across BEIR domains) within a hard 15.5 GB RAM ceiling. The 37,000-line codebase achieves retrieval latencies of 185 ms (p50) on C1,300 laptops while maintaining data minimization through local-only processing aligned with GDPR Art. 5(1)(c). Evaluation on BEIR benchmarks validates practical deployability for small-to-medium professional archives. The codebase is publicly available at https://github.com/PaoloAstrino/CUBO.
comment: 24 pages, 2 figures, 6 tables
☆ Training Multi-Turn Search Agent via Contrastive Dynamic Branch Sampling
Agentic reinforcement learning has enabled large language models to perform complex multi-turn planning and tool use. However, learning in long-horizon settings remains challenging due to sparse, trajectory-level outcome rewards. While prior tree-based methods attempt to mitigate this issue, they often suffer from high variance and computational inefficiency. Through empirical analysis of search agents, We identify a common pattern: performance diverges mainly due to decisions near the tail. Motivated by this observation, we propose Branching Relative Policy Optimization (BranPO), a value-free method that provides step-level contrastive supervision without dense rewards. BranPO truncates trajectories near the tail and resamples alternative continuations to construct contrastive suffixes over shared prefixes, reducing credit ambiguity in long-horizon rollouts. To further boost efficiency and stabilize training, we introduce difficulty-aware branch sampling to adapt branching frequency across tasks, and redundant step masking to suppress uninformative actions. Extensive experiments on various question answering benchmarks demonstrate that BranPO consistently outperforms strong baselines, achieving significant accuracy gains on long-horizon tasks without increasing the overall training budget. Our code is available at \href{https://github.com/YubaoZhao/BranPO}{code}.
comment: 24 pages, 5 figures
☆ No Shortcuts to Culture: Indonesian Multi-hop Question Answering for Complex Cultural Understanding
Understanding culture requires reasoning across context, tradition, and implicit social knowledge, far beyond recalling isolated facts. Yet most culturally focused question answering (QA) benchmarks rely on single-hop questions, which may allow models to exploit shallow cues rather than demonstrate genuine cultural reasoning. In this work, we introduce ID-MoCQA, the first large-scale multi-hop QA dataset for assessing the cultural understanding of large language models (LLMs), grounded in Indonesian traditions and available in both English and Indonesian. We present a new framework that systematically transforms single-hop cultural questions into multi-hop reasoning chains spanning six clue types (e.g., commonsense, temporal, geographical). Our multi-stage validation pipeline, combining expert review and LLM-as-a-judge filtering, ensures high-quality question-answer pairs. Our evaluation across state-of-the-art models reveals substantial gaps in cultural reasoning, particularly in tasks requiring nuanced inference. ID-MoCQA provides a challenging and essential benchmark for advancing the cultural competency of LLMs.
☆ Beyond Tokens: Semantic-Aware Speculative Decoding for Efficient Inference by Probing Internal States
Large Language Models (LLMs) achieve strong performance across many tasks but suffer from high inference latency due to autoregressive decoding. The issue is exacerbated in Large Reasoning Models (LRMs), which generate lengthy chains of thought. While speculative decoding accelerates inference by drafting and verifying multiple tokens in parallel, existing methods operate at the token level and ignore semantic equivalence (i.e., different token sequences expressing the same meaning), leading to inefficient rejections. We propose SemanticSpec, a semantic-aware speculative decoding framework that verifies entire semantic sequences instead of tokens. SemanticSpec introduces a semantic probability estimation mechanism that probes the model's internal hidden states to assess the likelihood of generating sequences with specific meanings.Experiments on four benchmarks show that SemanticSpec achieves up to 2.7x speedup on DeepSeekR1-32B and 2.1x on QwQ-32B, consistently outperforming token-level and sequence-level baselines in both efficiency and effectiveness.
☆ OmniRAG-Agent: Agentic Omnimodal Reasoning for Low-Resource Long Audio-Video Question Answering
Long-horizon omnimodal question answering answers questions by reasoning over text, images, audio, and video. Despite recent progress on OmniLLMs, low-resource long audio-video QA still suffers from costly dense encoding, weak fine-grained retrieval, limited proactive planning, and no clear end-to-end optimization.To address these issues, we propose OmniRAG-Agent, an agentic omnimodal QA method for budgeted long audio-video reasoning. It builds an image-audio retrieval-augmented generation module that lets an OmniLLM fetch short, relevant frames and audio snippets from external banks. Moreover, it uses an agent loop that plans, calls tools across turns, and merges retrieved evidence to answer complex queries. Furthermore, we apply group relative policy optimization to jointly improve tool use and answer quality over time. Experiments on OmniVideoBench, WorldSense, and Daily-Omni show that OmniRAG-Agent consistently outperforms prior methods under low-resource settings and achieves strong results, with ablations validating each component.
☆ Cognitively Diverse Multiple-Choice Question Generation: A Hybrid Multi-Agent Framework with Large Language Models
Recent advances in large language models (LLMs) have made automated multiple-choice question (MCQ) generation increasingly feasible; however, reliably producing items that satisfy controlled cognitive demands remains a challenge. To address this gap, we introduce ReQUESTA, a hybrid, multi-agent framework for generating cognitively diverse MCQs that systematically target text-based, inferential, and main idea comprehension. ReQUESTA decomposes MCQ authoring into specialized subtasks and coordinates LLM-powered agents with rule-based components to support planning, controlled generation, iterative evaluation, and post-processing. We evaluated the framework in a large-scale reading comprehension study using academic expository texts, comparing ReQUESTA-generated MCQs with those produced by a single-pass GPT-5 zero-shot baseline. Psychometric analyses of learner responses assessed item difficulty and discrimination, while expert raters evaluated question quality across multiple dimensions, including topic relevance and distractor quality. Results showed that ReQUESTA-generated items were consistently more challenging, more discriminative, and more strongly aligned with overall reading comprehension performance. Expert evaluations further indicated stronger alignment with central concepts and superior distractor linguistic consistency and semantic plausibility, particularly for inferential questions. These findings demonstrate that hybrid, agentic orchestration can systematically improve the reliability and controllability of LLM-based generation, highlighting workflow design as a key lever for structured artifact generation beyond single-pass prompting.
comment: This manuscript is under review at Electronics
☆ Conflict-Resolving and Sharpness-Aware Minimization for Generalized Knowledge Editing with Multiple Updates
Large language models (LLMs) rely on internal knowledge to solve many downstream tasks, making it crucial to keep them up to date. Since full retraining is expensive, prior work has explored efficient alternatives such as model editing and parameter-efficient fine-tuning. However, these approaches often break down in practice due to poor generalization across inputs, limited stability, and knowledge conflict. To address these limitations, we propose the CoRSA (Conflict-Resolving and Sharpness-Aware Minimization) training framework, a parameter-efficient, holistic approach for knowledge editing with multiple updates. CoRSA tackles multiple challenges simultaneously: it improves generalization to different input forms and enhances stability across multiple updates by minimizing loss curvature, and resolves conflicts by maximizing the margin between new and prior knowledge. Across three widely used fact editing benchmarks, CoRSA achieves significant gains in generalization, outperforming baselines with average absolute improvements of 12.42% over LoRA and 10% over model editing methods. With multiple updates, it maintains high update efficacy while reducing catastrophic forgetting by 27.82% compared to LoRA. CoRSA also generalizes to the code domain, outperforming the strongest baseline by 5.48% Pass@5 in update efficacy.
comment: 22 pages, 8 figures. Code link: https://github.com/duykhuongnguyen/CoRSA
☆ Agent Primitives: Reusable Latent Building Blocks for Multi-Agent Systems
While existing multi-agent systems (MAS) can handle complex problems by enabling collaboration among multiple agents, they are often highly task-specific, relying on manually crafted agent roles and interaction prompts, which leads to increased architectural complexity and limited reusability across tasks. Moreover, most MAS communicate primarily through natural language, making them vulnerable to error accumulation and instability in long-context, multi-stage interactions within internal agent histories. In this work, we propose \textbf{Agent Primitives}, a set of reusable latent building blocks for LLM-based MAS. Inspired by neural network design, where complex models are built from reusable components, we observe that many existing MAS architectures can be decomposed into a small number of recurring internal computation patterns. Based on this observation, we instantiate three primitives: Review, Voting and Selection, and Planning and Execution. All primitives communicate internally via key-value (KV) cache, which improves both robustness and efficiency by mitigating information degradation across multi-stage interactions. To enable automatic system construction, an Organizer agent selects and composes primitives for each query, guided by a lightweight knowledge pool of previously successful configurations, forming a primitive-based MAS. Experiments show that primitives-based MAS improve average accuracy by 12.0-16.5\% over single-agent baselines, reduce token usage and inference latency by approximately 3$\times$-4$\times$ compared to text-based MAS, while incurring only 1.3$\times$-1.6$\times$ overhead relative to single-agent inference and providing more stable performance across model backbones.
comment: 16 pages
☆ OCRTurk: A Comprehensive OCR Benchmark for Turkish EACL 2026
Document parsing is now widely used in applications, such as large-scale document digitization, retrieval-augmented generation, and domain-specific pipelines in healthcare and education. Benchmarking these models is crucial for assessing their reliability and practical robustness. Existing benchmarks mostly target high-resource languages and provide limited coverage for low-resource settings, such as Turkish. Moreover, existing studies on Turkish document parsing lack a standardized benchmark that reflects real-world scenarios and document diversity. To address this gap, we introduce OCRTurk, a Turkish document parsing benchmark covering multiple layout elements and document categories at three difficulty levels. OCRTurk consists of 180 Turkish documents drawn from academic articles, theses, slide decks, and non-academic articles. We evaluate seven OCR models on OCRTurk using element-wise metrics. Across difficulty levels, PaddleOCR achieves the strongest overall results, leading most element-wise metrics except figures and attaining high Normalized Edit Distance scores in easy, medium, and hard subsets. We also observe performance variation by document type. Models perform well on non-academic documents, while slideshows become the most challenging.
comment: Accepted by EACL 2026 SIGTURK
☆ Rethinking the Reranker: Boundary-Aware Evidence Selection for Robust Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) systems remain brittle under realistic retrieval noise, even when the required evidence appears in the top-K results. A key reason is that retrievers and rerankers optimize solely for relevance, often selecting either trivial, answer-revealing passages or evidence that lacks the critical information required to answer the question, without considering whether the evidence is suitable for the generator. We propose BAR-RAG, which reframes the reranker as a boundary-aware evidence selector that targets the generator's Goldilocks Zone -- evidence that is neither trivially easy nor fundamentally unanswerable for the generator, but is challenging yet sufficient for inference and thus provides the strongest learning signal. BAR-RAG trains the selector with reinforcement learning using generator feedback, and adopts a two-stage pipeline that fine-tunes the generator under the induced evidence distribution to mitigate the distribution mismatch between training and inference. Experiments on knowledge-intensive question answering benchmarks show that BAR-RAG consistently improves end-to-end performance under noisy retrieval, achieving an average gain of 10.3 percent over strong RAG and reranking baselines while substantially improving robustness. Code is publicly avaliable at https://github.com/GasolSun36/BAR-RAG.
comment: 19 pages, 8 tables, 5 figures
☆ Neural Attention Search Linear: Towards Adaptive Token-Level Hybrid Attention Models
The quadratic computational complexity of softmax transformers has become a bottleneck in long-context scenarios. In contrast, linear attention model families provide a promising direction towards a more efficient sequential model. These linear attention models compress past KV values into a single hidden state, thereby efficiently reducing complexity during both training and inference. However, their expressivity remains limited by the size of their hidden state. Previous work proposed interleaving softmax and linear attention layers to reduce computational complexity while preserving expressivity. Nevertheless, the efficiency of these models remains bottlenecked by their softmax attention layers. In this paper, we propose Neural Attention Search Linear (NAtS-L), a framework that applies both linear attention and softmax attention operations within the same layer on different tokens. NAtS-L automatically determines whether a token can be handled by a linear attention model, i.e., tokens that have only short-term impact and can be encoded into fixed-size hidden states, or require softmax attention, i.e., tokens that contain information related to long-term retrieval and need to be preserved for future queries. By searching for optimal Gated DeltaNet and softmax attention combinations across tokens, we show that NAtS-L provides a strong yet efficient token-level hybrid architecture.
comment: 17 pages, 8 figures
☆ Instruction Anchors: Dissecting the Causal Dynamics of Modality Arbitration
Modality following serves as the capacity of multimodal large language models (MLLMs) to selectively utilize multimodal contexts based on user instructions. It is fundamental to ensuring safety and reliability in real-world deployments. However, the underlying mechanisms governing this decision-making process remain poorly understood. In this paper, we investigate its working mechanism through an information flow lens. Our findings reveal that instruction tokens function as structural anchors for modality arbitration: Shallow attention layers perform non-selective information transfer, routing multimodal cues to these anchors as a latent buffer; Modality competition is resolved within deep attention layers guided by the instruction intent, while MLP layers exhibit semantic inertia, acting as an adversarial force. Furthermore, we identify a sparse set of specialized attention heads that drive this arbitration. Causal interventions demonstrate that manipulating a mere $5\%$ of these critical heads can decrease the modality-following ratio by $60\%$ through blocking, or increase it by $60\%$ through targeted amplification of failed samples. Our work provides a substantial step toward model transparency and offers a principled framework for the orchestration of multimodal information in MLLMs.
comment: Modality Following
RAGTurk: Best Practices for Retrieval Augmented Generation in Turkish EACL 2026
Retrieval-Augmented Generation (RAG) enhances LLM factuality, yet design guidance remains English-centric, limiting insights for morphologically rich languages like Turkish. We address this by constructing a comprehensive Turkish RAG dataset derived from Turkish Wikipedia and CulturaX, comprising question-answer pairs and relevant passage chunks. We benchmark seven stages of the RAG pipeline, from query transformation and reranking to answer refinement, without task-specific fine-tuning. Our results show that complex methods like HyDE maximize accuracy (85%) that is considerably higher than the baseline (78.70%). Also a Pareto-optimal configuration using Cross-encoder Reranking and Context Augmentation achieves comparable performance (84.60%) with much lower cost. We further demonstrate that over-stacking generative modules can degrade performance by distorting morphological cues, whereas simple query clarification with robust reranking offers an effective solution.
comment: Accepted by EACL 2026 SIGTURK
☆ Search-R2: Enhancing Search-Integrated Reasoning via Actor-Refiner Collaboration
Search-integrated reasoning enables language agents to transcend static parametric knowledge by actively querying external sources. However, training these agents via reinforcement learning is hindered by the multi-scale credit assignment problem: existing methods typically rely on sparse, trajectory-level rewards that fail to distinguish between high-quality reasoning and fortuitous guesses, leading to redundant or misleading search behaviors. To address this, we propose Search-R2, a novel Actor-Refiner collaboration framework that enhances reasoning through targeted intervention, with both components jointly optimized during training. Our approach decomposes the generation process into an Actor, which produces initial reasoning trajectories, and a Meta-Refiner, which selectively diagnoses and repairs flawed steps via a 'cut-and-regenerate' mechanism. To provide fine-grained supervision, we introduce a hybrid reward design that couples outcome correctness with a dense process reward quantifying the information density of retrieved evidence. Theoretically, we formalize the Actor-Refiner interaction as a smoothed mixture policy, proving that selective correction yields strict performance gains over strong baselines. Extensive experiments across various general and multi-hop QA datasets demonstrate that Search-R2 consistently outperforms strong RAG and RL-based baselines across model scales, achieving superior reasoning accuracy with minimal overhead.
☆ Tutorial on Reasoning for IR & IR for Reasoning ECIR 2026
Information retrieval has long focused on ranking documents by semantic relatedness. Yet many real-world information needs demand more: enforcement of logical constraints, multi-step inference, and synthesis of multiple pieces of evidence. Addressing these requirements is, at its core, a problem of reasoning. Across AI communities, researchers are developing diverse solutions for the problem of reasoning, from inference-time strategies and post-training of LLMs, to neuro-symbolic systems, Bayesian and probabilistic frameworks, geometric representations, and energy-based models. These efforts target the same problem: to move beyond pattern-matching systems toward structured, verifiable inference. However, they remain scattered across disciplines, making it difficult for IR researchers to identify the most relevant ideas and opportunities. To help navigate the fragmented landscape of research in reasoning, this tutorial first articulates a working definition of reasoning within the context of information retrieval and derives from it a unified analytical framework. The framework maps existing approaches along axes that reflect the core components of the definition. By providing a comprehensive overview of recent approaches and mapping current methods onto the defined axes, we expose their trade-offs and complementarities, highlight where IR can benefit from cross-disciplinary advances, and illustrate how retrieval process itself can play a central role in broader reasoning systems. The tutorial will equip participants with both a conceptual framework and practical guidance for enhancing reasoning-capable IR systems, while situating IR as a domain that both benefits and contributes to the broader development of reasoning methodologies.
comment: Accepted to ECIR 2026
TRE: Encouraging Exploration in the Trust Region
Entropy regularization is a standard technique in reinforcement learning (RL) to enhance exploration, yet it yields negligible effects or even degrades performance in Large Language Models (LLMs). We attribute this failure to the cumulative tail risk inherent to LLMs with massive vocabularies and long generation horizons. In such environments, standard global entropy maximization indiscriminately dilutes probability mass into the vast tail of invalid tokens rather than focusing on plausible candidates, thereby disrupting coherent reasoning. To address this, we propose Trust Region Entropy (TRE), a method that encourages exploration strictly within the model's trust region. Extensive experiments across mathematical reasoning (MATH), combinatorial search (Countdown), and preference alignment (HH) tasks demonstrate that TRE consistently outperforms vanilla PPO, standard entropy regularization, and other exploration baselines. Our code is available at https://github.com/WhyChaos/TRE-Encouraging-Exploration-in-the-Trust-Region.
☆ BIRDTurk: Adaptation of the BIRD Text-to-SQL Dataset to Turkish EACL 2026
Text-to-SQL systems have achieved strong performance on English benchmarks, yet their behavior in morphologically rich, low-resource languages remains largely unexplored. We introduce BIRDTurk, the first Turkish adaptation of the BIRD benchmark, constructed through a controlled translation pipeline that adapts schema identifiers to Turkish while strictly preserving the logical structure and execution semantics of SQL queries and databases. Translation quality is validated on a sample size determined by the Central Limit Theorem to ensure 95% confidence, achieving 98.15% accuracy on human-evaluated samples. Using BIRDTurk, we evaluate inference-based prompting, agentic multi-stage reasoning, and supervised fine-tuning. Our results reveal that Turkish introduces consistent performance degradation, driven by both structural linguistic divergence and underrepresentation in LLM pretraining, while agentic reasoning demonstrates stronger cross-lingual robustness. Supervised fine-tuning remains challenging for standard multilingual baselines but scales effectively with modern instruction-tuned models. BIRDTurk provides a controlled testbed for cross-lingual Text-to-SQL evaluation under realistic database conditions. We release the training and development splits to support future research.
comment: Accepted by EACL 2026 SIGTURK
☆ Learning Query-Specific Rubrics from Human Preferences for DeepResearch Report Generation
Nowadays, training and evaluating DeepResearch-generated reports remain challenging due to the lack of verifiable reward signals. Accordingly, rubric-based evaluation has become a common practice. However, existing approaches either rely on coarse, pre-defined rubrics that lack sufficient granularity, or depend on manually constructed query-specific rubrics that are costly and difficult to scale. In this paper, we propose a pipeline to train human-preference-aligned query-specific rubric generators tailored for DeepResearch report generation. We first construct a dataset of DeepResearch-style queries annotated with human preferences over paired reports, and train rubric generators via reinforcement learning with a hybrid reward combining human preference supervision and LLM-based rubric evaluation. To better handle long-horizon reasoning, we further introduce a Multi-agent Markov-state (MaMs) workflow for report generation. We empirically show that our proposed rubric generators deliver more discriminative and better human-aligned supervision than existing rubric design strategies. Moreover, when integrated into the MaMs training framework, DeepResearch systems equipped with our rubric generators consistently outperform all open-source baselines on the DeepResearch Bench and achieve performance comparable to that of leading closed-source models.
☆ Controlling Output Rankings in Generative Engines for LLM-based Search
The way customers search for and choose products is changing with the rise of large language models (LLMs). LLM-based search, or generative engines, provides direct product recommendations to users, rather than traditional online search results that require users to explore options themselves. However, these recommendations are strongly influenced by the initial retrieval order of LLMs, which disadvantages small businesses and independent creators by limiting their visibility. In this work, we propose CORE, an optimization method that \textbf{C}ontrols \textbf{O}utput \textbf{R}ankings in g\textbf{E}nerative Engines for LLM-based search. Since the LLM's interactions with the search engine are black-box, CORE targets the content returned by search engines as the primary means of influencing output rankings. Specifically, CORE optimizes retrieved content by appending strategically designed optimization content to steer the ranking of outputs. We introduce three types of optimization content: string-based, reasoning-based, and review-based, demonstrating their effectiveness in shaping output rankings. To evaluate CORE in realistic settings, we introduce ProductBench, a large-scale benchmark with 15 product categories and 200 products per category, where each product is associated with its top-10 recommendations collected from Amazon's search interface. Extensive experiments on four LLMs with search capabilities (GPT-4o, Gemini-2.5, Claude-4, and Grok-3) demonstrate that CORE achieves an average Promotion Success Rate of \textbf{91.4\% @Top-5}, \textbf{86.6\% @Top-3}, and \textbf{80.3\% @Top-1}, across 15 product categories, outperforming existing ranking manipulation methods while preserving the fluency of optimized content.
comment: 23 pages
☆ Efficient Algorithms for Partial Constraint Satisfaction Problems over Control-flow Graphs
In this work, we focus on the Partial Constraint Satisfaction Problem (PCSP) over control-flow graphs (CFGs) of programs. PCSP serves as a generalization of the well-known Constraint Satisfaction Problem (CSP). In the CSP framework, we define a set of variables, a set of constraints, and a finite domain $D$ that encompasses all possible values for each variable. The objective is to assign a value to each variable in such a way that all constraints are satisfied. In the graph variant of CSP, an underlying graph is considered and we have one variable corresponding to each vertex of the graph and one or several constraints corresponding to each edge. In PCSPs, we allow for certain constraints to be violated at a specified cost, aiming to find a solution that minimizes the total cost. Numerous classical compiler optimization tasks can be framed as PCSPs over control-flow graphs. Examples include Register Allocation, Lifetime-optimal Speculative Partial Redundancy Elimination (LOSPRE), and Optimal Placement of Bank Selection Instructions. On the other hand, it is well-known that control-flow graphs of structured programs are sparse and decomposable in a variety of ways. In this work, we rely on the Series-Parallel-Loop (SPL) decompositions as introduced by~\cite{RegisterAllocation}. Our main contribution is a general algorithm for PCSPs over SPL graphs with a time complexity of \(O(|G| \cdot |D|^6)\), where \(|G|\) represents the size of the control-flow graph. Note that for any fixed domain $D,$ this yields a linear-time solution. Our algorithm can be seen as a generalization and unification of previous SPL-based approaches for register allocation and LOSPRE. In addition, we provide experimental results over another classical PCSP task, i.e. Optimal Bank Selection, achieving runtimes four times better than the previous state of the art.
comment: Already accepted by SETTA'25. https://www.setta2025.uk/accepted-papers. arXiv admin note: substantial text overlap with arXiv:2507.16660
☆ CL-bench: A Benchmark for Context Learning
Current language models (LMs) excel at reasoning over prompts using pre-trained knowledge. However, real-world tasks are far more complex and context-dependent: models must learn from task-specific context and leverage new knowledge beyond what is learned during pre-training to reason and resolve tasks. We term this capability context learning, a crucial ability that humans naturally possess but has been largely overlooked. To this end, we introduce CL-bench, a real-world benchmark consisting of 500 complex contexts, 1,899 tasks, and 31,607 verification rubrics, all crafted by experienced domain experts. Each task is designed such that the new content required to resolve it is contained within the corresponding context. Resolving tasks in CL-bench requires models to learn from the context, ranging from new domain-specific knowledge, rule systems, and complex procedures to laws derived from empirical data, all of which are absent from pre-training. This goes far beyond long-context tasks that primarily test retrieval or reading comprehension, and in-context learning tasks, where models learn simple task patterns via instructions and demonstrations. Our evaluations of ten frontier LMs find that models solve only 17.2% of tasks on average. Even the best-performing model, GPT-5.1, solves only 23.7%, revealing that LMs have yet to achieve effective context learning, which poses a critical bottleneck for tackling real-world, complex context-dependent tasks. CL-bench represents a step towards building LMs with this fundamental capability, making them more intelligent and advancing their deployment in real-world scenarios.
comment: 78 pages, 17 figures
☆ $V_0$: A Generalist Value Model for Any Policy at State Zero
Policy gradient methods rely on a baseline to measure the relative advantage of an action, ensuring the model reinforces behaviors that outperform its current average capability. In the training of Large Language Models (LLMs) using Actor-Critic methods (e.g., PPO), this baseline is typically estimated by a Value Model (Critic) often as large as the policy model itself. However, as the policy continuously evolves, the value model requires expensive, synchronous incremental training to accurately track the shifting capabilities of the policy. To avoid this overhead, Group Relative Policy Optimization (GRPO) eliminates the coupled value model by using the average reward of a group of rollouts as the baseline; yet, this approach necessitates extensive sampling to maintain estimation stability. In this paper, we propose $V_0$, a Generalist Value Model capable of estimating the expected performance of any model on unseen prompts without requiring parameter updates. We reframe value estimation by treating the policy's dynamic capability as an explicit context input; specifically, we leverage a history of instruction-performance pairs to dynamically profile the model, departing from the traditional paradigm that relies on parameter fitting to perceive capability shifts. Focusing on value estimation at State Zero (i.e., the initial prompt, hence $V_0$), our model serves as a critical resource scheduler. During GRPO training, $V_0$ predicts success rates prior to rollout, allowing for efficient sampling budget allocation; during deployment, it functions as a router, dispatching instructions to the most cost-effective and suitable model. Empirical results demonstrate that $V_0$ significantly outperforms heuristic budget allocation and achieves a Pareto-optimal trade-off between performance and cost in LLM routing tasks.
☆ Use Graph When It Needs: Efficiently and Adaptively Integrating Retrieval-Augmented Generation with Graphs
Large language models (LLMs) often struggle with knowledge-intensive tasks due to hallucinations and outdated parametric knowledge. While Retrieval-Augmented Generation (RAG) addresses this by integrating external corpora, its effectiveness is limited by fragmented information in unstructured domain documents. Graph-augmented RAG (GraphRAG) emerged to enhance contextual reasoning through structured knowledge graphs, yet paradoxically underperforms vanilla RAG in real-world scenarios, exhibiting significant accuracy drops and prohibitive latency despite gains on complex queries. We identify the rigid application of GraphRAG to all queries, regardless of complexity, as the root cause. To resolve this, we propose an efficient and adaptive GraphRAG framework called EA-GraphRAG that dynamically integrates RAG and GraphRAG paradigms through syntax-aware complexity analysis. Our approach introduces: (i) a syntactic feature constructor that parses each query and extracts a set of structural features; (ii) a lightweight complexity scorer that maps these features to a continuous complexity score; and (iii) a score-driven routing policy that selects dense RAG for low-score queries, invokes graph-based retrieval for high-score queries, and applies complexity-aware reciprocal rank fusion to handle borderline cases. Extensive experiments on a comprehensive benchmark, consisting of two single-hop and two multi-hop QA benchmarks, demonstrate that our EA-GraphRAG significantly improves accuracy, reduces latency, and achieves state-of-the-art performance in handling mixed scenarios involving both simple and complex queries.
☆ ACL: Aligned Contrastive Learning Improves BERT and Multi-exit BERT Fine-tuning
Despite its success in self-supervised learning, contrastive learning is less studied in the supervised setting. In this work, we first use a set of pilot experiments to show that in the supervised setting, the cross-entropy loss objective (CE) and the contrastive learning objective often conflict with each other, thus hindering the applications of CL in supervised settings. To resolve this problem, we introduce a novel \underline{A}ligned \underline{C}ontrastive \underline{L}earning (ACL) framework. First, ACL-Embed regards label embeddings as extra augmented samples with different labels and employs contrastive learning to align the label embeddings with its samples' representations. Second, to facilitate the optimization of ACL-Embed objective combined with the CE loss, we propose ACL-Grad, which will discard the ACL-Embed term if the two objectives are in conflict. To further enhance the performances of intermediate exits of multi-exit BERT, we further propose cross-layer ACL (ACL-CL), which is to ask the teacher exit to guide the optimization of student shallow exits. Extensive experiments on the GLUE benchmark results in the following takeaways: (a) ACL-BRT outperforms or performs comparably with CE and CE+SCL on the GLUE tasks; (b) ACL, especially CL-ACL, significantly surpasses the baseline methods on the fine-tuning of multi-exit BERT, thus providing better quality-speed tradeoffs for low-latency applications.
☆ HySparse: A Hybrid Sparse Attention Architecture with Oracle Token Selection and KV Cache Sharing
This work introduces Hybrid Sparse Attention (HySparse), a new architecture that interleaves each full attention layer with several sparse attention layers. While conceptually simple, HySparse strategically derives each sparse layer's token selection and KV caches directly from the preceding full attention layer. This architecture resolves two fundamental limitations of prior sparse attention methods. First, conventional approaches typically rely on additional proxies to predict token importance, introducing extra complexity and potentially suboptimal performance. In contrast, HySparse uses the full attention layer as a precise oracle to identify important tokens. Second, existing sparse attention designs often reduce computation without saving KV cache. HySparse enables sparse attention layers to reuse the full attention KV cache, thereby reducing both computation and memory. We evaluate HySparse on both 7B dense and 80B MoE models. Across all settings, HySparse consistently outperforms both full attention and hybrid SWA baselines. Notably, in the 80B MoE model with 49 total layers, only 5 layers employ full attention, yet HySparse achieves substantial performance gains while reducing KV cache storage by nearly 10x.
comment: 17 pages, 2 figures
☆ When Single Answer Is Not Enough: Rethinking Single-Step Retrosynthesis Benchmarks for LLMs
Recent progress has expanded the use of large language models (LLMs) in drug discovery, including synthesis planning. However, objective evaluation of retrosynthesis performance remains limited. Existing benchmarks and metrics typically rely on published synthetic procedures and Top-K accuracy based on single ground-truth, which does not capture the open-ended nature of real-world synthesis planning. We propose a new benchmarking framework for single-step retrosynthesis that evaluates both general-purpose and chemistry-specialized LLMs using ChemCensor, a novel metric for chemical plausibility. By emphasizing plausibility over exact match, this approach better aligns with human synthesis planning practices. We also introduce CREED, a novel dataset comprising millions of ChemCensor-validated reaction records for LLM training, and use it to train a model that improves over the LLM baselines under this benchmark.
☆ Assessing the Impact of Typological Features on Multilingual Machine Translation in the Age of Large Language Models EACL 2026
Despite major advances in multilingual modeling, large quality disparities persist across languages. Besides the obvious impact of uneven training resources, typological properties have also been proposed to determine the intrinsic difficulty of modeling a language. The existing evidence, however, is mostly based on small monolingual language models or bilingual translation models trained from scratch. We expand on this line of work by analyzing two large pre-trained multilingual translation models, NLLB-200 and Tower+, which are state-of-the-art representatives of encoder-decoder and decoder-only machine translation, respectively. Based on a broad set of languages, we find that target language typology drives translation quality of both models, even after controlling for more trivial factors, such as data resourcedness and writing script. Additionally, languages with certain typological properties benefit more from a wider search of the output space, suggesting that such languages could profit from alternative decoding strategies beyond the standard left-to-right beam search. To facilitate further research in this area, we release a set of fine-grained typological properties for 212 languages of the FLORES+ MT evaluation benchmark.
comment: 19 pages, 11 figures, EACL 2026
☆ SEAD: Self-Evolving Agent for Multi-Turn Service Dialogue
Large Language Models have demonstrated remarkable capabilities in open-domain dialogues. However, current methods exhibit suboptimal performance in service dialogues, as they rely on noisy, low-quality human conversation data. This limitation arises from data scarcity and the difficulty of simulating authentic, goal-oriented user behaviors. To address these issues, we propose SEAD (Self-Evolving Agent for Service Dialogue), a framework that enables agents to learn effective strategies without large-scale human annotations. SEAD decouples user modeling into two components: a Profile Controller that generates diverse user states to manage training curriculum, and a User Role-play Model that focuses on realistic role-playing. This design ensures the environment provides adaptive training scenarios rather than acting as an unfair adversary. Experiments demonstrate that SEAD significantly outperforms Open-source Foundation Models and Closed-source Commercial Models, improving task completion rate by 17.6% and dialogue efficiency by 11.1%. Code is available at: https://github.com/Da1yuqin/SEAD.
☆ Can Large Language Models Generalize Procedures Across Representations?
Large language models (LLMs) are trained and tested extensively on symbolic representations such as code and graphs, yet real-world user tasks are often specified in natural language. To what extent can LLMs generalize across these representations? Here, we approach this question by studying isomorphic tasks involving procedures represented in code, graphs, and natural language (e.g., scheduling steps in planning). We find that training LLMs with popular post-training methods on graphs or code data alone does not reliably generalize to corresponding natural language tasks, while training solely on natural language can lead to inefficient performance gains. To address this gap, we propose a two-stage data curriculum that first trains on symbolic, then natural language data. The curriculum substantially improves model performance across model families and tasks. Remarkably, a 1.5B Qwen model trained by our method can closely match zero-shot GPT-4o in naturalistic planning. Finally, our analysis suggests that successful cross-representation generalization can be interpreted as a form of generative analogy, which our curriculum effectively encourages.
☆ Learning to Reason Faithfully through Step-Level Faithfulness Maximization
Reinforcement Learning with Verifiable Rewards (RLVR) has markedly improved the performance of Large Language Models (LLMs) on tasks requiring multi-step reasoning. However, most RLVR pipelines rely on sparse outcome-based rewards, providing little supervision over intermediate steps and thus encouraging over-confidence and spurious reasoning, which in turn increases hallucinations. To address this, we propose FaithRL, a general reinforcement learning framework that directly optimizes reasoning faithfulness. We formalize a faithfulness-maximization objective and theoretically show that optimizing it mitigates over-confidence. To instantiate this objective, we introduce a geometric reward design and a faithfulness-aware advantage modulation mechanism that assigns step-level credit by penalizing unsupported steps while preserving valid partial derivations. Across diverse backbones and benchmarks, FaithRL consistently reduces hallucination rates while maintaining (and often improving) answer correctness. Further analysis confirms that FaithRL increases step-wise reasoning faithfulness and generalizes robustly. Our code is available at https://github.com/aintdoin/FaithRL.
☆ Decoupling Skeleton and Flesh: Efficient Multimodal Table Reasoning with Disentangled Alignment and Structure-aware Guidance
Reasoning over table images remains challenging for Large Vision-Language Models (LVLMs) due to complex layouts and tightly coupled structure-content information. Existing solutions often depend on expensive supervised training, reinforcement learning, or external tools, limiting efficiency and scalability. This work addresses a key question: how to adapt LVLMs to table reasoning with minimal annotation and no external tools? Specifically, we first introduce DiSCo, a Disentangled Structure-Content alignment framework that explicitly separates structural abstraction from semantic grounding during multimodal alignment, efficiently adapting LVLMs to tables structures. Building on DiSCo, we further present Table-GLS, a Global-to-Local Structure-guided reasoning framework that performs table reasoning via structured exploration and evidence-grounded inference. Extensive experiments across diverse benchmarks demonstrate that our framework efficiently enhances LVLM's table understanding and reasoning capabilities, particularly generalizing to unseen table structures.
☆ Self-Verification Dilemma: Experience-Driven Suppression of Overused Checking in LLM Reasoning
Large Reasoning Models (LRMs) achieve strong performance by generating long reasoning traces with reflection. Through a large-scale empirical analysis, we find that a substantial fraction of reflective steps consist of self-verification (recheck) that repeatedly confirm intermediate results. These rechecks occur frequently across models and benchmarks, yet the vast majority are confirmatory rather than corrective, rarely identifying errors and altering reasoning outcomes. This reveals a mismatch between how often self-verification is activated and how often it is actually useful. Motivated by this, we propose a novel, experience-driven test-time framework that reduces the overused verification. Our method detects the activation of recheck behavior, consults an offline experience pool of past verification outcomes, and estimates whether a recheck is likely unnecessary via efficient retrieval. When historical experience suggests unnecessary, a suppression signal redirects the model to proceed. Across multiple model and benchmarks, our approach reduces token usage up to 20.3% while maintaining the accuracy, and in some datasets even yields accuracy improvements.
comment: 19 pages, 8 figures
☆ Preferences for Idiomatic Language are Acquired Slowly -- and Forgotten Quickly: A Case Study on Swedish ACL
In this study, we investigate how language models develop preferences for \textit{idiomatic} as compared to \textit{linguistically acceptable} Swedish, both during pretraining and when adapting a model from English to Swedish. To do so, we train models on Swedish from scratch and by fine-tuning English-pretrained models, probing their preferences at various checkpoints using minimal pairs that differ in linguistic acceptability or idiomaticity. For linguistic acceptability, we adapt existing benchmarks into a minimal-pair format. To assess idiomaticity, we introduce two novel datasets: one contrasting conventionalized idioms with plausible variants, and another contrasting idiomatic Swedish with Translationese. Our findings suggest that idiomatic competence emerges more slowly than other linguistic abilities, including grammatical and lexical correctness. While longer training yields diminishing returns for most tasks, idiom-related performance continues to improve, particularly in the largest model tested (8B). However, instruction tuning on data machine-translated from English -- the common approach for languages with little or no native instruction data -- causes models to rapidly lose their preference for idiomatic language.
comment: Accepted to TACL. Note that the arXiv version is a pre-MIT Press publication version
☆ A-RAG: Scaling Agentic Retrieval-Augmented Generation via Hierarchical Retrieval Interfaces
Frontier language models have demonstrated strong reasoning and long-horizon tool-use capabilities. However, existing RAG systems fail to leverage these capabilities. They still rely on two paradigms: (1) designing an algorithm that retrieves passages in a single shot and concatenates them into the model's input, or (2) predefining a workflow and prompting the model to execute it step-by-step. Neither paradigm allows the model to participate in retrieval decisions, preventing efficient scaling with model improvements. In this paper, we introduce A-RAG, an Agentic RAG framework that exposes hierarchical retrieval interfaces directly to the model. A-RAG provides three retrieval tools: keyword search, semantic search, and chunk read, enabling the agent to adaptively search and retrieve information across multiple granularities. Experiments on multiple open-domain QA benchmarks show that A-RAG consistently outperforms existing approaches with comparable or lower retrieved tokens, demonstrating that A-RAG effectively leverages model capabilities and dynamically adapts to different RAG tasks. We further systematically study how A-RAG scales with model size and test-time compute. We will release our code and evaluation suite to facilitate future research. Code and evaluation suite are available at https://github.com/Ayanami0730/arag.
comment: 18 pages, 8 figures
☆ DiscoverLLM: From Executing Intents to Discovering Them
To handle ambiguous and open-ended requests, Large Language Models (LLMs) are increasingly trained to interact with users to surface intents they have not yet expressed (e.g., ask clarification questions). However, users are often ambiguous because they have not yet formed their intents: they must observe and explore outcomes to discover what they want. Simply asking "what kind of tone do you want?" fails when users themselves do not know. We introduce DiscoverLLM, a novel and generalizable framework that trains LLMs to help users form and discover their intents. Central to our approach is a novel user simulator that models cognitive state with a hierarchy of intents that progressively concretize as the model surfaces relevant options -- where the degree of concretization serves as a reward signal that models can be trained to optimize. Resulting models learn to collaborate with users by adaptively diverging (i.e., explore options) when intents are unclear, and converging (i.e., refine and implement) when intents concretize. Across proposed interactive benchmarks in creative writing, technical writing, and SVG drawing, DiscoverLLM achieves over 10% higher task performance while reducing conversation length by up to 40%. In a user study with 75 human participants, DiscoverLLM improved conversation satisfaction and efficiency compared to baselines.
☆ SWE-World: Building Software Engineering Agents in Docker-Free Environments
Recent advances in large language models (LLMs) have enabled software engineering agents to tackle complex code modification tasks. Most existing approaches rely on execution feedback from containerized environments, which require dependency-complete setup and physical execution of programs and tests. While effective, this paradigm is resource-intensive and difficult to maintain, substantially complicating agent training and limiting scalability. We propose SWE-World, a Docker-free framework that replaces physical execution environments with a learned surrogate for training and evaluating software engineering agents. SWE-World leverages LLM-based models trained on real agent-environment interaction data to predict intermediate execution outcomes and final test feedback, enabling agents to learn without interacting with physical containerized environments. This design preserves the standard agent-environment interaction loop while eliminating the need for costly environment construction and maintenance during agent optimization and evaluation. Furthermore, because SWE-World can simulate the final evaluation outcomes of candidate trajectories without real submission, it enables selecting the best solution among multiple test-time attempts, thereby facilitating effective test-time scaling (TTS) in software engineering tasks. Experiments on SWE-bench Verified demonstrate that SWE-World raises Qwen2.5-Coder-32B from 6.2\% to 52.0\% via Docker-free SFT, 55.0\% with Docker-free RL, and 68.2\% with further TTS. The code is available at https://github.com/RUCAIBox/SWE-World
☆ FactNet: A Billion-Scale Knowledge Graph for Multilingual Factual Grounding
While LLMs exhibit remarkable fluency, their utility is often compromised by factual hallucinations and a lack of traceable provenance. Existing resources for grounding mitigate this but typically enforce a dichotomy: they offer either structured knowledge without textual context (e.g., knowledge bases) or grounded text with limited scale and linguistic coverage. To bridge this gap, we introduce FactNet, a massive, open-source resource designed to unify 1.7 billion atomic assertions with 3.01 billion auditable evidence pointers derived exclusively from 316 Wikipedia editions. Unlike recent synthetic approaches, FactNet employs a strictly deterministic construction pipeline, ensuring that every evidence unit is recoverable with byte-level precision. Extensive auditing confirms a high grounding precision of 92.1%, even in long-tail languages. Furthermore, we establish FactNet-Bench, a comprehensive evaluation suite for Knowledge Graph Completion, Question Answering, and Fact Checking. FactNet provides the community with a foundational, reproducible resource for training and evaluating trustworthy, verifiable multilingual systems.
☆ Verified Critical Step Optimization for LLM Agents
As large language model agents tackle increasingly complex long-horizon tasks, effective post-training becomes critical. Prior work faces fundamental challenges: outcome-only rewards fail to precisely attribute credit to intermediate steps, estimated step-level rewards introduce systematic noise, and Monte Carlo sampling approaches for step reward estimation incur prohibitive computational cost. Inspired by findings that only a small fraction of high-entropy tokens drive effective RL for reasoning, we propose Critical Step Optimization (CSO), which focuses preference learning on verified critical steps, decision points where alternate actions demonstrably flip task outcomes from failure to success. Crucially, our method starts from failed policy trajectories rather than expert demonstrations, directly targeting the policy model's weaknesses. We use a process reward model (PRM) to identify candidate critical steps, leverage expert models to propose high-quality alternatives, then continue execution from these alternatives using the policy model itself until task completion. Only alternatives that the policy successfully executes to correct outcomes are verified and used as DPO training data, ensuring both quality and policy reachability. This yields fine-grained, verifiable supervision at critical decisions while avoiding trajectory-level coarseness and step-level noise. Experiments on GAIA-Text-103 and XBench-DeepSearch show that CSO achieves 37% and 26% relative improvement over the SFT baseline and substantially outperforms other post-training methods, while requiring supervision at only 16% of trajectory steps. This demonstrates the effectiveness of selective verification-based learning for agent post-training.
comment: Working in progress
☆ SWE-Master: Unleashing the Potential of Software Engineering Agents via Post-Training
In this technical report, we present SWE-Master, an open-source and fully reproducible post-training framework for building effective software engineering agents. SWE-Master systematically explores the complete agent development pipeline, including teacher-trajectory synthesis and data curation, long-horizon SFT, RL with real execution feedback, and inference framework design. Starting from an open-source base model with limited initial SWE capability, SWE-Master demonstrates how systematical optimization method can elicit strong long-horizon SWE task solving abilities. We evaluate SWE-Master on SWE-bench Verified, a standard benchmark for realistic software engineering tasks. Under identical experimental settings, our approach achieves a resolve rate of 61.4\% with Qwen2.5-Coder-32B, substantially outperforming existing open-source baselines. By further incorporating test-time scaling~(TTS) with LLM-based environment feedback, SWE-Master reaches 70.8\% at TTS@8, demonstrating a strong performance potential. SWE-Master provides a practical and transparent foundation for advancing reproducible research on software engineering agents. The code is available at https://github.com/RUCAIBox/SWE-Master.
☆ Towards Distillation-Resistant Large Language Models: An Information-Theoretic Perspective
Proprietary large language models (LLMs) embody substantial economic value and are generally exposed only as black-box APIs, yet adversaries can still exploit their outputs to extract knowledge via distillation. Existing defenses focus exclusively on text-based distillation, leaving the important logit-based distillation largely unexplored. In this work, we analyze this problem and present an effective solution from an information-theoretic perspective. We characterize distillation-relevant information in teacher outputs using the conditional mutual information (CMI) between teacher logits and input queries conditioned on ground-truth labels. This quantity captures contextual information beneficial for model extraction, motivating us to defend distillation via CMI minimization. Guided by our theoretical analysis, we propose learning a transformation matrix that purifies the original outputs to enhance distillation resistance. We further derive a CMI-inspired anti-distillation objective to optimize this transformation, which effectively removes distillation-relevant information while preserving output utility. Extensive experiments across multiple LLMs and strong distillation algorithms demonstrate that the proposed method significantly degrades distillation performance while preserving task accuracy, effectively protecting models' intellectual property.
☆ Pursuing Best Industrial Practices for Retrieval-Augmented Generation in the Medical Domain
While retrieval augmented generation (RAG) has been swiftly adopted in industrial applications based on large language models (LLMs), there is no consensus on what are the best practices for building a RAG system in terms of what are the components, how to organize these components and how to implement each component for the industrial applications, especially in the medical domain. In this work, we first carefully analyze each component of the RAG system and propose practical alternatives for each component. Then, we conduct systematic evaluations on three types of tasks, revealing the best practices for improving the RAG system and how LLM-based RAG systems make trade-offs between performance and efficiency.
☆ MeKi: Memory-based Expert Knowledge Injection for Efficient LLM Scaling
Scaling Large Language Models (LLMs) typically relies on increasing the number of parameters or test-time computations to boost performance. However, these strategies are impractical for edge device deployment due to limited RAM and NPU resources. Despite hardware constraints, deploying performant LLM on edge devices such as smartphone remains crucial for user experience. To address this, we propose MeKi (Memory-based Expert Knowledge Injection), a novel system that scales LLM capacity via storage space rather than FLOPs. MeKi equips each Transformer layer with token-level memory experts that injects pre-stored semantic knowledge into the generation process. To bridge the gap between training capacity and inference efficiency, we employ a re-parameterization strategy to fold parameter matrices used during training into a compact static lookup table. By offloading the knowledge to ROM, MeKi decouples model capacity from computational cost, introducing zero inference latency overhead. Extensive experiments demonstrate that MeKi significantly outperforms dense LLM baselines with identical inference speed, validating the effectiveness of memory-based scaling paradigm for on-device LLMs. Project homepage is at https://github.com/ningding-o/MeKi.
☆ GFlowPO: Generative Flow Network as a Language Model Prompt Optimizer
Finding effective prompts for language models (LMs) is critical yet notoriously difficult: the prompt space is combinatorially large, rewards are sparse due to expensive target-LM evaluation. Yet, existing RL-based prompt optimizers often rely on on-policy updates and a meta-prompt sampled from a fixed distribution, leading to poor sample efficiency. We propose GFlowPO, a probabilistic prompt optimization framework that casts prompt search as a posterior inference problem over latent prompts regularized by a meta-prompted reference-LM prior. In the first step, we fine-tune a lightweight prompt-LM with an off-policy Generative Flow Network (GFlowNet) objective, using a replay-based training policy that reuses past prompt evaluations to enable sample-efficient exploration. In the second step, we introduce Dynamic Memory Update (DMU), a training-free mechanism that updates the meta-prompt by injecting both (i) diverse prompts from a replay buffer and (ii) top-performing prompts from a small priority queue, thereby progressively concentrating the search process on high-reward regions. Across few-shot text classification, instruction induction benchmarks, and question answering tasks, GFlowPO consistently outperforms recent discrete prompt optimization baselines.
☆ PEGRL: Improving Machine Translation by Post-Editing Guided Reinforcement Learning
Reinforcement learning (RL) has shown strong promise for LLM-based machine translation, with recent methods such as GRPO demonstrating notable gains; nevertheless, translation-oriented RL remains challenged by noisy learning signals arising from Monte Carlo return estimation, as well as a large trajectory space that favors global exploration over fine-grained local optimization. We introduce \textbf{PEGRL}, a \textit{two-stage} RL framework that uses post-editing as an auxiliary task to stabilize training and guide overall optimization. At each iteration, translation outputs are sampled to construct post-editing inputs, allowing return estimation in the post-editing stage to benefit from conditioning on the current translation behavior, while jointly supporting both global exploration and fine-grained local optimization. A task-specific weighting scheme further balances the contributions of translation and post-editing objectives, yielding a biased yet more sample-efficient estimator. Experiments on English$\to$Finnish, English$\to$Turkish, and English$\leftrightarrow$Chinese show consistent gains over RL baselines, and for English$\to$Turkish, performance on COMET-KIWI is comparable to advanced LLM-based systems (DeepSeek-V3.2).
☆ Robustness as an Emergent Property of Task Performance
Robustness is often regarded as a critical future challenge for real-world applications, where stability is essential. However, as models often learn tasks in a similar order, we hypothesize that easier tasks will be easier regardless of how they are presented to the model. Indeed, in this paper, we show that as models approach high performance on a task, robustness is effectively achieved. Through an empirical analysis of multiple models across diverse datasets and configurations (e.g., paraphrases, different temperatures), we find a strong positive correlation. Moreover, we find that robustness is primarily driven by task-specific competence rather than inherent model-level properties, challenging current approaches that treat robustness as an independent capability. Thus, from a high-level perspective, we may expect that as new tasks saturate, model robustness on these tasks will emerge accordingly. For researchers, this implies that explicit efforts to measure and improve robustness may warrant reduced emphasis, as such robustness is likely to develop alongside performance gains. For practitioners, it acts as a sign that indeed the tasks that the literature deals with are unreliable, but on easier past tasks, the models are reliable and ready for real-world deployment.
☆ Accurate Failure Prediction in Agents Does Not Imply Effective Failure Prevention
Proactive interventions by LLM critic models are often assumed to improve reliability, yet their effects at deployment time are poorly understood. We show that a binary LLM critic with strong offline accuracy (AUROC 0.94) can nevertheless cause severe performance degradation, inducing a 26 percentage point (pp) collapse on one model while affecting another by near zero pp. This variability demonstrates that LLM critic accuracy alone is insufficient to determine whether intervention is safe. We identify a disruption-recovery tradeoff: interventions may recover failing trajectories but also disrupt trajectories that would have succeeded. Based on this insight, we propose a pre-deployment test that uses a small pilot of 50 tasks to estimate whether intervention is likely to help or harm, without requiring full deployment. Across benchmarks, the test correctly anticipates outcomes: intervention degrades performance on high-success tasks (0 to -26 pp), while yielding a modest improvement on the high-failure ALFWorld benchmark (+2.8 pp, p=0.014). The primary value of our framework is therefore identifying when not to intervene, preventing severe regressions before deployment.
☆ MIRROR: A Multi-Agent Framework with Iterative Adaptive Revision and Hierarchical Retrieval for Optimization Modeling in Operations Research
Operations Research (OR) relies on expert-driven modeling-a slow and fragile process ill-suited to novel scenarios. While large language models (LLMs) can automatically translate natural language into optimization models, existing approaches either rely on costly post-training or employ multi-agent frameworks, yet most still lack reliable collaborative error correction and task-specific retrieval, often leading to incorrect outputs. We propose MIRROR, a fine-tuning-free, end-to-end multi-agent framework that directly translates natural language optimization problems into mathematical models and solver code. MIRROR integrates two core mechanisms: (1) execution-driven iterative adaptive revision for automatic error correction, and (2) hierarchical retrieval to fetch relevant modeling and coding exemplars from a carefully curated exemplar library. Experiments show that MIRROR outperforms existing methods on standard OR benchmarks, with notable results on complex industrial datasets such as IndustryOR and Mamo-ComplexLP. By combining precise external knowledge infusion with systematic error correction, MIRROR provides non-expert users with an efficient and reliable OR modeling solution, overcoming the fundamental limitations of general-purpose LLMs in expert optimization tasks.
☆ R1-SyntheticVL: Is Synthetic Data from Generative Models Ready for Multimodal Large Language Model?
In this work, we aim to develop effective data synthesis techniques that autonomously synthesize multimodal training data for enhancing MLLMs in solving complex real-world tasks. To this end, we propose Collective Adversarial Data Synthesis (CADS), a novel and general approach to synthesize high-quality, diverse and challenging multimodal data for MLLMs. The core idea of CADS is to leverage collective intelligence to ensure high-quality and diverse generation, while exploring adversarial learning to synthesize challenging samples for effectively driving model improvement. Specifically, CADS operates with two cyclic phases, i.e., Collective Adversarial Data Generation (CAD-Generate) and Collective Adversarial Data Judgment (CAD-Judge). CAD-Generate leverages collective knowledge to jointly generate new and diverse multimodal data, while CAD-Judge collaboratively assesses the quality of synthesized data. In addition, CADS introduces an Adversarial Context Optimization mechanism to optimize the generation context to encourage challenging and high-value data generation. With CADS, we construct MMSynthetic-20K and train our model R1-SyntheticVL, which demonstrates superior performance on various benchmarks.
☆ POP: Prefill-Only Pruning for Efficient Large Model Inference
Large Language Models (LLMs) and Vision-Language Models (VLMs) have demonstrated remarkable capabilities. However, their deployment is hindered by significant computational costs. Existing structured pruning methods, while hardware-efficient, often suffer from significant accuracy degradation. In this paper, we argue that this failure stems from a stage-agnostic pruning approach that overlooks the asymmetric roles between the prefill and decode stages. By introducing a virtual gate mechanism, our importance analysis reveals that deep layers are critical for next-token prediction (decode) but largely redundant for context encoding (prefill). Leveraging this insight, we propose Prefill-Only Pruning (POP), a stage-aware inference strategy that safely omits deep layers during the computationally intensive prefill stage while retaining the full model for the sensitive decode stage. To enable the transition between stages, we introduce independent Key-Value (KV) projections to maintain cache integrity, and a boundary handling strategy to ensure the accuracy of the first generated token. Extensive experiments on Llama-3.1, Qwen3-VL, and Gemma-3 across diverse modalities demonstrate that POP achieves up to 1.37$\times$ speedup in prefill latency with minimal performance loss, effectively overcoming the accuracy-efficiency trade-off limitations of existing structured pruning methods.
☆ Mići Princ -- A Little Boy Teaching Speech Technologies the Chakavian Dialect
This paper documents our efforts in releasing the printed and audio book of the translation of the famous novel The Little Prince into the Chakavian dialect, as a computer-readable, AI-ready dataset, with the textual and the audio components of the two releases now aligned on the level of each written and spoken word. Our motivation for working on this release is multiple. The first one is our wish to preserve the highly valuable and specific content beyond the small editions of the printed and the audio book. With the dataset published in the CLARIN.SI repository, this content is from now on at the fingertips of any interested individual. The second motivation is to make the data available for various artificial-intelligence-related usage scenarios, such as the one we follow upon inside this paper already -- adapting the Whisper-large-v3 open automatic speech recognition model, with decent performance on standard Croatian, to Chakavian dialectal speech. We can happily report that with adapting the model, the word error rate on the selected test data has being reduced to a half, while we managed to remove up to two thirds of the error on character level. We envision many more usages of this dataset beyond the set of experiments we have already performed, both on tasks of artificial intelligence research and application, as well as dialectal research. The third motivation for this release is our hope that this, now highly structured dataset, will be transformed into a digital online edition of this work, allowing individuals beyond the research and technology communities to enjoy the beauty of the message of the little boy in the desert, told through the spectacular prism of the Chakavian dialect.
comment: 2 figures, 14 pages, accepted and presented at JTDH 2024
☆ Merging Beyond: Streaming LLM Updates via Activation-Guided Rotations
The escalating scale of Large Language Models (LLMs) necessitates efficient adaptation techniques. Model merging has gained prominence for its efficiency and controllability. However, existing merging techniques typically serve as post-hoc refinements or focus on mitigating task interference, often failing to capture the dynamic optimization benefits of supervised fine-tuning (SFT). In this work, we propose Streaming Merging, an innovative model updating paradigm that conceptualizes merging as an iterative optimization process. Central to this paradigm is \textbf{ARM} (\textbf{A}ctivation-guided \textbf{R}otation-aware \textbf{M}erging), a strategy designed to approximate gradient descent dynamics. By treating merging coefficients as learning rates and deriving rotation vectors from activation subspaces, ARM effectively steers parameter updates along data-driven trajectories. Unlike conventional linear interpolation, ARM aligns semantic subspaces to preserve the geometric structure of high-dimensional parameter evolution. Remarkably, ARM requires only early SFT checkpoints and, through iterative merging, surpasses the fully converged SFT model. Experimental results across model scales (1.7B to 14B) and diverse domains (e.g., math, code) demonstrate that ARM can transcend converged checkpoints. Extensive experiments show that ARM provides a scalable and lightweight framework for efficient model adaptation.
☆ ATACompressor: Adaptive Task-Aware Compression for Efficient Long-Context Processing in LLMs
Long-context inputs in large language models (LLMs) often suffer from the "lost in the middle" problem, where critical information becomes diluted or ignored due to excessive length. Context compression methods aim to address this by reducing input size, but existing approaches struggle with balancing information preservation and compression efficiency. We propose Adaptive Task-Aware Compressor (ATACompressor), which dynamically adjusts compression based on the specific requirements of the task. ATACompressor employs a selective encoder that compresses only the task-relevant portions of long contexts, ensuring that essential information is preserved while reducing unnecessary content. Its adaptive allocation controller perceives the length of relevant content and adjusts the compression rate accordingly, optimizing resource utilization. We evaluate ATACompressor on three QA datasets: HotpotQA, MSMARCO, and SQUAD-showing that it outperforms existing methods in terms of both compression efficiency and task performance. Our approach provides a scalable solution for long-context processing in LLMs. Furthermore, we perform a range of ablation studies and analysis experiments to gain deeper insights into the key components of ATACompressor.
☆ Token Sparse Attention: Efficient Long-Context Inference with Interleaved Token Selection
The quadratic complexity of attention remains the central bottleneck in long-context inference for large language models. Prior acceleration methods either sparsify the attention map with structured patterns or permanently evict tokens at specific layers, which can retain irrelevant tokens or rely on irreversible early decisions despite the layer-/head-wise dynamics of token importance. In this paper, we propose Token Sparse Attention, a lightweight and dynamic token-level sparsification mechanism that compresses per-head $Q$, $K$, $V$ to a reduced token set during attention and then decompresses the output back to the original sequence, enabling token information to be reconsidered in subsequent layers. Furthermore, Token Sparse Attention exposes a new design point at the intersection of token selection and sparse attention. Our approach is fully compatible with dense attention implementations, including Flash Attention, and can be seamlessly composed with existing sparse attention kernels. Experimental results show that Token Sparse Attention consistently improves accuracy-latency trade-off, achieving up to $\times$3.23 attention speedup at 128K context with less than 1% accuracy degradation. These results demonstrate that dynamic and interleaved token-level sparsification is a complementary and effective strategy for scalable long-context inference.
☆ ForesightKV: Optimizing KV Cache Eviction for Reasoning Models by Learning Long-Term Contribution
Recently, large language models (LLMs) have shown remarkable reasoning abilities by producing long reasoning traces. However, as the sequence length grows, the key-value (KV) cache expands linearly, incurring significant memory and computation costs. Existing KV cache eviction methods mitigate this issue by discarding less important KV pairs, but often fail to capture complex KV dependencies, resulting in performance degradation. To better balance efficiency and performance, we introduce ForesightKV, a training-based KV cache eviction framework that learns to predict which KV pairs to evict during long-text generations. We first design the Golden Eviction algorithm, which identifies the optimal eviction KV pairs at each step using future attention scores. These traces and the scores at each step are then distilled via supervised training with a Pairwise Ranking Loss. Furthermore, we formulate cache eviction as a Markov Decision Process and apply the GRPO algorithm to mitigate the significant language modeling loss increase on low-entropy tokens. Experiments on AIME2024 and AIME2025 benchmarks of three reasoning models demonstrate that ForesightKV consistently outperforms prior methods under only half the cache budget, while benefiting synergistically from both supervised and reinforcement learning approaches.
Prompt Augmentation Scales up GRPO Training on Mathematical Reasoning
Reinforcement learning algorithms such as group-relative policy optimization (GRPO) have demonstrated strong potential for improving the mathematical reasoning capabilities of large language models. However, prior work has consistently observed an entropy collapse phenomenon during reinforcement post-training, characterized by a monotonic decrease in policy entropy that ultimately leads to training instability and collapse. As a result, most existing approaches restrict training to short horizons (typically 5-20 epochs), limiting sustained exploration and hindering further policy improvement. In addition, nearly all prior work relies on a single, fixed reasoning prompt or template during training. In this work, we introduce prompt augmentation, a training strategy that instructs the model to generate reasoning traces under diverse templates and formats, thereby increasing rollout diversity. We show that, without a KL regularization term, prompt augmentation enables stable scaling of training duration under a fixed dataset and allows the model to tolerate low-entropy regimes without premature collapse. Empirically, a Qwen2.5-Math-1.5B model trained with prompt augmentation on the MATH Level 3-5 dataset achieves state-of-the-art performance, reaching 44.5 per-benchmark accuracy and 51.3 per-question accuracy on standard mathematical reasoning benchmarks, including AIME24, AMC, MATH500, Minerva, and OlympiadBench. The code and model checkpoints are available at https://github.com/wenquanlu/prompt-augmentation-GRPO.
☆ DynSplit-KV: Dynamic Semantic Splitting for KVCache Compression in Efficient Long-Context LLM Inference
Although Key-Value (KV) Cache is essential for efficient large language models (LLMs) inference, its growing memory footprint in long-context scenarios poses a significant bottleneck, making KVCache compression crucial. Current compression methods rely on rigid splitting strategies, such as fixed intervals or pre-defined delimiters. We observe that rigid splitting suffers from significant accuracy degradation (ranging from 5.5% to 55.1%) across different scenarios, owing to the scenario-dependent nature of the semantic boundaries. This highlights the necessity of dynamic semantic splitting to match semantics. To achieve this, we face two challenges. (1) Improper delimiter selection misaligns semantics with the KVCache, resulting in 28.6% accuracy loss. (2) Variable-length blocks after splitting introduce over 73.1% additional inference overhead. To address the above challenges, we propose DynSplit-KV, a KVCache compression method that dynamically identifies delimiters for splitting. We propose: (1) a dynamic importance-aware delimiter selection strategy, improving accuracy by 49.9%. (2) A uniform mapping strategy that transforms variable-length semantic blocks into a fixed-length format, reducing inference overhead by 4.9x. Experiments show that DynSplit-KV achieves the highest accuracy, 2.2x speedup compared with FlashAttention and 2.6x peak memory reduction in long-context scenarios.
☆ Privasis: Synthesizing the Largest "Public" Private Dataset from Scratch
Research involving privacy-sensitive data has always been constrained by data scarcity, standing in sharp contrast to other areas that have benefited from data scaling. This challenge is becoming increasingly urgent as modern AI agents--such as OpenClaw and Gemini Agent--are granted persistent access to highly sensitive personal information. To tackle this longstanding bottleneck and the rising risks, we present Privasis (i.e., privacy oasis), the first million-scale fully synthetic dataset entirely built from scratch--an expansive reservoir of texts with rich and diverse private information--designed to broaden and accelerate research in areas where processing sensitive social data is inevitable. Compared to existing datasets, Privasis, comprising 1.4 million records, offers orders-of-magnitude larger scale with quality, and far greater diversity across various document types, including medical history, legal documents, financial records, calendars, and text messages with a total of 55.1 million annotated attributes such as ethnicity, date of birth, workplace, etc. We leverage Privasis to construct a parallel corpus for text sanitization with our pipeline that decomposes texts and applies targeted sanitization. Our compact sanitization models (<=4B) trained on this dataset outperform state-of-the-art large language models, such as GPT-5 and Qwen-3 235B. We plan to release data, models, and code to accelerate future research on privacy-sensitive domains and agents.
comment: For code and data, see https://privasis.github.io
☆ VALUEFLOW: Toward Pluralistic and Steerable Value-based Alignment in Large Language Models
Aligning Large Language Models (LLMs) with the diverse spectrum of human values remains a central challenge: preference-based methods often fail to capture deeper motivational principles. Value-based approaches offer a more principled path, yet three gaps persist: extraction often ignores hierarchical structure, evaluation detects presence but not calibrated intensity, and the steerability of LLMs at controlled intensities remains insufficiently understood. To address these limitations, we introduce VALUEFLOW, the first unified framework that spans extraction, evaluation, and steering with calibrated intensity control. The framework integrates three components: (i) HIVES, a hierarchical value embedding space that captures intra- and cross-theory value structure; (ii) the Value Intensity DataBase (VIDB), a large-scale resource of value-labeled texts with intensity estimates derived from ranking-based aggregation; and (iii) an anchor-based evaluator that produces consistent intensity scores for model outputs by ranking them against VIDB panels. Using VALUEFLOW, we conduct a comprehensive large-scale study across ten models and four value theories, identifying asymmetries in steerability and composition laws for multi-value control. This paper establishes a scalable infrastructure for evaluating and controlling value intensity, advancing pluralistic alignment of LLMs.
☆ FASA: Frequency-aware Sparse Attention ICLR 2026
The deployment of Large Language Models (LLMs) faces a critical bottleneck when handling lengthy inputs: the prohibitive memory footprint of the Key Value (KV) cache. To address this bottleneck, the token pruning paradigm leverages attention sparsity to selectively retain a small, critical subset of tokens. However, existing approaches fall short, with static methods risking irreversible information loss and dynamic strategies employing heuristics that insufficiently capture the query-dependent nature of token importance. We propose FASA, a novel framework that achieves query-aware token eviction by dynamically predicting token importance. FASA stems from a novel insight into RoPE: the discovery of functional sparsity at the frequency-chunk (FC) level. Our key finding is that a small, identifiable subset of "dominant" FCs consistently exhibits high contextual agreement with the full attention head. This provides a robust and computationally free proxy for identifying salient tokens. %making them a powerful and efficient proxy for token importance. Building on this insight, FASA first identifies a critical set of tokens using dominant FCs, and then performs focused attention computation solely on this pruned subset. % Since accessing only a small fraction of the KV cache, FASA drastically lowers memory bandwidth requirements and computational cost. Across a spectrum of long-context tasks, from sequence modeling to complex CoT reasoning, FASA consistently outperforms all token-eviction baselines and achieves near-oracle accuracy, demonstrating remarkable robustness even under constraint budgets. Notably, on LongBench-V1, FASA reaches nearly 100\% of full-KV performance when only keeping 256 tokens, and achieves 2.56$\times$ speedup using just 18.9\% of the cache on AIME24.
comment: Accepted by ICLR 2026
☆ Self-Hinting Language Models Enhance Reinforcement Learning
Group Relative Policy Optimization (GRPO) has recently emerged as a practical recipe for aligning large language models with verifiable objectives. However, under sparse terminal rewards, GRPO often stalls because rollouts within a group frequently receive identical rewards, causing relative advantages to collapse and updates to vanish. We propose self-hint aligned GRPO with privileged supervision (SAGE), an on-policy reinforcement learning framework that injects privileged hints during training to reshape the rollout distribution under the same terminal verifier reward. For each prompt $x$, the model samples a compact hint $h$ (e.g., a plan or decomposition) and then generates a solution $τ$ conditioned on $(x,h)$. Crucially, the task reward $R(x,τ)$ is unchanged; hints only increase within-group outcome diversity under finite sampling, preventing GRPO advantages from collapsing under sparse rewards. At test time, we set $h=\varnothing$ and deploy the no-hint policy without any privileged information. Moreover, sampling diverse self-hints serves as an adaptive curriculum that tracks the learner's bottlenecks more effectively than fixed hints from an initial policy or a stronger external model. Experiments over 6 benchmarks with 3 LLMs show that SAGE consistently outperforms GRPO, on average +2.0 on Llama-3.2-3B-Instruct, +1.2 on Qwen2.5-7B-Instruct and +1.3 on Qwen3-4B-Instruct. The code is available at https://github.com/BaohaoLiao/SAGE.
☆ Short Chains, Deep Thoughts: Balancing Reasoning Efficiency and Intra-Segment Capability via Split-Merge Optimization
While Large Reasoning Models (LRMs) have demonstrated impressive capabilities in solving complex tasks through the generation of long reasoning chains, this reliance on verbose generation results in significant latency and computational overhead. To address these challenges, we propose \textbf{CoSMo} (\textbf{Co}nsistency-Guided \textbf{S}plit-\textbf{M}erge \textbf{O}ptimization), a framework designed to eliminate structural redundancy rather than indiscriminately restricting token volume. Specifically, CoSMo utilizes a split-merge algorithm that dynamically refines reasoning chains by merging redundant segments and splitting logical gaps to ensure coherence. We then employ structure-aligned reinforcement learning with a novel segment-level budget to supervise the model in maintaining efficient reasoning structures throughout training. Extensive experiments across multiple benchmarks and backbones demonstrate that CoSMo achieves superior performance, improving accuracy by \textbf{3.3} points while reducing segment usage by \textbf{28.7\%} on average compared to reasoning efficiency baselines.
☆ One Model, All Roles: Multi-Turn, Multi-Agent Self-Play Reinforcement Learning for Conversational Social Intelligence
This paper introduces OMAR: One Model, All Roles, a reinforcement learning framework that enables AI to develop social intelligence through multi-turn, multi-agent conversational self-play. Unlike traditional paradigms that rely on static, single-turn optimizations, OMAR allows a single model to role-play all participants in a conversation simultaneously, learning to achieve long-term goals and complex social norms directly from dynamic social interaction. To ensure training stability across long dialogues, we implement a hierarchical advantage estimation that calculates turn-level and token-level advantages. Evaluations in the SOTOPIA social environment and Werewolf strategy games show that our trained models develop fine-grained, emergent social intelligence, such as empathy, persuasion, and compromise seeking, demonstrating the effectiveness of learning collaboration even under competitive scenarios. While we identify practical challenges like reward hacking, our results show that rich social intelligence can emerge without human supervision. We hope this work incentivizes further research on AI social intelligence in group conversations.
☆ ChemPro: A Progressive Chemistry Benchmark for Large Language Models
We introduce ChemPro, a progressive benchmark with 4100 natural language question-answer pairs in Chemistry, across 4 coherent sections of difficulty designed to assess the proficiency of Large Language Models (LLMs) in a broad spectrum of general chemistry topics. We include Multiple Choice Questions and Numerical Questions spread across fine-grained information recall, long-horizon reasoning, multi-concept questions, problem-solving with nuanced articulation, and straightforward questions in a balanced ratio, effectively covering Bio-Chemistry, Inorganic-Chemistry, Organic-Chemistry and Physical-Chemistry. ChemPro is carefully designed analogous to a student's academic evaluation for basic to high-school chemistry. A gradual increase in the question difficulty rigorously tests the ability of LLMs to progress from solving basic problems to solving more sophisticated challenges. We evaluate 45+7 state-of-the-art LLMs, spanning both open-source and proprietary variants, and our analysis reveals that while LLMs perform well on basic chemistry questions, their accuracy declines with different types and levels of complexity. These findings highlight the critical limitations of LLMs in general scientific reasoning and understanding and point towards understudied dimensions of difficulty, emphasizing the need for more robust methodologies to improve LLMs.
☆ The Mask of Civility: Benchmarking Chinese Mock Politeness Comprehension in Large Language Models
From a pragmatic perspective, this study systematically evaluates the differences in performance among representative large language models (LLMs) in recognizing politeness, impoliteness, and mock politeness phenomena in Chinese. Addressing the existing gaps in pragmatic comprehension, the research adopts the frameworks of Rapport Management Theory and the Model of Mock Politeness to construct a three-category dataset combining authentic and simulated Chinese discourse. Six representative models, including GPT-5.1 and DeepSeek, were selected as test subjects and evaluated under four prompting conditions: zero-shot, few-shot, knowledge-enhanced, and hybrid strategies. This study serves as a meaningful attempt within the paradigm of ``Great Linguistics,'' offering a novel approach to applying pragmatic theory in the age of technological transformation. It also responds to the contemporary question of how technology and the humanities may coexist, representing an interdisciplinary endeavor that bridges linguistic technology and humanistic reflection.
comment: Preprint
☆ Task--Specificity Score: Measuring How Much Instructions Really Matter for Supervision
Instruction tuning is now the default way to train and adapt large language models, but many instruction--input--output pairs are only weakly specified: for a given input, the same output can remain plausible under several alternative instructions. This raises a simple question: \emph{does the instruction uniquely determine the target output?} We propose the \textbf{Task--Specificity Score (TSS)} to quantify how much an instruction matters for predicting its output, by contrasting the true instruction against plausible alternatives for the same input. We further introduce \textbf{TSS++}, which uses hard alternatives and a small quality term to mitigate easy-negative effects. Across three instruction datasets (\textsc{Alpaca}, \textsc{Dolly-15k}, \textsc{NI-20}) and three open LLMs (Gemma, Llama, Qwen), we show that selecting task-specific examples improves downstream performance under tight token budgets and complements quality-based filters such as perplexity and IFD.
☆ Test-time Recursive Thinking: Self-Improvement without External Feedback
Modern Large Language Models (LLMs) have shown rapid improvements in reasoning capabilities, driven largely by reinforcement learning (RL) with verifiable rewards. Here, we ask whether these LLMs can self-improve without the need for additional training. We identify two core challenges for such systems: (i) efficiently generating diverse, high-quality candidate solutions, and (ii) reliably selecting correct answers in the absence of ground-truth supervision. To address these challenges, we propose Test-time Recursive Thinking (TRT), an iterative self-improvement framework that conditions generation on rollout-specific strategies, accumulated knowledge, and self-generated verification signals. Using TRT, open-source models reach 100% accuracy on AIME-25/24, and on LiveCodeBench's most difficult problems, closed-source models improve by 10.4-14.8 percentage points without external feedback.
☆ AERO: Autonomous Evolutionary Reasoning Optimization via Endogenous Dual-Loop Feedback
Large Language Models (LLMs) have achieved significant success in complex reasoning but remain bottlenecked by reliance on expert-annotated data and external verifiers. While existing self-evolution paradigms aim to bypass these constraints, they often fail to identify the optimal learning zone and risk reinforcing collective hallucinations and incorrect priors through flawed internal feedback. To address these challenges, we propose \underline{A}utonomous \underline{E}volutionary \underline{R}easoning \underline{O}ptimization (AERO), an unsupervised framework that achieves autonomous reasoning evolution by internalizing self-questioning, answering, and criticism within a synergistic dual-loop system. Inspired by the \textit{Zone of Proximal Development (ZPD)} theory, AERO utilizes entropy-based positioning to target the ``solvability gap'' and employs Independent Counterfactual Correction for robust verification. Furthermore, we introduce a Staggered Training Strategy to synchronize capability growth across functional roles and prevent curriculum collapse. Extensive evaluations across nine benchmarks spanning three domains demonstrate that AERO achieves average performance improvements of 4.57\% on Qwen3-4B-Base and 5.10\% on Qwen3-8B-Base, outperforming competitive baselines. Code is available at https://github.com/mira-ai-lab/AERO.
☆ ReMiT: RL-Guided Mid-Training for Iterative LLM Evolution
Standard training pipelines for large language models (LLMs) are typically unidirectional, progressing from pre-training to post-training. However, the potential for a bidirectional process--where insights from post-training retroactively improve the pre-trained foundation--remains unexplored. We aim to establish a self-reinforcing flywheel: a cycle in which reinforcement learning (RL)-tuned model strengthens the base model, which in turn enhances subsequent post-training performance, requiring no specially trained teacher or reference model. To realize this, we analyze training dynamics and identify the mid-training (annealing) phase as a critical turning point for model capabilities. This phase typically occurs at the end of pre-training, utilizing high-quality corpora under a rapidly decaying learning rate. Building upon this insight, we introduce ReMiT (Reinforcement Learning-Guided Mid-Training). Specifically, ReMiT leverages the reasoning priors of RL-tuned models to dynamically reweight tokens during the mid-training phase, prioritizing those pivotal for reasoning. Empirically, ReMiT achieves an average improvement of 3\% on 10 pre-training benchmarks, spanning math, code, and general reasoning, and sustains these gains by over 2\% throughout the post-training pipeline. These results validate an iterative feedback loop, enabling continuous and self-reinforcing evolution of LLMs.
comment: 25 pages
☆ From Speech-to-Spatial: Grounding Utterances on A Live Shared View with Augmented Reality
We introduce Speech-to-Spatial, a referent disambiguation framework that converts verbal remote-assistance instructions into spatially grounded AR guidance. Unlike prior systems that rely on additional cues (e.g., gesture, gaze) or manual expert annotations, Speech-to-Spatial infers the intended target solely from spoken references (speech input). Motivated by our formative study of speech referencing patterns, we characterize recurring ways people specify targets (Direct Attribute, Relational, Remembrance, and Chained) and ground them to our object-centric relational graph. Given an utterance, referent cues are parsed and rendered as persistent in-situ AR visual guidance, reducing iterative micro-guidance ("a bit more to the right", "now, stop.") during remote guidance. We demonstrate the use cases of our system with remote guided assistance and intent disambiguation scenarios. Our evaluation shows that Speechto-Spatial improves task efficiency, reduces cognitive load, and enhances usability compared to a conventional voice-only baseline, transforming disembodied verbal instruction into visually explainable, actionable guidance on a live shared view.
comment: 11 pages, 6 figures. This is the author's version of the article that will appear at the IEEE Conference on Virtual Reality and 3D User Interfaces (IEEE VR) 2026
☆ MAS-ProVe: Understanding the Process Verification of Multi-Agent Systems
Multi-Agent Systems (MAS) built on Large Language Models (LLMs) often exhibit high variance in their reasoning trajectories. Process verification, which evaluates intermediate steps in trajectories, has shown promise in general reasoning settings, and has been suggested as a potential tool for guiding coordination of MAS; however, its actual effectiveness in MAS remains unclear. To fill this gap, we present MAS-ProVe, a systematic empirical study of process verification for multi-agent systems (MAS). Our study spans three verification paradigms (LLM-as-a-Judge, reward models, and process reward models), evaluated across two levels of verification granularity (agent-level and iteration-level). We further examine five representative verifiers and four context management strategies, and conduct experiments over six diverse MAS frameworks on multiple reasoning benchmarks. We find that process-level verification does not consistently improve performance and frequently exhibits high variance, highlighting the difficulty of reliably evaluating partial multi-agent trajectories. Among the methods studied, LLM-as-a-Judge generally outperforms reward-based approaches, with trained judges surpassing general-purpose LLMs. We further observe a small performance gap between LLMs acting as judges and as single agents, and identify a context-length-performance trade-off in verification. Overall, our results suggest that effective and robust process verification for MAS remains an open challenge, requiring further advances beyond current paradigms. Code is available at https://github.com/Wang-ML-Lab/MAS-ProVe.
comment: Preprint; work in progress
☆ SAES-SVD: Self-Adaptive Suppression of Accumulated and Local Errors for SVD-based LLM Compression
The rapid growth in the parameter scale of large language models (LLMs) has created a high demand for efficient compression techniques. As a hardware-agnostic and highly compatible technique, low-rank compression has been widely adopted. However, existing methods typically compress each layer independently by minimizing per-layer reconstruction error, overlooking a critical limitation: the reconstruction error propagates and accumulates through the network, which leads to amplified global deviations from the full-precision baseline. To address this, we propose Self-Adaptive Error Suppression SVD (SAES-SVD), a LLMs compression framework that jointly optimizes intra-layer reconstruction and inter-layer error compensation. SAES-SVD is composed of two novel components: (1) Cumulative Error-Aware Layer Compression (CEALC), which formulates the compression objective as a combination of local reconstruction and weighted cumulative error compensation. Based on it, we derive a closed-form low-rank solution relied on second-order activation statistics, which explicitly aligns each layer's output with its full-precision counterpart to compensate for accumulated errors. (2) Adaptive Collaborative Error Suppression (ACES), which automatically adjusts the weighting coefficient to enhance the low-rank structure of the compression objective in CEALC. Specifically, the coefficient is optimized to maximize the ratio between the Frobenius norm of the compressed layer's output and that of the compression objective under a fixed rank, thus ensuring that the rank budget is utilized effectively. Extensive experiments across multiple LLM architectures and tasks show that, without fine-tuning or mixed-rank strategies, SAES-SVD consistently improves post-compression performance.
☆ LatentMem: Customizing Latent Memory for Multi-Agent Systems
Large language model (LLM)-powered multi-agent systems (MAS) demonstrate remarkable collective intelligence, wherein multi-agent memory serves as a pivotal mechanism for continual adaptation. However, existing multi-agent memory designs remain constrained by two fundamental bottlenecks: (i) memory homogenization arising from the absence of role-aware customization, and (ii) information overload induced by excessively fine-grained memory entries. To address these limitations, we propose LatentMem, a learnable multi-agent memory framework designed to customize agent-specific memories in a token-efficient manner. Specifically, LatentMem comprises an experience bank that stores raw interaction trajectories in a lightweight form, and a memory composer that synthesizes compact latent memories conditioned on retrieved experience and agent-specific contexts. Further, we introduce Latent Memory Policy Optimization (LMPO), which propagates task-level optimization signals through latent memories to the composer, encouraging it to produce compact and high-utility representations. Extensive experiments across diverse benchmarks and mainstream MAS frameworks show that LatentMem achieves a performance gain of up to $19.36$% over vanilla settings and consistently outperforms existing memory architectures, without requiring any modifications to the underlying frameworks.
☆ RC-GRPO: Reward-Conditioned Group Relative Policy Optimization for Multi-Turn Tool Calling Agents
Multi-turn tool calling is challenging for Large Language Models (LLMs) because rewards are sparse and exploration is expensive. A common recipe, SFT followed by GRPO, can stall when within-group reward variation is low (e.g., more rollouts in a group receive the all 0 or all 1 reward), making the group-normalized advantage uninformative and yielding vanishing updates. To address this problem, we propose RC-GRPO (Reward-Conditioned Group Relative Policy Optimization), which treats exploration as a controllable steering problem via discrete reward tokens. We first fine-tune a Reward-Conditioned Trajectory Policy (RCTP) on mixed-quality trajectories with reward goal special tokens (e.g., <|high_reward|>, <|low_reward|>) injected into the prompts, enabling the model to learn how to generate distinct quality trajectories on demand. Then during RL, we sample diverse reward tokens within each GRPO group and condition rollouts on the sampled token to improve within-group diversity, improving advantage gains. On the Berkeley Function Calling Leaderboard v4 (BFCLv4) multi-turn benchmark, our method yields consistently improved performance than baselines, and the performance on Qwen-2.5-7B-Instruct even surpasses all closed-source API models.
♻ ☆ Reuse your FLOPs: Scaling RL on Hard Problems by Conditioning on Very Off-Policy Prefixes
Typical reinforcement learning (RL) methods for LLM reasoning waste compute on hard problems, where correct on-policy traces are rare, policy gradients vanish, and learning stalls. To bootstrap more efficient RL, we consider reusing old sampling FLOPs (from prior inference or RL training) in the form of off-policy traces. Standard off-policy methods supervise against off-policy data, causing instabilities during RL optimization. We introduce PrefixRL, where we condition on the prefix of successful off-policy traces and run on-policy RL to complete them, side-stepping off-policy instabilities. PrefixRL boosts the learning signal on hard problems by modulating the difficulty of the problem through the off-policy prefix length. We prove that the PrefixRL objective is not only consistent with the standard RL objective but also more sample efficient. Empirically, we discover back-generalization: training only on prefixed problems generalizes to out-of-distribution unprefixed performance, with learned strategies often differing from those in the prefix. In our experiments, we source the off-policy traces by rejection sampling with the base model, creating a self-improvement loop. On hard reasoning problems, PrefixRL reaches the same training reward 2x faster than the strongest baseline (SFT on off-policy data then RL), even after accounting for the compute spent on the initial rejection sampling, and increases the final reward by 3x. The gains transfer to held-out benchmarks, and PrefixRL is still effective when off-policy traces are derived from a different model family, validating its flexibility in practical settings.
♻ ☆ Closing the Loop: Universal Repository Representation with RPG-Encoder
Current repository agents encounter a reasoning disconnect due to fragmented representations, as existing methods rely on isolated API documentation or dependency graphs that lack semantic depth. We consider repository comprehension and generation to be inverse processes within a unified cycle: generation expands intent into implementation, while comprehension compresses implementation back into intent. To address this, we propose RPG-Encoder, a framework that generalizes the Repository Planning Graph (RPG) from a static generative blueprint into a unified, high-fidelity representation. RPG-Encoder closes the reasoning loop through three mechanisms: (1) Encoding raw code into the RPG that combines lifted semantic features with code dependencies; (2) Evolving the topology incrementally to decouple maintenance costs from repository scale, reducing overhead by 95.7%; and (3) Operating as a unified interface for structure-aware navigation. In evaluations, RPG-Encoder establishes state-of-the-art localization performance on SWE-bench Verified with 93.7% Acc@5 and exceeds the best baseline by over 10% in localization accuracy on SWE-bench Live Lite. These results highlight our superior fine-grained precision in complex codebases. Furthermore, it achieves 98.5% reconstruction coverage on RepoCraft, confirming RPG's high-fidelity capacity to mirror the original codebase and closing the loop between intent and implementation.
♻ ☆ OpenRubrics: Towards Scalable Synthetic Rubric Generation for Reward Modeling and LLM Alignment
Reward modeling lies at the core of reinforcement learning from human feedback (RLHF), yet most existing reward models rely on scalar or pairwise judgments that fail to capture the multifaceted nature of human preferences. Recent studies have explored rubrics-as-rewards (RaR) that uses structured criteria to capture multiple dimensions of response quality. However, producing rubrics that are both reliable and scalable remains a key challenge. In this work, we introduce OpenRubrics, a diverse, large-scale collection of (prompt, rubric) pairs for training rubric-generation and rubric-based reward models. To elicit discriminative and comprehensive evaluation signals, we introduce Contrastive Rubric Generation (CRG), which derives both hard rules (explicit constraints) and principles (implicit qualities) by contrasting preferred and rejected responses. We further remove noisy rubrics via preserving preference-label consistency. Across multiple reward-modeling benchmarks, our rubric-based reward model, Rubric-RM, surpasses strong size-matched baselines by 8.4%. These gains transfer to policy models on instruction-following and biomedical benchmarks.
comment: The first two authors contributed equally. Updated OpenRubrics dataset, RMs, and results
♻ ☆ Mil-SCORE: Benchmarking Long-Context Geospatial Reasoning and Planning in Large Language Models
As large language models (LLMs) are applied to increasingly longer and more complex tasks, there is a growing need for realistic long-context benchmarks that require selective reading and integration of heterogeneous, multi-modal information sources. This need is especially acute for geospatial planning problems, such as those found in planning for large-scale military operations, which demand fast and accurate reasoning over maps, orders, intelligence reports, and other distributed data. To address this gap, we present MilSCORE (Military Scenario Contextual Reasoning), to our knowledge the first scenario-level dataset of expert-authored, multi-hop questions grounded in a complex, simulated military planning scenario used for training. MilSCORE is designed to evaluate high-stakes decision-making and planning, probing LLMs' ability to combine tactical and spatial reasoning across multiple sources and to reason over long-horizon, geospatially rich context. The benchmark includes a diverse set of question types across seven categories targeting both factual recall and multi-step reasoning about constraints, strategy, and spatial analysis. We provide an evaluation protocol and report baseline results for a range of contemporary vision-language models. Our findings highlight substantial headroom on MilSCORE, indicating that current systems struggle with realistic, scenario-level long-context planning, and positioning MilSCORE as a challenging testbed for future work.
♻ ☆ PluriHarms: Benchmarking the Full Spectrum of Human Judgments on AI Harm
Current AI safety frameworks, which often treat harmfulness as binary, lack the flexibility to handle borderline cases where humans meaningfully disagree. To build more pluralistic systems, it is essential to move beyond consensus and instead understand where and why disagreements arise. We introduce PluriHarms, a benchmark designed to systematically study human harm judgments across two key dimensions -- the harm axis (benign to harmful) and the agreement axis (agreement to disagreement). Our scalable framework generates prompts that capture diverse AI harms and human values while targeting cases with high disagreement rates, validated by human data. The benchmark includes 150 prompts with 15,000 ratings from 100 human annotators, enriched with demographic and psychological traits and prompt-level features of harmful actions, effects, and values. Our analyses show that prompts that relate to imminent risks and tangible harms amplify perceived harmfulness, while annotator traits (e.g., toxicity experience, education) and their interactions with prompt content explain systematic disagreement. We benchmark AI safety models and alignment methods on PluriHarms, finding that while personalization significantly improves prediction of human harm judgments, considerable room remains for future progress. By explicitly targeting value diversity and disagreement, our work provides a principled benchmark for moving beyond "one-size-fits-all" safety toward pluralistically safe AI.
♻ ☆ Think Silently, Think Fast: Dynamic Latent Compression of LLM Reasoning Chains
Large Language Models (LLMs) achieve superior performance through Chain-of-Thought (CoT) reasoning, but these token-level reasoning chains are computationally expensive and inefficient. In this paper, we introduce Compressed Latent Reasoning (CoLaR), a novel framework that dynamically compresses reasoning processes in latent space through a two-stage training approach. First, during supervised fine-tuning, CoLaR extends beyond next-token prediction by incorporating an auxiliary next compressed embedding prediction objective. This process merges embeddings of consecutive tokens using a compression factor randomly sampled from a predefined range, and trains a specialized latent head to predict distributions of subsequent compressed embeddings. Second, we enhance CoLaR through reinforcement learning (RL) that leverages the latent head's non-deterministic nature to explore diverse reasoning paths and exploit more compact ones. This approach enables CoLaR to: i) perform reasoning at a dense latent level (i.e., silently), substantially reducing reasoning chain length, and ii) dynamically adjust reasoning speed at inference time by simply prompting the desired compression factor. Extensive experiments across four mathematical reasoning datasets demonstrate that CoLaR achieves 14.1% higher accuracy than latent-based baseline methods at comparable compression ratios, and reduces reasoning chain length by 53.3% with only 4.8% performance degradation compared to explicit CoT method. Moreover, when applied to more challenging mathematical reasoning tasks, our RL-enhanced CoLaR demonstrates performance gains of up to 5.4% while dramatically reducing latent reasoning chain length by 82.8%.
comment: 15 pages, 8 figures
♻ ☆ From Generative Modeling to Clinical Classification: A GPT-Based Architecture for EHR Notes
The increasing availability of unstructured clinical narratives in electronic health records (EHRs) has created new opportunities for automated disease characterization, cohort identification, and clinical decision support. However, modeling long, domain-specific clinical text remains challenging due to limited labeled data, severe class imbalance, and the high computational cost of adapting large pretrained language models. This study presents a GPT-based architecture for clinical text classification that adapts a pretrained decoder-only Transformer using a selective fine-tuning strategy. Rather than updating all model parameters, the majority of the GPT-2 backbone is frozen, and training is restricted to the final Transformer block, the final layer normalization, and a lightweight classification head. This approach substantially reduces the number of trainable parameters while preserving the representational capacity required to model complex clinical language. The proposed method is evaluated on radiology reports from the MIMIC-IV-Note dataset using uncertainty-aware CheXpert-style labels derived directly from report text. Experiments cover multiple problem formulations, including multi-label classification of radiographic findings, binary per-label classification under different uncertainty assumptions, and aggregate disease outcome prediction. Across varying dataset sizes, the model exhibits stable convergence behavior and strong classification performance, particularly in settings dominated by non-mention and negated findings. Overall, the results indicate that selective fine-tuning of pretrained generative language models provides an efficient and effective pathway for clinical text classification, enabling scalable adaptation to real-world EHR data while significantly reducing computational complexity.
comment: This submission is a full-length research manuscript consisting of 37 pages and 15 figures. The paper presents a GPT-based architecture with selective fine-tuning for clinical text classification, including detailed architectural diagrams, learning curves, and evaluation figures such as ROC curves and confusion matrices
♻ ☆ Rethinking Bottlenecks in Safety Fine-Tuning of Vision Language Models
Large Vision-Language Models (VLMs) have achieved remarkable performance across a wide range of tasks. However, their deployment in safety-critical domains poses significant challenges. Existing safety fine-tuning methods, which focus on textual or multimodal content, fall short in addressing challenging cases or disrupt the balance between helpfulness and harmlessness. Our evaluation highlights a safety reasoning gap: these methods lack safety visual reasoning ability, leading to such bottlenecks. To address this limitation and enhance both visual perception and reasoning in safety-critical contexts, we propose a novel dataset that integrates multi-image inputs with safety Chain-of-Thought (CoT) labels as fine-grained reasoning logic to improve model performance. Specifically, we introduce the Multi-Image Safety (MIS) dataset, an instruction-following dataset tailored for multi-image safety scenarios, consisting of training and test splits. Our experiments demonstrate that fine-tuning InternVL2.5-8B with MIS significantly outperforms both powerful open-source models and API-based models in challenging multi-image tasks requiring safety-related visual reasoning. This approach not only delivers exceptional safety performance but also preserves general capabilities without any trade-offs. Specifically, fine-tuning with MIS increases average accuracy by 0.83% across five general benchmarks and reduces the Attack Success Rate (ASR) on multiple safety benchmarks by a large margin.
♻ ☆ TurkBench: A Benchmark for Evaluating Turkish Large Language Models EACL 2026
With the recent surge in the development of large language models, the need for comprehensive and language-specific evaluation benchmarks has become critical. While significant progress has been made in evaluating English-language models, benchmarks for other languages, particularly those with unique linguistic characteristics such as Turkish, remain less developed. Our study introduces TurkBench, a comprehensive benchmark designed to assess the capabilities of generative large language models in the Turkish language. TurkBench involves 8,151 data samples across 21 distinct subtasks. These are organized under six main categories of evaluation: Knowledge, Language Understanding, Reasoning, Content Moderation, Turkish Grammar and Vocabulary, and Instruction Following. The diverse range of tasks and the culturally relevant data would provide researchers and developers with a valuable tool for evaluating their models and identifying areas for improvement. We further publish our benchmark for online submissions at https://huggingface.co/turkbench
comment: Accepted by EACL 2026 SIGTURK
♻ ☆ Interpreting and Controlling LLM Reasoning through Integrated Policy Gradient
Large language models (LLMs) demonstrate strong reasoning abilities in solving complex real-world problems. Yet, the internal mechanisms driving these complex reasoning behaviors remain opaque. Existing interpretability approaches targeting reasoning either identify components (e.g., neurons) correlated with special textual patterns, or rely on human-annotated contrastive pairs to derive control vectors. Consequently, current methods struggle to precisely localize complex reasoning mechanisms or capture sequential influence from model internal workings to the reasoning outputs. In this paper, built on outcome-oriented and sequential-influence-aware principles, we focus on identifying components that have sequential contribution to reasoning behavior where outcomes are cumulated by long-range effects. We propose Integrated Policy Gradient (IPG), a novel framework that attributes reasoning behaviors to model's inner components by propagating compound outcome-based signals such as post reasoning accuracy backward through model inference trajectories. Empirical evaluations demonstrate that our approach achieves more precise localization and enables reliable modulation of reasoning behaviors (e.g., reasoning capability, reasoning strength) across diverse reasoning models.
♻ ☆ The Path of Least Resistance: Guiding LLM Reasoning Trajectories with Prefix Consensus ICLR 2026
Large language models achieve strong reasoning performance, but inference strategies such as Self-Consistency (SC) are computationally expensive, as they fully expand all reasoning traces. We introduce PoLR (Path of Least Resistance), the first inference-time method to leverage prefix consistency for compute-efficient reasoning. PoLR clusters short prefixes of reasoning traces, identifies the dominant cluster, and expands all paths in that cluster, preserving the accuracy benefits of SC while substantially reducing token usage and latency. Our theoretical analysis, framed via mutual information and entropy, explains why early reasoning steps encode strong signals predictive of final correctness. Empirically, PoLR consistently matches or exceeds SC across GSM8K, MATH500, AIME24/25, and GPQA-DIAMOND, reducing token usage by up to 60% and wall-clock latency by up to 50%. Moreover, PoLR is fully complementary to adaptive inference methods (e.g., Adaptive Consistency, Early-Stopping SC) and can serve as a drop-in pre-filter, making SC substantially more efficient and scalable without requiring model fine-tuning.
comment: Accepted at ICLR 2026. https://openreview.net/forum?id=hrnSqERgPn
♻ ☆ Advancing AI Research Assistants with Expert-Involved Learning
Large language models (LLMs) and large multimodal models (LMMs) promise to accelerate biomedical discovery, yet their reliability remains unclear. We introduce ARIEL (AI Research Assistant for Expert-in-the-Loop Learning), an open-source evaluation and optimization framework that pairs a curated multimodal biomedical corpus with expert-vetted tasks to probe two capabilities: full-length article summarization and fine-grained figure interpretation. Using uniform protocols and blinded PhD-level evaluation, we find that state-of-the-art models generate fluent but incomplete summaries, whereas LMMs struggle with detailed visual reasoning. We later observe that prompt engineering and lightweight fine-tuning substantially improve textual coverage, and a compute-scaled inference strategy enhances visual question answering. We build an ARIEL agent that integrates textual and visual cues, and we show it can propose testable mechanistic hypotheses. ARIEL delineates current strengths and limitations of foundation models, and provides a reproducible platform for advancing trustworthy AI in biomedicine.
comment: 36 pages, 7 figures
♻ ☆ LegalOne: A Family of Foundation Models for Reliable Legal Reasoning
While Large Language Models (LLMs) have demonstrated impressive general capabilities, their direct application in the legal domain is often hindered by a lack of precise domain knowledge and complexity of performing rigorous multi-step judicial reasoning. To address this gap, we present LegalOne, a family of foundational models specifically tailored for the Chinese legal domain. LegalOne is developed through a comprehensive three-phase pipeline designed to master legal reasoning. First, during mid-training phase, we propose Plasticity-Adjusted Sampling (PAS) to address the challenge of domain adaptation. This perplexity-based scheduler strikes a balance between the acquisition of new knowledge and the retention of original capabilities, effectively establishing a robust legal foundation. Second, during supervised fine-tuning, we employ Legal Agentic CoT Distillation (LEAD) to distill explicit reasoning from raw legal texts. Unlike naive distillation, LEAD utilizes an agentic workflow to convert complex judicial processes into structured reasoning trajectories, thereby enforcing factual grounding and logical rigor. Finally, we implement a Curriculum Reinforcement Learning (RL) strategy. Through a progressive reinforcement process spanning memorization, understanding, and reasoning, LegalOne evolves from simple pattern matching to autonomous and reliable legal reasoning. Experimental results demonstrate that LegalOne achieves state-of-the-art performance across a wide range of legal tasks, surpassing general-purpose LLMs with vastly larger parameter counts through enhanced knowledge density and efficiency. We publicly release the LegalOne weights and the LegalKit evaluation framework to advance the field of Legal AI, paving the way for deploying trustworthy and interpretable foundation models in high-stakes judicial applications.
comment: 25 pages, v1
♻ ☆ KVzap: Fast, Adaptive, and Faithful KV Cache Pruning
Growing context lengths in transformer-based language models have made the key-value (KV) cache a critical inference bottleneck. While many KV cache pruning methods have been proposed, they have not yet been adopted in major inference engines due to speed--accuracy trade-offs. We introduce KVzap, a fast, input-adaptive approximation of KVzip that works in both prefilling and decoding. On Qwen3-8B, Llama-3.1-8B-Instruct, and Qwen3-32B across long-context and reasoning tasks, KVzap achieves $2$--$4\times$ KV cache compression with negligible accuracy loss and achieves state-of-the-art performance on the KVpress leaderboard. Code and models are available at https://github.com/NVIDIA/kvpress.
♻ ☆ Large-Scale Terminal Agentic Trajectory Generation from Dockerized Environments
Training agentic models for terminal-based tasks critically depends on high-quality terminal trajectories that capture realistic long-horizon interactions across diverse domains. However, constructing such data at scale remains challenging due to two key requirements: \textbf{\emph{Executability}}, since each instance requires a suitable and often distinct Docker environment; and \textbf{\emph{Verifiability}}, because heterogeneous task outputs preclude unified, standardized verification. To address these challenges, we propose \textbf{TerminalTraj}, a scalable pipeline that (i) filters high-quality repositories to construct Dockerized execution environments, (ii) generates Docker-aligned task instances, and (iii) synthesizes agent trajectories with executable validation code. Using TerminalTraj, we curate 32K Docker images and generate 50,733 verified terminal trajectories across eight domains. Models trained on this data with the Qwen2.5-Coder backbone achieve consistent performance improvements on TerminalBench (TB), with gains of up to 20\% on TB~1.0 and 10\% on TB~2.0 over their respective backbones. Notably, \textbf{TerminalTraj-32B} achieves strong performance among models with fewer than 100B parameters, reaching 35.30\% on TB~1.0 and 22.00\% on TB~2.0, and demonstrates improved test-time scaling behavior. All code and data are available at https://github.com/Wusiwei0410/TerminalTraj.
comment: Agentic Trajectory, Agentic Model, Terminal, Code Agent
♻ ☆ Capturing Classic Authorial Style in Long-Form Story Generation with GRPO Fine-Tuning
Evaluating and optimising authorial style in long-form story generation remains challenging because style is often assessed with ad hoc prompting and is frequently conflated with overall writing quality. We propose a two-stage pipeline. First, we train a dedicated style-similarity judge by fine-tuning a sentence-transformer with authorship-verification supervision, and calibrate its similarity outputs into a bounded $[0,1]$ reward. Second, we use this judge as the primary reward in Group Relative Policy Optimization (GRPO) to fine-tune an 8B story generator for style-conditioned writing, avoiding the accept/reject supervision required by Direct Preference Optimization (DPO). Across four target authors (Mark Twain, Jane Austen, Charles Dickens, Thomas Hardy), the GRPO-trained 8B model achieves higher style scores than open-weight baselines, with an average style score of 0.893 across authors. These results suggest that AV-calibrated reward modelling provides a practical mechanism for controllable style transfer in long-form generation under a moderate model size and training budget.
♻ ☆ Problem Solved? Information Extraction Design Space for Layout-Rich Documents using LLMs EMNLP'25
This paper defines and explores the design space for information extraction (IE) from layout-rich documents using large language models (LLMs). The three core challenges of layout-aware IE with LLMs are 1) data structuring, 2) model engagement, and 3) output refinement. Our study investigates the sub-problems and methods within these core challenges, such as input representation, chunking, prompting, selection of LLMs, and multimodal models. It examines the effect of different design choices through LayIE-LLM, a new, open-source, layout-aware IE test suite, benchmarking against traditional, fine-tuned IE models. The results on two IE datasets show that LLMs require adjustment of the IE pipeline to achieve competitive performance: the optimized configuration found with LayIE-LLM achieves 13.3--37.5 F1 points more than a general-practice baseline configuration using the same LLM. To find a well-working configuration, we develop a one-factor-at-a-time (OFAT) method that achieves near-optimal results. Our method is only 0.8--1.8 points lower than the best full factorial exploration with a fraction (2.8%) of the required computation. Overall, we demonstrate that, if well-configured, general-purpose LLMs match the performance of specialized models, providing a cost-effective, finetuning-free alternative. Our test-suite is available at https://github.com/gayecolakoglu/LayIE-LLM.
comment: accepted at EMNLP'25
♻ ☆ Modeling Sarcastic Speech: Semantic and Prosodic Cues in a Speech Synthesis Framework
Sarcasm is a pragmatic phenomenon in which speakers convey meanings that diverge from literal content, relying on an interaction between semantics and prosodic expression. However, how these cues jointly contribute to the recognition of sarcasm remains poorly understood. We propose a computational framework that models sarcasm as the integration of semantic interpretation and prosodic realization. Semantic cues are derived from an LLaMA 3 model fine-tuned to capture discourse-level markers of sarcastic intent, while prosodic cues are extracted through semantically aligned utterances drawn from a database of sarcastic speech, providing prosodic exemplars of sarcastic delivery. Using a speech synthesis testbed, perceptual evaluations demonstrate that both semantic and prosodic cues independently enhance listeners' perception of sarcasm, with the strongest effects emerging when the two are combined. These findings highlight the complementary roles of semantics and prosody in pragmatic interpretation and illustrate how modeling can shed light on the mechanisms underlying sarcastic communication.
♻ ☆ CP-Agent: Agentic Constraint Programming
The translation of natural language to formal constraint models requires expertise in the problem domain and modeling frameworks. To explore the effectiveness of agentic workflows, we propose CP-Agent, a Python coding agent that uses the ReAct framework with a persistent IPython kernel. We provide the relevant domain knowledge as a project prompt of under 50 lines. The algorithm works by iteratively executing code, observing the solver's feedback, and refining constraint models based on execution results. We evaluate CP-Agent on 101 constraint programming problems from CP-Bench. We made minor changes to the benchmark to address systematic ambiguities in the problem specifications and errors in the ground-truth models. On the clarified benchmark, CP-Agent achieves perfect accuracy on all 101 problems. Our experiments show that minimal guidance outperforms detailed procedural scaffolding. Our experiments also show that explicit task management tools can have both positive and negative effects on focused modeling tasks.
♻ ☆ PRISM: Deriving a White-Box Transformer as a Signal-Noise Decomposition Operator via Maximum Coding Rate Reduction
Deep learning models, particularly Transformers, are often criticized as "black boxes" and lack interpretability. We propose Prism, a white-box attention-based architecture derived from the principles of Maximizing Coding Rate Reduction ($\text{MCR}^2$). By modeling the attention mechanism as a gradient ascent process on a distinct signal-noise manifold, we introduce a specific irrational frequency separation ($π$-RoPE) to enforce incoherence between signal (semantic) and noise (syntactic) subspaces. We show empirical evidence that these geometric inductive biases can induce unsupervised functional disentanglement alone. Prism spontaneously specializes its attention heads into spectrally distinct regimes: low-frequency heads capturing long-range causal dependencies (signal) and high-frequency heads handling local syntactic constraints and structural artifacts. To provide a theoretical grounding for these spectral phenomena, we draw an analogy between attention mechanism and a Hamiltonian dynamical system and identify that the standard geometric progression of Rotary Positional Embeddings (RoPE) induces dense resonance networks (Arnold Tongues), leading to feature rank collapse. Empirical validation on 124M-parameter models trained on OpenWebText demonstrates that Prism spontaneously isolates the Attention Sink pathology and maintains isentropic information flow across layers. Further, we suggest a physics-informed plug-and-play intervention KAM-RoPE for large language models (LLMs). Our results suggest that interpretability and performance can be unified through principled geometric construction, offering a theoretically grounded alternative to heuristic architectural modifications
comment: 12 pages, 6 figures. Derives Transformer as a signal-noise decomposition operator via Maximizing Coding Rate Reduction. Identifies 'Attention Sink' as spectral resonance (Arnold Tongues) and proposes $π$-RoPE for dynamical stability
♻ ☆ Don't Overthink it. Preferring Shorter Thinking Chains for Improved LLM Reasoning
Reasoning large language models (LLMs) heavily rely on scaling test-time compute to perform complex reasoning tasks by generating extensive "thinking" chains. While demonstrating impressive results, this approach incurs significant computational costs and inference time. In this work, we challenge the assumption that long thinking chains results in better reasoning capabilities. We first demonstrate that shorter reasoning chains within individual questions are significantly more likely to yield correct answers - up to 34.5% more accurate than the longest chain sampled for the same question. Based on these results, we suggest short-m@k, a novel reasoning LLM inference method. Our method executes k independent generations in parallel and halts computation once the first m thinking processes are done. The final answer is chosen using majority voting among these m chains. Basic short-1@k demonstrates similar or even superior performance over standard majority voting in low-compute settings - using up to 40% fewer thinking tokens. short-3@k, while slightly less efficient than short-1@k, consistently surpasses majority voting across all compute budgets, while still being substantially faster (up to 33% wall time reduction). To further validate our findings, we finetune LLMs using short, long, and randomly selected reasoning chains. We then observe that training on the shorter ones leads to better performance. Our findings suggest rethinking current methods of test-time compute in reasoning LLMs, emphasizing that longer "thinking" does not necessarily translate to improved performance and can, counter-intuitively, lead to degraded results.
♻ ☆ Evaluating Scoring Bias in LLM-as-a-Judge DASFAA 2026
The "LLM-as-a-Judge" paradigm, using Large Language Models (LLMs) as automated evaluators, is pivotal to LLM development, offering scalable feedback for complex tasks. However, the reliability of these judges is compromised by various biases. Existing research has heavily concentrated on biases in comparative evaluations. In contrast, scoring-based evaluations-which assign an absolute score and are often more practical in industrial applications-remain under-investigated. To address this gap, we undertake the first dedicated examination of scoring bias in LLM judges. We shift the focus from biases tied to the evaluation targets to those originating from the scoring prompt itself. We formally define scoring bias and identify three novel, previously unstudied types: rubric order bias, score ID bias, and reference answer score bias. We propose a comprehensive framework to quantify these biases, featuring a suite of multi-faceted metrics and an automatic data synthesis pipeline to create a tailored evaluation corpus. Our experiments empirically demonstrate that even the most advanced LLMs suffer from these substantial scoring biases. Our analysis yields actionable insights for designing more robust scoring prompts and mitigating these newly identified biases.
comment: Accepted by DASFAA 2026
♻ ☆ A Syntax-Injected Approach for Faster and More Accurate Sentiment Analysis
Sentiment Analysis (SA) is a crucial aspect of Natural Language Processing (NLP), focusing on identifying and interpreting subjective assessments in textual content. Syntactic parsing is useful in SA as it improves accuracy and provides explainability; however, it often becomes a computational bottleneck due to slow parsing algorithms. This article proposes a solution to this bottleneck by using a Sequence Labeling Syntactic Parser (SELSP) to integrate syntactic information into SA via a rule-based sentiment analysis pipeline. By reformulating dependency parsing as a sequence labeling task, we significantly improve the efficiency of syntax-based SA. SELSP is trained and evaluated on a ternary polarity classification task, demonstrating greater speed and accuracy compared to conventional parsers like Stanza and heuristic approaches such as Valence Aware Dictionary and sEntiment Reasoner (VADER). The combination of speed and accuracy makes SELSP especially attractive for sentiment analysis applications in both academic and industrial contexts. Moreover, we compare SELSP with Transformer-based models trained on a 5-label classification task. In addition, we evaluate multiple sentiment dictionaries with SELSP to determine which yields the best performance in polarity prediction. The results show that dictionaries accounting for polarity judgment variation outperform those that ignore it. Furthermore, we show that SELSP outperforms Transformer-based models in terms of speed for polarity prediction.
♻ ☆ Understanding Verbatim Memorization in LLMs Through Circuit Discovery ACL 2025
Underlying mechanisms of memorization in LLMs -- the verbatim reproduction of training data -- remain poorly understood. What exact part of the network decides to retrieve a token that we would consider as start of memorization sequence? How exactly is the models' behaviour different when producing memorized sentence vs non-memorized? In this work we approach these questions from mechanistic interpretability standpoint by utilizing transformer circuits -- the minimal computational subgraphs that perform specific functions within the model. Through carefully constructed contrastive datasets, we identify points where model generation diverges from memorized content and isolate the specific circuits responsible for two distinct aspects of memorization. We find that circuits that initiate memorization can also maintain it once started, while circuits that only maintain memorization cannot trigger its initiation. Intriguingly, memorization prevention mechanisms transfer robustly across different text domains, while memorization induction appears more context-dependent.
comment: The First Workshop on Large Language Model Memorization @ ACL 2025, Vienna, August 1st, 2025
♻ ☆ Evalet: Evaluating Large Language Models by Fragmenting Outputs into Functions
Practitioners increasingly rely on Large Language Models (LLMs) to evaluate generative AI outputs through "LLM-as-a-Judge" approaches. However, these methods produce holistic scores that obscure which specific elements influenced the assessments. We propose functional fragmentation, a method that dissects each output into key fragments and interprets the rhetoric functions that each fragment serves relative to evaluation criteria -- surfacing the elements of interest and revealing how they fulfill or hinder user goals. We instantiate this approach in Evalet, an interactive system that visualizes fragment-level functions across many outputs to support inspection, rating, and comparison of evaluations. A user study (N=10) found that, while practitioners struggled to validate holistic scores, our approach helped them identify 48% more evaluation misalignments. This helped them calibrate trust in LLM evaluations and rely on them to find more actionable issues in model outputs. Our work shifts LLM evaluation from quantitative scores toward qualitative, fine-grained analysis of model behavior.
comment: The first two authors hold equal contribution. Conditionally accepted to CHI 2026
♻ ☆ A2D: Any-Order, Any-Step Safety Alignment for Diffusion Language Models ICLR 2026
Diffusion large language models (dLLMs) enable any-order generation, but this flexibility enlarges the attack surface: harmful spans may appear at arbitrary positions, and template-based prefilling attacks such as DIJA bypass response-level refusals. We introduce A2D (Any-Order, Any-Step Defense), a token-level alignment method that aligns dLLMs to emit an [EOS] refusal signal whenever harmful content arises. By aligning safety directly at the token-level under randomized masking, A2D achieves robustness to both any-decoding-order and any-step prefilling attacks under various conditions. It also enables real-time monitoring: dLLMs may begin a response but automatically terminate if unsafe continuation emerges. On safety benchmarks, A2D consistently prevents the generation of harmful outputs, slashing DIJA success rates from over 80% to near-zero (1.3% on LLaDA-8B-Instruct, 0.0% on Dream-v0-Instruct-7B), and thresholded [EOS] probabilities allow early rejection, yielding up to 19.3x faster safe termination.
comment: Accepted at ICLR 2026. Code and models are available at https://ai-isl.github.io/A2D
♻ ☆ Adaptive Rollout Allocation for Online Reinforcement Learning with Verifiable Rewards ICLR 2026
Sampling efficiency is a key bottleneck in reinforcement learning with verifiable rewards. Existing group-based policy optimization methods, such as GRPO, allocate a fixed number of rollouts for all training prompts. This uniform allocation implicitly treats all prompts as equally informative, and could lead to inefficient computational budget usage and impede training progress. We introduce VIP, a Variance-Informed Predictive allocation strategy that allocates a given rollout budget to the prompts in the incumbent batch to minimize the expected gradient variance of the policy update. At each iteration, VIP uses a lightweight Gaussian process model to predict per-prompt success probabilities based on recent rollouts. These probability predictions are translated into variance estimates, which are then fed into a convex optimization problem to determine the optimal rollout allocations under a hard compute budget constraint. Empirical results show that VIP consistently improves sampling efficiency and achieves higher performance than uniform or heuristic allocation strategies in multiple benchmarks.
comment: Accepted at ICLR 2026
♻ ☆ Mechanistic Interpretability as Statistical Estimation: A Variance Analysis
Mechanistic Interpretability (MI) aims to reverse-engineer model behaviors by identifying functional sub-networks. Yet, the scientific validity of these findings depends on their stability. In this work, we argue that circuit discovery is not a standalone task but a statistical estimation problem built upon causal mediation analysis (CMA). We uncover a fundamental instability at this base layer: exact, single-input CMA scores exhibit high intrinsic variance, implying that the causal effect of a component is a volatile random variable rather than a fixed property. We then demonstrate that circuit discovery pipelines inherit this variance and further amplify it. Fast approximation methods, such as Edge Attribution Patching and its successors, introduce additional estimation noise, while aggregating these noisy scores over datasets leads to fragile structural estimates. Consequently, small perturbations in input data or hyperparameters yield vastly different circuits. We systematically decompose these sources of variance and advocate for more rigorous MI practices, prioritizing statistical robustness and routine reporting of stability metrics.
♻ ☆ V2P-Bench: Evaluating Video-Language Understanding with Visual Prompts for Better Human-Model Interaction
Large Vision-Language Models (LVLMs) have made significant strides in the field of video understanding in recent times. Nevertheless, existing video benchmarks predominantly rely on text prompts for evaluation, which often require complex referential language and diminish both the accuracy and efficiency of human model interaction in turn. To address this limitation, we propose V2P-Bench, a robust and comprehensive benchmark for evaluating the ability of LVLMs to understand Video Visual Prompts in human model interaction scenarios. V2P-Bench consists of 980 videos and 1172 well-structured high-quality QA pairs, each paired with manually annotated visual prompt frames. The benchmark spans three main tasks and twelve categories, thereby enabling fine-grained, instance-level evaluation. Through an in-depth analysis of current LVLMs, we identify several key findings: 1) Visual prompts are both more model-friendly and user-friendly in interactive scenarios than text prompts, leading to significantly improved model performance and enhanced user experience. 2) Models are reasonably capable of zero-shot understanding of visual prompts, but struggle with spatiotemporal understanding. Even o1 achieves only 71.8%, far below the human expert score of 88.3%, while most open-source models perform below 60%. 3) LVLMs exhibit pervasive Hack Phenomena in video question answering tasks, which become more pronounced as video length increases and frame sampling density decreases, thereby inflating performance scores artificially. We anticipate that V2P-Bench will not only shed light on these challenges but also serve as a foundational tool for advancing human model interaction and improving the evaluation of video understanding.
comment: Project Page: https://vlm-reasoning.github.io/V2P-Bench/
♻ ☆ AlignAtt: Using Attention-based Audio-Translation Alignments as a Guide for Simultaneous Speech Translation
Attention is the core mechanism of today's most used architectures for natural language processing and has been analyzed from many perspectives, including its effectiveness for machine translation-related tasks. Among these studies, attention resulted to be a useful source of information to get insights about word alignment also when the input text is substituted with audio segments, as in the case of the speech translation (ST) task. In this paper, we propose AlignAtt, a novel policy for simultaneous ST (SimulST) that exploits the attention information to generate source-target alignments that guide the model during inference. Through experiments on the 8 language pairs of MuST-C v1.0, we show that AlignAtt outperforms previous state-of-the-art SimulST policies applied to offline-trained models with gains in terms of BLEU of 2 points and latency reductions ranging from 0.5s to 0.8s across the 8 languages.
♻ ☆ MemeLens: Multilingual Multitask VLMs for Memes
Memes are a dominant medium for online communication and manipulation because meaning emerges from interactions between embedded text, imagery, and cultural context. Existing meme research is distributed across tasks (hate, misogyny, propaganda, sentiment, humour) and languages, which limits cross-domain generalization. To address this gap we propose MemeLens, a unified multilingual and multitask explanation-enhanced Vision Language Model (VLM) for meme understanding. We consolidate 38 public meme datasets, filter and map dataset-specific labels into a shared taxonomy of $20$ tasks spanning harm, targets, figurative/pragmatic intent, and affect. We present a comprehensive empirical analysis across modeling paradigms, task categories, and datasets. Our findings suggest that robust meme understanding requires multimodal training, exhibits substantial variation across semantic categories, and remains sensitive to over-specialization when models are fine-tuned on individual datasets rather than trained in a unified setting. We will make the experimental resources and datasets publicly available for the community.
comment: disinformation, misinformation, factuality, harmfulness, fake news, propaganda, hateful meme, multimodality, text, images
♻ ☆ AWM: Accurate Weight-Matrix Fingerprint for Large Language Models ICLR 2026
Protecting the intellectual property of large language models (LLMs) is crucial, given the substantial resources required for their training. Consequently, there is an urgent need for both model owners and third parties to determine whether a suspect LLM is trained from scratch or derived from an existing base model. However, the intensive post-training processes that models typically undergo-such as supervised fine-tuning, extensive continued pretraining, reinforcement learning, multi-modal extension, pruning, and upcycling-pose significant challenges to reliable identification. In this work, we propose a training-free fingerprinting method based on weight matrices. We leverage the Linear Assignment Problem (LAP) and an unbiased Centered Kernel Alignment (CKA) similarity to neutralize the effects of parameter manipulations, yielding a highly robust and high-fidelity similarity metric. On a comprehensive testbed of 60 positive and 90 negative model pairs, our method demonstrates exceptional robustness against all six aforementioned post-training categories while exhibiting a near-zero risk of false positives. By achieving perfect scores on all classification metrics, our approach establishes a strong basis for reliable model lineage verification. Moreover, the entire computation completes within 30s on an NVIDIA 3090 GPU. The code is available at https://github.com/LUMIA-Group/AWM.
comment: ICLR 2026
♻ ☆ DynaSpec: Context-aware Dynamic Speculative Sampling for Large-Vocabulary Language Models
Speculative decoding accelerates LLM inference by letting a small drafter propose multiple tokens which a large target model verifies once per speculation step. As vocabularies scale past 10e5 tokens,verification cost in the target model is largely unchanged, but the drafter can become bottlenecked by its O(|V|d) output projection. Recent approaches (e.g., FR-Spec, VocabTrim) mitigate this by restricting drafting to a fixed, frequency-ranked shortlist; however, such static truncation is corpus-dependent and suppresses rare or domain-specific tokens, reducing acceptance and limiting speedups. We propose DynaSpec, a context-dependent dynamic shortlisting mechanism for large-vocabulary speculative decoding. DynaSpec trains lightweight meta-classifiers that route each context to a small set of coarse token clusters; the union of the top-selected clusters defines the drafter's shortlist, while the target model still verifies over the full vocabulary, preserving exactness. Systems-wise, routing is overlapped with draft computation via parallel execution streams, reducing end-to-end overhead. Across standard speculative decoding benchmarks, DynaSpec consistently improves mean accepted length-recovering 98.4% of full-vocabulary performance for Llama-3-8B versus 93.6% for fixed-shortlist baselines-and achieves up to a 2.23x throughput gain compared to 1.91x for static approaches on the dataset with rare tokens.
♻ ☆ What MLLMs Learn about When they Learn about Multimodal Reasoning: Perception, Reasoning, or their Integration?
Evaluation of multimodal reasoning models is typically reduced to a single accuracy score, implicitly treating reasoning as a unitary capability. We introduce MathLens, a benchmark of textbook-style geometry problems that exposes this assumption by operationally decomposing performance into Perception, Reasoning, and Integration. Each problem is derived from a symbolic specification and accompanied by visual diagrams, text-only variants, multimodal questions, and targeted perceptual probes, enabling controlled measurement of each component. Using this decomposition, we show that common training strategies induce systematically different capability profiles that are invisible under aggregate accuracy. Reinforcement learning primarily improves perceptual grounding and robustness to diagram variation, while textual SFT yields gains through reflective reasoning. In contrast, as perception and reasoning improve, a growing fraction of remaining errors fall outside these components and are categorized as integration. These results suggest that apparent progress in multimodal reasoning reflects shifting balances among subskills rather than uniform advancement, motivating evaluation beyond scalar accuracy.
♻ ☆ Self-attention vector output similarities reveal how machines pay attention
The self-attention mechanism has significantly advanced the field of natural language processing, facilitating the development of advanced language-learning machines. Although its utility is widely acknowledged, the precise mechanisms of self-attention underlying its advanced learning and the quantitative characterization of this learning process remains an open research question. This study introduces a new approach for quantifying information processing within the self-attention mechanism. The analysis conducted on the BERT-12 architecture reveals that, in the final layers, the attention map focuses on sentence separator tokens, suggesting a practical approach to text segmentation based on semantic features. Based on the vector space emerging from the self-attention heads, a context similarity matrix, measuring the scalar product between two token vectors was derived, revealing distinct similarities between different token vector pairs within each head and layer. The findings demonstrated that different attention heads within an attention block focused on different linguistic characteristics, such as identifying token repetitions in a given text or recognizing a token of common appearance in the text and its surrounding context. This specialization is also reflected in the distribution of distances between token vectors with high similarity as the architecture progresses. The initial attention layers exhibit substantially long-range similarities; however, as the layers progress, a more short-range similarity develops, culminating in a preference for attention heads to create strong similarities within the same sentence. Finally, the behavior of individual heads was analyzed by examining the uniqueness of their most common tokens in their high similarity elements. Each head tends to focus on a unique token from the text and builds similarity pairs centered around it.
comment: 23 pages, 14 figures
♻ ☆ Beyond the Vision Encoder: Identifying and Mitigating Spatial Bias in Large Vision-Language Models
Large Vision-Language Models (LVLMs) have achieved remarkable success across a wide range of multimodal tasks, yet their robustness to spatial variations remains insufficiently understood. In this work, we conduct a systematic study of the spatial bias of LVLMs, examining how models respond when identical key visual information is placed at different locations within an image. Through controlled probing experiments, we observe that current LVLMs often produce inconsistent outputs under such spatial shifts, revealing a clear spatial bias in their semantic understanding. Further analysis indicates that this bias does not stem from the vision encoder, but rather from a mismatch in attention mechanisms between the vision encoder and the large language model, which disrupts the global information flow. Motivated by this insight, we propose Adaptive Global Context Injection (AGCI), a lightweight mechanism that dynamically injects shared global visual context into each image token. AGCI works without architectural modifications, mitigating spatial bias by enhancing the semantic accessibility of image tokens while preserving the model's intrinsic capabilities. Extensive experiments demonstrate that AGCI not only enhances the spatial robustness of LVLMs, but also achieves strong performance on various downstream tasks and hallucination benchmarks.
♻ ☆ v1: Learning to Point Visual Tokens for Multimodal Grounded Reasoning
When thinking with images, humans rarely rely on a single glance: they revisit visual evidence while reasoning. In contrast, most Multimodal Language Models encode an image once to key-value cache and then reason purely in text, making it hard to re-ground intermediate steps. We empirically confirm this: as reasoning chains lengthen, models progressively lose focus on relevant regions. We introduce v1, a lightweight extension for active visual referencing via point-and-copy: the model selects relevant image patches and copies their embeddings back into the reasoning stream. Crucially, our point-and-copy mechanism retrieves patches using their semantic representations as keys, ensuring perceptual evidence remains aligned with the reasoning space. To train this behavior, we build v1, a dataset of 300K multimodal reasoning traces with interleaved grounding annotations. Across multimodal mathematical reasoning benchmarks, v1 consistently outperforms comparable baselines. We plan to release the model checkpoint and data.
♻ ☆ DEER: A Benchmark for Evaluating Deep Research Agents on Expert Report Generation
Recent advances in large language models have enabled deep research systems that generate expert-level reports through multi-step reasoning and evidence-based synthesis. However, evaluating such reports remains challenging: report quality is multifaceted, making it difficult to determine what to assess and by what criteria; LLM-based judges may miss errors that require domain expertise to identify; and because deep research relies on retrieved evidence, report-wide claim verification is also necessary. To address these issues, we propose DEER, a benchmark for evaluating expert-level deep research reports. DEER systematizes evaluation criteria with an expert-developed taxonomy (7 dimensions, 25 subdimensions) operationalized as 101 fine-grained rubric items. We also provide task-specific Expert Evaluation Guidance to support LLM-based judging. Alongside rubric-based assessment, we propose a claim verification architecture that verifies both cited and uncited claims and quantifies evidence quality. Experiments show that while current deep research systems can produce structurally plausible reports that cite external evidence, there is room for improvement in fulfilling expert-level user requests and achieving logical completeness. Beyond simple performance comparisons, DEER makes system strengths and limitations interpretable and provides diagnostic signals for improvement.
comment: Work in progress
♻ ☆ Bounded Hyperbolic Tangent: A Stable and Efficient Alternative to Pre-Layer Normalization in Large Language Models
Pre-Layer Normalization (Pre-LN) is the de facto choice for large language models (LLMs) and is crucial for stable pretraining and effective transfer learning. However, Pre-LN is inefficient due to repeated statistical calculations and suffers from the curse of depth. As layers grow, the magnitude and variance of the hidden state escalate, destabilizing training. Efficiency-oriented normalization-free methods such as Dynamic Tanh (DyT) improve speed but remain fragile at depth. To jointly address stability and efficiency, we propose Bounded Hyperbolic Tanh (BHyT), a drop-in replacement for Pre-LN. BHyT couples a tanh nonlinearity with explicit, data-driven input bounding to keep activations within a non-saturating range. It prevents depth-wise growth in activation magnitude and variance and comes with a theoretical stability guarantee. For efficiency, BHyT computes exact statistics once per block and replaces a second normalization with a lightweight variance approximation, enhancing efficiency. Empirically, BHyT demonstrates improved stability and efficiency during pretraining, achieving an average of 15.8% faster training and an average of 4.2% higher token generation throughput compared to RMSNorm., while matching or surpassing its inference performance and robustness across language understanding and reasoning benchmarks. Our code is available at: https://anonymous.4open.science/r/BHyT
♻ ☆ MedFrameQA: A Multi-Image Medical VQA Benchmark for Clinical Reasoning
Real-world clinical practice demands multi-image comparative reasoning, yet current medical benchmarks remain limited to single-frame interpretation. We present MedFrameQA, the first benchmark explicitly designed to test multi-image medical VQA through educationally-validated diagnostic sequences. To construct this dataset, we develop a scalable pipeline that leverages narrative transcripts from medical education videos to align visual frames with textual concepts, automatically producing 2,851 high-quality multi-image VQA pairs with explicit, transcript-grounded reasoning chains. Our evaluation of 11 advanced MLLMs (including reasoning models) exposes severe deficiencies in multi-image synthesis, where accuracies mostly fall below 50% and exhibit instability across varying image counts. Error analysis demonstrates that models often treat images as isolated instances, failing to track pathological progression or cross-reference anatomical shifts. MedFrameQA provides a rigorous standard for evaluating the next generation of MLLMs in handling complex, temporally grounded medical narratives.
comment: 27 pages, 15 Figures Benchmark data: https://huggingface.co/datasets/SuhaoYu1020/MedFrameQA
♻ ☆ GeoResponder: Towards Building Geospatial LLMs for Time-Critical Disaster Response
Large Language Models excel at linguistic tasks but lack the inner geospatial capabilities needed for time-critical disaster response, where reasoning about road networks, continuous coordinates, and access to essential infrastructure such as hospitals, shelters, and pharmacies is vital. We introduce GeoResponder, a framework that instills robust spatial reasoning through a scaffolded instruction-tuning curriculum. By stratifying geospatial learning into different cognitive layers, we effectively anchor semantic knowledge to the continuous coordinate manifold and enforce the internalization of spatial axioms. Extensive evaluations across four topologically distinct cities and diverse tasks demonstrate that GeoResponder significantly outperforms both state-of-the-art foundation models and domain-specific baselines. These results suggest that LLMs can begin to internalize and generalize geospatial structures, pointing toward the future development of language models capable of supporting disaster response needs.
♻ ☆ Wiki Live Challenge: Challenging Deep Research Agents with Expert-Level Wikipedia Articles
Deep Research Agents (DRAs) have demonstrated remarkable capabilities in autonomous information retrieval and report generation, showing great potential to assist humans in complex research tasks. Current evaluation frameworks primarily rely on LLM-generated references or LLM-derived evaluation dimensions. While these approaches offer scalability, they often lack the reliability of expert-verified content and struggle to provide objective, fine-grained assessments of critical dimensions. To bridge this gap, we introduce Wiki Live Challenge (WLC), a live benchmark that leverages the newest Wikipedia Good Articles (GAs) as expert-level references. Wikipedia's strict standards for neutrality, comprehensiveness, and verifiability serve as a great challenge for DRAs, with GAs representing the pinnacle of which. We curate a dataset of 100 recent Good Articles and propose Wiki Eval, a comprehensive evaluation framework comprising a fine-grained evaluation method with 39 criteria for writing quality and rigorous metrics for factual verifiability. Extensive experiments on various DRA systems demonstrate a significant gap between current DRAs and human expert-level Wikipedia articles, validating the effectiveness of WLC in advancing agent research. We release our benchmark at https://github.com/WangShao2000/Wiki_Live_Challenge
comment: Preprint
♻ ☆ WildGraphBench: Benchmarking GraphRAG with Wild-Source Corpora
Graph-based Retrieval-Augmented Generation (GraphRAG) organizes external knowledge as a hierarchical graph, enabling efficient retrieval and aggregation of scattered evidence across multiple documents. However, many existing benchmarks for GraphRAG rely on short, curated passages as external knowledge, failing to adequately evaluate systems in realistic settings involving long contexts and large-scale heterogeneous documents. To bridge this gap, we introduce WildGraphBench, a benchmark designed to assess GraphRAG performance in the wild. We leverage Wikipedia's unique structure, where cohesive narratives are grounded in long and heterogeneous external reference documents, to construct a benchmark reflecting real-word scenarios. Specifically, we sample articles across 12 top-level topics, using their external references as the retrieval corpus and citation-linked statements as ground truth, resulting in 1,100 questions spanning three levels of complexity: single-fact QA, multi-fact QA, and section-level summarization. Experiments across multiple baselines reveal that current GraphRAG pipelines help on multi-fact aggregation when evidence comes from a moderate number of sources, but this aggregation paradigm may overemphasize high-level statements at the expense of fine-grained details, leading to weaker performance on summarization tasks. Project page:https://github.com/BstWPY/WildGraphBench.
comment: https://github.com/BstWPY/WildGraphBench
♻ ☆ A Unified Definition of Hallucination: It's The World Model, Stupid!
Despite numerous attempts at mitigation since the inception of language models, hallucinations remain a persistent problem even in today's frontier LLMs. Why is this? We review existing definitions of hallucination and fold them into a single, unified definition wherein prior definitions are subsumed. We argue that hallucination can be unified by defining it as simply inaccurate (internal) world modeling, in a form where it is observable to the user. For example, stating a fact which contradicts a knowledge base OR producing a summary which contradicts the source. By varying the reference world model and conflict policy, our framework unifies prior definitions. We argue that this unified view is useful because it forces evaluations to clarify their assumed reference "world", distinguishes true hallucinations from planning or reward errors, and provides a common language for comparison across benchmarks and discussion of mitigation strategies. Building on this definition, we outline plans for a family of benchmarks using synthetic, fully specified reference world models to stress-test and improve world modeling components.
comment: HalluWorld benchmark in progress. Repo at https://github.com/DegenAI-Labs/HalluWorld
♻ ☆ Winning the Pruning Gamble: A Unified Approach to Joint Sample and Token Pruning for Efficient Supervised Fine-Tuning
As supervised fine-tuning (SFT) evolves from a lightweight post-training step into a compute-intensive phase rivaling mid-training in scale, data efficiency has become critical for aligning large language models (LLMs) under tight budgets. Existing data pruning methods suffer from a fragmented design: they operate either at the sample level or the token level in isolation, failing to jointly optimize both dimensions. This disconnect leads to significant inefficiencies--high-value samples may still contain redundant tokens, while token-level pruning often discards crucial instructional or corrective signals embedded in individual examples. To address this bottleneck, we introduce the Error-Uncertainty (EU) Plane, a diagnostic framework that jointly characterizes the heterogeneous utility of training data across samples and tokens. Guided by this insight, we propose Quadrant-based Tuning (Q-Tuning), a unified framework that strategically coordinates sample pruning and token pruning. Q-Tuning employs a two-stage strategy: first, it performs sample-level triage to retain examples rich in informative misconceptions or calibration signals; second, it applies an asymmetric token-pruning policy, using a context-aware scoring mechanism to trim less salient tokens exclusively from misconception samples while preserving calibration samples in their entirety. Our method sets a new state of the art across five diverse benchmarks. Remarkably, on SmolLM2-1.7B, Q-Tuning achieves a +38\% average improvement over the full-data SFT baseline using only 12.5\% of the original training data. As the first dynamic pruning approach to consistently outperform full-data training, Q-Tuning provides a practical and scalable blueprint for maximizing data utilization in budget-constrained LLM SFT.
comment: 26 pages, 9 figures, 15 tables
♻ ☆ MemoryFormer: Minimize Transformer Computation by Removing Fully-Connected Layers NeurIPS 2024
In order to reduce the computational complexity of large language models, great efforts have been made to to improve the efficiency of transformer models such as linear attention and flash-attention. However, the model size and corresponding computational complexity are constantly scaled up in pursuit of higher performance. In this work, we present MemoryFormer, a novel transformer architecture which significantly reduces the computational complexity (FLOPs) from a new perspective. We eliminate nearly all the computations of the transformer model except for the necessary computation required by the multi-head attention operation. This is made possible by utilizing an alternative method for feature transformation to replace the linear projection of fully-connected layers. Specifically, we first construct a group of in-memory lookup tables that store a large amount of discrete vectors to replace the weight matrix used in linear projection. We then use a hash algorithm to retrieve a correlated subset of vectors dynamically based on the input embedding. The retrieved vectors combined together will form the output embedding, which provides an estimation of the result of matrix multiplication operation in a fully-connected layer. Compared to conducting matrix multiplication, retrieving data blocks from memory is a much cheaper operation which requires little computations. We train MemoryFormer from scratch and conduct extensive experiments on various benchmarks to demonstrate the effectiveness of the proposed model.
comment: NeurIPS 2024. Code available at https://github.com/ningding-o/MemoryFormer
♻ ☆ Causality Guided Representation Learning for Cross-Style Hate Speech Detection WWW 26
The proliferation of online hate speech poses a significant threat to the harmony of the web. While explicit hate is easily recognized through overt slurs, implicit hate speech is often conveyed through sarcasm, irony, stereotypes, or coded language -- making it harder to detect. Existing hate speech detection models, which predominantly rely on surface-level linguistic cues, fail to generalize effectively across diverse stylistic variations. Moreover, hate speech spread on different platforms often targets distinct groups and adopts unique styles, potentially inducing spurious correlations between them and labels, further challenging current detection approaches. Motivated by these observations, we hypothesize that the generation of hate speech can be modeled as a causal graph involving key factors: contextual environment, creator motivation, target, and style. Guided by this graph, we propose CADET, a causal representation learning framework that disentangles hate speech into interpretable latent factors and then controls confounders, thereby isolating genuine hate intent from superficial linguistic cues. Furthermore, CADET allows counterfactual reasoning by intervening on style within the latent space, naturally guiding the model to robustly identify hate speech in varying forms. CADET demonstrates superior performance in comprehensive experiments, highlighting the potential of causal priors in advancing generalizable hate speech detection.
comment: Accepted by the ACM Web Conference 2026 (WWW 26)
♻ ☆ LUMINA: Detecting Hallucinations in RAG System with Context-Knowledge Signals ICLR 2026
Retrieval-Augmented Generation (RAG) aims to mitigate hallucinations in large language models (LLMs) by grounding responses in retrieved documents. Yet, RAG-based LLMs still hallucinate even when provided with correct and sufficient context. A growing line of work suggests that this stems from an imbalance between how models use external context and their internal knowledge, and several approaches have attempted to quantify these signals for hallucination detection. However, existing methods require extensive hyperparameter tuning, limiting their generalizability. We propose LUMINA, a novel framework that detects hallucinations in RAG systems through context--knowledge signals: external context utilization is quantified via distributional distance, while internal knowledge utilization is measured by tracking how predicted tokens evolve across transformer layers. We further introduce a framework for statistically validating these measurements. Experiments on common RAG hallucination benchmarks and four open-source LLMs show that LUMINA achieves consistently high AUROC and AUPRC scores, outperforming prior utilization-based methods by up to +13% AUROC on HalluRAG. Moreover, LUMINA remains robust under relaxed assumptions about retrieval quality and model matching, offering both effectiveness and practicality. LUMINA: https://github.com/deeplearning-wisc/LUMINA
comment: ICLR 2026
♻ ☆ Confucius Code Agent: Scalable Agent Scaffolding for Real-World Codebases
Real-world software engineering tasks require coding agents that can operate on massive repositories, sustain long-horizon sessions, and reliably coordinate complex toolchains at test time. Existing research-grade coding agents offer transparency but struggle when scaled to heavier, production-level workloads, while production-grade systems achieve strong practical performance but provide limited extensibility, interpretability, and controllability. We introduce the Confucius Code Agent (CCA), a software engineering agent that can operate at large-scale codebases. CCA is built on top of the Confucius SDK, an agent development platform structured around three complementary perspectives: Agent Experience (AX), User Experience (UX), and Developer Experience (DX). The SDK supports a unified orchestrator with advanced context management for long-context reasoning, a persistent note-taking system for cross-session continual learning, and a modular extension system for reliable tool use. In addition, we introduce a meta-agent that automates the construction, evaluation, and refinement of agents through a build-test-improve cycle, enabling rapid agent development on new tasks and tool stacks. Instantiated on the Confucius SDK using the meta-agent, CCA demonstrates strong performance on real-world software engineering tasks. On SWE-Bench-Pro, CCA achieves a Resolve@1 of 59%, exceeding prior research baselines as well as commercial results, under identical repositories, model backends, and tool access.
comment: The latest version
♻ ☆ Kimi K2: Open Agentic Intelligence
We introduce Kimi K2, a Mixture-of-Experts (MoE) large language model with 32 billion activated parameters and 1 trillion total parameters. We propose the MuonClip optimizer, which improves upon Muon with a novel QK-clip technique to address training instability while enjoying the advanced token efficiency of Muon. Based on MuonClip, K2 was pre-trained on 15.5 trillion tokens with zero loss spike. During post-training, K2 undergoes a multi-stage post-training process, highlighted by a large-scale agentic data synthesis pipeline and a joint reinforcement learning (RL) stage, where the model improves its capabilities through interactions with real and synthetic environments. Kimi K2 achieves state-of-the-art performance among open-source non-thinking models, with strengths in agentic capabilities. Notably, K2 obtains 66.1 on Tau2-Bench, 76.5 on ACEBench (En), 65.8 on SWE-Bench Verified, and 47.3 on SWE-Bench Multilingual -- surpassing most open and closed-sourced baselines in non-thinking settings. It also exhibits strong capabilities in coding, mathematics, and reasoning tasks, with a score of 53.7 on LiveCodeBench v6, 49.5 on AIME 2025, 75.1 on GPQA-Diamond, and 27.1 on OJBench, all without extended thinking. These results position Kimi K2 as one of the most capable open-source large language models to date, particularly in software engineering and agentic tasks. We release our base and post-trained model checkpoints to facilitate future research and applications of agentic intelligence.
comment: tech report of Kimi K2, with minor updates
♻ ☆ Align to Structure: Aligning Large Language Models with Structural Information AAAI 2026
Generating long, coherent text remains a challenge for large language models (LLMs), as they lack hierarchical planning and structured organization in discourse generation. We introduce Structural Alignment, a novel method that aligns LLMs with human-like discourse structures to enhance long-form text generation. By integrating linguistically grounded discourse frameworks into reinforcement learning, our approach guides models to produce coherent and well-organized outputs. We employ a dense reward scheme within a Proximal Policy Optimization framework, assigning fine-grained, token-level rewards based on the discourse distinctiveness relative to human writing. Two complementary reward models are evaluated: the first improves readability by scoring surface-level textual features to provide explicit structuring, while the second reinforces deeper coherence and rhetorical sophistication by analyzing global discourse patterns through hierarchical discourse motifs, outperforming both standard and RLHF-enhanced models in tasks such as essay generation and long-document summarization. All training data and code will be publicly shared at https://github.com/minnesotanlp/struct_align.
comment: Accepted to AAAI 2026 AIA
♻ ☆ Agentic Search in the Wild: Intents and Trajectory Dynamics from 14M+ Real Search Requests
LLM-powered search agents are increasingly being used for multi-step information seeking tasks, yet the IR community lacks empirical understanding of how agentic search sessions unfold and how retrieved evidence is used. This paper presents a large-scale log analysis of agentic search based on 14.44M search requests (3.97M sessions) collected from DeepResearchGym, i.e. an open-source search API accessed by external agentic clients. We sessionize the logs, assign session-level intents and step-wise query-reformulation labels using LLM-based annotation, and propose Context-driven Term Adoption Rate (CTAR) to quantify whether newly introduced query terms are traceable to previously retrieved evidence. Our analyses reveal distinctive behavioral patterns. First, over 90% of multi-turn sessions contain at most ten steps, and 89% of inter-step intervals fall under one minute. Second, behavior varies by intent. Fact-seeking sessions exhibit high repetition that increases over time, while sessions requiring reasoning sustain broader exploration. Third, agents reuse evidence across steps. On average, 54% of newly introduced query terms appear in the accumulated evidence context, with contributions from earlier steps beyond the most recent retrieval. The findings suggest that agentic search may benefit from repetition-aware early stopping, intent-adaptive retrieval budgets, and explicit cross-step context tracking. We plan to release the anonymized logs to support future research.
♻ ☆ Hallucination is a Consequence of Space-Optimality: A Rate-Distortion Theorem for Membership Testing
Large language models often hallucinate with high confidence on "random facts" that lack inferable patterns. We formalize the memorization of such facts as a membership testing problem, unifying the discrete error metrics of Bloom filters with the continuous log-loss of LLMs. By analyzing this problem in the regime where facts are sparse in the universe of plausible claims, we establish a rate-distortion theorem: the optimal memory efficiency is characterized by the minimum KL divergence between score distributions on facts and non-facts. This theoretical framework provides a distinctive explanation for hallucination: even with optimal training, perfect data, and a simplified "closed world" setting, the information-theoretically optimal strategy under limited capacity is not to abstain or forget, but to assign high confidence to some non-facts, resulting in hallucination. We validate this theory empirically on synthetic data, showing that hallucinations persist as a natural consequence of lossy compression.
♻ ☆ Rank-and-Reason: Multi-Agent Collaboration Accelerates Zero-Shot Protein Mutation Prediction
Zero-shot mutation prediction is vital for low-resource protein engineering, yet existing protein language models (PLMs) often yield statistically confident results that ignore fundamental biophysical constraints. Currently, selecting candidates for wet-lab validation relies on manual expert auditing of PLM outputs, a process that is inefficient, subjective, and highly dependent on domain expertise. To address this, we propose Rank-and-Reason (VenusRAR), a two-stage agentic framework to automate this workflow and maximize expected wet-lab fitness. In the Rank-Stage, a Computational Expert and Virtual Biologist aggregate a context-aware multi-modal ensemble, establishing a new Spearman correlation record of 0.551 (vs. 0.518) on ProteinGym. In the Reason-Stage, an agentic Expert Panel employs chain-of-thought reasoning to audit candidates against geometric and structural constraints, improving the Top-5 Hit Rate by up to 367% on ProteinGym-DMS99. The wet-lab validation on Cas12i3 nuclease further confirms the framework's efficacy, achieving a 46.7% positive rate and identifying two novel mutants with 4.23-fold and 5.05-fold activity improvements. Code and datasets are released on GitHub (https://github.com/ai4protein/VenusRAR/).
comment: 22 pages, 5 figures, 15 tables
♻ ☆ Reusing Overtrained Language Models Saturates Scaling
Reusing pretrained base models for further pretraining, such as continual pretraining or model growth, is promising at reducing the cost of training language models from scratch. However, the effectiveness remains unclear, especially when applied to overtrained base models. In this work, we empirically study the scaling properties of model reuse and find that the scaling efficiency diminishes in a predictable manner: The scaling exponent with respect to second-stage training tokens decreases logarithmically with the number of tokens used to pretrain the base model. The joint dependence on first- and second-stage tokens is accurately modeled by a simple scaling law. Such saturation effect reveals a fundamental trade-off in multi-stage pretraining strategies: the more extensively a base model is pretrained, the less benefit additional pretraining provides. Our findings provide practical insights for efficient language model training and raise important considerations for the reuse of overtrained models.
♻ ☆ Zero2Text: Zero-Training Cross-Domain Inversion Attacks on Textual Embeddings
The proliferation of retrieval-augmented generation (RAG) has established vector databases as critical infrastructure, yet they introduce severe privacy risks via embedding inversion attacks. Existing paradigms face a fundamental trade-off: optimization-based methods require computationally prohibitive queries, while alignment-based approaches hinge on the unrealistic assumption of accessible in-domain training data. These constraints render them ineffective in strict black-box and cross-domain settings. To dismantle these barriers, we introduce Zero2Text, a novel training-free framework based on recursive online alignment. Unlike methods relying on static datasets, Zero2Text synergizes LLM priors with a dynamic ridge regression mechanism to iteratively align generation to the target embedding on-the-fly. We further demonstrate that standard defenses, such as differential privacy, fail to effectively mitigate this adaptive threat. Extensive experiments across diverse benchmarks validate Zero2Text; notably, on MS MARCO against the OpenAI victim model, it achieves 1.8x higher ROUGE-L and 6.4x higher BLEU-2 scores compared to baselines, recovering sentences from unknown domains without a single leaked data pair.
comment: 10 pages
♻ ☆ From Pragmas to Partners: A Symbiotic Evolution of Agentic High-Level Synthesis
The rise of large language models has sparked interest in AI-driven hardware design, raising the question: does high-level synthesis (HLS) still matter in the agentic era? We argue that HLS remains essential. While we expect mature agentic hardware systems to leverage both HLS and RTL, this paper focuses on HLS and its role in enabling agentic optimization. HLS offers faster iteration cycles, portability, and design permutability that make it a natural layer for agentic optimization. This position paper makes three contributions. First, we explain why HLS serves as a practical abstraction layer and a golden reference for agentic hardware design. Second, we identify key limitations of current HLS tools, namely inadequate performance feedback, rigid interfaces, and limited debuggability that agents are uniquely positioned to address. Third, we propose a taxonomy for the symbiotic evolution of agentic HLS, clarifying how responsibility shifts from human designers to AI agents as systems advance from copilots to autonomous design partners.
♻ ☆ Sentence Curve Language Models
Language models (LMs) are a central component of modern AI systems, and diffusion-based language models (DLMs) have recently emerged as a competitive alternative. Both paradigms rely on word embeddings not only to represent the input sentence, but also to represent the target sentence that backbone models are trained to predict. We argue that such static embedding of the target word is insensitive to neighboring words, encouraging locally accurate word prediction while neglecting global structure across the target sentence. To address this limitation, we propose a continuous sentence representation, termed sentence curve, defined as a spline curve whose control points affect multiple words in the sentence. Based on this representation, we introduce sentence curve language model (SCLM), which extends DLMs to predict sentence curves instead of the static word embeddings. We theoretically show that sentence curve prediction induces a regularization effect that promotes global structure modeling, and characterize how different sentence curve types affect this behavior. Empirically, SCLM achieves SOTA performance among DLMs on IWSLT14 and WMT14, shows stable training without burdensome knowledge distillation, and demonstrates promising potential compared to discrete DLMs on LM1B.
♻ ☆ AR-MAP: Are Autoregressive Large Language Models Implicit Teachers for Diffusion Large Language Models?
Diffusion Large Language Models (DLLMs) have emerged as a powerful alternative to autoregressive models, enabling parallel token generation across multiple positions. However, preference alignment of DLLMs remains challenging due to high variance introduced by Evidence Lower Bound (ELBO)-based likelihood estimation. In this work, we propose AR-MAP, a novel transfer learning framework that leverages preference-aligned autoregressive LLMs (AR-LLMs) as implicit teachers for DLLM alignment. We reveal that DLLMs can effectively absorb alignment knowledge from AR-LLMs through simple weight scaling, exploiting the shared architectural structure between these divergent generation paradigms. Crucially, our approach circumvents the high variance and computational overhead of direct DLLM alignment and comprehensive experiments across diverse preference alignment tasks demonstrate that AR-MAP achieves competitive or superior performance compared to existing DLLM-specific alignment methods, achieving 69.08\% average score across all tasks and models. Our Code is available at https://github.com/AMAP-ML/AR-MAP.
♻ ☆ ARTIS: Agentic Risk-Aware Test-Time Scaling via Iterative Simulation
Current test-time scaling (TTS) techniques enhance large language model (LLM) performance by allocating additional computation at inference time, yet they remain insufficient for agentic settings, where actions directly interact with external environments and their effects can be irreversible and costly. We propose ARTIS, Agentic Risk-Aware Test-Time Scaling via Iterative Simulation, a framework that decouples exploration from commitment by enabling test-time exploration through simulated interactions prior to real-world execution. This design allows extending inference-time computation to improve action-level reliability and robustness without incurring environmental risk. We further show that naive LLM-based simulators struggle to capture rare but high-impact failure modes, substantially limiting their effectiveness for agentic decision making. To address this limitation, we introduce a risk-aware tool simulator that emphasizes fidelity on failure-inducing actions via targeted data generation and rebalanced training. Experiments on multi-turn and multi-step agentic benchmarks demonstrate that iterative simulation substantially improves agent reliability, and that risk-aware simulation is essential for consistently realizing these gains across models and tasks.
♻ ☆ On the Interplay between Human Label Variation and Model Fairness EACL
The impact of human label variation (HLV) on model fairness is an unexplored topic. This paper examines the interplay by comparing training on majority-vote labels with a range of HLV methods. Our experiments show that without explicit debiasing, HLV training methods have a positive impact on fairness under certain configurations.
comment: 10 pages, 7 figures. Accepted to EACL Findings 2026
♻ ☆ EverMemBench: Benchmarking Long-Term Interactive Memory in Large Language Models
Long-term conversational memory is essential for LLM-based assistants, yet existing benchmarks focus on dyadic, single-topic dialogues that fail to capture real-world complexity. We introduce EverMemBench, a benchmark featuring multi-party, multi-group conversations spanning over 1 million tokens with temporally evolving information, cross-topic interleaving, and role-specific personas. EverMemBench evaluates memory systems across three dimensions through 1,000+ QA pairs: fine-grained recall, memory awareness, and user profile understanding. Our evaluation reveals critical limitations: (1) multi-hop reasoning collapses in multi-party settings, with even oracle models achieving only 26%; (2) temporal reasoning remains unsolved, requiring version semantics beyond timestamp matching; (3) memory awareness is bottlenecked by retrieval, where current similarity-based methods fail to bridge the semantic gap between queries and implicitly relevant memories. EverMemBench provides a challenging testbed for developing next-generation memory architectures.
comment: 10 pages, 2 figures, 4 tables
♻ ☆ When Domain Pretraining Interferes with Instruction Alignment: An Empirical Study of Adapter Merging in Medical LLMs
Large language models can exhibit surprising adapter interference when combining domain adaptation and instruction alignment in safety-critical settings. We study a two-stage LoRA pipeline for medical LLMs, where domain-oriented pre-training (PT) and supervised fine-tuning (SFT) are trained separately and later merged through weighted adapter merging. We observe that introducing PT signal can systematically alter model behavior and produce reasoning-style outputs, even when evaluation templates explicitly attempt to suppress such behavior. This interference leads to a divergence between surface metrics and reasoning or alignment behavior: BLEU/ROUGE scores drop significantly, while multiple-choice accuracy improves. We further show that small pipeline mistakes can easily misattribute SFT-only behavior to merged models, and provide a lightweight merge-verification routine to ensure correctness and reproducibility. Our findings highlight an interaction between knowledge injection and instruction alignment in adapter-based fine-tuning, with important implications for safety-critical model deployment.
♻ ☆ SAIL-RL: Guiding MLLMs in When and How to Think via Dual-Reward RL Tuning
We introduce SAIL-RL, a reinforcement learning (RL) post-training framework that enhances the reasoning capabilities of multimodal large language models (MLLMs) by teaching them when and how to think. Existing approaches are limited by outcome-only supervision, which rewards correct answers without ensuring sound reasoning, and by uniform thinking strategies, which often lead to overthinking on simple tasks and underthinking on complex ones. SAIL-RL addresses these challenges with a dual reward system: the Thinking Reward, which evaluates reasoning quality through factual grounding, logical coherence, and answer consistency, and the Judging Reward, which adaptively determines whether deep reasoning or direct answering is appropriate. Experiments on the state-of-the-art SAIL-VL2 show that SAIL-RL improves reasoning and multimodal understanding benchmarks at both 4B and 8B scales, achieving competitive performance against commercial closed-source models such as GPT-4o, and substantially reduces hallucinations, establishing it as a principled framework for building more reliable and adaptive MLLMs. The code will be available at https://github.com/BytedanceDouyinContent/SAIL-RL.
♻ ☆ Surprisal from Larger Transformer-based Language Models Predicts fMRI Data More Poorly EACL 2026
There has been considerable interest in using surprisal from Transformer-based language models (LMs) as predictors of human sentence processing difficulty. Recent work has observed an inverse scaling relationship between Transformers' per-word estimated probability and the predictive power of their surprisal estimates on reading times, showing that LMs with more parameters and trained on more data are less predictive of human reading times. However, these studies focused on predicting latency-based measures. Tests on brain imaging data have not shown a trend in any direction when using a relatively small set of LMs, leaving open the possibility that the inverse scaling phenomenon is constrained to latency data. This study therefore conducted a more comprehensive evaluation using surprisal estimates from 17 pre-trained LMs across three different LM families on two functional magnetic resonance imaging (fMRI) datasets. Results show that the inverse scaling relationship between models' per-word estimated probability and model fit on both datasets still obtains, resolving the inconclusive results of previous work and indicating that this trend is not specific to latency-based measures.
comment: EACL 2026
♻ ☆ NRR-Phi: Text-to-State Mapping for Ambiguity Preservation in LLM Inference
Large language models exhibit a systematic tendency toward early semantic commitment: given ambiguous input, they collapse multiple valid interpretations into a single response before sufficient context is available. We present a formal framework for text-to-state mapping ($φ: \mathcal{T} \to \mathcal{S}$) that transforms natural language into a non-collapsing state space where multiple interpretations coexist. The mapping decomposes into three stages: conflict detection, interpretation extraction, and state construction. We instantiate $φ$ with a hybrid extraction pipeline combining rule-based segmentation for explicit conflict markers (adversative conjunctions, hedging expressions) with LLM-based enumeration of implicit ambiguity (epistemic, lexical, structural). On a test set of 68 ambiguous sentences, the resulting states preserve interpretive multiplicity: mean state entropy $H = 1.087$ bits across ambiguity categories, compared to $H = 0$ for collapse-based baselines. We additionally instantiate the rule-based conflict detector for Japanese markers to illustrate cross-lingual portability. This framework extends Non-Resolution Reasoning (NRR) by providing the missing algorithmic bridge between text and the NRR state space, enabling architectural collapse deferment in LLM inference.
comment: 17 pages, 3 figures, 5 tables. Part of the NRR research program. v2: Added title prefix NRR-Phi for series identification; standardized reference formatting
Computer Vision and Pattern Recognition 155
☆ EventNeuS: 3D Mesh Reconstruction from a Single Event Camera
Event cameras offer a considerable alternative to RGB cameras in many scenarios. While there are recent works on event-based novel-view synthesis, dense 3D mesh reconstruction remains scarcely explored and existing event-based techniques are severely limited in their 3D reconstruction accuracy. To address this limitation, we present EventNeuS, a self-supervised neural model for learning 3D representations from monocular colour event streams. Our approach, for the first time, combines 3D signed distance function and density field learning with event-based supervision. Furthermore, we introduce spherical harmonics encodings into our model for enhanced handling of view-dependent effects. EventNeuS outperforms existing approaches by a significant margin, achieving 34% lower Chamfer distance and 31% lower mean absolute error on average compared to the best previous method.
comment: 13 pages, 10 figures, 3 tables; project page: https://4dqv.mpi-inf.mpg.de/EventNeuS/
☆ PrevizWhiz: Combining Rough 3D Scenes and 2D Video to Guide Generative Video Previsualization
In pre-production, filmmakers and 3D animation experts must rapidly prototype ideas to explore a film's possibilities before fullscale production, yet conventional approaches involve trade-offs in efficiency and expressiveness. Hand-drawn storyboards often lack spatial precision needed for complex cinematography, while 3D previsualization demands expertise and high-quality rigged assets. To address this gap, we present PrevizWhiz, a system that leverages rough 3D scenes in combination with generative image and video models to create stylized video previews. The workflow integrates frame-level image restyling with adjustable resemblance, time-based editing through motion paths or external video inputs, and refinement into high-fidelity video clips. A study with filmmakers demonstrates that our system lowers technical barriers for film-makers, accelerates creative iteration, and effectively bridges the communication gap, while also surfacing challenges of continuity, authorship, and ethical consideration in AI-assisted filmmaking.
comment: 21 pages, 13 figures; accepted and to appear at CHI 2026
☆ AutoFigure: Generating and Refining Publication-Ready Scientific Illustrations ICLR 2026
High-quality scientific illustrations are crucial for effectively communicating complex scientific and technical concepts, yet their manual creation remains a well-recognized bottleneck in both academia and industry. We present FigureBench, the first large-scale benchmark for generating scientific illustrations from long-form scientific texts. It contains 3,300 high-quality scientific text-figure pairs, covering diverse text-to-illustration tasks from scientific papers, surveys, blogs, and textbooks. Moreover, we propose AutoFigure, the first agentic framework that automatically generates high-quality scientific illustrations based on long-form scientific text. Specifically, before rendering the final result, AutoFigure engages in extensive thinking, recombination, and validation to produce a layout that is both structurally sound and aesthetically refined, outputting a scientific illustration that achieves both structural completeness and aesthetic appeal. Leveraging the high-quality data from FigureBench, we conduct extensive experiments to test the performance of AutoFigure against various baseline methods. The results demonstrate that AutoFigure consistently surpasses all baseline methods, producing publication-ready scientific illustrations. The code, dataset and huggingface space are released in https://github.com/ResearAI/AutoFigure.
comment: Accepted at the ICLR 2026
☆ Continuous Control of Editing Models via Adaptive-Origin Guidance
Diffusion-based editing models have emerged as a powerful tool for semantic image and video manipulation. However, existing models lack a mechanism for smoothly controlling the intensity of text-guided edits. In standard text-conditioned generation, Classifier-Free Guidance (CFG) impacts prompt adherence, suggesting it as a potential control for edit intensity in editing models. However, we show that scaling CFG in these models does not produce a smooth transition between the input and the edited result. We attribute this behavior to the unconditional prediction, which serves as the guidance origin and dominates the generation at low guidance scales, while representing an arbitrary manipulation of the input content. To enable continuous control, we introduce Adaptive-Origin Guidance (AdaOr), a method that adjusts this standard guidance origin with an identity-conditioned adaptive origin, using an identity instruction corresponding to the identity manipulation. By interpolating this identity prediction with the standard unconditional prediction according to the edit strength, we ensure a continuous transition from the input to the edited result. We evaluate our method on image and video editing tasks, demonstrating that it provides smoother and more consistent control compared to current slider-based editing approaches. Our method incorporates an identity instruction into the standard training framework, enabling fine-grained control at inference time without per-edit procedure or reliance on specialized datasets.
comment: Project page at https://adaor-paper.github.io/
☆ Deep-learning-based pan-phenomic data reveals the explosive evolution of avian visual disparity
The evolution of biological morphology is critical for understanding the diversity of the natural world, yet traditional analyses often involve subjective biases in the selection and coding of morphological traits. This study employs deep learning techniques, utilising a ResNet34 model capable of recognising over 10,000 bird species, to explore avian morphological evolution. We extract weights from the model's final fully connected (fc) layer and investigate the semantic alignment between the high-dimensional embedding space learned by the model and biological phenotypes. The results demonstrate that the high-dimensional embedding space encodes phenotypic convergence. Subsequently, we assess the morphological disparity among various taxa and evaluate the association between morphological disparity and species richness, demonstrating that species richness is the primary driver of morphospace expansion. Moreover, the disparity-through-time analysis reveals a visual "early burst" after the K-Pg extinction. While mainly aimed at evolutionary analysis, this study also provides insights into the interpretability of Deep Neural Networks. We demonstrate that hierarchical semantic structures (biological taxonomy) emerged in the high-dimensional embedding space despite being trained on flat labels. Furthermore, through adversarial examples, we provide evidence that our model in this task can overcome texture bias and learn holistic shape representations (body plans), challenging the prevailing view that CNNs rely primarily on local textures.
comment: Readers from the field of computer science may be interested in section 2.1, 2.2, 3.1, 4.1, 4.2. These sections discussed the interpretability and representation learning, especially the texture vs shape problem, highlighting our model's ability of overcoming the texture biases and capturing overall shape features. (Although they're put here to prove the biological validity of the model.)
☆ Fast-Slow Efficient Training for Multimodal Large Language Models via Visual Token Pruning
Multimodal Large Language Models (MLLMs) suffer from severe training inefficiency issue, which is associated with their massive model sizes and visual token numbers. Existing efforts in efficient training focus on reducing model sizes or trainable parameters. Inspired by the success of Visual Token Pruning (VTP) in improving inference efficiency, we are exploring another substantial research direction for efficient training by reducing visual tokens. However, applying VTP at the training stage results in a training-inference mismatch: pruning-trained models perform poorly when inferring on non-pruned full visual token sequences. To close this gap, we propose DualSpeed, a fast-slow framework for efficient training of MLLMs. The fast-mode is the primary mode, which incorporates existing VTP methods as plugins to reduce visual tokens, along with a mode isolator to isolate the model's behaviors. The slow-mode is the auxiliary mode, where the model is trained on full visual sequences to retain training-inference consistency. To boost its training, it further leverages self-distillation to learn from the sufficiently trained fast-mode. Together, DualSpeed can achieve both training efficiency and non-degraded performance. Experiments show DualSpeed accelerates the training of LLaVA-1.5 by 2.1$\times$ and LLaVA-NeXT by 4.0$\times$, retaining over 99% performance. Code: https://github.com/dingkun-zhang/DualSpeed
☆ Progressive Checkerboards for Autoregressive Multiscale Image Generation
A key challenge in autoregressive image generation is to efficiently sample independent locations in parallel, while still modeling mutual dependencies with serial conditioning. Some recent works have addressed this by conditioning between scales in a multiscale pyramid. Others have looked at parallelizing samples in a single image using regular partitions or randomized orders. In this work we examine a flexible, fixed ordering based on progressive checkerboards for multiscale autoregressive image generation. Our ordering draws samples in parallel from evenly spaced regions at each scale, maintaining full balance in all levels of a quadtree subdivision at each step. This enables effective conditioning both between and within scales. Intriguingly, we find evidence that in our balanced setting, a wide range of scale-up factors lead to similar results, so long as the total number of serial steps is constant. On class-conditional ImageNet, our method achieves competitive performance compared to recent state-of-the-art autoregressive systems with like model capacity, using fewer sampling steps.
☆ FullStack-Agent: Enhancing Agentic Full-Stack Web Coding via Development-Oriented Testing and Repository Back-Translation
Assisting non-expert users to develop complex interactive websites has become a popular task for LLM-powered code agents. However, existing code agents tend to only generate frontend web pages, masking the lack of real full-stack data processing and storage with fancy visual effects. Notably, constructing production-level full-stack web applications is far more challenging than only generating frontend web pages, demanding careful control of data flow, comprehensive understanding of constantly updating packages and dependencies, and accurate localization of obscure bugs in the codebase. To address these difficulties, we introduce FullStack-Agent, a unified agent system for full-stack agentic coding that consists of three parts: (1) FullStack-Dev, a multi-agent framework with strong planning, code editing, codebase navigation, and bug localization abilities. (2) FullStack-Learn, an innovative data-scaling and self-improving method that back-translates crawled and synthesized website repositories to improve the backbone LLM of FullStack-Dev. (3) FullStack-Bench, a comprehensive benchmark that systematically tests the frontend, backend and database functionalities of the generated website. Our FullStack-Dev outperforms the previous state-of-the-art method by 8.7%, 38.2%, and 15.9% on the frontend, backend, and database test cases respectively. Additionally, FullStack-Learn raises the performance of a 30B model by 9.7%, 9.5%, and 2.8% on the three sets of test cases through self-improvement, demonstrating the effectiveness of our approach. The code is released at https://github.com/mnluzimu/FullStack-Agent.
☆ 3D-Aware Implicit Motion Control for View-Adaptive Human Video Generation
Existing methods for human motion control in video generation typically rely on either 2D poses or explicit 3D parametric models (e.g., SMPL) as control signals. However, 2D poses rigidly bind motion to the driving viewpoint, precluding novel-view synthesis. Explicit 3D models, though structurally informative, suffer from inherent inaccuracies (e.g., depth ambiguity and inaccurate dynamics) which, when used as a strong constraint, override the powerful intrinsic 3D awareness of large-scale video generators. In this work, we revisit motion control from a 3D-aware perspective, advocating for an implicit, view-agnostic motion representation that naturally aligns with the generator's spatial priors rather than depending on externally reconstructed constraints. We introduce 3DiMo, which jointly trains a motion encoder with a pretrained video generator to distill driving frames into compact, view-agnostic motion tokens, injected semantically via cross-attention. To foster 3D awareness, we train with view-rich supervision (i.e., single-view, multi-view, and moving-camera videos), forcing motion consistency across diverse viewpoints. Additionally, we use auxiliary geometric supervision that leverages SMPL only for early initialization and is annealed to zero, enabling the model to transition from external 3D guidance to learning genuine 3D spatial motion understanding from the data and the generator's priors. Experiments confirm that 3DiMo faithfully reproduces driving motions with flexible, text-driven camera control, significantly surpassing existing methods in both motion fidelity and visual quality.
comment: Project Page: https://hjrphoebus.github.io/3DiMo/
☆ BridgeV2W: Bridging Video Generation Models to Embodied World Models via Embodiment Masks
Embodied world models have emerged as a promising paradigm in robotics, most of which leverage large-scale Internet videos or pretrained video generation models to enrich visual and motion priors. However, they still face key challenges: a misalignment between coordinate-space actions and pixel-space videos, sensitivity to camera viewpoint, and non-unified architectures across embodiments. To this end, we present BridgeV2W, which converts coordinate-space actions into pixel-aligned embodiment masks rendered from the URDF and camera parameters. These masks are then injected into a pretrained video generation model via a ControlNet-style pathway, which aligns the action control signals with predicted videos, adds view-specific conditioning to accommodate camera viewpoints, and yields a unified world model architecture across embodiments. To mitigate overfitting to static backgrounds, BridgeV2W further introduces a flow-based motion loss that focuses on learning dynamic and task-relevant regions. Experiments on single-arm (DROID) and dual-arm (AgiBot-G1) datasets, covering diverse and challenging conditions with unseen viewpoints and scenes, show that BridgeV2W improves video generation quality compared to prior state-of-the-art methods. We further demonstrate the potential of BridgeV2W on downstream real-world tasks, including policy evaluation and goal-conditioned planning. More results can be found on our project website at https://BridgeV2W.github.io .
☆ From Pre- to Intra-operative MRI: Predicting Brain Shift in Temporal Lobe Resection for Epilepsy Surgery
Introduction: In neurosurgery, image-guided Neurosurgery Systems (IGNS) highly rely on preoperative brain magnetic resonance images (MRI) to assist surgeons in locating surgical targets and determining surgical paths. However, brain shift invalidates the preoperative MRI after dural opening. Updated intraoperative brain MRI with brain shift compensation is crucial for enhancing the precision of neuronavigation systems and ensuring the optimal outcome of surgical interventions. Methodology: We propose NeuralShift, a U-Net-based model that predicts brain shift entirely from pre-operative MRI for patients undergoing temporal lobe resection. We evaluated our results using Target Registration Errors (TREs) computed on anatomical landmarks located on the resection side and along the midline, and DICE scores comparing predicted intraoperative masks with masks derived from intraoperative MRI. Results: Our experimental results show that our model can predict the global deformation of the brain (DICE of 0.97) with accurate local displacements (achieve landmark TRE as low as 1.12 mm), compensating for large brain shifts during temporal lobe removal neurosurgery. Conclusion: Our proposed model is capable of predicting the global deformation of the brain during temporal lobe resection using only preoperative images, providing potential opportunities to the surgical team to increase safety and efficiency of neurosurgery and better outcomes to patients. Our contributions will be publicly available after acceptance in https://github.com/SurgicalDataScienceKCL/NeuralShift.
☆ QVLA: Not All Channels Are Equal in Vision-Language-Action Model's Quantization ICLR2026
The advent of Vision-Language-Action (VLA) models represents a significant leap for embodied intelligence, yet their immense computational demands critically hinder deployment on resource-constrained robotic platforms. Intuitively, low-bit quantization is a prevalent and preferred technique for large-scale model compression. However, we find that a systematic analysis of VLA model's quantization is fundamentally lacking. We argue that naively applying uniform-bit quantization from Large Language Models (LLMs) to robotics is flawed, as these methods prioritize passive data fidelity while ignoring how minor action deviations compound into catastrophic task failures. To bridge this gap, we introduce QVLA, the first action-centric quantization framework specifically designed for embodied control. In a sharp departure from the rigid, uniform-bit quantization of LLM-based methods, QVLA introduces a highly granular, channel-wise bit allocation strategy. Its core mechanism is to directly measure the final action-space sensitivity when quantizing each individual channel to various bit-widths. This process yields a precise, per-channel importance metric that guides a global optimization, which elegantly unifies quantization and pruning (0-bit) into a single, cohesive framework. Extensive evaluations on different baselines demonstrate the superiority of our approach. In the LIBERO, the quantization version of OpenVLA-OFT with our method requires only 29.2% of the original model's VRAM while maintaining 98.9% of its original performance and achieving a 1.49x speedup. This translates to a 22.6% performance improvement over the LLM-derived method SmoothQuant. Our work establishes a new, principled foundation for compressing VLA models in robotics, paving the way for deploying powerful, large-scale models on real-world hardware. Code will be released.
comment: ICLR2026
☆ FOVI: A biologically-inspired foveated interface for deep vision models
Human vision is foveated, with variable resolution peaking at the center of a large field of view; this reflects an efficient trade-off for active sensing, allowing eye-movements to bring different parts of the world into focus with other parts of the world in context. In contrast, most computer vision systems encode the visual world at a uniform resolution, raising challenges for processing full-field high-resolution images efficiently. We propose a foveated vision interface (FOVI) based on the human retina and primary visual cortex, that reformats a variable-resolution retina-like sensor array into a uniformly dense, V1-like sensor manifold. Receptive fields are defined as k-nearest-neighborhoods (kNNs) on the sensor manifold, enabling kNN-convolution via a novel kernel mapping technique. We demonstrate two use cases: (1) an end-to-end kNN-convolutional architecture, and (2) a foveated adaptation of the foundational DINOv3 ViT model, leveraging low-rank adaptation (LoRA). These models provide competitive performance at a fraction of the computational cost of non-foveated baselines, opening pathways for efficient and scalable active sensing for high-resolution egocentric vision. Code and pre-trained models are available at https://github.com/nblauch/fovi and https://huggingface.co/fovi-pytorch.
☆ RAWDet-7: A Multi-Scenario Benchmark for Object Detection and Description on Quantized RAW Images
Most vision models are trained on RGB images processed through ISP pipelines optimized for human perception, which can discard sensor-level information useful for machine reasoning. RAW images preserve unprocessed scene data, enabling models to leverage richer cues for both object detection and object description, capturing fine-grained details, spatial relationships, and contextual information often lost in processed images. To support research in this domain, we introduce RAWDet-7, a large-scale dataset of ~25k training and 7.6k test RAW images collected across diverse cameras, lighting conditions, and environments, densely annotated for seven object categories following MS-COCO and LVIS conventions. In addition, we provide object-level descriptions derived from the corresponding high-resolution sRGB images, facilitating the study of object-level information preservation under RAW image processing and low-bit quantization. The dataset allows evaluation under simulated 4-bit, 6-bit, and 8-bit quantization, reflecting realistic sensor constraints, and provides a benchmark for studying detection performance, description quality & detail, and generalization in low-bit RAW image processing. Dataset & code upon acceptance.
comment: *Equal Contribution
☆ Test-Time Conditioning with Representation-Aligned Visual Features
While representation alignment with self-supervised models has been shown to improve diffusion model training, its potential for enhancing inference-time conditioning remains largely unexplored. We introduce Representation-Aligned Guidance (REPA-G), a framework that leverages these aligned representations, with rich semantic properties, to enable test-time conditioning from features in generation. By optimizing a similarity objective (the potential) at inference, we steer the denoising process toward a conditioned representation extracted from a pre-trained feature extractor. Our method provides versatile control at multiple scales, ranging from fine-grained texture matching via single patches to broad semantic guidance using global image feature tokens. We further extend this to multi-concept composition, allowing for the faithful combination of distinct concepts. REPA-G operates entirely at inference time, offering a flexible and precise alternative to often ambiguous text prompts or coarse class labels. We theoretically justify how this guidance enables sampling from the potential-induced tilted distribution. Quantitative results on ImageNet and COCO demonstrate that our approach achieves high-quality, diverse generations. Code is available at https://github.com/valeoai/REPA-G.
☆ Zero-shot large vision-language model prompting for automated bone identification in paleoradiology x-ray archives
Paleoradiology, the use of modern imaging technologies to study archaeological and anthropological remains, offers new windows on millennial scale patterns of human health. Unfortunately, the radiographs collected during field campaigns are heterogeneous: bones are disarticulated, positioning is ad hoc, and laterality markers are often absent. Additionally, factors such as age at death, age of bone, sex, and imaging equipment introduce high variability. Thus, content navigation, such as identifying a subset of images with a specific projection view, can be time consuming and difficult, making efficient triaging a bottleneck for expert analysis. We report a zero shot prompting strategy that leverages a state of the art Large Vision Language Model (LVLM) to automatically identify the main bone, projection view, and laterality in such images. Our pipeline converts raw DICOM files to bone windowed PNGs, submits them to the LVLM with a carefully engineered prompt, and receives structured JSON outputs, which are extracted and formatted onto a spreadsheet in preparation for validation. On a random sample of 100 images reviewed by an expert board certified paleoradiologist, the system achieved 92% main bone accuracy, 80% projection view accuracy, and 100% laterality accuracy, with low or medium confidence flags for ambiguous cases. These results suggest that LVLMs can substantially accelerate code word development for large paleoradiology datasets, allowing for efficient content navigation in future anthropology workflows.
☆ See-through: Single-image Layer Decomposition for Anime Characters
We introduce a framework that automates the transformation of static anime illustrations into manipulatable 2.5D models. Current professional workflows require tedious manual segmentation and the artistic ``hallucination'' of occluded regions to enable motion. Our approach overcomes this by decomposing a single image into fully inpainted, semantically distinct layers with inferred drawing orders. To address the scarcity of training data, we introduce a scalable engine that bootstraps high-quality supervision from commercial Live2D models, capturing pixel-perfect semantics and hidden geometry. Our methodology couples a diffusion-based Body Part Consistency Module, which enforces global geometric coherence, with a pixel-level pseudo-depth inference mechanism. This combination resolves the intricate stratification of anime characters, e.g., interleaving hair strands, allowing for dynamic layer reconstruction. We demonstrate that our approach yields high-fidelity, manipulatable models suitable for professional, real-time animation applications.
comment: 23 pages, 20 figures, preprint version only
LIVE: Long-horizon Interactive Video World Modeling
Autoregressive video world models predict future visual observations conditioned on actions. While effective over short horizons, these models often struggle with long-horizon generation, as small prediction errors accumulate over time. Prior methods alleviate this by introducing pre-trained teacher models and sequence-level distribution matching, which incur additional computational cost and fail to prevent error propagation beyond the training horizon. In this work, we propose LIVE, a Long-horizon Interactive Video world modEl that enforces bounded error accumulation via a novel cycle-consistency objective, thereby eliminating the need for teacher-based distillation. Specifically, LIVE first performs a forward rollout from ground-truth frames and then applies a reverse generation process to reconstruct the initial state. The diffusion loss is subsequently computed on the reconstructed terminal state, providing an explicit constraint on long-horizon error propagation. Moreover, we provide an unified view that encompasses different approaches and introduce progressive training curriculum to stabilize training. Experiments demonstrate that LIVE achieves state-of-the-art performance on long-horizon benchmarks, generating stable, high-quality videos far beyond training rollout lengths.
comment: 18 pages, 22 figures
☆ Edge-Optimized Vision-Language Models for Underground Infrastructure Assessment
Autonomous inspection of underground infrastructure, such as sewer and culvert systems, is critical to public safety and urban sustainability. Although robotic platforms equipped with visual sensors can efficiently detect structural deficiencies, the automated generation of human-readable summaries from these detections remains a significant challenge, especially on resource-constrained edge devices. This paper presents a novel two-stage pipeline for end-to-end summarization of underground deficiencies, combining our lightweight RAPID-SCAN segmentation model with a fine-tuned Vision-Language Model (VLM) deployed on an edge computing platform. The first stage employs RAPID-SCAN (Resource-Aware Pipeline Inspection and Defect Segmentation using Compact Adaptive Network), achieving 0.834 F1-score with only 0.64M parameters for efficient defect segmentation. The second stage utilizes a fine-tuned Phi-3.5 VLM that generates concise, domain-specific summaries in natural language from the segmentation outputs. We introduce a curated dataset of inspection images with manually verified descriptions for VLM fine-tuning and evaluation. To enable real-time performance, we employ post-training quantization with hardware-specific optimization, achieving significant reductions in model size and inference latency without compromising summarization quality. We deploy and evaluate our complete pipeline on a mobile robotic platform, demonstrating its effectiveness in real-world inspection scenarios. Our results show the potential of edge-deployable integrated AI systems to bridge the gap between automated defect detection and actionable insights for infrastructure maintenance, paving the way for more scalable and autonomous inspection solutions.
☆ RegionReasoner: Region-Grounded Multi-Round Visual Reasoning ICLR 2026
Large vision-language models have achieved remarkable progress in visual reasoning, yet most existing systems rely on single-step or text-only reasoning, limiting their ability to iteratively refine understanding across multiple visual contexts. To address this limitation, we introduce a new multi-round visual reasoning benchmark with training and test sets spanning both detection and segmentation tasks, enabling systematic evaluation under iterative reasoning scenarios. We further propose RegionReasoner, a reinforcement learning framework that enforces grounded reasoning by requiring each reasoning trace to explicitly cite the corresponding reference bounding boxes, while maintaining semantic coherence via a global-local consistency reward. This reward extracts key objects and nouns from both global scene captions and region-level captions, aligning them with the reasoning trace to ensure consistency across reasoning steps. RegionReasoner is optimized with structured rewards combining grounding fidelity and global-local semantic alignment. Experiments on detection and segmentation tasks show that RegionReasoner-7B, together with our newly introduced benchmark RegionDial-Bench, considerably improves multi-round reasoning accuracy, spatial grounding precision, and global-local consistency, establishing a strong baseline for this emerging research direction.
comment: Accepted by ICLR 2026
☆ Referring Industrial Anomaly Segmentation
Industrial Anomaly Detection (IAD) is vital for manufacturing, yet traditional methods face significant challenges: unsupervised approaches yield rough localizations requiring manual thresholds, while supervised methods overfit due to scarce, imbalanced data. Both suffer from the "One Anomaly Class, One Model" limitation. To address this, we propose Referring Industrial Anomaly Segmentation (RIAS), a paradigm leveraging language to guide detection. RIAS generates precise masks from text descriptions without manual thresholds and uses universal prompts to detect diverse anomalies with a single model. We introduce the MVTec-Ref dataset to support this, designed with diverse referring expressions and focusing on anomaly patterns, notably with 95% small anomalies. We also propose the Dual Query Token with Mask Group Transformer (DQFormer) benchmark, enhanced by Language-Gated Multi-Level Aggregation (LMA) to improve multi-scale segmentation. Unlike traditional methods using redundant queries, DQFormer employs only "Anomaly" and "Background" tokens for efficient visual-textual integration. Experiments demonstrate RIAS's effectiveness in advancing IAD toward open-set capabilities. Code: https://github.com/swagger-coder/RIAS-MVTec-Ref.
☆ Efficient Sequential Neural Network with Spatial-Temporal Attention and Linear LSTM for Robust Lane Detection Using Multi-Frame Images
Lane detection is a crucial perception task for all levels of automated vehicles (AVs) and Advanced Driver Assistance Systems, particularly in mixed-traffic environments where AVs must interact with human-driven vehicles (HDVs) and challenging traffic scenarios. Current methods lack versatility in delivering accurate, robust, and real-time compatible lane detection, especially vision-based methods often neglect critical regions of the image and their spatial-temporal (ST) salience, leading to poor performance in difficult circumstances such as serious occlusion and dazzle lighting. This study introduces a novel sequential neural network model with a spatial-temporal attention mechanism to focus on key features of lane lines and exploit salient ST correlations among continuous image frames. The proposed model, built on a standard encoder-decoder structure and common neural network backbones, is trained and evaluated on three large-scale open-source datasets. Extensive experiments demonstrate the strength and robustness of the proposed model, outperforming state-of-the-art methods in various testing scenarios. Furthermore, with the ST attention mechanism, the developed sequential neural network models exhibit fewer parameters and reduced Multiply-Accumulate Operations (MACs) compared to baseline sequential models, highlighting their computational efficiency. Relevant data, code, and models are released at https://doi.org/10.4121/4619cab6-ae4a-40d5-af77-582a77f3d821.
comment: 14 pages, 9 figures, under review by IEEE T-ITS
☆ MVP-LAM: Learning Action-Centric Latent Action via Cross-Viewpoint Reconstruction
Learning \emph{latent actions} from diverse human videos enables scaling robot learning beyond embodiment-specific robot datasets, and these latent actions have recently been used as pseudo-action labels for vision-language-action (VLA) model pretraining. To make VLA pretraining effective, latent actions should contain information about the underlying agent's actions despite the absence of ground-truth labels. We propose \textbf{M}ulti-\textbf{V}iew\textbf{P}oint \textbf{L}atent \textbf{A}ction \textbf{M}odel (\textbf{MVP-LAM}), which learns discrete latent actions that are highly informative about ground-truth actions from time-synchronized multi-view videos. MVP-LAM trains latent actions with a \emph{cross-viewpoint reconstruction} objective, so that a latent action inferred from one view must explain the future in another view, reducing reliance on viewpoint-specific cues. On Bridge V2, MVP-LAM produces more action-centric latent actions, achieving higher mutual information with ground-truth actions and improved action prediction, including under out-of-distribution evaluation. Finally, pretraining VLAs with MVP-LAM latent actions improves downstream manipulation performance on the SIMPLER and LIBERO-Long benchmarks.
☆ MM-SCALE: Grounded Multimodal Moral Reasoning via Scalar Judgment and Listwise Alignment
Vision-Language Models (VLMs) continue to struggle to make morally salient judgments in multimodal and socially ambiguous contexts. Prior works typically rely on binary or pairwise supervision, which often fail to capture the continuous and pluralistic nature of human moral reasoning. We present MM-SCALE (Multimodal Moral Scale), a large-scale dataset for aligning VLMs with human moral preferences through 5-point scalar ratings and explicit modality grounding. Each image-scenario pair is annotated with moral acceptability scores and grounded reasoning labels by humans using an interface we tailored for data collection, enabling listwise preference optimization over ranked scenario sets. By moving from discrete to scalar supervision, our framework provides richer alignment signals and finer calibration of multimodal moral reasoning. Experiments show that VLMs fine-tuned on MM-SCALE achieve higher ranking fidelity and more stable safety calibration than those trained with binary signals.
☆ SPWOOD: Sparse Partial Weakly-Supervised Oriented Object Detection ICLR 2026
A consistent trend throughout the research of oriented object detection has been the pursuit of maintaining comparable performance with fewer and weaker annotations. This is particularly crucial in the remote sensing domain, where the dense object distribution and a wide variety of categories contribute to prohibitively high costs. Based on the supervision level, existing oriented object detection algorithms can be broadly grouped into fully supervised, semi-supervised, and weakly supervised methods. Within the scope of this work, we further categorize them to include sparsely supervised and partially weakly-supervised methods. To address the challenges of large-scale labeling, we introduce the first Sparse Partial Weakly-Supervised Oriented Object Detection framework, designed to efficiently leverage only a few sparse weakly-labeled data and plenty of unlabeled data. Our framework incorporates three key innovations: (1) We design a Sparse-annotation-Orientation-and-Scale-aware Student (SOS-Student) model to separate unlabeled objects from the background in a sparsely-labeled setting, and learn orientation and scale information from orientation-agnostic or scale-agnostic weak annotations. (2) We construct a novel Multi-level Pseudo-label Filtering strategy that leverages the distribution of model predictions, which is informed by the model's multi-layer predictions. (3) We propose a unique sparse partitioning approach, ensuring equal treatment for each category. Extensive experiments on the DOTA and DIOR datasets show that our framework achieves a significant performance gain over traditional oriented object detection methods mentioned above, offering a highly cost-effective solution. Our code is publicly available at https://github.com/VisionXLab/SPWOOD.
comment: The Fourteenth International Conference on Learning Representations (ICLR 2026)
☆ Multi-Objective Optimization for Synthetic-to-Real Style Transfer
Semantic segmentation networks require large amounts of pixel-level annotated data, which are costly to obtain for real-world images. Computer graphics engines can generate synthetic images alongside their ground-truth annotations. However, models trained on such images can perform poorly on real images due to the domain gap between real and synthetic images. Style transfer methods can reduce this difference by applying a realistic style to synthetic images. Choosing effective data transformations and their sequence is difficult due to the large combinatorial search space of style transfer operators. Using multi-objective genetic algorithms, we optimize pipelines to balance structural coherence and style similarity to target domains. We study the use of paired-image metrics on individual image samples during evolution to enable rapid pipeline evaluation, as opposed to standard distributional metrics that require the generation of many images. After optimization, we evaluate the resulting Pareto front using distributional metrics and segmentation performance. We apply this approach to standard datasets in synthetic-to-real domain adaptation: from the video game GTA5 to real image datasets Cityscapes and ACDC, focusing on adverse conditions. Results demonstrate that evolutionary algorithms can propose diverse augmentation pipelines adapted to different objectives. The contribution of this work is the formulation of style transfer as a sequencing problem suitable for evolutionary optimization and the study of efficient metrics that enable feasible search in this space. The source code is available at: https://github.com/echigot/MOOSS.
comment: Accepted in International Conference on the Applications of Evolutionary Computation (Part of EvoStar), April 2026 (EvoApplications 2026)
☆ Quasi-multimodal-based pathophysiological feature learning for retinal disease diagnosis
Retinal diseases spanning a broad spectrum can be effectively identified and diagnosed using complementary signals from multimodal data. However, multimodal diagnosis in ophthalmic practice is typically challenged in terms of data heterogeneity, potential invasiveness, registration complexity, and so on. As such, a unified framework that integrates multimodal data synthesis and fusion is proposed for retinal disease classification and grading. Specifically, the synthesized multimodal data incorporates fundus fluorescein angiography (FFA), multispectral imaging (MSI), and saliency maps that emphasize latent lesions as well as optic disc/cup regions. Parallel models are independently trained to learn modality-specific representations that capture cross-pathophysiological signatures. These features are then adaptively calibrated within and across modalities to perform information pruning and flexible integration according to downstream tasks. The proposed learning system is thoroughly interpreted through visualizations in both image and feature spaces. Extensive experiments on two public datasets demonstrated the superiority of our approach over state-of-the-art ones in the tasks of multi-label classification (F1-score: 0.683, AUC: 0.953) and diabetic retinopathy grading (Accuracy:0.842, Kappa: 0.861). This work not only enhances the accuracy and efficiency of retinal disease screening but also offers a scalable framework for data augmentation across various medical imaging modalities.
☆ KTV: Keyframes and Key Tokens Selection for Efficient Training-Free Video LLMs
Training-free video understanding leverages the strong image comprehension capabilities of pre-trained vision language models (VLMs) by treating a video as a sequence of static frames, thus obviating the need for costly video-specific training. However, this paradigm often suffers from severe visual redundancy and high computational overhead, especially when processing long videos. Crucially, existing keyframe selection strategies, especially those based on CLIP similarity, are prone to biases and may inadvertently overlook critical frames, resulting in suboptimal video comprehension. To address these significant challenges, we propose \textbf{KTV}, a novel two-stage framework for efficient and effective training-free video understanding. In the first stage, KTV performs question-agnostic keyframe selection by clustering frame-level visual features, yielding a compact, diverse, and representative subset of frames that mitigates temporal redundancy. In the second stage, KTV applies key visual token selection, pruning redundant or less informative tokens from each selected keyframe based on token importance and redundancy, which significantly reduces the number of tokens fed into the LLM. Extensive experiments on the Multiple-Choice VideoQA task demonstrate that KTV outperforms state-of-the-art training-free baselines while using significantly fewer visual tokens, \emph{e.g.}, only 504 visual tokens for a 60-min video with 10800 frames, achieving $44.8\%$ accuracy on the MLVU-Test benchmark. In particular, KTV also exceeds several training-based approaches on certain benchmarks.
A Lightweight Library for Energy-Based Joint-Embedding Predictive Architectures
We present EB-JEPA, an open-source library for learning representations and world models using Joint-Embedding Predictive Architectures (JEPAs). JEPAs learn to predict in representation space rather than pixel space, avoiding the pitfalls of generative modeling while capturing semantically meaningful features suitable for downstream tasks. Our library provides modular, self-contained implementations that illustrate how representation learning techniques developed for image-level self-supervised learning can transfer to video, where temporal dynamics add complexity, and ultimately to action-conditioned world models, where the model must additionally learn to predict the effects of control inputs. Each example is designed for single-GPU training within a few hours, making energy-based self-supervised learning accessible for research and education. We provide ablations of JEA components on CIFAR-10. Probing these representations yields 91% accuracy, indicating that the model learns useful features. Extending to video, we include a multi-step prediction example on Moving MNIST that demonstrates how the same principles scale to temporal modeling. Finally, we show how these representations can drive action-conditioned world models, achieving a 97% planning success rate on the Two Rooms navigation task. Comprehensive ablations reveal the critical importance of each regularization component for preventing representation collapse. Code is available at https://github.com/facebookresearch/eb_jepa.
☆ Refer-Agent: A Collaborative Multi-Agent System with Reasoning and Reflection for Referring Video Object Segmentation
Referring Video Object Segmentation (RVOS) aims to segment objects in videos based on textual queries. Current methods mainly rely on large-scale supervised fine-tuning (SFT) of Multi-modal Large Language Models (MLLMs). However, this paradigm suffers from heavy data dependence and limited scalability against the rapid evolution of MLLMs. Although recent zero-shot approaches offer a flexible alternative, their performance remains significantly behind SFT-based methods, due to the straightforward workflow designs. To address these limitations, we propose \textbf{Refer-Agent}, a collaborative multi-agent system with alternating reasoning-reflection mechanisms. This system decomposes RVOS into step-by-step reasoning process. During reasoning, we introduce a Coarse-to-Fine frame selection strategy to ensure the frame diversity and textual relevance, along with a Dynamic Focus Layout that adaptively adjusts the agent's visual focus. Furthermore, we propose a Chain-of-Reflection mechanism, which employs a Questioner-Responder pair to generate a self-reflection chain, enabling the system to verify intermediate results and generates feedback for next-round reasoning refinement. Extensive experiments on five challenging benchmarks demonstrate that Refer-Agent significantly outperforms state-of-the-art methods, including both SFT-based models and zero-shot approaches. Moreover, Refer-Agent is flexible and enables fast integration of new MLLMs without any additional fine-tuning costs. Code will be released.
☆ TIPS Over Tricks: Simple Prompts for Effective Zero-shot Anomaly Detection ICASSP'26
Anomaly detection identifies departures from expected behavior in safety-critical settings. When target-domain normal data are unavailable, zero-shot anomaly detection (ZSAD) leverages vision-language models (VLMs). However, CLIP's coarse image-text alignment limits both localization and detection due to (i) spatial misalignment and (ii) weak sensitivity to fine-grained anomalies; prior work compensates with complex auxiliary modules yet largely overlooks the choice of backbone. We revisit the backbone and use TIPS-a VLM trained with spatially aware objectives. While TIPS alleviates CLIP's issues, it exposes a distributional gap between global and local features. We address this with decoupled prompts-fixed for image-level detection and learnable for pixel-level localization-and by injecting local evidence into the global score. Without CLIP-specific tricks, our TIPS-based pipeline improves image-level performance by 1.1-3.9% and pixel-level by 1.5-6.9% across seven industrial datasets, delivering strong generalization with a lean architecture. Code is available at github.com/AlirezaSalehy/Tipsomaly.
comment: This is the extended version of the paper accepted in ICASSP'26, which will be publicly available in May. Authors' contributions may vary among the versions
☆ High-Resolution Underwater Camouflaged Object Detection: GBU-UCOD Dataset and Topology-Aware and Frequency-Decoupled Networks
Underwater Camouflaged Object Detection (UCOD) is a challenging task due to the extreme visual similarity between targets and backgrounds across varying marine depths. Existing methods often struggle with topological fragmentation of slender creatures in the deep sea and the subtle feature extraction of transparent organisms. In this paper, we propose DeepTopo-Net, a novel framework that integrates topology-aware modeling with frequency-decoupled perception. To address physical degradation, we design the Water-Conditioned Adaptive Perceptor (WCAP), which employs Riemannian metric tensors to dynamically deform convolutional sampling fields. Furthermore, the Abyssal-Topology Refinement Module (ATRM) is developed to maintain the structural connectivity of spindly targets through skeletal priors. Specifically, we first introduce GBU-UCOD, the first high-resolution (2K) benchmark tailored for marine vertical zonation, filling the data gap for hadal and abyssal zones. Extensive experiments on MAS3K, RMAS, and our proposed GBU-UCOD datasets demonstrate that DeepTopo-Net achieves state-of-the-art performance, particularly in preserving the morphological integrity of complex underwater patterns. The datasets and codes will be released at https://github.com/Wuwenji18/GBU-UCOD.
☆ SlowFocus: Enhancing Fine-grained Temporal Understanding in Video LLM NeurIPS 2024
Large language models (LLMs) have demonstrated exceptional capabilities in text understanding, which has paved the way for their expansion into video LLMs (Vid-LLMs) to analyze video data. However, current Vid-LLMs struggle to simultaneously retain high-quality frame-level semantic information (i.e., a sufficient number of tokens per frame) and comprehensive video-level temporal information (i.e., an adequate number of sampled frames per video). This limitation hinders the advancement of Vid-LLMs towards fine-grained video understanding. To address this issue, we introduce the SlowFocus mechanism, which significantly enhances the equivalent sampling frequency without compromising the quality of frame-level visual tokens. SlowFocus begins by identifying the query-related temporal segment based on the posed question, then performs dense sampling on this segment to extract local high-frequency features. A multi-frequency mixing attention module is further leveraged to aggregate these local high-frequency details with global low-frequency contexts for enhanced temporal comprehension. Additionally, to tailor Vid-LLMs to this innovative mechanism, we introduce a set of training strategies aimed at bolstering both temporal grounding and detailed temporal reasoning capabilities. Furthermore, we establish FineAction-CGR, a benchmark specifically devised to assess the ability of Vid-LLMs to process fine-grained temporal understanding tasks. Comprehensive experiments demonstrate the superiority of our mechanism across both existing public video understanding benchmarks and our proposed FineAction-CGR.
comment: NeurIPS 2024
☆ ELIQ: A Label-Free Framework for Quality Assessment of Evolving AI-Generated Images
Generative text-to-image models are advancing at an unprecedented pace, continuously shifting the perceptual quality ceiling and rendering previously collected labels unreliable for newer generations. To address this, we present ELIQ, a Label-free Framework for Quality Assessment of Evolving AI-generated Images. Specifically, ELIQ focuses on visual quality and prompt-image alignment, automatically constructs positive and aspect-specific negative pairs to cover both conventional distortions and AIGC-specific distortion modes, enabling transferable supervision without human annotations. Building on these pairs, ELIQ adapts a pre-trained multimodal model into a quality-aware critic via instruction tuning and predicts two-dimensional quality using lightweight gated fusion and a Quality Query Transformer. Experiments across multiple benchmarks demonstrate that ELIQ consistently outperforms existing label-free methods, generalizes from AI-generated content (AIGC) to user-generated content (UGC) scenarios without modification, and paves the way for scalable and label-free quality assessment under continuously evolving generative models. The code will be released upon publication.
☆ Cut to the Mix: Simple Data Augmentation Outperforms Elaborate Ones in Limited Organ Segmentation Datasets MICCAI 2024
Multi-organ segmentation is a widely applied clinical routine and automated organ segmentation tools dramatically improve the pipeline of the radiologists. Recently, deep learning (DL) based segmentation models have shown the capacity to accomplish such a task. However, the training of the segmentation networks requires large amount of data with manual annotations, which is a major concern due to the data scarcity from clinic. Working with limited data is still common for researches on novel imaging modalities. To enhance the effectiveness of DL models trained with limited data, data augmentation (DA) is a crucial regularization technique. Traditional DA (TDA) strategies focus on basic intra-image operations, i.e. generating images with different orientations and intensity distributions. In contrast, the interimage and object-level DA operations are able to create new images from separate individuals. However, such DA strategies are not well explored on the task of multi-organ segmentation. In this paper, we investigated four possible inter-image DA strategies: CutMix, CarveMix, ObjectAug and AnatoMix, on two organ segmentation datasets. The result shows that CutMix, CarveMix and AnatoMix can improve the average dice score by 4.9, 2.0 and 1.9, compared with the state-of-the-art nnUNet without DA strategies. These results can be further improved by adding TDA strategies. It is revealed in our experiments that Cut-Mix is a robust but simple DA strategy to drive up the segmentation performance for multi-organ segmentation, even when CutMix produces intuitively 'wrong' images. Our implementation is publicly available for future benchmarks.
comment: Accepted at MICCAI 2024
☆ AffordanceGrasp-R1:Leveraging Reasoning-Based Affordance Segmentation with Reinforcement Learning for Robotic Grasping
We introduce AffordanceGrasp-R1, a reasoning-driven affordance segmentation framework for robotic grasping that combines a chain-of-thought (CoT) cold-start strategy with reinforcement learning to enhance deduction and spatial grounding. In addition, we redesign the grasping pipeline to be more context-aware by generating grasp candidates from the global scene point cloud and subsequently filtering them using instruction-conditioned affordance masks. Extensive experiments demonstrate that AffordanceGrasp-R1 consistently outperforms state-of-the-art (SOTA) methods on benchmark datasets, and real-world robotic grasping evaluations further validate its robustness and generalization under complex language-conditioned manipulation scenarios.
comment: Preprint version
☆ Constrained Dynamic Gaussian Splatting
While Dynamic Gaussian Splatting enables high-fidelity 4D reconstruction, its deployment is severely hindered by a fundamental dilemma: unconstrained densification leads to excessive memory consumption incompatible with edge devices, whereas heuristic pruning fails to achieve optimal rendering quality under preset Gaussian budgets. In this work, we propose Constrained Dynamic Gaussian Splatting (CDGS), a novel framework that formulates dynamic scene reconstruction as a budget-constrained optimization problem to enforce a strict, user-defined Gaussian budget during training. Our key insight is to introduce a differentiable budget controller as the core optimization driver. Guided by a multi-modal unified importance score, this controller fuses geometric, motion, and perceptual cues for precise capacity regulation. To maximize the utility of this fixed budget, we further decouple the optimization of static and dynamic elements, employing an adaptive allocation mechanism that dynamically distributes capacity based on motion complexity. Furthermore, we implement a three-phase training strategy to seamlessly integrate these constraints, ensuring precise adherence to the target count. Coupled with a dual-mode hybrid compression scheme, CDGS not only strictly adheres to hardware constraints (error < 2%}) but also pushes the Pareto frontier of rate-distortion performance. Extensive experiments demonstrate that CDGS delivers optimal rendering quality under varying capacity limits, achieving over 3x compression compared to state-of-the-art methods.
☆ PnP-U3D: Plug-and-Play 3D Framework Bridging Autoregression and Diffusion for Unified Understanding and Generation
The rapid progress of large multimodal models has inspired efforts toward unified frameworks that couple understanding and generation. While such paradigms have shown remarkable success in 2D, extending them to 3D remains largely underexplored. Existing attempts to unify 3D tasks under a single autoregressive (AR) paradigm lead to significant performance degradation due to forced signal quantization and prohibitive training cost. Our key insight is that the essential challenge lies not in enforcing a unified autoregressive paradigm, but in enabling effective information interaction between generation and understanding while minimally compromising their inherent capabilities and leveraging pretrained models to reduce training cost. Guided by this perspective, we present the first unified framework for 3D understanding and generation that combines autoregression with diffusion. Specifically, we adopt an autoregressive next-token prediction paradigm for 3D understanding, and a continuous diffusion paradigm for 3D generation. A lightweight transformer bridges the feature space of large language models and the conditional space of 3D diffusion models, enabling effective cross-modal information exchange while preserving the priors learned by standalone models. Extensive experiments demonstrate that our framework achieves state-of-the-art performance across diverse 3D understanding and generation benchmarks, while also excelling in 3D editing tasks. These results highlight the potential of unified AR+diffusion models as a promising direction for building more general-purpose 3D intelligence.
comment: Yongwei Chen and Tianyi Wei contributed equally. Project page: https://cyw-3d.github.io/PnP-U3D/
☆ Robust Representation Learning in Masked Autoencoders
Masked Autoencoders (MAEs) achieve impressive performance in image classification tasks, yet the internal representations they learn remain less understood. This work started as an attempt to understand the strong downstream classification performance of MAE. In this process we discover that representations learned with the pretraining and fine-tuning, are quite robust - demonstrating a good classification performance in the presence of degradations, such as blur and occlusions. Through layer-wise analysis of token embeddings, we show that pretrained MAE progressively constructs its latent space in a class-aware manner across network depth: embeddings from different classes lie in subspaces that become increasingly separable. We further observe that MAE exhibits early and persistent global attention across encoder layers, in contrast to standard Vision Transformers (ViTs). To quantify feature robustness, we introduce two sensitivity indicators: directional alignment between clean and perturbed embeddings, and head-wise retention of active features under degradations. These studies help establish the robust classification performance of MAEs.
comment: 11 pages, 8 figures, and 3 tables
☆ Interpretable Logical Anomaly Classification via Constraint Decomposition and Instruction Fine-Tuning
Logical anomalies are violations of predefined constraints on object quantity, spatial layout, and compositional relationships in industrial images. While prior work largely treats anomaly detection as a binary decision, such formulations cannot indicate which logical rule is broken and therefore offer limited value for quality assurance. We introduce Logical Anomaly Classification (LAC), a task that unifies anomaly detection and fine-grained violation classification in a single inference step. To tackle LAC, we propose LogiCls, a vision-language framework that decomposes complex logical constraints into a sequence of verifiable subqueries. We further present a data-centric instruction synthesis pipeline that generates chain-of-thought (CoT) supervision for these subqueries, coupling precise grounding annotations with diverse image-text augmentations to adapt vision language models (VLMs) to logic-sensitive reasoning. Training is stabilized by a difficulty-aware resampling strategy that emphasizes challenging subqueries and long tail constraint types. Extensive experiments demonstrate that LogiCls delivers robust, interpretable, and accurate industrial logical anomaly classification, providing both the predicted violation categories and their evidence trails.
comment: 6 pages, 6 figures
☆ Semantic Routing: Exploring Multi-Layer LLM Feature Weighting for Diffusion Transformers
Recent DiT-based text-to-image models increasingly adopt LLMs as text encoders, yet text conditioning remains largely static and often utilizes only a single LLM layer, despite pronounced semantic hierarchy across LLM layers and non-stationary denoising dynamics over both diffusion time and network depth. To better match the dynamic process of DiT generation and thereby enhance the diffusion model's generative capability, we introduce a unified normalized convex fusion framework equipped with lightweight gates to systematically organize multi-layer LLM hidden states via time-wise, depth-wise, and joint fusion. Experiments establish Depth-wise Semantic Routing as the superior conditioning strategy, consistently improving text-image alignment and compositional generation (e.g., +9.97 on the GenAI-Bench Counting task). Conversely, we find that purely time-wise fusion can paradoxically degrade visual generation fidelity. We attribute this to a train-inference trajectory mismatch: under classifier-free guidance, nominal timesteps fail to track the effective SNR, causing semantically mistimed feature injection during inference. Overall, our results position depth-wise routing as a strong and effective baseline and highlight the critical need for trajectory-aware signals to enable robust time-dependent conditioning.
☆ Decoupling Skeleton and Flesh: Efficient Multimodal Table Reasoning with Disentangled Alignment and Structure-aware Guidance
Reasoning over table images remains challenging for Large Vision-Language Models (LVLMs) due to complex layouts and tightly coupled structure-content information. Existing solutions often depend on expensive supervised training, reinforcement learning, or external tools, limiting efficiency and scalability. This work addresses a key question: how to adapt LVLMs to table reasoning with minimal annotation and no external tools? Specifically, we first introduce DiSCo, a Disentangled Structure-Content alignment framework that explicitly separates structural abstraction from semantic grounding during multimodal alignment, efficiently adapting LVLMs to tables structures. Building on DiSCo, we further present Table-GLS, a Global-to-Local Structure-guided reasoning framework that performs table reasoning via structured exploration and evidence-grounded inference. Extensive experiments across diverse benchmarks demonstrate that our framework efficiently enhances LVLM's table understanding and reasoning capabilities, particularly generalizing to unseen table structures.
☆ Scaling Continual Learning with Bi-Level Routing Mixture-of-Experts
Continual learning, especially class-incremental learning (CIL), on the basis of a pre-trained model (PTM) has garnered substantial research interest in recent years. However, how to effectively learn both discriminative and comprehensive feature representations while maintaining stability and plasticity over very long task sequences remains an open problem. We propose CaRE, a scalable {C}ontinual Le{a}rner with efficient Bi-Level {R}outing Mixture-of-{E}xperts (BR-MoE). The core idea of BR-MoE is a bi-level routing mechanism: a router selection stage that dynamically activates relevant task-specific routers, followed by an expert routing phase that dynamically activates and aggregates experts, aiming to inject discriminative and comprehensive representations into every intermediate network layer. On the other hand, we introduce a challenging evaluation protocol for comprehensively assessing CIL methods across very long task sequences spanning hundreds of tasks. Extensive experiments show that CaRE demonstrates leading performance across a variety of datasets and task settings, including commonly used CIL datasets with classical CIL settings (e.g., 5-20 tasks). To the best of our knowledge, CaRE is the first continual learner that scales to very long task sequences (ranging from 100 to over 300 non-overlapping tasks), while outperforming all baselines by a large margin on such task sequences. Code will be publicly released at https://github.com/LMMMEng/CaRE.git.
☆ Inlier-Centric Post-Training Quantization for Object Detection Models
Object detection is pivotal in computer vision, yet its immense computational demands make deployment slow and power-hungry, motivating quantization. However, task-irrelevant morphologies such as background clutter and sensor noise induce redundant activations (or anomalies). These anomalies expand activation ranges and skew activation distributions toward task-irrelevant responses, complicating bit allocation and weakening the preservation of informative features. Without a clear criterion to distinguish anomalies, suppressing them can inadvertently discard useful information. To address this, we present InlierQ, an inlier-centric post-training quantization approach that separates anomalies from informative inliers. InlierQ computes gradient-aware volume saliency scores, classifies each volume as an inlier or anomaly, and fits a posterior distribution over these scores using the Expectation-Maximization (EM) algorithm. This design suppresses anomalies while preserving informative features. InlierQ is label-free, drop-in, and requires only 64 calibration samples. Experiments on the COCO and nuScenes benchmarks show consistent reductions in quantization error for camera-based (2D and 3D) and LiDAR-based (3D) object detection.
☆ Contextualized Visual Personalization in Vision-Language Models
Despite recent progress in vision-language models (VLMs), existing approaches often fail to generate personalized responses based on the user's specific experiences, as they lack the ability to associate visual inputs with a user's accumulated visual-textual context. We newly formalize this challenge as contextualized visual personalization, which requires the visual recognition and textual retrieval of personalized visual experiences by VLMs when interpreting new images. To address this issue, we propose CoViP, a unified framework that treats personalized image captioning as a core task for contextualized visual personalization and improves this capability through reinforcement-learning-based post-training and caption-augmented generation. We further introduce diagnostic evaluations that explicitly rule out textual shortcut solutions and verify whether VLMs truly leverage visual context. Extensive experiments demonstrate that existing open-source and proprietary VLMs exhibit substantial limitations, while CoViP not only improves personalized image captioning but also yields holistic gains across downstream personalization tasks. These results highlight CoViP as a crucial stage for enabling robust and generalizable contextualized visual personalization.
comment: Project Page: https://github.com/oyt9306/CoViP
☆ Hierarchical Concept-to-Appearance Guidance for Multi-Subject Image Generation
Multi-subject image generation aims to synthesize images that faithfully preserve the identities of multiple reference subjects while following textual instructions. However, existing methods often suffer from identity inconsistency and limited compositional control, as they rely on diffusion models to implicitly associate text prompts with reference images. In this work, we propose Hierarchical Concept-to-Appearance Guidance (CAG), a framework that provides explicit, structured supervision from high-level concepts to fine-grained appearances. At the conceptual level, we introduce a VAE dropout training strategy that randomly omits reference VAE features, encouraging the model to rely more on robust semantic signals from a Visual Language Model (VLM) and thereby promoting consistent concept-level generation in the absence of complete appearance cues. At the appearance level, we integrate the VLM-derived correspondences into a correspondence-aware masked attention module within the Diffusion Transformer (DiT). This module restricts each text token to attend only to its matched reference regions, ensuring precise attribute binding and reliable multi-subject composition. Extensive experiments demonstrate that our method achieves state-of-the-art performance on the multi-subject image generation, substantially improving prompt following and subject consistency.
☆ HetroD: A High-Fidelity Drone Dataset and Benchmark for Autonomous Driving in Heterogeneous Traffic ICRA
We present HetroD, a dataset and benchmark for developing autonomous driving systems in heterogeneous environments. HetroD targets the critical challenge of navi- gating real-world heterogeneous traffic dominated by vulner- able road users (VRUs), including pedestrians, cyclists, and motorcyclists that interact with vehicles. These mixed agent types exhibit complex behaviors such as hook turns, lane splitting, and informal right-of-way negotiation. Such behaviors pose significant challenges for autonomous vehicles but remain underrepresented in existing datasets focused on structured, lane-disciplined traffic. To bridge the gap, we collect a large- scale drone-based dataset to provide a holistic observation of traffic scenes with centimeter-accurate annotations, HD maps, and traffic signal states. We further develop a modular toolkit for extracting per-agent scenarios to support downstream task development. In total, the dataset comprises over 65.4k high- fidelity agent trajectories, 70% of which are from VRUs. HetroD supports modeling of VRU behaviors in dense, het- erogeneous traffic and provides standardized benchmarks for forecasting, planning, and simulation tasks. Evaluation results reveal that state-of-the-art prediction and planning models struggle with the challenges presented by our dataset: they fail to predict lateral VRU movements, cannot handle unstructured maneuvers, and exhibit limited performance in dense and multi-agent scenarios, highlighting the need for more robust approaches to heterogeneous traffic. See our project page for more examples: https://hetroddata.github.io/HetroD/
comment: IEEE International Conference on Robotics and Automation (ICRA) 2026
☆ ConsistentRFT: Reducing Visual Hallucinations in Flow-based Reinforcement Fine-Tuning
Reinforcement Fine-Tuning (RFT) on flow-based models is crucial for preference alignment. However, they often introduce visual hallucinations like over-optimized details and semantic misalignment. This work preliminarily explores why visual hallucinations arise and how to reduce them. We first investigate RFT methods from a unified perspective, and reveal the core problems stemming from two aspects, exploration and exploitation: (1) limited exploration during stochastic differential equation (SDE) rollouts, leading to an over-emphasis on local details at the expense of global semantics, and (2) trajectory imitation process inherent in policy gradient methods, distorting the model's foundational vector field and its cross-step consistency. Building on this, we propose ConsistentRFT, a general framework to mitigate these hallucinations. Specifically, we design a Dynamic Granularity Rollout (DGR) mechanism to balance exploration between global semantics and local details by dynamically scheduling different noise sources. We then introduce a Consistent Policy Gradient Optimization (CPGO) that preserves the model's consistency by aligning the current policy with a more stable prior. Extensive experiments demonstrate that ConsistentRFT significantly mitigates visual hallucinations, achieving average reductions of 49\% for low-level and 38\% for high-level perceptual hallucinations. Furthermore, ConsistentRFT outperforms other RFT methods on out-of-domain metrics, showing an improvement of 5.1\% (v.s. the baseline's decrease of -0.4\%) over FLUX1.dev. This is \href{https://xiaofeng-tan.github.io/projects/ConsistentRFT}{Project Page}.
☆ Origin Lens: A Privacy-First Mobile Framework for Cryptographic Image Provenance and AI Detection
The proliferation of generative AI poses challenges for information integrity assurance, requiring systems that connect model governance with end-user verification. We present Origin Lens, a privacy-first mobile framework that targets visual disinformation through a layered verification architecture. Unlike server-side detection systems, Origin Lens performs cryptographic image provenance verification and AI detection locally on the device via a Rust/Flutter hybrid architecture. Our system integrates multiple signals - including cryptographic provenance, generative model fingerprints, and optional retrieval-augmented verification - to provide users with graded confidence indicators at the point of consumption. We discuss the framework's alignment with regulatory requirements (EU AI Act, DSA) and its role in verification infrastructure that complements platform-level mechanisms.
comment: Accepted at ACM TheWebConf '26 Companion
☆ Socratic-Geo: Synthetic Data Generation and Geometric Reasoning via Multi-Agent Interaction
Multimodal Large Language Models (MLLMs) have significantly advanced vision-language understanding. However, even state-of-the-art models struggle with geometric reasoning, revealing a critical bottleneck: the extreme scarcity of high-quality image-text pairs. Human annotation is prohibitively expensive, while automated methods fail to ensure fidelity and training effectiveness. Existing approaches either passively adapt to available images or employ inefficient random exploration with filtering, decoupling generation from learning needs. We propose Socratic-Geo, a fully autonomous framework that dynamically couples data synthesis with model learning through multi-agent interaction. The Teacher agent generates parameterized Python scripts with reflective feedback (Reflect for solvability, RePI for visual validity), ensuring image-text pair purity. The Solver agent optimizes reasoning through preference learning, with failure paths guiding Teacher's targeted augmentation. Independently, the Generator learns image generation capabilities on accumulated "image-code-instruction" triplets, distilling programmatic drawing intelligence into visual generation. Starting from only 108 seed problems, Socratic-Solver achieves 49.11 on six benchmarks using one-quarter of baseline data, surpassing strong baselines by 2.43 points. Socratic-Generator achieves 42.4% on GenExam, establishing new state-of-the-art for open-source models, surpassing Seedream-4.0 (39.8%) and approaching Gemini-2.5-Flash-Image (43.1%).
comment: 18pages
☆ UnHype: CLIP-Guided Hypernetworks for Dynamic LoRA Unlearning
Recent advances in large-scale diffusion models have intensified concerns about their potential misuse, particularly in generating realistic yet harmful or socially disruptive content. This challenge has spurred growing interest in effective machine unlearning, the process of selectively removing specific knowledge or concepts from a model without compromising its overall generative capabilities. Among various approaches, Low-Rank Adaptation (LoRA) has emerged as an effective and efficient method for fine-tuning models toward targeted unlearning. However, LoRA-based methods often exhibit limited adaptability to concept semantics and struggle to balance removing closely related concepts with maintaining generalization across broader meanings. Moreover, these methods face scalability challenges when multiple concepts must be erased simultaneously. To address these limitations, we introduce UnHype, a framework that incorporates hypernetworks into single- and multi-concept LoRA training. The proposed architecture can be directly plugged into Stable Diffusion as well as modern flow-based text-to-image models, where it demonstrates stable training behavior and effective concept control. During inference, the hypernetwork dynamically generates adaptive LoRA weights based on the CLIP embedding, enabling more context-aware, scalable unlearning. We evaluate UnHype across several challenging tasks, including object erasure, celebrity erasure, and explicit content removal, demonstrating its effectiveness and versatility. Repository: https://github.com/gmum/UnHype.
☆ From Vicious to Virtuous Cycles: Synergistic Representation Learning for Unsupervised Video Object-Centric Learning ICLR 2026
Unsupervised object-centric learning models, particularly slot-based architectures, have shown great promise in decomposing complex scenes. However, their reliance on reconstruction-based training creates a fundamental conflict between the sharp, high-frequency attention maps of the encoder and the spatially consistent but blurry reconstruction maps of the decoder. We identify that this discrepancy gives rise to a vicious cycle: the noisy feature map from the encoder forces the decoder to average over possibilities and produce even blurrier outputs, while the gradient computed from blurry reconstruction maps lacks high-frequency details necessary to supervise encoder features. To break this cycle, we introduce Synergistic Representation Learning (SRL) that establishes a virtuous cycle where the encoder and decoder mutually refine one another. SRL leverages the encoder's sharpness to deblur the semantic boundary within the decoder output, while exploiting the decoder's spatial consistency to denoise the encoder's features. This mutual refinement process is stabilized by a warm-up phase with a slot regularization objective that initially allocates distinct entities per slot. By bridging the representational gap between the encoder and decoder, SRL achieves state-of-the-art results on video object-centric learning benchmarks. Codes are available at https://github.com/hynnsk/SRL.
comment: ICLR 2026; Code is available at https://github.com/hynnsk/SRL
☆ Seeing Through the Chain: Mitigate Hallucination in Multimodal Reasoning Models via CoT Compression and Contrastive Preference Optimization
While multimodal reasoning models (MLRMs) have exhibited impressive capabilities, they remain prone to hallucinations, and effective solutions are still underexplored. In this paper, we experimentally analyze the hallucination cause and propose C3PO, a training-based mitigation framework comprising \textbf{C}hain-of-Thought \textbf{C}ompression and \textbf{C}ontrastive \textbf{P}reference \textbf{O}ptimization. Firstly, we identify that introducing reasoning mechanisms exacerbates models' reliance on language priors while overlooking visual inputs, which can produce CoTs with reduced visual cues but redundant text tokens. To this end, we propose to selectively filter redundant thinking tokens for a more compact and signal-efficient CoT representation that preserves task-relevant information while suppressing noise. In addition, we observe that the quality of the reasoning trace largely determines whether hallucination emerges in subsequent responses. To leverage this insight, we introduce a reasoning-enhanced preference tuning scheme that constructs training pairs using high-quality AI feedback. We further design a multimodal hallucination-inducing mechanism that elicits models' inherent hallucination patterns via carefully crafted inducers, yielding informative negative signals for contrastive correction. We provide theoretical justification for the effectiveness and demonstrate consistent hallucination reduction across diverse MLRMs and benchmarks.
☆ PlanTRansformer: Unified Prediction and Planning with Goal-conditioned Transformer
Trajectory prediction and planning are fundamental yet disconnected components in autonomous driving. Prediction models forecast surrounding agent motion under unknown intentions, producing multimodal distributions, while planning assumes known ego objectives and generates deterministic trajectories. This mismatch creates a critical bottleneck: prediction lacks supervision for agent intentions, while planning requires this information. Existing prediction models, despite strong benchmarking performance, often remain disconnected from planning constraints such as collision avoidance and dynamic feasibility. We introduce Plan TRansformer (PTR), a unified Gaussian Mixture Transformer framework integrating goal-conditioned prediction, dynamic feasibility, interaction awareness, and lane-level topology reasoning. A teacher-student training strategy progressively masks surrounding agent commands during training to align with inference conditions where agent intentions are unavailable. PTR achieves 4.3%/3.5% improvement in marginal/joint mAP compared to the baseline Motion Transformer (MTR) and 15.5% planning error reduction at 5s horizon compared to GameFormer. The architecture-agnostic design enables application to diverse Transformer-based prediction models. Project Website: https://github.com/SelzerConst/PlanTRansformer
comment: Submitted and accepted at IEEE IV 2026
☆ Unifying Watermarking via Dimension-Aware Mapping
Deep watermarking methods often share similar encoder-decoder architectures, yet differ substantially in their functional behaviors. We propose DiM, a new multi-dimensional watermarking framework that formulates watermarking as a dimension-aware mapping problem, thereby unifying existing watermarking methods at the functional level. Under DiM, watermark information is modeled as payloads of different dimensionalities, including one-dimensional binary messages, two-dimensional spatial masks, and three-dimensional spatiotemporal structures. We find that the dimensional configuration of embedding and extraction largely determines the resulting watermarking behavior. Same-dimensional mappings preserve payload structure and support fine-grained control, while cross-dimensional mappings enable spatial or spatiotemporal localization. We instantiate DiM in the video domain, where spatiotemporal representations enable a broader set of dimension mappings. Experiments demonstrate that varying only the embedding and extraction dimensions, without architectural changes, leads to different watermarking capabilities, including spatiotemporal tamper localization, local embedding control, and recovery of temporal order under frame disruptions.
comment: 29 pages, 25 figures
☆ SLIM-Diff: Shared Latent Image-Mask Diffusion with Lp loss for Data-Scarce Epilepsy FLAIR MRI
Focal cortical dysplasia (FCD) lesions in epilepsy FLAIR MRI are subtle and scarce, making joint image--mask generative modeling prone to instability and memorization. We propose SLIM-Diff, a compact joint diffusion model whose main contributions are (i) a single shared-bottleneck U-Net that enforces tight coupling between anatomy and lesion geometry from a 2-channel image+mask representation, and (ii) loss-geometry tuning via a tunable $L_p$ objective. As an internal baseline, we include the canonical DDPM-style objective ($ε$-prediction with $L_2$ loss) and isolate the effect of prediction parameterization and $L_p$ geometry under a matched setup. Experiments show that $x_0$-prediction is consistently the strongest choice for joint synthesis, and that fractional sub-quadratic penalties ($L_{1.5}$) improve image fidelity while $L_2$ better preserves lesion mask morphology. Our code and model weights are available in https://github.com/MarioPasc/slim-diff
comment: 6 pages, 2 figures, 1 table, conference paper
☆ Multi-Resolution Alignment for Voxel Sparsity in Camera-Based 3D Semantic Scene Completion
Camera-based 3D semantic scene completion (SSC) offers a cost-effective solution for assessing the geometric occupancy and semantic labels of each voxel in the surrounding 3D scene with image inputs, providing a voxel-level scene perception foundation for the perception-prediction-planning autonomous driving systems. Although significant progress has been made in existing methods, their optimization rely solely on the supervision from voxel labels and face the challenge of voxel sparsity as a large portion of voxels in autonomous driving scenarios are empty, which limits both optimization efficiency and model performance. To address this issue, we propose a \textit{Multi-Resolution Alignment (MRA)} approach to mitigate voxel sparsity in camera-based 3D semantic scene completion, which exploits the scene and instance level alignment across multi-resolution 3D features as auxiliary supervision. Specifically, we first propose the Multi-resolution View Transformer module, which projects 2D image features into multi-resolution 3D features and aligns them at the scene level through fusing discriminative seed features. Furthermore, we design the Cubic Semantic Anisotropy module to identify the instance-level semantic significance of each voxel, accounting for the semantic differences of a specific voxel against its neighboring voxels within a cubic area. Finally, we devise a Critical Distribution Alignment module, which selects critical voxels as instance-level anchors with the guidance of cubic semantic anisotropy, and applies a circulated loss for auxiliary supervision on the critical feature distribution consistency across different resolutions. The code is available at https://github.com/PKU-ICST-MIPL/MRA_TIP.
comment: 15 pages, 6 figures, accepted by TIP 2026
☆ Symbol-Aware Reasoning with Masked Discrete Diffusion for Handwritten Mathematical Expression Recognition
Handwritten Mathematical Expression Recognition (HMER) requires reasoning over diverse symbols and 2D structural layouts, yet autoregressive models struggle with exposure bias and syntactic inconsistency. We present a discrete diffusion framework that reformulates HMER as iterative symbolic refinement instead of sequential generation. Through multi-step remasking, the proposal progressively refines both symbols and structural relations, removing causal dependencies and improving structural consistency. A symbol-aware tokenization and Random-Masking Mutual Learning further enhance syntactic alignment and robustness to handwriting diversity. On the MathWriting benchmark, the proposal achieves 5.56\% CER and 60.42\% EM, outperforming strong Transformer and commercial baselines. Consistent gains on CROHME 2014--2023 demonstrate that discrete diffusion provides a new paradigm for structure-aware visual recognition beyond generative modeling.
☆ Z3D: Zero-Shot 3D Visual Grounding from Images
3D visual grounding (3DVG) aims to localize objects in a 3D scene based on natural language queries. In this work, we explore zero-shot 3DVG from multi-view images alone, without requiring any geometric supervision or object priors. We introduce Z3D, a universal grounding pipeline that flexibly operates on multi-view images while optionally incorporating camera poses and depth maps. We identify key bottlenecks in prior zero-shot methods causing significant performance degradation and address them with (i) a state-of-the-art zero-shot 3D instance segmentation method to generate high-quality 3D bounding box proposals and (ii) advanced reasoning via prompt-based segmentation, which utilizes full capabilities of modern VLMs. Extensive experiments on the ScanRefer and Nr3D benchmarks demonstrate that our approach achieves state-of-the-art performance among zero-shot methods. Code is available at https://github.com/col14m/z3d .
☆ Tiled Prompts: Overcoming Prompt Underspecification in Image and Video Super-Resolution
Text-conditioned diffusion models have advanced image and video super-resolution by using prompts as semantic priors, but modern super-resolution pipelines typically rely on latent tiling to scale to high resolutions, where a single global caption causes prompt underspecification. A coarse global prompt often misses localized details (prompt sparsity) and provides locally irrelevant guidance (prompt misguidance) that can be amplified by classifier-free guidance. We propose Tiled Prompts, a unified framework for image and video super-resolution that generates a tile-specific prompt for each latent tile and performs super-resolution under locally text-conditioned posteriors, providing high-information guidance that resolves prompt underspecification with minimal overhead. Experiments on high resolution real-world images and videos show consistent gains in perceptual quality and text alignment, while reducing hallucinations and tile-level artifacts relative to global-prompt baselines.
comment: 13 pages, 7 figures
☆ Composable Visual Tokenizers with Generator-Free Diagnostics of Learnability
We introduce CompTok, a training framework for learning visual tokenizers whose tokens are enhanced for compositionality. CompTok uses a token-conditioned diffusion decoder. By employing an InfoGAN-style objective, where we train a recognition model to predict the tokens used to condition the diffusion decoder using the decoded images, we enforce the decoder to not ignore any of the tokens. To promote compositional control, besides the original images, CompTok also trains on tokens formed by swapping token subsets between images, enabling more compositional control of the token over the decoder. As the swapped tokens between images do not have ground truth image targets, we apply a manifold constraint via an adversarial flow regularizer to keep unpaired swap generations on the natural-image distribution. The resulting tokenizer not only achieves state-of-the-art performance on image class-conditioned generation, but also demonstrates properties such as swapping tokens between images to achieve high level semantic editing of an image. Additionally, we propose two metrics that measures the landscape of the token space that can be useful to describe not only the compositionality of the tokens, but also how easy to learn the landscape is for a generator to be trained on this space. We show in experiments that CompTok can improve on both of the metrics as well as supporting state-of-the-art generators for class conditioned generation.
☆ PWAVEP: Purifying Imperceptible Adversarial Perturbations in 3D Point Clouds via Spectral Graph Wavelets WWW 2026
Recent progress in adversarial attacks on 3D point clouds, particularly in achieving spatial imperceptibility and high attack performance, presents significant challenges for defenders. Current defensive approaches remain cumbersome, often requiring invasive model modifications, expensive training procedures or auxiliary data access. To address these threats, in this paper, we propose a plug-and-play and non-invasive defense mechanism in the spectral domain, grounded in a theoretical and empirical analysis of the relationship between imperceptible perturbations and high-frequency spectral components. Building upon these insights, we introduce a novel purification framework, termed PWAVEP, which begins by computing a spectral graph wavelet domain saliency score and local sparsity score for each point. Guided by these values, PWAVEP adopts a hierarchical strategy, it eliminates the most salient points, which are identified as hardly recoverable adversarial outliers. Simultaneously, it applies a spectral filtering process to a broader set of moderately salient points. This process leverages a graph wavelet transform to attenuate high-frequency coefficients associated with the targeted points, thereby effectively suppressing adversarial noise. Extensive evaluations demonstrate that the proposed PWAVEP achieves superior accuracy and robustness compared to existing approaches, advancing the state-of-the-art in 3D point cloud purification. Code and datasets are available at https://github.com/a772316182/pwavep
comment: Accepted by WWW 2026
☆ Pi-GS: Sparse-View Gaussian Splatting with Dense π^3 Initialization
Novel view synthesis has evolved rapidly, advancing from Neural Radiance Fields to 3D Gaussian Splatting (3DGS), which offers real-time rendering and rapid training without compromising visual fidelity. However, 3DGS relies heavily on accurate camera poses and high-quality point cloud initialization, which are difficult to obtain in sparse-view scenarios. While traditional Structure from Motion (SfM) pipelines often fail in these settings, existing learning-based point estimation alternatives typically require reliable reference views and remain sensitive to pose or depth errors. In this work, we propose a robust method utilizing π^3, a reference-free point cloud estimation network. We integrate dense initialization from π^3 with a regularization scheme designed to mitigate geometric inaccuracies. Specifically, we employ uncertainty-guided depth supervision, normal consistency loss, and depth warping. Experimental results demonstrate that our approach achieves state-of-the-art performance on the Tanks and Temples, LLFF, DTU, and MipNeRF360 datasets.
☆ MedSAM-Agent: Empowering Interactive Medical Image Segmentation with Multi-turn Agentic Reinforcement Learning
Medical image segmentation is evolving from task-specific models toward generalizable frameworks. Recent research leverages Multi-modal Large Language Models (MLLMs) as autonomous agents, employing reinforcement learning with verifiable reward (RLVR) to orchestrate specialized tools like the Segment Anything Model (SAM). However, these approaches often rely on single-turn, rigid interaction strategies and lack process-level supervision during training, which hinders their ability to fully exploit the dynamic potential of interactive tools and leads to redundant actions. To bridge this gap, we propose MedSAM-Agent, a framework that reformulates interactive segmentation as a multi-step autonomous decision-making process. First, we introduce a hybrid prompting strategy for expert-curated trajectory generation, enabling the model to internalize human-like decision heuristics and adaptive refinement strategies. Furthermore, we develop a two-stage training pipeline that integrates multi-turn, end-to-end outcome verification with a clinical-fidelity process reward design to promote interaction parsimony and decision efficiency. Extensive experiments across 6 medical modalities and 21 datasets demonstrate that MedSAM-Agent achieves state-of-the-art performance, effectively unifying autonomous medical reasoning with robust, iterative optimization. Code is available \href{https://github.com/CUHK-AIM-Group/MedSAM-Agent}{here}.
comment: 23 Pages, 4 Figures
☆ Invisible Clean-Label Backdoor Attacks for Generative Data Augmentation
With the rapid advancement of image generative models, generative data augmentation has become an effective way to enrich training images, especially when only small-scale datasets are available. At the same time, in practical applications, generative data augmentation can be vulnerable to clean-label backdoor attacks, which aim to bypass human inspection. However, based on theoretical analysis and preliminary experiments, we observe that directly applying existing pixel-level clean-label backdoor attack methods (e.g., COMBAT) to generated images results in low attack success rates. This motivates us to move beyond pixel-level triggers and focus instead on the latent feature level. To this end, we propose InvLBA, an invisible clean-label backdoor attack method for generative data augmentation by latent perturbation. We theoretically prove that the generalization of the clean accuracy and attack success rates of InvLBA can be guaranteed. Experiments on multiple datasets show that our method improves the attack success rate by 46.43% on average, with almost no reduction in clean accuracy and high robustness against SOTA defense methods.
☆ PQTNet: Pixel-wise Quantitative Thermography Neural Network for Estimating Defect Depth in Polylactic Acid Parts by Additive Manufacturing
Defect depth quantification in additively manufactured (AM) components remains a significant challenge for non-destructive testing (NDT). This study proposes a Pixel-wise Quantitative Thermography Neural Network (PQT-Net) to address this challenge for polylactic acid (PLA) parts. A key innovation is a novel data augmentation strategy that reconstructs thermal sequence data into two-dimensional stripe images, preserving the complete temporal evolution of heat diffusion for each pixel. The PQT-Net architecture incorporates a pre-trained EfficientNetV2-S backbone and a custom Residual Regression Head (RRH) with learnable parameters to refine outputs. Comparative experiments demonstrate the superiority of PQT-Net over other deep learning models, achieving a minimum Mean Absolute Error (MAE) of 0.0094 mm and a coefficient of determination (R) exceeding 99%. The high precision of PQT-Net underscores its potential for robust quantitative defect characterization in AM.
comment: Under review
☆ RDT2: Exploring the Scaling Limit of UMI Data Towards Zero-Shot Cross-Embodiment Generalization
Vision-Language-Action (VLA) models hold promise for generalist robotics but currently struggle with data scarcity, architectural inefficiencies, and the inability to generalize across different hardware platforms. We introduce RDT2, a robotic foundation model built upon a 7B parameter VLM designed to enable zero-shot deployment on novel embodiments for open-vocabulary tasks. To achieve this, we collected one of the largest open-source robotic datasets--over 10,000 hours of demonstrations in diverse families--using an enhanced, embodiment-agnostic Universal Manipulation Interface (UMI). Our approach employs a novel three-stage training recipe that aligns discrete linguistic knowledge with continuous control via Residual Vector Quantization (RVQ), flow-matching, and distillation for real-time inference. Consequently, RDT2 becomes one of the first models that simultaneously zero-shot generalizes to unseen objects, scenes, instructions, and even robotic platforms. Besides, it outperforms state-of-the-art baselines in dexterous, long-horizon, and dynamic downstream tasks like playing table tennis. See https://rdt-robotics.github.io/rdt2/ for more information.
☆ Full end-to-end diagnostic workflow automation of 3D OCT via foundation model-driven AI for retinal diseases
Optical coherence tomography (OCT) has revolutionized retinal disease diagnosis with its high-resolution and three-dimensional imaging nature, yet its full diagnostic automation in clinical practices remains constrained by multi-stage workflows and conventional single-slice single-task AI models. We present Full-process OCT-based Clinical Utility System (FOCUS), a foundation model-driven framework enabling end-to-end automation of 3D OCT retinal disease diagnosis. FOCUS sequentially performs image quality assessment with EfficientNetV2-S, followed by abnormality detection and multi-disease classification using a fine-tuned Vision Foundation Model. Crucially, FOCUS leverages a unified adaptive aggregation method to intelligently integrate 2D slices-level predictions into comprehensive 3D patient-level diagnosis. Trained and tested on 3,300 patients (40,672 slices), and externally validated on 1,345 patients (18,498 slices) across four different-tier centers and diverse OCT devices, FOCUS achieved high F1 scores for quality assessment (99.01%), abnormally detection (97.46%), and patient-level diagnosis (94.39%). Real-world validation across centers also showed stable performance (F1: 90.22%-95.24%). In human-machine comparisons, FOCUS matched expert performance in abnormality detection (F1: 95.47% vs 90.91%) and multi-disease diagnosis (F1: 93.49% vs 91.35%), while demonstrating better efficiency. FOCUS automates the image-to-diagnosis pipeline, representing a critical advance towards unmanned ophthalmology with a validated blueprint for autonomous screening to enhance population scale retinal care accessibility and efficiency.
☆ R1-SyntheticVL: Is Synthetic Data from Generative Models Ready for Multimodal Large Language Model?
In this work, we aim to develop effective data synthesis techniques that autonomously synthesize multimodal training data for enhancing MLLMs in solving complex real-world tasks. To this end, we propose Collective Adversarial Data Synthesis (CADS), a novel and general approach to synthesize high-quality, diverse and challenging multimodal data for MLLMs. The core idea of CADS is to leverage collective intelligence to ensure high-quality and diverse generation, while exploring adversarial learning to synthesize challenging samples for effectively driving model improvement. Specifically, CADS operates with two cyclic phases, i.e., Collective Adversarial Data Generation (CAD-Generate) and Collective Adversarial Data Judgment (CAD-Judge). CAD-Generate leverages collective knowledge to jointly generate new and diverse multimodal data, while CAD-Judge collaboratively assesses the quality of synthesized data. In addition, CADS introduces an Adversarial Context Optimization mechanism to optimize the generation context to encourage challenging and high-value data generation. With CADS, we construct MMSynthetic-20K and train our model R1-SyntheticVL, which demonstrates superior performance on various benchmarks.
☆ POP: Prefill-Only Pruning for Efficient Large Model Inference
Large Language Models (LLMs) and Vision-Language Models (VLMs) have demonstrated remarkable capabilities. However, their deployment is hindered by significant computational costs. Existing structured pruning methods, while hardware-efficient, often suffer from significant accuracy degradation. In this paper, we argue that this failure stems from a stage-agnostic pruning approach that overlooks the asymmetric roles between the prefill and decode stages. By introducing a virtual gate mechanism, our importance analysis reveals that deep layers are critical for next-token prediction (decode) but largely redundant for context encoding (prefill). Leveraging this insight, we propose Prefill-Only Pruning (POP), a stage-aware inference strategy that safely omits deep layers during the computationally intensive prefill stage while retaining the full model for the sensitive decode stage. To enable the transition between stages, we introduce independent Key-Value (KV) projections to maintain cache integrity, and a boundary handling strategy to ensure the accuracy of the first generated token. Extensive experiments on Llama-3.1, Qwen3-VL, and Gemma-3 across diverse modalities demonstrate that POP achieves up to 1.37$\times$ speedup in prefill latency with minimal performance loss, effectively overcoming the accuracy-efficiency trade-off limitations of existing structured pruning methods.
☆ LEVIO: Lightweight Embedded Visual Inertial Odometry for Resource-Constrained Devices
Accurate, infrastructure-less sensor systems for motion tracking are essential for mobile robotics and augmented reality (AR) applications. The most popular state-of-the-art visual-inertial odometry (VIO) systems, however, are too computationally demanding for resource-constrained hardware, such as micro-drones and smart glasses. This work presents LEVIO, a fully featured VIO pipeline optimized for ultra-low-power compute platforms, allowing six-degrees-of-freedom (DoF) real-time sensing. LEVIO incorporates established VIO components such as Oriented FAST and Rotated BRIEF (ORB) feature tracking and bundle adjustment, while emphasizing a computationally efficient architecture with parallelization and low memory usage to suit embedded microcontrollers and low-power systems-on-chip (SoCs). The paper proposes and details the algorithmic design choices and the hardware-software co-optimization approach, and presents real-time performance on resource-constrained hardware. LEVIO is validated on a parallel-processing ultra-low-power RISC-V SoC, achieving 20 FPS while consuming less than 100 mW, and benchmarked against public VIO datasets, offering a compelling balance between efficiency and accuracy. To facilitate reproducibility and adoption, the complete implementation is released as open-source.
comment: This article has been accepted for publication in the IEEE Sensors Journal (JSEN)
☆ A3-TTA: Adaptive Anchor Alignment Test-Time Adaptation for Image Segmentation
Test-Time Adaptation (TTA) offers a practical solution for deploying image segmentation models under domain shift without accessing source data or retraining. Among existing TTA strategies, pseudo-label-based methods have shown promising performance. However, they often rely on perturbation-ensemble heuristics (e.g., dropout sampling, test-time augmentation, Gaussian noise), which lack distributional grounding and yield unstable training signals. This can trigger error accumulation and catastrophic forgetting during adaptation. To address this, we propose \textbf{A3-TTA}, a TTA framework that constructs reliable pseudo-labels through anchor-guided supervision. Specifically, we identify well-predicted target domain images using a class compact density metric, under the assumption that confident predictions imply distributional proximity to the source domain. These anchors serve as stable references to guide pseudo-label generation, which is further regularized via semantic consistency and boundary-aware entropy minimization. Additionally, we introduce a self-adaptive exponential moving average strategy to mitigate label noise and stabilize model update during adaptation. Evaluated on both multi-domain medical images (heart structure and prostate segmentation) and natural images, A3-TTA significantly improves average Dice scores by 10.40 to 17.68 percentage points compared to the source model, outperforming several state-of-the-art TTA methods under different segmentation model architectures. A3-TTA also excels in continual TTA, maintaining high performance across sequential target domains with strong anti-forgetting ability. The code will be made publicly available at https://github.com/HiLab-git/A3-TTA.
comment: Accepted by IEEE Transactions on Image Processing
☆ Time Is All It Takes: Spike-Retiming Attacks on Event-Driven Spiking Neural Networks ICLR 2026
Spiking neural networks (SNNs) compute with discrete spikes and exploit temporal structure, yet most adversarial attacks change intensities or event counts instead of timing. We study a timing-only adversary that retimes existing spikes while preserving spike counts and amplitudes in event-driven SNNs, thus remaining rate-preserving. We formalize a capacity-1 spike-retiming threat model with a unified trio of budgets: per-spike jitter $\mathcal{B}_{\infty}$, total delay $\mathcal{B}_{1}$, and tamper count $\mathcal{B}_{0}$. Feasible adversarial examples must satisfy timeline consistency and non-overlap, which makes the search space discrete and constrained. To optimize such retimings at scale, we use projected-in-the-loop (PIL) optimization: shift-probability logits yield a differentiable soft retiming for backpropagation, and a strict projection in the forward pass produces a feasible discrete schedule that satisfies capacity-1, non-overlap, and the chosen budget at every step. The objective maximizes task loss on the projected input and adds a capacity regularizer together with budget-aware penalties, which stabilizes gradients and aligns optimization with evaluation. Across event-driven benchmarks (CIFAR10-DVS, DVS-Gesture, N-MNIST) and diverse SNN architectures, we evaluate under binary and integer event grids and a range of retiming budgets, and also test models trained with timing-aware adversarial training designed to counter timing-only attacks. For example, on DVS-Gesture the attack attains high success (over $90\%$) while touching fewer than $2\%$ of spikes under $\mathcal{B}_{0}$. Taken together, our results show that spike retiming is a practical and stealthy attack surface that current defenses struggle to counter, providing a clear reference for temporal robustness in event-driven SNNs. Code is available at https://github.com/yuyi-sd/Spike-Retiming-Attacks.
comment: Accepted by ICLR 2026
☆ Global Geometry Is Not Enough for Vision Representations
A common assumption in representation learning is that globally well-distributed embeddings support robust and generalizable representations. This focus has shaped both training objectives and evaluation protocols, implicitly treating global geometry as a proxy for representational competence. While global geometry effectively encodes which elements are present, it is often insensitive to how they are composed. We investigate this limitation by testing the ability of geometric metrics to predict compositional binding across 21 vision encoders. We find that standard geometry-based statistics exhibit near-zero correlation with compositional binding. In contrast, functional sensitivity, as measured by the input-output Jacobian, reliably tracks this capability. We further provide an analytic account showing that this disparity arises from objective design, as existing losses explicitly constrain embedding geometry but leave the local input-output mapping unconstrained. These results suggest that global embedding geometry captures only a partial view of representational competence and establish functional sensitivity as a critical complementary axis for modeling composite structure.
☆ HypCBC: Domain-Invariant Hyperbolic Cross-Branch Consistency for Generalizable Medical Image Analysis
Robust generalization beyond training distributions remains a critical challenge for deep neural networks. This is especially pronounced in medical image analysis, where data is often scarce and covariate shifts arise from different hardware devices, imaging protocols, and heterogeneous patient populations. These factors collectively hinder reliable performance and slow down clinical adoption. Despite recent progress, existing learning paradigms primarily rely on the Euclidean manifold, whose flat geometry fails to capture the complex, hierarchical structures present in clinical data. In this work, we exploit the advantages of hyperbolic manifolds to model complex data characteristics. We present the first comprehensive validation of hyperbolic representation learning for medical image analysis and demonstrate statistically significant gains across eleven in-distribution datasets and three ViT models. We further propose an unsupervised, domain-invariant hyperbolic cross-branch consistency constraint. Extensive experiments confirm that our proposed method promotes domain-invariant features and outperforms state-of-the-art Euclidean methods by an average of $+2.1\%$ AUC on three domain generalization benchmarks: Fitzpatrick17k, Camelyon17-WILDS, and a cross-dataset setup for retinal imaging. These datasets span different imaging modalities, data sizes, and label granularities, confirming generalization capabilities across substantially different conditions. The code is available at https://github.com/francescodisalvo05/hyperbolic-cross-branch-consistency .
comment: Accepted to Transactions on Machine Learning Research (TMLR)
☆ LaVPR: Benchmarking Language and Vision for Place Recognition
Visual Place Recognition (VPR) often fails under extreme environmental changes and perceptual aliasing. Furthermore, standard systems cannot perform "blind" localization from verbal descriptions alone, a capability needed for applications such as emergency response. To address these challenges, we introduce LaVPR, a large-scale benchmark that extends existing VPR datasets with over 650,000 rich natural-language descriptions. Using LaVPR, we investigate two paradigms: Multi-Modal Fusion for enhanced robustness and Cross-Modal Retrieval for language-based localization. Our results show that language descriptions yield consistent gains in visually degraded conditions, with the most significant impact on smaller backbones. Notably, adding language allows compact models to rival the performance of much larger vision-only architectures. For cross-modal retrieval, we establish a baseline using Low-Rank Adaptation (LoRA) and Multi-Similarity loss, which substantially outperforms standard contrastive methods across vision-language models. Ultimately, LaVPR enables a new class of localization systems that are both resilient to real-world stochasticity and practical for resource-constrained deployment. Our dataset and code are available at https://github.com/oferidan1/LaVPR.
☆ InstaDrive: Instance-Aware Driving World Models for Realistic and Consistent Video Generation
Autonomous driving relies on robust models trained on high-quality, large-scale multi-view driving videos. While world models offer a cost-effective solution for generating realistic driving videos, they struggle to maintain instance-level temporal consistency and spatial geometric fidelity. To address these challenges, we propose InstaDrive, a novel framework that enhances driving video realism through two key advancements: (1) Instance Flow Guider, which extracts and propagates instance features across frames to enforce temporal consistency, preserving instance identity over time. (2) Spatial Geometric Aligner, which improves spatial reasoning, ensures precise instance positioning, and explicitly models occlusion hierarchies. By incorporating these instance-aware mechanisms, InstaDrive achieves state-of-the-art video generation quality and enhances downstream autonomous driving tasks on the nuScenes dataset. Additionally, we utilize CARLA's autopilot to procedurally and stochastically simulate rare but safety-critical driving scenarios across diverse maps and regions, enabling rigorous safety evaluation for autonomous systems. Our project page is https://shanpoyang654.github.io/InstaDrive/page.html.
☆ EventFlash: Towards Efficient MLLMs for Event-Based Vision
Event-based multimodal large language models (MLLMs) enable robust perception in high-speed and low-light scenarios, addressing key limitations of frame-based MLLMs. However, current event-based MLLMs often rely on dense image-like processing paradigms, overlooking the spatiotemporal sparsity of event streams and resulting in high computational cost. In this paper, we propose EventFlash, a novel and efficient MLLM to explore spatiotemporal token sparsification for reducing data redundancy and accelerating inference. Technically, we build EventMind, a large-scale and scene-diverse dataset with over 500k instruction sets, providing both short and long event stream sequences to support our curriculum training strategy. We then present an adaptive temporal window aggregation module for efficient temporal sampling, which adaptively compresses temporal tokens while retaining key temporal cues. Finally, a sparse density-guided attention module is designed to improve spatial token efficiency by selecting informative regions and suppressing empty or sparse areas. Experimental results show that EventFlash achieves a $12.4\times$ throughput improvement over the baseline (EventFlash-Zero) while maintaining comparable performance. It supports long-range event stream processing with up to 1,000 bins, significantly outperforming the 5-bin limit of EventGPT. We believe EventFlash serves as an efficient foundation model for event-based vision.
☆ Spiral RoPE: Rotate Your Rotary Positional Embeddings in the 2D Plane
Rotary Position Embedding (RoPE) is the de facto positional encoding in large language models due to its ability to encode relative positions and support length extrapolation. When adapted to vision transformers, the standard axial formulation decomposes two-dimensional spatial positions into horizontal and vertical components, implicitly restricting positional encoding to axis-aligned directions. We identify this directional constraint as a fundamental limitation of the standard axial 2D RoPE, which hinders the modeling of oblique spatial relationships that naturally exist in natural images. To overcome this limitation, we propose Spiral RoPE, a simple yet effective extension that enables multi-directional positional encoding by partitioning embedding channels into multiple groups associated with uniformly distributed directions. Each group is rotated according to the projection of the patch position onto its corresponding direction, allowing spatial relationships to be encoded beyond the horizontal and vertical axes. Across a wide range of vision tasks including classification, segmentation, and generation, Spiral RoPE consistently improves performance. Qualitative analysis of attention maps further show that Spiral RoPE exhibits more concentrated activations on semantically relevant objects and better respects local object boundaries, highlighting the importance of multi-directional positional encoding in vision transformers.
☆ PokeFusion Attention: Enhancing Reference-Free Style-Conditioned Generation IJCNN 2026
This paper studies reference-free style-conditioned character generation in text-to-image diffusion models, where high-quality synthesis requires both stable character structure and consistent, fine-grained style expression across diverse prompts. Existing approaches primarily rely on text-only prompting, which is often under-specified for visual style and tends to produce noticeable style drift and geometric inconsistency, or introduce reference-based adapters that depend on external images at inference time, increasing architectural complexity and limiting deployment flexibility.We propose PokeFusion Attention, a lightweight decoder-level cross-attention mechanism that fuses textual semantics with learned style embeddings directly inside the diffusion decoder. By decoupling text and style conditioning at the attention level, our method enables effective reference-free stylized generation while keeping the pretrained diffusion backbone fully frozen.PokeFusion Attention trains only decoder cross-attention layers together with a compact style projection module, resulting in a parameter-efficient and plug-and-play control component that can be easily integrated into existing diffusion pipelines and transferred across different backbones.Experiments on a stylized character generation benchmark (Pokemon-style) demonstrate that our method consistently improves style fidelity, semantic alignment, and character shape consistency compared with representative adapter-based baselines, while maintaining low parameter overhead and inference-time simplicity.
comment: 7 pages, 5 figures. Under review at IJCNN 2026
☆ FARTrack: Fast Autoregressive Visual Tracking with High Performance
Inference speed and tracking performance are two critical evaluation metrics in the field of visual tracking. However, high-performance trackers often suffer from slow processing speeds, making them impractical for deployment on resource-constrained devices. To alleviate this issue, we propose FARTrack, a Fast Auto-Regressive Tracking framework. Since autoregression emphasizes the temporal nature of the trajectory sequence, it can maintain high performance while achieving efficient execution across various devices. FARTrack introduces Task-Specific Self-Distillation and Inter-frame Autoregressive Sparsification, designed from the perspectives of shallow-yet-accurate distillation and redundant-to-essential token optimization, respectively. Task-Specific Self-Distillation achieves model compression by distilling task-specific tokens layer by layer, enhancing the model's inference speed while avoiding suboptimal manual teacher-student layer pairs assignments. Meanwhile, Inter-frame Autoregressive Sparsification sequentially condenses multiple templates, avoiding additional runtime overhead while learning a temporally-global optimal sparsification strategy. FARTrack demonstrates outstanding speed and competitive performance. It delivers an AO of 70.6% on GOT-10k in real-time. Beyond, our fastest model achieves a speed of 343 FPS on the GPU and 121 FPS on the CPU.
☆ ConsisDrive: Identity-Preserving Driving World Models for Video Generation by Instance Mask
Autonomous driving relies on robust models trained on large-scale, high-quality multi-view driving videos. Although world models provide a cost-effective solution for generating realistic driving data, they often suffer from identity drift, where the same object changes its appearance or category across frames due to the absence of instance-level temporal constraints. We introduce ConsisDrive, an identity-preserving driving world model designed to enforce temporal consistency at the instance level. Our framework incorporates two key components: (1) Instance-Masked Attention, which applies instance identity masks and trajectory masks within attention blocks to ensure that visual tokens interact only with their corresponding instance features across spatial and temporal dimensions, thereby preserving object identity consistency; and (2) Instance-Masked Loss, which adaptively emphasizes foreground regions with probabilistic instance masking, reducing background noise while maintaining overall scene fidelity. By integrating these mechanisms, ConsisDrive achieves state-of-the-art driving video generation quality and demonstrates significant improvements in downstream autonomous driving tasks on the nuScenes dataset. Our project page is https://shanpoyang654.github.io/ConsisDrive/page.html.
☆ VIRAL: Visual In-Context Reasoning via Analogy in Diffusion Transformers
Replicating In-Context Learning (ICL) in computer vision remains challenging due to task heterogeneity. We propose \textbf{VIRAL}, a framework that elicits visual reasoning from a pre-trained image editing model by formulating ICL as conditional generation via visual analogy ($x_s : x_t :: x_q : y_q$). We adapt a frozen Diffusion Transformer (DiT) using role-aware multi-image conditioning and introduce a Mixture-of-Experts LoRA to mitigate gradient interference across diverse tasks. Additionally, to bridge the gaps in current visual context datasets, we curate a large-scale dataset spanning perception, restoration, and editing. Experiments demonstrate that VIRAL outperforms existing methods, validating that a unified V-ICL paradigm can handle the majority of visual tasks, including open-domain editing. Our code is available at https://anonymous.4open.science/r/VIRAL-744A
☆ Spectral Evolution Search: Efficient Inference-Time Scaling for Reward-Aligned Image Generation
Inference-time scaling offers a versatile paradigm for aligning visual generative models with downstream objectives without parameter updates. However, existing approaches that optimize the high-dimensional initial noise suffer from severe inefficiency, as many search directions exert negligible influence on the final generation. We show that this inefficiency is closely related to a spectral bias in generative dynamics: model sensitivity to initial perturbations diminishes rapidly as frequency increases. Building on this insight, we propose Spectral Evolution Search (SES), a plug-and-play framework for initial noise optimization that executes gradient-free evolutionary search within a low-frequency subspace. Theoretically, we derive the Spectral Scaling Prediction from perturbation propagation dynamics, which explains the systematic differences in the impact of perturbations across frequencies. Extensive experiments demonstrate that SES significantly advances the Pareto frontier of generation quality versus computational cost, consistently outperforming strong baselines under equivalent budgets.
☆ WebSplatter: Enabling Cross-Device Efficient Gaussian Splatting in Web Browsers via WebGPU
We present WebSplatter, an end-to-end GPU rendering pipeline for the heterogeneous web ecosystem. Unlike naive ports, WebSplatter introduces a wait-free hierarchical radix sort that circumvents the lack of global atomics in WebGPU, ensuring deterministic execution across diverse hardware. Furthermore, we propose an opacity-aware geometry culling stage that dynamically prunes splats before rasterization, significantly reducing overdraw and peak memory footprint. Evaluation demonstrates that WebSplatter consistently achieves 1.2$\times$ to 4.5$\times$ speedups over state-of-the-art web viewers.
☆ Hand3R: Online 4D Hand-Scene Reconstruction in the Wild
For Embodied AI, jointly reconstructing dynamic hands and the dense scene context is crucial for understanding physical interaction. However, most existing methods recover isolated hands in local coordinates, overlooking the surrounding 3D environment. To address this, we present Hand3R, the first online framework for joint 4D hand-scene reconstruction from monocular video. Hand3R synergizes a pre-trained hand expert with a 4D scene foundation model via a scene-aware visual prompting mechanism. By injecting high-fidelity hand priors into a persistent scene memory, our approach enables simultaneous reconstruction of accurate hand meshes and dense metric-scale scene geometry in a single forward pass. Experiments demonstrate that Hand3R bypasses the reliance on offline optimization and delivers competitive performance in both local hand reconstruction and global positioning.
☆ From Single Scan to Sequential Consistency: A New Paradigm for LIDAR Relocalization
LiDAR relocalization aims to estimate the global 6-DoF pose of a sensor in the environment. However, existing regression-based approaches are prone to dynamic or ambiguous scenarios, as they either solely rely on single-frame inference or neglect the spatio-temporal consistency across scans. In this paper, we propose TempLoc, a new LiDAR relocalization framework that enhances the robustness of localization by effectively modeling sequential consistency. Specifically, a Global Coordinate Estimation module is first introduced to predict point-wise global coordinates and associated uncertainties for each LiDAR scan. A Prior Coordinate Generation module is then presented to estimate inter-frame point correspondences by the attention mechanism. Lastly, an Uncertainty-Guided Coordinate Fusion module is deployed to integrate both predictions of point correspondence in an end-to-end fashion, yielding a more temporally consistent and accurate global 6-DoF pose. Experimental results on the NCLT and Oxford Robot-Car benchmarks show that our TempLoc outperforms stateof-the-art methods by a large margin, demonstrating the effectiveness of temporal-aware correspondence modeling in LiDAR relocalization. Our code will be released soon.
comment: Nothing
☆ LSGQuant: Layer-Sensitivity Guided Quantization for One-Step Diffusion Real-World Video Super-Resolution
One-Step Diffusion Models have demonstrated promising capability and fast inference in video super-resolution (VSR) for real-world. Nevertheless, the substantial model size and high computational cost of Diffusion Transformers (DiTs) limit downstream applications. While low-bit quantization is a common approach for model compression, the effectiveness of quantized models is challenged by the high dynamic range of input latent and diverse layer behaviors. To deal with these challenges, we introduce LSGQuant, a layer-sensitivity guided quantizing approach for one-step diffusion-based real-world VSR. Our method incorporates a Dynamic Range Adaptive Quantizer (DRAQ) to fit video token activations. Furthermore, we estimate layer sensitivity and implement a Variance-Oriented Layer Training Strategy (VOLTS) by analyzing layer-wise statistics in calibration. We also introduce Quantization-Aware Optimization (QAO) to jointly refine the quantized branch and a retained high-precision branch. Extensive experiments demonstrate that our method has nearly performance to origin model with full-precision and significantly exceeds existing quantization techniques. Code is available at: https://github.com/zhengchen1999/LSGQuant.
comment: Code is available at: https://github.com/zhengchen1999/LSGQuant
☆ BinaryDemoire: Moiré-Aware Binarization for Image Demoiréing
Image demoiréing aims to remove structured moiré artifacts in recaptured imagery, where degradations are highly frequency-dependent and vary across scales and directions. While recent deep networks achieve high-quality restoration, their full-precision designs remain costly for deployment. Binarization offers an extreme compression regime by quantizing both activations and weights to 1-bit. Yet, it has been rarely studied for demoiréing and performs poorly when naively applied. In this work, we propose BinaryDemoire, a binarized demoiréing framework that explicitly accommodates the frequency structure of moiré degradations. First, we introduce a moiré-aware binary gate (MABG) that extracts lightweight frequency descriptors together with activation statistics. It predicts channel-wise gating coefficients to condition the aggregation of binary convolution responses. Second, we design a shuffle-grouped residual adapter (SGRA) that performs structured sparse shortcut alignment. It further integrates interleaved mixing to promote information exchange across different channel partitions. Extensive experiments on four benchmarks demonstrate that the proposed BinaryDemoire surpasses current binarization methods. Code: https://github.com/zhengchen1999/BinaryDemoire.
comment: Code is available at: https://github.com/zhengchen1999/BinaryDemoire
☆ Human-in-the-loop Adaptation in Group Activity Feature Learning for Team Sports Video Retrieval
This paper proposes human-in-the-loop adaptation for Group Activity Feature Learning (GAFL) without group activity annotations. This human-in-the-loop adaptation is employed in a group-activity video retrieval framework to improve its retrieval performance. Our method initially pre-trains the GAF space based on the similarity of group activities in a self-supervised manner, unlike prior work that classifies videos into pre-defined group activity classes in a supervised learning manner. Our interactive fine-tuning process updates the GAF space to allow a user to better retrieve videos similar to query videos given by the user. In this fine-tuning, our proposed data-efficient video selection process provides several videos, which are selected from a video database, to the user in order to manually label these videos as positive or negative. These labeled videos are used to update (i.e., fine-tune) the GAF space, so that the positive and negative videos move closer to and farther away from the query videos through contrastive learning. Our comprehensive experimental results on two team sports datasets validate that our method significantly improves the retrieval performance. Ablation studies also demonstrate that several components in our human-in-the-loop adaptation contribute to the improvement of the retrieval performance. Code: https://github.com/chihina/GAFL-FINE-CVIU.
comment: Accepted to Computer Vision and Image Understanding (CVIU)
☆ Fully Kolmogorov-Arnold Deep Model in Medical Image Segmentation
Deeply stacked KANs are practically impossible due to high training difficulties and substantial memory requirements. Consequently, existing studies can only incorporate few KAN layers, hindering the comprehensive exploration of KANs. This study overcomes these limitations and introduces the first fully KA-based deep model, demonstrating that KA-based layers can entirely replace traditional architectures in deep learning and achieve superior learning capacity. Specifically, (1) the proposed Share-activation KAN (SaKAN) reformulates Sprecher's variant of Kolmogorov-Arnold representation theorem, which achieves better optimization due to its simplified parameterization and denser training samples, to ease training difficulty, (2) this paper indicates that spline gradients contribute negligibly to training while consuming huge GPU memory, thus proposes the Grad-Free Spline to significantly reduce memory usage and computational overhead. (3) Building on these two innovations, our ALL U-KAN is the first representative implementation of fully KA-based deep model, where the proposed KA and KAonv layers completely replace FC and Conv layers. Extensive evaluations on three medical image segmentation tasks confirm the superiority of the full KA-based architecture compared to partial KA-based and traditional architectures, achieving all higher segmentation accuracy. Compared to directly deeply stacked KAN, ALL U-KAN achieves 10 times reduction in parameter count and reduces memory consumption by more than 20 times, unlocking the new explorations into deep KAN architectures.
comment: 11 pages, 5 figures, conference
☆ Diversity-Preserved Distribution Matching Distillation for Fast Visual Synthesis
Distribution matching distillation (DMD) aligns a multi-step generator with its few-step counterpart to enable high-quality generation under low inference cost. However, DMD tends to suffer from mode collapse, as its reverse-KL formulation inherently encourages mode-seeking behavior, for which existing remedies typically rely on perceptual or adversarial regularization, thereby incurring substantial computational overhead and training instability. In this work, we propose a role-separated distillation framework that explicitly disentangles the roles of distilled steps: the first step is dedicated to preserving sample diversity via a target-prediction (e.g., v-prediction) objective, while subsequent steps focus on quality refinement under the standard DMD loss, with gradients from the DMD objective blocked at the first step. We term this approach Diversity-Preserved DMD (DP-DMD), which, despite its simplicity -- no perceptual backbone, no discriminator, no auxiliary networks, and no additional ground-truth images -- preserves sample diversity while maintaining visual quality on par with state-of-the-art methods in extensive text-to-image experiments.
☆ FSOD-VFM: Few-Shot Object Detection with Vision Foundation Models and Graph Diffusion ICLR 2026
In this paper, we present FSOD-VFM: Few-Shot Object Detectors with Vision Foundation Models, a framework that leverages vision foundation models to tackle the challenge of few-shot object detection. FSOD-VFM integrates three key components: a universal proposal network (UPN) for category-agnostic bounding box generation, SAM2 for accurate mask extraction, and DINOv2 features for efficient adaptation to new object categories. Despite the strong generalization capabilities of foundation models, the bounding boxes generated by UPN often suffer from overfragmentation, covering only partial object regions and leading to numerous small, false-positive proposals rather than accurate, complete object detections. To address this issue, we introduce a novel graph-based confidence reweighting method. In our approach, predicted bounding boxes are modeled as nodes in a directed graph, with graph diffusion operations applied to propagate confidence scores across the network. This reweighting process refines the scores of proposals, assigning higher confidence to whole objects and lower confidence to local, fragmented parts. This strategy improves detection granularity and effectively reduces the occurrence of false-positive bounding box proposals. Through extensive experiments on Pascal-5$^i$, COCO-20$^i$, and CD-FSOD datasets, we demonstrate that our method substantially outperforms existing approaches, achieving superior performance without requiring additional training. Notably, on the challenging CD-FSOD dataset, which spans multiple datasets and domains, our FSOD-VFM achieves 31.6 AP in the 10-shot setting, substantially outperforming previous training-free methods that reach only 21.4 AP. Code is available at: https://intellindust-ai-lab.github.io/projects/FSOD-VFM.
comment: Accepted by ICLR 2026. Code is available at: \url{https://intellindust-ai-lab.github.io/projects/FSOD-VFM}
☆ SwiftVLM: Efficient Vision-Language Model Inference via Cross-Layer Token Bypass
Visual token pruning is a promising approach for reducing the computational cost of vision-language models (VLMs), and existing methods often rely on early pruning decisions to improve efficiency. While effective on coarse-grained reasoning tasks, they suffer from significant performance degradation on tasks requiring fine-grained visual details. Through layer-wise analysis, we reveal substantial discrepancies in visual token importance across layers, showing that tokens deemed unimportant at shallow layers can later become highly relevant for text-conditioned reasoning. To avoid irreversible critical information loss caused by premature pruning, we introduce a new pruning paradigm, termed bypass, which preserves unselected visual tokens and forwards them to subsequent pruning stages for re-evaluation. Building on this paradigm, we propose SwiftVLM, a simple and training-free method that performs pruning at model-specific layers with strong visual token selection capability, while enabling independent pruning decisions across layers. Experiments across multiple VLMs and benchmarks demonstrate that SwiftVLM consistently outperforms existing pruning strategies, achieving superior accuracy-efficiency trade-offs and more faithful visual token selection behavior.
☆ FinMTM: A Multi-Turn Multimodal Benchmark for Financial Reasoning and Agent Evaluation
The financial domain poses substantial challenges for vision-language models (VLMs) due to specialized chart formats and knowledge-intensive reasoning requirements. However, existing financial benchmarks are largely single-turn and rely on a narrow set of question formats, limiting comprehensive evaluation in realistic application scenarios. To address this gap, we propose FinMTM, a multi-turn multimodal benchmark that expands diversity along both data and task dimensions. On the data side, we curate and annotate 11{,}133 bilingual (Chinese and English) financial QA pairs grounded in financial visuals, including candlestick charts, statistical plots, and report figures. On the task side, FinMTM covers single- and multiple-choice questions, multi-turn open-ended dialogues, and agent-based tasks. We further design task-specific evaluation protocols, including a set-overlap scoring rule for multiple-choice questions, a weighted combination of turn-level and session-level scores for multi-turn dialogues, and a composite metric that integrates planning quality with final outcomes for agent tasks. Extensive experimental evaluation of 22 VLMs reveal their limitations in fine-grained visual perception, long-context reasoning, and complex agent workflows.
☆ Flexible Geometric Guidance for Probabilistic Human Pose Estimation with Diffusion Models
3D human pose estimation from 2D images is a challenging problem due to depth ambiguity and occlusion. Because of these challenges the task is underdetermined, where there exists multiple -- possibly infinite -- poses that are plausible given the image. Despite this, many prior works assume the existence of a deterministic mapping and estimate a single pose given an image. Furthermore, methods based on machine learning require a large amount of paired 2D-3D data to train and suffer from generalization issues to unseen scenarios. To address both of these issues, we propose a framework for pose estimation using diffusion models, which enables sampling from a probability distribution over plausible poses which are consistent with a 2D image. Our approach falls under the guidance framework for conditional generation, and guides samples from an unconditional diffusion model, trained only on 3D data, using the gradients of the heatmaps from a 2D keypoint detector. We evaluate our method on the Human 3.6M dataset under best-of-$m$ multiple hypothesis evaluation, showing state-of-the-art performance among methods which do not require paired 2D-3D data for training. We additionally evaluate the generalization ability using the MPI-INF-3DHP and 3DPW datasets and demonstrate competitive performance. Finally, we demonstrate the flexibility of our framework by using it for novel tasks including pose generation and pose completion, without the need to train bespoke conditional models. We make code available at https://github.com/fsnelgar/diffusion_pose .
♻ ☆ MixGRPO: Unlocking Flow-based GRPO Efficiency with Mixed ODE-SDE
Although GRPO substantially enhances flow matching models in human preference alignment of image generation, methods such as FlowGRPO and DanceGRPO still exhibit inefficiency due to the necessity of sampling and optimizing over all denoising steps specified by the Markov Decision Process (MDP). In this paper, we propose $\textbf{MixGRPO}$, a novel framework that leverages the flexibility of mixed sampling strategies through the integration of stochastic differential equations (SDE) and ordinary differential equations (ODE). This streamlines the optimization process within the MDP to improve efficiency and boost performance. Specifically, MixGRPO introduces a sliding window mechanism, using SDE sampling and GRPO-guided optimization only within the window, while applying ODE sampling outside. This design confines sampling randomness to the time-steps within the window, thereby reducing the optimization overhead, and allowing for more focused gradient updates to accelerate convergence. Additionally, as time-steps beyond the sliding window are not involved in optimization, higher-order solvers are supported for faster sampling. So we present a faster variant, termed $\textbf{MixGRPO-Flash}$, which further improves training efficiency while achieving comparable performance. MixGRPO exhibits substantial gains across multiple dimensions of human preference alignment, outperforming DanceGRPO in both effectiveness and efficiency, with nearly 50% lower training time. Notably, MixGRPO-Flash further reduces training time by 71%.
♻ ☆ Model Optimization for Multi-Camera 3D Detection and Tracking
Outside-in multi-camera perception is increasingly important in indoor environments, where networks of static cameras must support multi-target tracking under occlusion and heterogeneous viewpoints. We evaluate Sparse4D, a query-based spatiotemporal 3D detection and tracking framework that fuses multi-view features in a shared world frame and propagates sparse object queries via instance memory. We study reduced input frame rates, post-training quantization (INT8 and FP8), transfer to the WILDTRACK benchmark, and Transformer Engine mixed-precision fine-tuning. To better capture identity stability, we report Average Track Duration (AvgTrackDur), which measures identity persistence in seconds. Sparse4D remains stable under moderate FPS reductions, but below 2 FPS, identity association collapses even when detections are stable. Selective quantization of the backbone and neck offers the best speed-accuracy trade-off, while attention-related modules are consistently sensitive to low precision. On WILDTRACK, low-FPS pretraining yields large zero-shot gains over the base checkpoint, while small-scale fine-tuning provides limited additional benefit. Transformer Engine mixed precision reduces latency and improves camera scalability, but can destabilize identity propagation, motivating stability-aware validation.
♻ ☆ Moonworks Lunara Aesthetic II: An Image Variation Dataset
We introduce Lunara Aesthetic II, a publicly released, ethically sourced image dataset designed to support controlled evaluation and learning of contextual consistency in modern image generation and editing systems. The dataset comprises 2,854 anchor-linked variation pairs derived from original art and photographs created by Moonworks. Each variation pair applies contextual transformations, such as illumination, weather, viewpoint, scene composition, color tone, or mood; while preserving a stable underlying identity. Lunara Aesthetic II operationalizes identity-preserving contextual variation as a supervision signal while also retaining Lunara's signature high aesthetic scores. Results show high identity stability, strong target attribute realization, and a robust aesthetic profile that exceeds large-scale web datasets. Released under the Apache 2.0 license, Lunara Aesthetic II is intended for benchmarking, fine-tuning, and analysis of contextual generalization, identity preservation, and edit robustness in image generation and image-to-image systems with interpretable, relational supervision. The dataset is publicly available at: https://huggingface.co/datasets/moonworks/lunara-aesthetic-image-variations.
♻ ☆ Seeing through Satellite Images at Street Views
This paper studies the task of SatStreet-view synthesis, which aims to render photorealistic street-view panorama images and videos given any satellite image and specified camera positions or trajectories. We formulate to learn neural radiance field from paired images captured from satellite and street viewpoints, which comes to be a challenging learning problem due to the sparse-view natural and the extremely-large viewpoint changes between satellite and street-view images. We tackle the challenges based on a task-specific observation that street-view specific elements, including the sky and illumination effects are only visible in street-view panoramas, and present a novel approach Sat2Density++ to accomplish the goal of photo-realistic street-view panoramas rendering by modeling these street-view specific in neural networks. In the experiments, our method is testified on both urban and suburban scene datasets, demonstrating that Sat2Density++ is capable of rendering photorealistic street-view panoramas that are consistent across multiple views and faithful to the satellite image.
comment: Accepted to IEEE TPAMI. Initially submitted in July 2024. Code is available on https://qianmingduowan.github.io/sat2density-pp/
♻ ☆ Towards Sustainable Universal Deepfake Detection with Frequency-Domain Masking
Universal deepfake detection aims to identify AI-generated images across a broad range of generative models, including unseen ones. This requires robust generalization to new and unseen deepfakes, which emerge frequently, while minimizing computational overhead to enable large-scale deepfake screening, a critical objective in the era of Green AI. In this work, we explore frequency-domain masking as a training strategy for deepfake detectors. Unlike traditional methods that rely heavily on spatial features or large-scale pretrained models, our approach introduces random masking and geometric transformations, with a focus on frequency masking due to its superior generalization properties. We demonstrate that frequency masking not only enhances detection accuracy across diverse generators but also maintains performance under significant model pruning, offering a scalable and resource-conscious solution. Our method achieves state-of-the-art generalization on GAN- and diffusion-generated image datasets and exhibits consistent robustness under structured pruning. These results highlight the potential of frequency-based masking as a practical step toward sustainable and generalizable deepfake detection. Code and models are available at https://github.com/chandlerbing65nm/FakeImageDetection.
comment: Accepted to ACM TOMM
♻ ☆ Rethinking Bottlenecks in Safety Fine-Tuning of Vision Language Models
Large Vision-Language Models (VLMs) have achieved remarkable performance across a wide range of tasks. However, their deployment in safety-critical domains poses significant challenges. Existing safety fine-tuning methods, which focus on textual or multimodal content, fall short in addressing challenging cases or disrupt the balance between helpfulness and harmlessness. Our evaluation highlights a safety reasoning gap: these methods lack safety visual reasoning ability, leading to such bottlenecks. To address this limitation and enhance both visual perception and reasoning in safety-critical contexts, we propose a novel dataset that integrates multi-image inputs with safety Chain-of-Thought (CoT) labels as fine-grained reasoning logic to improve model performance. Specifically, we introduce the Multi-Image Safety (MIS) dataset, an instruction-following dataset tailored for multi-image safety scenarios, consisting of training and test splits. Our experiments demonstrate that fine-tuning InternVL2.5-8B with MIS significantly outperforms both powerful open-source models and API-based models in challenging multi-image tasks requiring safety-related visual reasoning. This approach not only delivers exceptional safety performance but also preserves general capabilities without any trade-offs. Specifically, fine-tuning with MIS increases average accuracy by 0.83% across five general benchmarks and reduces the Attack Success Rate (ASR) on multiple safety benchmarks by a large margin.
♻ ☆ RANKVIDEO: Reasoning Reranking for Text-to-Video Retrieval
Reranking is a critical component of modern retrieval systems, which typically pair an efficient first-stage retriever with a more expressive model to refine results. While large reasoning models have driven rapid progress in text-centric reranking, reasoning-based reranking for video retrieval remains underexplored. To address this gap, we introduce RANKVIDEO, a reasoning-based reranker for video retrieval that explicitly reasons over query-video pairs using video content to assess relevance. RANKVIDEO is trained using a two-stage curriculum consisting of perception-grounded supervised fine-tuning followed by reranking training that combines pointwise, pairwise, and teacher confidence distillation objectives, and is supported by a data synthesis pipeline for constructing reasoning-intensive query-video pairs. Experiments on the large-scale MultiVENT 2.0 benchmark demonstrate that RANKVIDEO consistently improves retrieval performance within a two-stage framework, yielding an average improvement of 31% on nDCG@10 and outperforming text-only and vision-language reranking alternatives, while more efficient.
♻ ☆ Ground-R1: Incentivizing Grounded Visual Reasoning via Reinforcement Learning
Large Vision-Language Models (LVLMs) have become powerful general-purpose assistants, yet their predictions often lack reliability and interpretability due to insufficient grounding in visual evidence. The emerging thinking-with-images paradigm seeks to address this issue by explicitly anchoring reasoning to image regions. However, we empirically find that most existing methods suffer from a systematic scale-driven bias in optimization, where training rewards are dominated by large visual regions, suppressing learning from small but semantically critical evidence and leading to spurious grounding at inference time. To address this limitation, we propose Ground-R1, a de-biased thinking-with-images framework trained via a novel Scale Relative Policy Optimization (SRPO) objective that replaces standard GRPO. Specifically, our SRPO recalibrates reward learning across evidence regions of different sizes through scale-aware binning and intra-/inter-bin comparisons, enabling balanced credit assignment during training. Experimental results on general LVLM, high-resolution, and visual grounding benchmarks validate the effectiveness of Ground-R1 and show that SRPO yields consistent gains over standard GRPO in both response accuracy and evidence grounding.
♻ ☆ Mapping the Unseen: Unified Promptable Panoptic Mapping with Dynamic Labeling using Foundation Models
Panoptic maps enable robots to reason about both geometry and semantics. However, open-vocabulary models repeatedly produce closely related labels that split panoptic entities and degrade volumetric consistency. The proposed UPPM advances open-world scene understanding by leveraging foundation models to introduce a panoptic Dynamic Descriptor that reconciles open-vocabulary labels with unified category structure and geometric size priors. The fusion for such dynamic descriptors is performed within a multi-resolution multi-TSDF map using language-guided open-vocabulary panoptic segmentation and semantic retrieval, resulting in a persistent and promptable panoptic map without additional model training. Based on our evaluation experiments, UPPM shows the best overall performance in terms of the map reconstruction accuracy and the panoptic segmentation quality. The ablation study investigates the contribution for each component of UPPM (custom NMS, blurry-frame filtering, and unified semantics) to the overall system performance. Consequently, UPPM preserves open-vocabulary interpretability while delivering strong geometric and panoptic accuracy.
♻ ☆ Infinite-World: Scaling Interactive World Models to 1000-Frame Horizons via Pose-Free Hierarchical Memory
We propose Infinite-World, a robust interactive world model capable of maintaining coherent visual memory over 1000+ frames in complex real-world environments. While existing world models can be efficiently optimized on synthetic data with perfect ground-truth, they lack an effective training paradigm for real-world videos due to noisy pose estimations and the scarcity of viewpoint revisits. To bridge this gap, we first introduce a Hierarchical Pose-free Memory Compressor (HPMC) that recursively distills historical latents into a fixed-budget representation. By jointly optimizing the compressor with the generative backbone, HPMC enables the model to autonomously anchor generations in the distant past with bounded computational cost, eliminating the need for explicit geometric priors. Second, we propose an Uncertainty-aware Action Labeling module that discretizes continuous motion into a tri-state logic. This strategy maximizes the utilization of raw video data while shielding the deterministic action space from being corrupted by noisy trajectories, ensuring robust action-response learning. Furthermore, guided by insights from a pilot toy study, we employ a Revisit-Dense Finetuning Strategy using a compact, 30-minute dataset to efficiently activate the model's long-range loop-closure capabilities. Extensive experiments, including objective metrics and user studies, demonstrate that Infinite-World achieves superior performance in visual quality, action controllability, and spatial consistency.
comment: project page: https://rq-wu.github.io/projects/infinite-world/index.html
♻ ☆ SEMNAV: Enhancing Visual Semantic Navigation in Robotics through Semantic Segmentation
Visual Semantic Navigation (VSN) is a fundamental problem in robotics, where an agent must navigate toward a target object in an unknown environment, mainly using visual information. Most state-of-the-art VSN models are trained in simulation environments, where rendered scenes of the real world are used, at best. These approaches typically rely on raw RGB data from the virtual scenes, which limits their ability to generalize to real-world environments due to domain adaptation issues. To tackle this problem, in this work, we propose SEMNAV, a novel approach that leverages semantic segmentation as the main visual input representation of the environment to enhance the agent's perception and decision-making capabilities. By explicitly incorporating this type of high-level semantic information, our model learns robust navigation policies that improve generalization across unseen environments, both in simulated and real world settings. We also introduce the SEMNAV dataset, a newly curated dataset designed for training semantic segmentation-aware navigation models like SEMNAV. Our approach is evaluated extensively in both simulated environments and with real-world robotic platforms. Experimental results demonstrate that SEMNAV outperforms existing state-of-the-art VSN models, achieving higher success rates in the Habitat 2.0 simulation environment, using the HM3D dataset. Furthermore, our real-world experiments highlight the effectiveness of semantic segmentation in mitigating the sim-to-real gap, making our model a promising solution for practical VSN-based robotic applications. The code and datasets are accessible at https://github.com/gramuah/semnav
♻ ☆ Accurate and Efficient World Modeling with Masked Latent Transformers
The Dreamer algorithm has recently obtained remarkable performance across diverse environment domains by training powerful agents with simulated trajectories. However, the compressed nature of its world model's latent space can result in the loss of crucial information, negatively affecting the agent's performance. Recent approaches, such as $Δ$-IRIS and DIAMOND, address this limitation by training more accurate world models. However, these methods require training agents directly from pixels, which reduces training efficiency and prevents the agent from benefiting from the inner representations learned by the world model. In this work, we propose an alternative approach to world modeling that is both accurate and efficient. We introduce EMERALD (Efficient MaskEd latent tRAnsformer worLD model), a world model using a spatial latent state with MaskGIT predictions to generate accurate trajectories in latent space and improve the agent performance. On the Crafter benchmark, EMERALD achieves new state-of-the-art performance, becoming the first method to surpass human experts performance within 10M environment steps. Our method also succeeds to unlock all 22 Crafter achievements at least once during evaluation.
♻ ☆ Driving on Registers
We present DrivoR, a simple and efficient transformer-based architecture for end-to-end autonomous driving. Our approach builds on pretrained Vision Transformers (ViTs) and introduces camera-aware register tokens that compress multi-camera features into a compact scene representation, significantly reducing downstream computation without sacrificing accuracy. These tokens drive two lightweight transformer decoders that generate and then score candidate trajectories. The scoring decoder learns to mimic an oracle and predicts interpretable sub-scores representing aspects such as safety, comfort, and efficiency, enabling behavior-conditioned driving at inference. Despite its minimal design, DrivoR outperforms or matches strong contemporary baselines across NAVSIM-v1, NAVSIM-v2, and the photorealistic closed-loop HUGSIM benchmark. Our results show that a pure-transformer architecture, combined with targeted token compression, is sufficient for accurate, efficient, and adaptive end-to-end driving. Code and checkpoints will be made available via the project page.
♻ ☆ Generating a Paracosm for Training-Free Zero-Shot Composed Image Retrieval
Composed Image Retrieval (CIR) is the task of retrieving a target image from a database using a multimodal query, which consists of a reference image and a modification text. The text specifies how to alter the reference image to form a ``mental image'', based on which CIR should find the target image in the database. The fundamental challenge of CIR is that this ``mental image'' is not physically available and is only implicitly defined by the query. The contemporary literature pursues zero-shot methods and uses a Large Multimodal Model (LMM) to generate a textual description for a given multimodal query, and then employs a Vision-Language Model (VLM) for textual-visual matching to search the target image. In contrast, we address CIR from first principles by directly generating the ``mental image'' for more accurate matching. Particularly, we prompt an LMM to generate a ``mental image'' for a given multimodal query and propose to use this ``mental image'' to search for the target image. As the ``mental image'' has a synthetic-to-real domain gap with real images, we also generate a synthetic counterpart for each real image in the database to facilitate matching. In this sense, our method uses LMM to construct a ``paracosm'', where it matches the multimodal query and database images. Hence, we call this method Paracosm. Notably, Paracosm is a training-free zero-shot CIR method. It significantly outperforms existing zero-shot methods on four challenging benchmarks, achieving state-of-the-art performance for zero-shot CIR.
♻ ☆ OptiPMB: Enhancing 3D Multi-Object Tracking with Optimized Poisson Multi-Bernoulli Filtering
Accurate 3D multi-object tracking (MOT) is crucial for autonomous driving, as it enables robust perception, navigation, and planning in complex environments. While deep learning-based solutions have demonstrated impressive 3D MOT performance, model-based approaches remain appealing for their simplicity, interpretability, and data efficiency. Conventional model-based trackers typically rely on random vector-based Bayesian filters within the tracking-by-detection (TBD) framework but face limitations due to heuristic data association and track management schemes. In contrast, random finite set (RFS)-based Bayesian filtering handles object birth, survival, and death in a theoretically sound manner, facilitating interpretability and parameter tuning. In this paper, we present OptiPMB, a novel RFS-based 3D MOT method that employs an optimized Poisson multi-Bernoulli (PMB) filter while incorporating several key innovative designs within the TBD framework. Specifically, we propose a measurement-driven hybrid adaptive birth model for improved track initialization, employ adaptive detection probability parameters to effectively maintain tracks for occluded objects, and optimize density pruning and track extraction modules to further enhance overall tracking performance. Extensive evaluations on nuScenes and KITTI datasets show that OptiPMB achieves superior tracking accuracy compared with state-of-the-art methods, thereby establishing a new benchmark for model-based 3D MOT and offering valuable insights for future research on RFS-based trackers in autonomous driving.
♻ ☆ PISA: Piecewise Sparse Attention Is Wiser for Efficient Diffusion Transformers
Diffusion Transformers are fundamental for video and image generation, but their efficiency is bottlenecked by the quadratic complexity of attention. While block sparse attention accelerates computation by attending only critical key-value blocks, it suffers from degradation at high sparsity by discarding context. In this work, we discover that attention scores of non-critical blocks exhibit distributional stability, allowing them to be approximated accurately and efficiently rather than discarded, which is essentially important for sparse attention design. Motivated by this key insight, we propose PISA, a training-free Piecewise Sparse Attention that covers the full attention span with sub-quadratic complexity. Unlike the conventional keep-or-drop paradigm that directly drop the non-critical block information, PISA introduces a novel exact-or-approximate strategy: it maintains exact computation for critical blocks while efficiently approximating the remainder through block-wise Taylor expansion. This design allows PISA to serve as a faithful proxy to full attention, effectively bridging the gap between speed and quality. Experimental results demonstrate that PISA achieves 1.91 times and 2.57 times speedups on Wan2.1-14B and Hunyuan-Video, respectively, while consistently maintaining the highest quality among sparse attention methods. Notably, even for image generation on FLUX, PISA achieves a 1.2 times acceleration without compromising visual quality. Code is available at: https://github.com/xie-lab-ml/piecewise-sparse-attention.
comment: 17 pages
♻ ☆ SpecFLASH: A Latent-Guided Semi-autoregressive Speculative Decoding Framework for Efficient Multimodal Generation
Large language models and large multimodal models (LLMs and LMMs) deliver strong generative performance but suffer from slow decoding, a problem that becomes more severe when handling visual inputs, whose sequences typically contain many more tokens with lower information density than text. Speculative decoding accelerates LLM inference by letting a compact draft model propose candidate tokens that are selectively accepted by a larger target model, achieving speed-up without degrading quality. However, existing multimodal speculative decoding approaches largely ignore the structural characteristics of visual representations and usually rely on text-only draft models. In this paper, we introduce SpecFLASH, a speculative decoding framework tailored to LMMs that explicitly exploits multimodal structure when designing the draft model. We first mitigate redundancy in visual token sequences with a lightweight, latent-guided token compression module that compacts visual features while preserving semantics, and then leverage the co-occurrence and local correlations of visual entities via a semi-autoregressive decoding scheme that predicts multiple tokens in a single forward pass. Extensive experiments demonstrate that SpecFLASH consistently surpasses prior speculative decoding baselines, achieving up to $2.68\times$ speed-up on video captioning and $2.55\times$ on visual instruction tuning, relative to the original LMM. Our code is available here: https://github.com/ZihuaEvan/FlashSD/.
comment: Under review
♻ ☆ Understanding-informed Bias Mitigation for Fair CMR Segmentation
Artificial intelligence (AI) is increasingly being used for medical imaging tasks. However, there can be biases in AI models, particularly when they are trained using imbalanced training datasets. One such example has been the strong ethnicity bias effect in cardiac magnetic resonance (CMR) image segmentation models. Although this phenomenon has been reported in a number of publications, little is known about the effectiveness of bias mitigation algorithms in this domain. We aim to investigate the impact of common bias mitigation methods to address bias between Black and White subjects in AI-based CMR segmentation models. Specifically, we use oversampling, importance reweighing and Group DRO as well as combinations of these techniques to mitigate the ethnicity bias. Second, motivated by recent findings on the root causes of AI-based CMR segmentation bias, we evaluate the same methods using models trained and evaluated on cropped CMR images. We find that bias can be mitigated using oversampling, significantly improving performance for the underrepresented Black subjects whilst not significantly reducing the majority White subjects' performance. Using cropped images increases performance for both ethnicities and reduces the bias, whilst adding oversampling as a bias mitigation technique with cropped images reduces the bias further. When testing the models on an external clinical validation set, we find high segmentation performance and no statistically significant bias.
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2025:036
♻ ☆ Material-informed Gaussian Splatting for 3D World Reconstruction in a Digital Twin
3D reconstruction for Digital Twins often relies on LiDAR-based methods, which provide accurate geometry but lack the semantics and textures naturally captured by cameras. Traditional LiDAR-camera fusion approaches require complex calibration and still struggle with certain materials like glass, which are visible in images but poorly represented in point clouds. We propose a camera-only pipeline that reconstructs scenes using 3D Gaussian Splatting from multi-view images, extracts semantic material masks via vision models, converts Gaussian representations to mesh surfaces with projected material labels, and assigns physics-based material properties for accurate sensor simulation in modern graphics engines and simulators. This approach combines photorealistic reconstruction with physics-based material assignment, providing sensor simulation fidelity comparable to LiDAR-camera fusion while eliminating hardware complexity and calibration requirements. We validate our camera-only method using an internal dataset from an instrumented test vehicle, leveraging LiDAR as ground truth for reflectivity validation alongside image similarity metrics.
comment: 8 pages, 5 figures. Accepted to IEEE Intelligent Vehicles Symposium (IV) 2026. Revised version (v3) presents camera-ready publication
♻ ☆ Patronus: Interpretable Diffusion Models with Prototypes
Uncovering the opacity of diffusion-based generative models is urgently needed, as their applications continue to expand while their underlying procedures largely remain a black box. With a critical question -- how can the diffusion generation process be interpreted and understood? -- we proposed Patronus, an interpretable diffusion model that incorporates a prototypical network to encode semantics in visual patches, revealing what visual patterns are modeled and where and when they emerge throughout denoising. This interpretability of Patronus provides deeper insights into the generative mechanism, enabling the detection of shortcut learning via unwanted correlations and the tracing of semantic emergence across timesteps. We evaluate Patronus on four natural image datasets and one medical imaging dataset, demonstrating both faithful interpretability and strong generative performance. With this work, we open new avenues for understanding and steering diffusion models through prototype-based interpretability.\\ Our code is available at https://github.com/nina-weng/patronus}{https://github.com/nina-weng/patronus.
♻ ☆ CAD-SLAM: Consistency-Aware Dynamic SLAM with Dynamic-Static Decoupled Mapping
Recent advances in neural radiation fields (NeRF) and 3D Gaussian-based SLAM have achieved impressive localization accuracy and high-quality dense mapping in static scenes. However, these methods remain challenged in dynamic environments, where moving objects violate the static-world assumption and introduce inconsistent observations that degrade both camera tracking and map reconstruction. This motivates two fundamental problems: robustly identifying dynamic objects and modeling them online. To address these limitations, we propose CAD-SLAM, a Consistency-Aware Dynamic SLAM framework with dynamic-static decoupled mapping. Our key insight is that dynamic objects inherently violate cross-view and cross-time scene consistency. We detect object motion by analyzing geometric and texture discrepancies between historical map renderings and real-world observations. Once a moving object is identified, we perform bidirectional dynamic object tracking (both backward and forward in time) to achieve complete sequence-wise dynamic recognition. Our consistency-aware dynamic detection model achieves category-agnostic, instantaneous dynamic identification, which effectively mitigates motion-induced interference during localization and mapping. In addition, we introduce a dynamic-static decoupled mapping strategy that employs a temporal Gaussian model for online incremental dynamic modeling. Experiments conducted on multiple dynamic datasets demonstrate the flexible and accurate dynamic segmentation capabilities of our method, along with the state-of-the-art performance in both localization and mapping.
♻ ☆ video-SALMONN S: Memory-Enhanced Streaming Audio-Visual LLM
Long-duration streaming video understanding is fundamental for future AI agents, yet remains limited by ineffective long-term memory. We introduce video-SALMONN S, a memory-enhanced streaming audio-visual large language model that processes over 3-hour videos at 1 FPS and 360p resolution, outperforming strong non-streaming models under the same memory budget. In addition to token merging or downsampling, video-SALMONN S is the first to employ test-time training (TTT) as a streaming memory mechanism for video understanding. TTT continuously transforms short-term multimodal representations into long-term memory embedded in model parameters. To improve long-range dependency modeling and memory capacity, we propose (i) a TTT_MEM layer with an additional long-span prediction objective, (ii) a two-stage training scheme, and (iii) a modality-aware memory reader. We further introduce the Episodic Learning from Video Memory (ELViM) benchmark, simulating agent-like scenarios where models must learn from videos observed hours earlier. video-SALMONN S consistently outperforms both streaming and non-streaming baselines by 3-7% on long video benchmarks. Notably, video-SALMONN S achieves a 15% absolute accuracy improvement over strong non-streaming models on ELViM, demonstrating strong learning abilities from video memory.
♻ ☆ Reg4Pru: Regularisation Through Random Token Routing for Token Pruning
Transformers are widely adopted in modern vision models due to their strong ability to scale with dataset size and generalisability. However, this comes with a major drawback: computation scales quadratically to the total number of tokens. Numerous methods have been proposed to mitigate this. For example, we consider token pruning with reactivating tokens from preserved representations, but the increased computational efficiency of this method results in decreased stability from the preserved representations, leading to poorer dense prediction performance at deeper layers. In this work, we introduce Reg4Pru, a training regularisation technique that mitigates token-pruning performance loss for segmentation. We compare our models on the FIVES blood vessel segmentation dataset and find that Reg4Pru improves average precision by an absolute 46% compared to the same model trained without routing. This increase is observed using a configuration that achieves a 29% relative speedup in wall-clock time compared to the non-pruned baseline. These findings indicate that Reg4Pru is a valuable regulariser for token reduction strategies.
comment: 11 pages, 7 figures
♻ ☆ A Multicenter Benchmark of Multiple Instance Learning Models for Lymphoma Subtyping from HE-stained Whole Slide Images
Timely and accurate lymphoma diagnosis is essential for guiding cancer treatment. Standard diagnostic practice combines hematoxylin and eosin (HE)-stained whole slide images with immunohistochemistry, flow cytometry, and molecular genetic tests to determine lymphoma subtypes, a process requiring costly equipment, skilled personnel, and causing treatment delays. Deep learning methods could assist pathologists by extracting diagnostic information from routinely available HE-stained slides, yet comprehensive benchmarks for lymphoma subtyping on multicenter data are lacking. In this work, we present the first multicenter lymphoma benchmarking dataset covering four common lymphoma subtypes and healthy control tissue. We systematically evaluate five publicly available pathology foundation models (H-optimus-1, H0-mini, Virchow2, UNI2, Titan) combined with attention-based (AB-MIL) and transformer-based (TransMIL) multiple instance learning aggregators across three magnifications (10x, 20x, 40x). On in-distribution test sets, models achieve multiclass balanced accuracies exceeding 80% across all magnifications, with all foundation models performing similarly and both aggregation methods showing comparable results. The magnification study reveals that 40x resolution is sufficient, with no performance gains from higher resolutions or cross-magnification aggregation. However, on out-of-distribution test sets, performance drops substantially to around 60%, highlighting significant generalization challenges. To advance the field, larger multicenter studies covering additional rare lymphoma subtypes are needed. We provide an automated benchmarking pipeline to facilitate such future research.
comment: 19 pages
♻ ☆ ECORE: Energy-Conscious Optimized Routing for Deep Learning Models at the Edge
Edge computing enables data processing closer to the source, significantly reducing latency, an essential requirement for real-time vision-based analytics such as object detection in surveillance and smart city environments. However, these tasks place substantial demands on resource-constrained edge devices, making the joint optimization of energy consumption and detection accuracy critical. To address this challenge, we propose ECORE, a framework that integrates multiple dynamic routing strategies, including a novel estimation-based techniques and an innovative greedy selection algorithm, to direct image processing requests to the most suitable edge device-model pair. ECORE dynamically balances energy efficiency and detection performance based on object characteristics. We evaluate our framework through extensive experiments on real-world datasets, comparing against widely used baseline techniques. The evaluation leverages established object detection models (YOLO, SSD, EfficientDet) and diverse edge platforms, including Jetson Orin Nano, Raspberry Pi 4 and 5, and TPU accelerators. Results demonstrate that our proposed context-aware routing strategies can reduce energy consumption and latency by 35% and 49%, respectively, while incurring only a 2% loss in detection accuracy compared to accuracy-centric methods.
♻ ☆ LazyDrag: Enabling Stable Drag-Based Editing on Multi-Modal Diffusion Transformers via Explicit Correspondence
The reliance on implicit point matching via attention has become a core bottleneck in drag-based editing, resulting in a fundamental compromise on weakened inversion strength and costly test-time optimization (TTO). This compromise severely limits the generative capabilities of diffusion models, suppressing high-fidelity inpainting and text-guided creation. In this paper, we introduce LazyDrag, the first drag-based image editing method for Multi-Modal Diffusion Transformers, which directly eliminates the reliance on implicit point matching. In concrete terms, our method generates an explicit correspondence map from user drag inputs as a reliable reference to boost the attention control. This reliable reference opens the potential for a stable full-strength inversion process, which is the first in the drag-based editing task. It obviates the necessity for TTO and unlocks the generative capability of models. Therefore, LazyDrag naturally unifies precise geometric control with text guidance, enabling complex edits that were previously out of reach: opening the mouth of a dog and inpainting its interior, generating new objects like a ``tennis ball'', or for ambiguous drags, making context-aware changes like moving a hand into a pocket. Additionally, LazyDrag supports multi-round workflows with simultaneous move and scale operations. Evaluated on the DragBench, our method outperforms baselines in drag accuracy and perceptual quality, as validated by VIEScore and human evaluation. LazyDrag not only establishes new state-of-the-art performance, but also paves a new way to editing paradigms.
comment: https://zxyin.github.io/LazyDrag
♻ ☆ Training-Free Text-Guided Color Editing with Multi-Modal Diffusion Transformer
Text-guided color editing in images and videos is a fundamental yet unsolved problem, requiring fine-grained manipulation of color attributes, including albedo, light source color, and ambient lighting, while preserving physical consistency in geometry, material properties, and light-matter interactions. Existing training-free methods offer broad applicability across editing tasks but struggle with precise color control and often introduce visual inconsistency in both edited and non-edited regions. In this work, we present ColorCtrl, a training-free color editing method that leverages the attention mechanisms of modern Multi-Modal Diffusion Transformers (MM-DiT). By disentangling structure and color through targeted manipulation of attention maps and value tokens, our method enables accurate and consistent color editing, along with word-level control of attribute intensity. Our method modifies only the intended regions specified by the prompt, leaving unrelated areas untouched. Extensive experiments on both SD3 and FLUX.1-dev demonstrate that ColorCtrl outperforms existing training-free approaches and achieves state-of-the-art performances in both edit quality and consistency. Furthermore, our method surpasses strong commercial models such as FLUX.1 Kontext Max and GPT-4o Image Generation in terms of consistency. When extended to video models like CogVideoX, our approach exhibits greater advantages, particularly in maintaining temporal coherence and editing stability. Finally, our method also generalizes to instruction-based editing diffusion models such as Step1X-Edit and FLUX.1 Kontext dev, further demonstrating its versatility.
comment: https://zxyin.github.io/ColorCtrl
♻ ☆ Thalia: A Global, Multi-Modal Dataset for Volcanic Activity Monitoring
Monitoring volcanic activity is of paramount importance to safeguarding lives, infrastructure, and ecosystems. However, only a small fraction of known volcanoes are continuously monitored. Satellite-based Interferometric Synthetic Aperture Radar (InSAR) enables systematic, global-scale deformation monitoring. However, its complex data challenge traditional remote sensing methods. Deep learning offers a powerful means to automate and enhance InSAR interpretation, advancing volcanology and geohazard assessment. Despite its promise, progress has been limited by the scarcity of well-curated datasets. In this work, we build on the existing Hephaestus dataset and introduce Thalia, addressing crucial limitations and enriching its scope with higher-resolution, multi-source, and multi-temporal data. Thalia is a global collection of 38 spatiotemporal datacubes covering 7 years and integrating InSAR products, topographic data, as well as atmospheric variables, known to introduce signal delays that can mimic ground deformation in InSAR imagery. Each sample includes expert annotations detailing the type, intensity, and extent of deformation, ac- companied by descriptive text. To enable fair and consistent evaluation, we provide a comprehensive benchmark using state-of-the-art models for classification and segmentation. This work fosters collaboration between machine learning and Earth science, advancing volcanic monitoring and promoting data-driven approaches in geoscience. The code and latest version of the dataset are available through the github repository: https://github.com/Orion-AI-Lab/Thalia
♻ ☆ L2M-Reg: Building-level Uncertainty-aware Registration of Outdoor LiDAR Point Clouds and Semantic 3D City Models SP
Accurate registration between LiDAR (Light Detection and Ranging) point clouds and semantic 3D city models is a fundamental topic in urban digital twinning and a prerequisite for downstream tasks, such as digital construction, change detection, and model refinement. However, achieving accurate LiDAR-to-Model registration at the individual building level remains challenging, particularly due to the generalization uncertainty in semantic 3D city models at the Level of Detail 2 (LoD2). This paper addresses this gap by proposing L2M-Reg, a plane-based fine registration method that explicitly accounts for model uncertainty. L2M-Reg consists of three key steps: establishing reliable plane correspondence, building a pseudo-plane-constrained Gauss-Helmert model, and adaptively estimating vertical translation. Overall, extensive experiments on five real-world datasets demonstrate that L2M-Reg is both more accurate and computationally efficient than current leading ICP-based and plane-based methods. Therefore, L2M-Reg provides a novel building-level solution regarding LiDAR-to-Model registration when model uncertainty is present. The datasets and code for L2M-Reg can be found: https://github.com/Ziyang-Geodesy/L2M-Reg.
comment: Accepted version by ISPRS Journal of Photogrammetry and Remote Sensing
♻ ☆ DeepUrban: Interaction-Aware Trajectory Prediction and Planning for Automated Driving by Aerial Imagery
The efficacy of autonomous driving systems hinges critically on robust prediction and planning capabilities. However, current benchmarks are impeded by a notable scarcity of scenarios featuring dense traffic, which is essential for understanding and modeling complex interactions among road users. To address this gap, we collaborated with our industrial partner, DeepScenario, to develop DeepUrban-a new drone dataset designed to enhance trajectory prediction and planning benchmarks focusing on dense urban settings. DeepUrban provides a rich collection of 3D traffic objects, extracted from high-resolution images captured over urban intersections at approximately 100 meters altitude. The dataset is further enriched with comprehensive map and scene information to support advanced modeling and simulation tasks. We evaluate state-of-the-art (SOTA) prediction and planning methods, and conducted experiments on generalization capabilities. Our findings demonstrate that adding DeepUrban to nuScenes can boost the accuracy of vehicle predictions and planning, achieving improvements up to 44.1 % / 44.3% on the ADE / FDE metrics. Website: https://iv.ee.hm.edu/deepurban
♻ ☆ V2P-Bench: Evaluating Video-Language Understanding with Visual Prompts for Better Human-Model Interaction
Large Vision-Language Models (LVLMs) have made significant strides in the field of video understanding in recent times. Nevertheless, existing video benchmarks predominantly rely on text prompts for evaluation, which often require complex referential language and diminish both the accuracy and efficiency of human model interaction in turn. To address this limitation, we propose V2P-Bench, a robust and comprehensive benchmark for evaluating the ability of LVLMs to understand Video Visual Prompts in human model interaction scenarios. V2P-Bench consists of 980 videos and 1172 well-structured high-quality QA pairs, each paired with manually annotated visual prompt frames. The benchmark spans three main tasks and twelve categories, thereby enabling fine-grained, instance-level evaluation. Through an in-depth analysis of current LVLMs, we identify several key findings: 1) Visual prompts are both more model-friendly and user-friendly in interactive scenarios than text prompts, leading to significantly improved model performance and enhanced user experience. 2) Models are reasonably capable of zero-shot understanding of visual prompts, but struggle with spatiotemporal understanding. Even o1 achieves only 71.8%, far below the human expert score of 88.3%, while most open-source models perform below 60%. 3) LVLMs exhibit pervasive Hack Phenomena in video question answering tasks, which become more pronounced as video length increases and frame sampling density decreases, thereby inflating performance scores artificially. We anticipate that V2P-Bench will not only shed light on these challenges but also serve as a foundational tool for advancing human model interaction and improving the evaluation of video understanding.
comment: Project Page: https://vlm-reasoning.github.io/V2P-Bench/
♻ ☆ No time to train! Training-Free Reference-Based Instance Segmentation
The performance of image segmentation models has historically been constrained by the high cost of collecting large-scale annotated data. The Segment Anything Model (SAM) alleviates this original problem through a promptable, semantics-agnostic, segmentation paradigm and yet still requires manual visual-prompts or complex domain-dependent prompt-generation rules to process a new image. Towards reducing this new burden, our work investigates the task of object segmentation when provided with, alternatively, only a small set of reference images. Our key insight is to leverage strong semantic priors, as learned by foundation models, to identify corresponding regions between a reference and a target image. We find that correspondences enable automatic generation of instance-level segmentation masks for downstream tasks and instantiate our ideas via a multi-stage, training-free method incorporating (1) memory bank construction; (2) representation aggregation and (3) semantic-aware feature matching. Our experiments show significant improvements on segmentation metrics, leading to state-of-the-art performance on COCO FSOD (36.8% nAP), PASCAL VOC Few-Shot (71.2% nAP50) and outperforming existing training-free approaches on the Cross-Domain FSOD benchmark (22.4% nAP).
comment: Preprint
♻ ☆ SurfSplat: Conquering Feedforward 2D Gaussian Splatting with Surface Continuity Priors ICLR 2026
Reconstructing 3D scenes from sparse images remains a challenging task due to the difficulty of recovering accurate geometry and texture without optimization. Recent approaches leverage generalizable models to generate 3D scenes using 3D Gaussian Splatting (3DGS) primitive. However, they often fail to produce continuous surfaces and instead yield discrete, color-biased point clouds that appear plausible at normal resolution but reveal severe artifacts under close-up views. To address this issue, we present SurfSplat, a feedforward framework based on 2D Gaussian Splatting (2DGS) primitive, which provides stronger anisotropy and higher geometric precision. By incorporating a surface continuity prior and a forced alpha blending strategy, SurfSplat reconstructs coherent geometry together with faithful textures. Furthermore, we introduce High-Resolution Rendering Consistency (HRRC), a new evaluation metric designed to evaluate high-resolution reconstruction quality. Extensive experiments on RealEstate10K, DL3DV, and ScanNet demonstrate that SurfSplat consistently outperforms prior methods on both standard metrics and HRRC, establishing a robust solution for high-fidelity 3D reconstruction from sparse inputs. Project page: https://hebing-sjtu.github.io/SurfSplat-website/
comment: ICLR 2026; Project Page: https://hebing-sjtu.github.io/SurfSplat-website/
♻ ☆ UniFGVC: Universal Training-Free Few-Shot Fine-Grained Vision Classification via Attribute-Aware Multimodal Retrieval
Few-shot fine-grained visual classification (FGVC) aims to leverage limited data to enable models to discriminate subtly distinct categories. Recent works mostly finetuned the pre-trained visual language models to achieve performance gain, yet suffering from overfitting and weak generalization. To deal with this, we introduce UniFGVC, a universal training-free framework that reformulates few-shot FGVC as multimodal retrieval. First, we propose the Category-Discriminative Visual Captioner (CDV-Captioner) to exploit the open-world knowledge of multimodal large language models (MLLMs) to generate a structured text description that captures the fine-grained attribute features distinguishing closely related classes. CDV-Captioner uses chain-of-thought prompting and visually similar reference images to reduce hallucination and enhance discrimination of generated captions. Using it we can convert each image into an image-description pair, enabling more comprehensive feature representation, and construct the multimodal category templates using few-shot samples for the subsequent retrieval pipeline. Then, off-the-shelf vision and text encoders embed query and template pairs, and FGVC is accomplished by retrieving the nearest template in the joint space. UniFGVC ensures broad compatibility with diverse MLLMs and encoders, offering reliable generalization and adaptability across few-shot FGVC scenarios. Extensive experiments on 12 FGVC benchmarks demonstrate its consistent superiority over prior few-shot CLIP-based methods and even several fully-supervised MLLMs-based approaches.
♻ ☆ MapDream: Task-Driven Map Learning for Vision-Language Navigation
Vision-Language Navigation (VLN) requires agents to follow natural language instructions in partially observed 3D environments, motivating map representations that aggregate spatial context beyond local perception. However, most existing approaches rely on hand-crafted maps constructed independently of the navigation policy. We argue that maps should instead be learned representations shaped directly by navigation objectives rather than exhaustive reconstructions. Based on this insight, we propose MapDream, a map-in-the-loop framework that formulates map construction as autoregressive bird's-eye-view (BEV) image synthesis. The framework jointly learns map generation and action prediction, distilling environmental context into a compact three-channel BEV map that preserves only navigation-critical affordances. Supervised pre-training bootstraps a reliable mapping-to-control interface, while the autoregressive design enables end-to-end joint optimization through reinforcement fine-tuning. Experiments on R2R-CE and RxR-CE achieve state-of-the-art monocular performance, validating task-driven generative map learning.
♻ ☆ Beyond the Vision Encoder: Identifying and Mitigating Spatial Bias in Large Vision-Language Models
Large Vision-Language Models (LVLMs) have achieved remarkable success across a wide range of multimodal tasks, yet their robustness to spatial variations remains insufficiently understood. In this work, we conduct a systematic study of the spatial bias of LVLMs, examining how models respond when identical key visual information is placed at different locations within an image. Through controlled probing experiments, we observe that current LVLMs often produce inconsistent outputs under such spatial shifts, revealing a clear spatial bias in their semantic understanding. Further analysis indicates that this bias does not stem from the vision encoder, but rather from a mismatch in attention mechanisms between the vision encoder and the large language model, which disrupts the global information flow. Motivated by this insight, we propose Adaptive Global Context Injection (AGCI), a lightweight mechanism that dynamically injects shared global visual context into each image token. AGCI works without architectural modifications, mitigating spatial bias by enhancing the semantic accessibility of image tokens while preserving the model's intrinsic capabilities. Extensive experiments demonstrate that AGCI not only enhances the spatial robustness of LVLMs, but also achieves strong performance on various downstream tasks and hallucination benchmarks.
♻ ☆ CountZES: Counting via Zero-Shot Exemplar Selection
Object counting in complex scenes is particularly challenging in the zero-shot (ZS) setting, where instances of unseen categories are counted using only a class name. Existing ZS counting methods that infer exemplars from text often rely on off-the-shelf open-vocabulary detectors (OVDs), which in dense scenes suffer from semantic noise, appearance variability, and frequent multi-instance proposals. Alternatively, random image-patch sampling is employed, which fails to accurately delineate object instances. To address these issues, we propose CountZES, an inference-only approach for object counting via ZS exemplar selection. CountZES discovers diverse exemplars through three synergistic stages: Detection-Anchored Exemplar (DAE), Density-Guided Exemplar (DGE), and Feature-Consensus Exemplar (FCE). DAE refines OVD detections to isolate precise single-instance exemplars. DGE introduces a density-driven, self-supervised paradigm to identify statistically consistent and semantically compact exemplars, while FCE reinforces visual coherence through feature-space clustering. Together, these stages yield a complementary exemplar set that balances textual grounding, count consistency, and feature representativeness. Experiments on diverse datasets demonstrate CountZES superior performance among ZOC methods while generalizing effectively across domains.
♻ ☆ v1: Learning to Point Visual Tokens for Multimodal Grounded Reasoning
When thinking with images, humans rarely rely on a single glance: they revisit visual evidence while reasoning. In contrast, most Multimodal Language Models encode an image once to key-value cache and then reason purely in text, making it hard to re-ground intermediate steps. We empirically confirm this: as reasoning chains lengthen, models progressively lose focus on relevant regions. We introduce v1, a lightweight extension for active visual referencing via point-and-copy: the model selects relevant image patches and copies their embeddings back into the reasoning stream. Crucially, our point-and-copy mechanism retrieves patches using their semantic representations as keys, ensuring perceptual evidence remains aligned with the reasoning space. To train this behavior, we build v1, a dataset of 300K multimodal reasoning traces with interleaved grounding annotations. Across multimodal mathematical reasoning benchmarks, v1 consistently outperforms comparable baselines. We plan to release the model checkpoint and data.
♻ ☆ Imbalance-Robust and Sampling-Efficient Continuous Conditional GANs via Adaptive Vicinity and Auxiliary Regularization
Recent advances in conditional generative modeling have introduced Continuous conditional Generative Adversarial Network (CcGAN) and Continuous Conditional Diffusion Model (CCDM) for estimating high-dimensional data distributions conditioned on scalar, continuous regression labels (e.g., angles, ages, or temperatures). However, these approaches face fundamental limitations: CcGAN suffers from data imbalance due to fixed-size vicinity constraints, while CCDM requires computationally expensive iterative sampling. To address these issues, we propose CcGAN-AVAR, an enhanced CcGAN framework featuring (1) two novel components for handling data imbalance - an adaptive vicinity mechanism that dynamically adjusts vicinity size and a multi-task discriminator that enhances generator training through auxiliary regression and density ratio estimation - and (2) the GAN framework's native one-step generator, enable 30x-2000x faster inference than CCDM. Extensive experiments on four benchmark datasets (64x64 to 256x256 resolution) across eleven challenging settings demonstrate that CcGAN-AVAR achieves state-of-the-art generation quality while maintaining sampling efficiency.
♻ ☆ TreeLoc: 6-DoF LiDAR Global Localization in Forests via Inter-Tree Geometric Matching ICRA 2026
Reliable localization is crucial for navigation in forests, where GPS is often degraded and LiDAR measurements are repetitive, occluded, and structurally complex. These conditions weaken the assumptions of traditional urban-centric localization methods, which assume that consistent features arise from unique structural patterns, necessitating forest-centric solutions to achieve robustness in these environments. To address these challenges, we propose TreeLoc, a LiDAR-based global localization framework for forests that handles place recognition and 6-DoF pose estimation. We represent scenes using tree stems and their Diameter at Breast Height (DBH), which are aligned to a common reference frame via their axes and summarized using the tree distribution histogram (TDH) for coarse matching, followed by fine matching with a 2D triangle descriptor. Finally, pose estimation is achieved through a two-step geometric verification. On diverse forest benchmarks, TreeLoc outperforms baselines, achieving precise localization. Ablation studies validate the contribution of each component. We also propose applications for long-term forest management using descriptors from a compact global tree database. TreeLoc is open-sourced for the robotics community at https://github.com/minwoo0611/TreeLoc.
comment: An 8-page paper with 7 tables and 8 figures, accepted to ICRA 2026
♻ ☆ Happy Young Women, Grumpy Old Men? Emotion-Driven Demographic Biases in Synthetic Face Generation
Synthetic face generation has rapidly advanced with the emergence of text-to-image (T2I) and of multimodal large language models, enabling high-fidelity image production from natural-language prompts. Despite the widespread adoption of these tools, the biases, representational quality, and cross-cultural consistency of these models remain poorly understood. Prior research on biases in the synthetic generation of human faces has examined demographic biases, yet there is little research on how emotional prompts influence demographic representation and how models trained in different cultural and linguistic contexts vary in their output distributions. We present a systematic audit of eight state-of-the-art T2I models comprising four models developed by Western organizations and four developed by Chinese institutions, all prompted identically. Using state-of-the-art facial analysis algorithms, we estimate the gender, race, age, and attractiveness levels in the generated faces. To measure the deviations from global population statistics, we apply information-theoretic bias metrics including Kullback-Leibler and Jensen-Shannon divergences. Our findings reveal persistent demographic and emotion-conditioned biases in all models regardless of their country of origin. We discuss implications for fairness, socio-technical harms, governance, and the development of transparent generative systems.
comment: 23 pages, 11 figures
♻ ☆ Cross-Modal Alignment and Fusion for RGB-D Transmission-Line Defect Detection
Transmission line defect detection remains challenging for automated UAV inspection due to the dominance of small-scale defects, complex backgrounds, and illumination variations. Existing RGB-based detectors, despite recent progress, struggle to distinguish geometrically subtle defects from visually similar background structures under limited chromatic contrast. This paper proposes CMAFNet, a Cross-Modal Alignment and Fusion Network that integrates RGB appearance and depth geometry through a principled purify-then-fuse paradigm. CMAFNet consists of a Semantic Recomposition Module that performs dictionary-based feature purification via a learned codebook to suppress modality-specific noise while preserving defect-discriminative information, and a Contextual Semantic Integration Framework that captures global spatial dependencies using partial-channel attention to enhance structural semantic reasoning. Position-wise normalization within the purification stage enforces explicit reconstruction-driven cross-modal alignment, ensuring statistical compatibility between heterogeneous features prior to fusion. Extensive experiments on the TLRGBD benchmark, where 94.5% of instances are small objects, demonstrate that CMAFNet achieves 32.2% mAP@50 and 12.5% APs, outperforming the strongest baseline by 9.8 and 4.0 percentage points, respectively. A lightweight variant reaches 24.8% mAP50 at 228 FPS with only 4.9M parameters, surpassing all YOLO-based detectors while matching transformer-based methods at substantially lower computational cost.
♻ ☆ Object Fidelity Diffusion for Remote Sensing Image Generation
High-precision controllable remote sensing image generation is both meaningful and challenging. Existing diffusion models often produce low-fidelity images due to their inability to adequately capture morphological details, which may affect the robustness and reliability of object detection models. To enhance the accuracy and fidelity of generated objects in remote sensing, this paper proposes Object Fidelity Diffusion (OF-Diff), which effectively improves the fidelity of generated objects. Specifically, we are the first to extract the prior shapes of objects based on the layout for diffusion models in remote sensing. Then, we introduce a dual-branch diffusion model with diffusion consistency loss, which can generate high-fidelity remote sensing images without providing real images during the sampling phase. Furthermore, we introduce DDPO to fine-tune the diffusion process, making the generated remote sensing images more diverse and semantically consistent. Comprehensive experiments demonstrate that OF-Diff outperforms state-of-the-art methods in the remote sensing across key quality metrics. Notably, the performance of several polymorphic and small object classes shows significant improvement. For instance, the mAP increases by 8.3%, 7.7%, and 4.0% for airplanes, ships, and vehicles, respectively.
♻ ☆ MedFrameQA: A Multi-Image Medical VQA Benchmark for Clinical Reasoning
Real-world clinical practice demands multi-image comparative reasoning, yet current medical benchmarks remain limited to single-frame interpretation. We present MedFrameQA, the first benchmark explicitly designed to test multi-image medical VQA through educationally-validated diagnostic sequences. To construct this dataset, we develop a scalable pipeline that leverages narrative transcripts from medical education videos to align visual frames with textual concepts, automatically producing 2,851 high-quality multi-image VQA pairs with explicit, transcript-grounded reasoning chains. Our evaluation of 11 advanced MLLMs (including reasoning models) exposes severe deficiencies in multi-image synthesis, where accuracies mostly fall below 50% and exhibit instability across varying image counts. Error analysis demonstrates that models often treat images as isolated instances, failing to track pathological progression or cross-reference anatomical shifts. MedFrameQA provides a rigorous standard for evaluating the next generation of MLLMs in handling complex, temporally grounded medical narratives.
comment: 27 pages, 15 Figures Benchmark data: https://huggingface.co/datasets/SuhaoYu1020/MedFrameQA
♻ ☆ FlyPrompt: Brain-Inspired Random-Expanded Routing with Temporal-Ensemble Experts for General Continual Learning ICLR 2026
General continual learning (GCL) challenges intelligent systems to learn from single-pass, non-stationary data streams without clear task boundaries. While recent advances in continual parameter-efficient tuning (PET) of pretrained models show promise, they typically rely on multiple training epochs and explicit task cues, limiting their effectiveness in GCL scenarios. Moreover, existing methods often lack targeted design and fail to address two fundamental challenges in continual PET: how to allocate expert parameters to evolving data distributions, and how to improve their representational capacity under limited supervision. Inspired by the fruit fly's hierarchical memory system characterized by sparse expansion and modular ensembles, we propose FlyPrompt, a brain-inspired framework that decomposes GCL into two subproblems: expert routing and expert competence improvement. FlyPrompt introduces a randomly expanded analytic router for instance-level expert activation and a temporal ensemble of output heads to dynamically adapt decision boundaries over time. Extensive theoretical and empirical evaluations demonstrate FlyPrompt's superior performance, achieving up to 11.23%, 12.43%, and 7.62% gains over state-of-the-art baselines on CIFAR-100, ImageNet-R, and CUB-200, respectively. Our source code is available at https://github.com/AnAppleCore/FlyGCL.
comment: 33 pages. Accepted by ICLR 2026
♻ ☆ Rethinking Efficient Mixture-of-Experts for Remote Sensing Modality-Missing Classification
Multimodal remote sensing classification often suffers from missing modalities caused by sensor failures and environmental interference, leading to severe performance degradation. In this work, we rethink missing-modality learning from a conditional computation perspective and investigate whether Mixture-of-Experts (MoE) models can inherently adapt to diverse modality-missing scenarios. We first conduct a systematic study of representative MoE paradigms under various missing-modality settings, revealing both their potential and limitations. Building on these insights, we propose a Missing-aware Mixture-of-LoRAs (MaMOL), a parameter-efficient MoE framework that unifies multiple modality-missing cases within a single model. MaMOL introduces a dual-routing mechanism to decouple modality-invariant shared experts and modality-aware dynamic experts, enabling automatic expert activation conditioned on available modalities. Extensive experiments on multiple remote sensing benchmarks demonstrate that MaMOL significantly improves robustness and generalization under diverse missing-modality scenarios with minimal computational overhead. Transfer experiments on natural image datasets further validate its scalability and cross-domain applicability.
comment: 11 pages, 5 figures
♻ ☆ What does really matter in image goal navigation?
Image goal navigation requires two different skills: firstly, core navigation skills, including the detection of free space and obstacles, and taking decisions based on an internal representation; and secondly, computing directional information by comparing visual observations to the goal image. Current state-of-the-art methods either rely on dedicated image-matching, or pre-training of computer vision modules on relative pose estimation. In this paper, we study whether this task can be efficiently solved with end-to-end training of full agents with RL, as has been claimed by recent work. A positive answer would have impact beyond Embodied AI and allow training of relative pose estimation from reward for navigation alone. In this large experimental study we investigate the effect of architectural choices like late fusion, channel stacking, space-to-depth projections and cross-attention, and their role in the emergence of relative pose estimators from navigation training. We show that the success of recent methods is influenced up to a certain extent by simulator settings, leading to shortcuts in simulation. However, we also show that these capabilities can be transferred to more realistic setting, up to some extent. We also find evidence for correlations between navigation performance and probed (emerging) relative pose estimation performance, an important sub skill.
♻ ☆ Beyond Random: Automatic Inner-loop Optimization in Dataset Distillation NeurIPS 2025
The growing demand for efficient deep learning has positioned dataset distillation as a pivotal technique for compressing training dataset while preserving model performance. However, existing inner-loop optimization methods for dataset distillation typically rely on random truncation strategies, which lack flexibility and often yield suboptimal results. In this work, we observe that neural networks exhibit distinct learning dynamics across different training stages-early, middle, and late-making random truncation ineffective. To address this limitation, we propose Automatic Truncated Backpropagation Through Time (AT-BPTT), a novel framework that dynamically adapts both truncation positions and window sizes according to intrinsic gradient behavior. AT-BPTT introduces three key components: (1) a probabilistic mechanism for stage-aware timestep selection, (2) an adaptive window sizing strategy based on gradient variation, and (3) a low-rank Hessian approximation to reduce computational overhead. Extensive experiments on CIFAR-10, CIFAR-100, Tiny-ImageNet, and ImageNet-1K show that AT-BPTT achieves state-of-the-art performance, improving accuracy by an average of 6.16% over baseline methods. Moreover, our approach accelerates inner-loop optimization by 3.9x while saving 63% memory cost.
comment: Accepted by NeurIPS 2025
♻ ☆ DiffVL: Diffusion-Based Visual Localization on 2D Maps via BEV-Conditioned GPS Denoising
Accurate visual localization is crucial for autonomous driving, yet existing methods face a fundamental dilemma: While high-definition (HD) maps provide high-precision localization references, their costly construction and maintenance hinder scalability, which drives research toward standard-definition (SD) maps like OpenStreetMap. Current SD-map-based approaches primarily focus on Bird's-Eye View (BEV) matching between images and maps, overlooking a ubiquitous signal-noisy GPS. Although GPS is readily available, it suffers from multipath errors in urban environments. We propose DiffVL, the first framework to reformulate visual localization as a GPS denoising task using diffusion models. Our key insight is that noisy GPS trajectory, when conditioned on visual BEV features and SD maps, implicitly encode the true pose distribution, which can be recovered through iterative diffusion refinement. DiffVL, unlike prior BEV-matching methods (e.g., OrienterNet) or transformer-based registration approaches, learns to reverse GPS noise perturbations by jointly modeling GPS, SD map, and visual signals, achieving sub-meter accuracy without relying on HD maps. Experiments on multiple datasets demonstrate that our method achieves state-of-the-art accuracy compared to BEV-matching baselines. Crucially, our work proves that diffusion models can enable scalable localization by treating noisy GPS as a generative prior-making a paradigm shift from traditional matching-based methods.
♻ ☆ From Frames to Sequences: Temporally Consistent Human-Centric Dense Prediction
In this work, we focus on the challenge of temporally consistent human-centric dense prediction across video sequences. Existing models achieve strong per-frame accuracy but often flicker under motion, occlusion, and lighting changes, and they rarely have paired human video supervision for multiple dense tasks. We address this gap with a scalable synthetic data pipeline that generates photorealistic human frames and motion-aligned sequences with pixel-accurate depth, normals, and masks. Unlike prior static data synthetic pipelines, our pipeline provides both frame-level labels for spatial learning and sequence-level supervision for temporal learning. Building on this, we train a unified ViT-based dense predictor that (i) injects an explicit human geometric prior via CSE embeddings and (ii) improves geometry-feature reliability with a lightweight channel reweighting module after feature fusion. Our two-stage training strategy, combining static pretraining with dynamic sequence supervision, enables the model first to acquire robust spatial representations and then refine temporal consistency across motion-aligned sequences. Extensive experiments show that we achieve state-of-the-art performance on THuman2.1 and Hi4D and generalize effectively to in-the-wild videos.
♻ ☆ Saliency-Guided DETR for Moment Retrieval and Highlight Detection
Existing approaches for video moment retrieval and highlight detection are not able to align text and video features efficiently, resulting in unsatisfying performance and limited production usage. To address this, we propose a novel architecture that utilizes recent foundational video models designed for such alignment. Combined with the introduced Saliency-Guided Cross Attention mechanism and a hybrid DETR architecture, our approach significantly enhances performance in both moment retrieval and highlight detection tasks. For even better improvement, we developed InterVid-MR, a large-scale and high-quality dataset for pretraining. Using it, our architecture achieves state-of-the-art results on the QVHighlights, Charades-STA and TACoS benchmarks. The proposed approach provides an efficient and scalable solution for both zero-shot and fine-tuning scenarios in video-language tasks.
comment: 8 pages, 2 figure, 6 tables
♻ ☆ Comprehensive Machine Learning Benchmarking for Fringe Projection Profilometry with Photorealistic Synthetic Data
Machine learning approaches for fringe projection profilometry (FPP) are hindered by the lack of large, diverse datasets and standardized benchmarking protocols. This paper introduces the first open-source, photorealistic synthetic dataset for FPP, generated using NVIDIA Isaac Sim, comprising 15,600 fringe images and 300 depth reconstructions across 50 objects. We apply this dataset to single-shot FPP, where models predict 3D depth maps directly from individual fringe images without temporal phase shifting. Through systematic ablation studies, we identify optimal learning configurations for long-range (1.5-2.1 m) depth prediction. We compare three depth normalization strategies and show that individual normalization, which decouples object shape from absolute scale, yields a 9.1x improvement in object reconstruction accuracy over raw depth. We further show that removing background fringe patterns severely degrades performance across all normalizations, demonstrating that background fringes provide essential spatial phase reference rather than noise. We evaluate six loss functions and identify Hybrid L1 loss as optimal. Using the best configuration, we benchmark four architectures and find UNet achieves the strongest performance, though errors remain far above the sub-millimeter accuracy of classical FPP. The small performance gap between architectures indicates that the dominant limitation is information deficit rather than model design: single fringe images lack sufficient information for accurate depth recovery without explicit phase cues. This work provides a standardized benchmark and evidence motivating hybrid approaches combining phase-based FPP with learned refinement. The dataset is available at https://huggingface.co/datasets/aharoon/fpp-ml-bench and code at https://github.com/AnushLak/fpp-ml-bench.
comment: 19 pages, 10 figures, 5 tables
♻ ☆ Understanding Representation Dynamics of Diffusion Models via Low-Dimensional Modeling NeurIPS 2025
Diffusion models, though originally designed for generative tasks, have demonstrated impressive self-supervised representation learning capabilities. A particularly intriguing phenomenon in these models is the emergence of unimodal representation dynamics, where the quality of learned features peaks at an intermediate noise level. In this work, we conduct a comprehensive theoretical and empirical investigation of this phenomenon. Leveraging the inherent low-dimensionality structure of image data, we theoretically demonstrate that the unimodal dynamic emerges when the diffusion model successfully captures the underlying data distribution. The unimodality arises from an interplay between denoising strength and class confidence across noise scales. Empirically, we further show that, in classification tasks, the presence of unimodal dynamics reliably reflects the generalization of the diffusion model: it emerges when the model generates novel images and gradually transitions to a monotonically decreasing curve as the model begins to memorize the training data.
comment: First two authors contributed equally. Accepted at NeurIPS 2025
♻ ☆ HAAP: Vision-context Hierarchical Attention Autoregressive with Adaptive Permutation for Scene Text Recognition
Scene Text Recognition (STR) is challenging in extracting effective character representations from visual data when text is unreadable. Permutation language modeling (PLM) is introduced to refine character predictions by jointly capturing contextual and visual information. However, in PLM, the use of random permutations causes training fit oscillation, and the iterative refinement (IR) operation also introduces additional overhead. To address these issues, this paper proposes the Hierarchical Attention autoregressive Model with Adaptive Permutation (HAAP) to enhance position-context-image interaction capability, improving autoregressive LM generalization. First, we propose Implicit Permutation Neurons (IPN) to generate adaptive attention masks that dynamically exploit token dependencies, enhancing the correlation between visual information and context. Adaptive correlation representation helps the model avoid training fit oscillation. Second, the Cross-modal Hierarchical Attention mechanism (CHA) is introduced to capture the dependencies among position queries, contextual semantics and visual information. CHA enables position tokens to aggregate global semantic information, avoiding the need for IR. Extensive experimental results show that the proposed HAAP achieves state-of-the-art (SOTA) performance in terms of accuracy, complexity, and latency on several datasets.
comment: 12 pages, 12 figures
♻ ☆ RAD: Region-Aware Diffusion Models for Image Inpainting
Diffusion models have achieved remarkable success in image generation, with applications broadening across various domains. Inpainting is one such application that can benefit significantly from diffusion models. Existing methods either hijack the reverse process of a pretrained diffusion model or cast the problem into a larger framework, \ie, conditioned generation. However, these approaches often require nested loops in the generation process or additional components for conditioning. In this paper, we present region-aware diffusion models (RAD) for inpainting with a simple yet effective reformulation of the vanilla diffusion models. RAD utilizes a different noise schedule for each pixel, which allows local regions to be generated asynchronously while considering the global image context. A plain reverse process requires no additional components, enabling RAD to achieve inference time up to 100 times faster than the state-of-the-art approaches. Moreover, we employ low-rank adaptation (LoRA) to fine-tune RAD based on other pretrained diffusion models, reducing computational burdens in training as well. Experiments demonstrated that RAD provides state-of-the-art results both qualitatively and quantitatively, on the FFHQ, LSUN Bedroom, and ImageNet datasets.
comment: Code: https://github.com/srk1995/RAD
♻ ☆ RF-DETR: Neural Architecture Search for Real-Time Detection Transformers ICLR
Open-vocabulary detectors achieve impressive performance on COCO, but often fail to generalize to real-world datasets with out-of-distribution classes not typically found in their pre-training. Rather than simply fine-tuning a heavy-weight vision-language model (VLM) for new domains, we introduce RF-DETR, a light-weight specialist detection transformer that discovers accuracy-latency Pareto curves for any target dataset with weight-sharing neural architecture search (NAS). Our approach fine-tunes a pre-trained base network on a target dataset and evaluates thousands of network configurations with different accuracy-latency tradeoffs without re-training. Further, we revisit the "tunable knobs" for NAS to improve the transferability of DETRs to diverse target domains. Notably, RF-DETR significantly improves over prior state-of-the-art real-time methods on COCO and Roboflow100-VL. RF-DETR (nano) achieves 48.0 AP on COCO, beating D-FINE (nano) by 5.3 AP at similar latency, and RF-DETR (2x-large) outperforms GroundingDINO (tiny) by 1.2 AP on Roboflow100-VL while running 20x as fast. To the best of our knowledge, RF-DETR (2x-large) is the first real-time detector to surpass 60 AP on COCO. Our code is available at https://github.com/roboflow/rf-detr
comment: This work has been accepted to the International Conference on Learning Representations (ICLR) 2026. Project Page: https://rfdetr.roboflow.com/
♻ ☆ Activation-wise Propagation: A One-Timestep Strategy for Spiking Neural Networks AAAI26
Spiking neural networks (SNNs) have demonstrated significant potential in real-time multi-sensor perception tasks due to their event-driven and parameter-efficient characteristics. A key challenge is the timestep-wise iterative update of neuronal hidden states (membrane potentials), which complicates the trade-off between accuracy and latency. SNNs tend to achieve better performance with longer timesteps, inevitably resulting in higher computational overhead and latency compared to artificial neural networks (ANNs). Moreover, many recent advances in SNNs rely on architecture-specific optimizations, which, while effective with fewer timesteps, often limit generalizability and scalability across modalities and models. To address these limitations, we propose Activation-wise Membrane Potential Propagation (AMP2), a unified hidden state update mechanism for SNNs. Inspired by the spatial propagation of membrane potentials in biological neurons, AMP2 enables dynamic transmission of membrane potentials among spatially adjacent neurons, facilitating spatiotemporal integration and cooperative dynamics of hidden states, thereby improving efficiency and accuracy while reducing reliance on extended temporal updates. This simple yet effective strategy significantly enhances SNN performance across various architectures, including MLPs and CNNs for point cloud and event-based data. Furthermore, ablation studies integrating AMP2 into Transformer-based SNNs for classification tasks demonstrate its potential as a general-purpose and efficient solution for spiking neural networks.
comment: 10 pages, 7 figures, AAAI26
♻ ☆ Scaling Agents for Computer Use
Computer-use agents (CUAs) hold promise for automating everyday digital tasks, but their performance on long-horizon, complex problems remains unreliable. Single-rollout execution is brittle, with small errors compounding over time and leading to high variance in outcomes. While prior work has attempted to scale within a single rollout, such approaches have yielded limited gains. Scaling over multiple rollouts offers a more promising alternative but doing so effectively is challenging due to the difficulty of evaluating and selecting among long-horizon agent behaviors. We introduce Behavior Judge (BJudge), which addresses this challenge by representing agent executions as behavior narratives and comparing candidate behaviors at this level, substantially improving robustness and success rates. Using multiple rollouts, BJudge establishes a new state of the art (SoTA) in OSWorld at 72.6%, significantly outperforming prior methods and surpassing human-level performance at 72.36%, with comprehensive ablations validating key design choices. We further demonstrate strong generalization results to different operating systems on WindowsAgentArena and AndroidWorld. Crucially, our results highlight the strong effectiveness of scaling CUAs, when you do it right: effective scaling requires structured trajectory understanding and selection, and BJudge provides a practical framework to achieve this.
comment: 21 pages, 7 figures, 13 tables
♻ ☆ AI-Generated Video Detection via Perceptual Straightening NeurIPS 2025
The rapid advancement of generative AI enables highly realistic synthetic videos, posing significant challenges for content authentication and raising urgent concerns about misuse. Existing detection methods often struggle with generalization and capturing subtle temporal inconsistencies. We propose ReStraV(Representation Straightening Video), a novel approach to distinguish natural from AI-generated videos. Inspired by the "perceptual straightening" hypothesis -- which suggests real-world video trajectories become more straight in neural representation domain -- we analyze deviations from this expected geometric property. Using a pre-trained self-supervised vision transformer (DINOv2), we quantify the temporal curvature and stepwise distance in the model's representation domain. We aggregate statistics of these measures for each video and train a classifier. Our analysis shows that AI-generated videos exhibit significantly different curvature and distance patterns compared to real videos. A lightweight classifier achieves state-of-the-art detection performance (e.g., 97.17% accuracy and 98.63% AUROC on the VidProM benchmark), substantially outperforming existing image- and video-based methods. ReStraV is computationally efficient, it is offering a low-cost and effective detection solution. This work provides new insights into using neural representation geometry for AI-generated video detection.
comment: NeurIPS 2025 (https://openreview.net/forum?id=LsmUgStXby)
Artificial Intelligence 150
☆ PLATE: Plasticity-Tunable Efficient Adapters for Geometry-Aware Continual Learning
We develop a continual learning method for pretrained models that \emph{requires no access to old-task data}, addressing a practical barrier in foundation model adaptation where pretraining distributions are often unavailable. Our key observation is that pretrained networks exhibit substantial \emph{geometric redundancy}, and that this redundancy can be exploited in two complementary ways. First, redundant neurons provide a proxy for dominant pretraining-era feature directions, enabling the construction of approximately protected update subspaces directly from pretrained weights. Second, redundancy offers a natural bias for \emph{where} to place plasticity: by restricting updates to a subset of redundant neurons and constraining the remaining degrees of freedom, we obtain update families with reduced functional drift on the old-data distribution and improved worst-case retention guarantees. These insights lead to \textsc{PLATE} (\textbf{Pla}sticity-\textbf{T}unable \textbf{E}fficient Adapters), a continual learning method requiring no past-task data that provides explicit control over the plasticity-retention trade-off. PLATE parameterizes each layer with a structured low-rank update $ΔW = B A Q^\top$, where $B$ and $Q$ are computed once from pretrained weights and kept frozen, and only $A$ is trained on the new task. The code is available at https://github.com/SalesforceAIResearch/PLATE.
☆ PrevizWhiz: Combining Rough 3D Scenes and 2D Video to Guide Generative Video Previsualization
In pre-production, filmmakers and 3D animation experts must rapidly prototype ideas to explore a film's possibilities before fullscale production, yet conventional approaches involve trade-offs in efficiency and expressiveness. Hand-drawn storyboards often lack spatial precision needed for complex cinematography, while 3D previsualization demands expertise and high-quality rigged assets. To address this gap, we present PrevizWhiz, a system that leverages rough 3D scenes in combination with generative image and video models to create stylized video previews. The workflow integrates frame-level image restyling with adjustable resemblance, time-based editing through motion paths or external video inputs, and refinement into high-fidelity video clips. A study with filmmakers demonstrates that our system lowers technical barriers for film-makers, accelerates creative iteration, and effectively bridges the communication gap, while also surfacing challenges of continuity, authorship, and ethical consideration in AI-assisted filmmaking.
comment: 21 pages, 13 figures; accepted and to appear at CHI 2026
☆ Accelerating Scientific Research with Gemini: Case Studies and Common Techniques
Recent advances in large language models (LLMs) have opened new avenues for accelerating scientific research. While models are increasingly capable of assisting with routine tasks, their ability to contribute to novel, expert-level mathematical discovery is less understood. We present a collection of case studies demonstrating how researchers have successfully collaborated with advanced AI models, specifically Google's Gemini-based models (in particular Gemini Deep Think and its advanced variants), to solve open problems, refute conjectures, and generate new proofs across diverse areas in theoretical computer science, as well as other areas such as economics, optimization, and physics. Based on these experiences, we extract common techniques for effective human-AI collaboration in theoretical research, such as iterative refinement, problem decomposition, and cross-disciplinary knowledge transfer. While the majority of our results stem from this interactive, conversational methodology, we also highlight specific instances that push beyond standard chat interfaces. These include deploying the model as a rigorous adversarial reviewer to detect subtle flaws in existing proofs, and embedding it within a "neuro-symbolic" loop that autonomously writes and executes code to verify complex derivations. Together, these examples highlight the potential of AI not just as a tool for automation, but as a versatile, genuine partner in the creative process of scientific discovery.
☆ AutoFigure: Generating and Refining Publication-Ready Scientific Illustrations ICLR 2026
High-quality scientific illustrations are crucial for effectively communicating complex scientific and technical concepts, yet their manual creation remains a well-recognized bottleneck in both academia and industry. We present FigureBench, the first large-scale benchmark for generating scientific illustrations from long-form scientific texts. It contains 3,300 high-quality scientific text-figure pairs, covering diverse text-to-illustration tasks from scientific papers, surveys, blogs, and textbooks. Moreover, we propose AutoFigure, the first agentic framework that automatically generates high-quality scientific illustrations based on long-form scientific text. Specifically, before rendering the final result, AutoFigure engages in extensive thinking, recombination, and validation to produce a layout that is both structurally sound and aesthetically refined, outputting a scientific illustration that achieves both structural completeness and aesthetic appeal. Leveraging the high-quality data from FigureBench, we conduct extensive experiments to test the performance of AutoFigure against various baseline methods. The results demonstrate that AutoFigure consistently surpasses all baseline methods, producing publication-ready scientific illustrations. The code, dataset and huggingface space are released in https://github.com/ResearAI/AutoFigure.
comment: Accepted at the ICLR 2026
☆ Adaptive Evidence Weighting for Audio-Spatiotemporal Fusion
Many machine learning systems have access to multiple sources of evidence for the same prediction target, yet these sources often differ in reliability and informativeness across inputs. In bioacoustic classification, species identity may be inferred both from the acoustic signal and from spatiotemporal context such as location and season; while Bayesian inference motivates multiplicative evidence combination, in practice we typically only have access to discriminative predictors rather than calibrated generative models. We introduce \textbf{F}usion under \textbf{IN}dependent \textbf{C}onditional \textbf{H}ypotheses (\textbf{FINCH}), an adaptive log-linear evidence fusion framework that integrates a pre-trained audio classifier with a structured spatiotemporal predictor. FINCH learns a per-sample gating function that estimates the reliability of contextual information from uncertainty and informativeness statistics. The resulting fusion family \emph{contains} the audio-only classifier as a special case and explicitly bounds the influence of contextual evidence, yielding a risk-contained hypothesis class with an interpretable audio-only fallback. Across benchmarks, FINCH consistently outperforms fixed-weight fusion and audio-only baselines, improving robustness and error trade-offs even when contextual information is weak in isolation. We achieve state-of-the-art performance on CBI and competitive or improved performance on several subsets of BirdSet using a lightweight, interpretable, evidence-based approach. Code is available: \texttt{\href{https://anonymous.4open.science/r/birdnoise-85CD/README.md}{anonymous-repository}}
☆ Conformal Thinking: Risk Control for Reasoning on a Compute Budget
Reasoning Large Language Models (LLMs) enable test-time scaling, with dataset-level accuracy improving as the token budget increases, motivating adaptive reasoning -- spending tokens when they improve reliability and stopping early when additional computation is unlikely to help. However, setting the token budget, as well as the threshold for adaptive reasoning, is a practical challenge that entails a fundamental risk-accuracy trade-off. We re-frame the budget setting problem as risk control, limiting the error rate while minimizing compute. Our framework introduces an upper threshold that stops reasoning when the model is confident (risking incorrect output) and a novel parametric lower threshold that preemptively stops unsolvable instances (risking premature stoppage). Given a target risk and a validation set, we use distribution-free risk control to optimally specify these stopping mechanisms. For scenarios with multiple budget controlling criteria, we incorporate an efficiency loss to select the most computationally efficient exiting mechanism. Empirical results across diverse reasoning tasks and models demonstrate the effectiveness of our risk control approach, demonstrating computational efficiency gains from the lower threshold and ensemble stopping mechanisms while adhering to the user-specified risk target.
☆ Antidistillation Fingerprinting
Model distillation enables efficient emulation of frontier large language models (LLMs), creating a need for robust mechanisms to detect when a third-party student model has trained on a teacher model's outputs. However, existing fingerprinting techniques that could be used to detect such distillation rely on heuristic perturbations that impose a steep trade-off between generation quality and fingerprinting strength, often requiring significant degradation of utility to ensure the fingerprint is effectively internalized by the student. We introduce antidistillation fingerprinting (ADFP), a principled approach that aligns the fingerprinting objective with the student's learning dynamics. Building upon the gradient-based framework of antidistillation sampling, ADFP utilizes a proxy model to identify and sample tokens that directly maximize the expected detectability of the fingerprint in the student after fine-tuning, rather than relying on the incidental absorption of the un-targeted biases of a more naive watermark. Experiments on GSM8K and OASST1 benchmarks demonstrate that ADFP achieves a significant Pareto improvement over state-of-the-art baselines, yielding stronger detection confidence with minimal impact on utility, even when the student model's architecture is unknown.
comment: 26 pages, 11 figures
☆ Enhancing Imbalanced Node Classification via Curriculum-Guided Feature Learning and Three-Stage Attention Network
Imbalanced node classification in graph neural networks (GNNs) happens when some labels are much more common than others, which causes the model to learn unfairly and perform badly on the less common classes. To solve this problem, we propose a Curriculum-Guided Feature Learning and Three-Stage Attention Network (CL3AN-GNN), a learning network that uses a three-step attention system (Engage, Enact, Embed) similar to how humans learn. The model begins by engaging with structurally simpler features, defined as (1) local neighbourhood patterns (1-hop), (2) low-degree node attributes, and (3) class-separable node pairs identified via initial graph convolutional networks and graph attention networks (GCN and GAT) embeddings. This foundation enables stable early learning despite label skew. The Enact stage then addresses complicated aspects: (1) connections that require multiple steps, (2) edges that connect different types of nodes, and (3) nodes at the edges of minority classes by using adjustable attention weights. Finally, Embed consolidates these features via iterative message passing and curriculum-aligned loss weighting. We evaluate CL3AN-GNN on eight Open Graph Benchmark datasets spanning social, biological, and citation networks. Experiments show consistent improvements across all datasets in accuracy, F1-score, and AUC over recent state-of-the-art methods. The model's step-by-step method works well with different types of graph datasets, showing quicker results than training everything at once, better performance on new, imbalanced graphs, and clear explanations of each step using gradient stability and attention correlation learning curves. This work provides both a theoretically grounded framework for curriculum learning in GNNs and practical evidence of its effectiveness against imbalances, validated through metrics, convergence speeds, and generalisation tests.
☆ Bridging Online and Offline RL: Contextual Bandit Learning for Multi-Turn Code Generation
Recently, there have been significant research interests in training large language models (LLMs) with reinforcement learning (RL) on real-world tasks, such as multi-turn code generation. While online RL tends to perform better than offline RL, its higher training cost and instability hinders wide adoption. In this paper, we build on the observation that multi-turn code generation can be formulated as a one-step recoverable Markov decision process and propose contextual bandit learning with offline trajectories (Cobalt), a new method that combines the benefits of online and offline RL. Cobalt first collects code generation trajectories using a reference LLM and divides them into partial trajectories as contextual prompts. Then, during online bandit learning, the LLM is trained to complete each partial trajectory prompt through single-step code generation. Cobalt outperforms two multi-turn online RL baselines based on GRPO and VeRPO, and substantially improves R1-Distill 8B and Qwen3 8B by up to 9.0 and 6.2 absolute Pass@1 scores on LiveCodeBench. Also, we analyze LLMs' in-context reward hacking behaviors and augment Cobalt training with perturbed trajectories to mitigate this issue. Overall, our results demonstrate Cobalt as a promising solution for iterative decision-making tasks like multi-turn code generation. Our code and data are available at https://github.com/OSU-NLP-Group/cobalt.
☆ Do We Need Asynchronous SGD? On the Near-Optimality of Synchronous Methods
Modern distributed optimization methods mostly rely on traditional synchronous approaches, despite substantial recent progress in asynchronous optimization. We revisit Synchronous SGD and its robust variant, called $m$-Synchronous SGD, and theoretically show that they are nearly optimal in many heterogeneous computation scenarios, which is somewhat unexpected. We analyze the synchronous methods under random computation times and adversarial partial participation of workers, and prove that their time complexities are optimal in many practical regimes, up to logarithmic factors. While synchronous methods are not universal solutions and there exist tasks where asynchronous methods may be necessary, we show that they are sufficient for many modern heterogeneous computation scenarios.
☆ Conformal Reachability for Safe Control in Unknown Environments
Designing provably safe control is a core problem in trustworthy autonomy. However, most prior work in this regard assumes either that the system dynamics are known or deterministic, or that the state and action space are finite, significantly limiting application scope. We address this limitation by developing a probabilistic verification framework for unknown dynamical systems which combines conformal prediction with reachability analysis. In particular, we use conformal prediction to obtain valid uncertainty intervals for the unknown dynamics at each time step, with reachability then verifying whether safety is maintained within the conformal uncertainty bounds. Next, we develop an algorithmic approach for training control policies that optimize nominal reward while also maximizing the planning horizon with sound probabilistic safety guarantees. We evaluate the proposed approach in seven safe control settings spanning four domains -- cartpole, lane following, drone control, and safe navigation -- for both affine and nonlinear safety specifications. Our experiments show that the policies we learn achieve the strongest provable safety guarantees while still maintaining high average reward.
☆ Understanding Agent Scaling in LLM-Based Multi-Agent Systems via Diversity
LLM-based multi-agent systems (MAS) have emerged as a promising approach to tackle complex tasks that are difficult for individual LLMs. A natural strategy is to scale performance by increasing the number of agents; however, we find that such scaling exhibits strong diminishing returns in homogeneous settings, while introducing heterogeneity (e.g., different models, prompts, or tools) continues to yield substantial gains. This raises a fundamental question: what limits scaling, and why does diversity help? We present an information-theoretic framework showing that MAS performance is bounded by the intrinsic task uncertainty, not by agent count. We derive architecture-agnostic bounds demonstrating that improvements depend on how many effective channels the system accesses. Homogeneous agents saturate early because their outputs are strongly correlated, whereas heterogeneous agents contribute complementary evidence. We further introduce $K^*$, an effective channel count that quantifies the number of effective channels without ground-truth labels. Empirically, we show that heterogeneous configurations consistently outperform homogeneous scaling: 2 diverse agents can match or exceed the performance of 16 homogeneous agents. Our results provide principled guidelines for building efficient and robust MAS through diversity-aware design. Code and Dataset are available at the link: https://github.com/SafeRL-Lab/Agent-Scaling.
☆ WebSentinel: Detecting and Localizing Prompt Injection Attacks for Web Agents
Prompt injection attacks manipulate webpage content to cause web agents to execute attacker-specified tasks instead of the user's intended ones. Existing methods for detecting and localizing such attacks achieve limited effectiveness, as their underlying assumptions often do not hold in the web-agent setting. In this work, we propose WebSentinel, a two-step approach for detecting and localizing prompt injection attacks in webpages. Given a webpage, Step I extracts \emph{segments of interest} that may be contaminated, and Step II evaluates each segment by checking its consistency with the webpage content as context. We show that WebSentinel is highly effective, substantially outperforming baseline methods across multiple datasets of both contaminated and clean webpages that we collected. Our code is available at: https://github.com/wxl-lxw/WebSentinel.
☆ Fast Sampling for Flows and Diffusions with Lazy and Point Mass Stochastic Interpolants
Stochastic interpolants unify flows and diffusions, popular generative modeling frameworks. A primary hyperparameter in these methods is the interpolation schedule that determines how to bridge a standard Gaussian base measure to an arbitrary target measure. We prove how to convert a sample path of a stochastic differential equation (SDE) with arbitrary diffusion coefficient under any schedule into the unique sample path under another arbitrary schedule and diffusion coefficient. We then extend the stochastic interpolant framework to admit a larger class of point mass schedules in which the Gaussian base measure collapses to a point mass measure. Under the assumption of Gaussian data, we identify lazy schedule families that make the drift identically zero and show that with deterministic sampling one gets a variance-preserving schedule commonly used in diffusion models, whereas with statistically optimal SDE sampling one gets our point mass schedule. Finally, to demonstrate the usefulness of our theoretical results on realistic highly non-Gaussian data, we apply our lazy schedule conversion to a state-of-the-art pretrained flow model and show that this allows for generating images in fewer steps without retraining the model.
☆ AOrchestra: Automating Sub-Agent Creation for Agentic Orchestration
Language agents have shown strong promise for task automation. Realizing this promise for increasingly complex, long-horizon tasks has driven the rise of a sub-agent-as-tools paradigm for multi-turn task solving. However, existing designs still lack a dynamic abstraction view of sub-agents, thereby hurting adaptability. We address this challenge with a unified, framework-agnostic agent abstraction that models any agent as a tuple Instruction, Context, Tools, Model. This tuple acts as a compositional recipe for capabilities, enabling the system to spawn specialized executors for each task on demand. Building on this abstraction, we introduce an agentic system AOrchestra, where the central orchestrator concretizes the tuple at each step: it curates task-relevant context, selects tools and models, and delegates execution via on-the-fly automatic agent creation. Such designs enable reducing human engineering efforts, and remain framework-agnostic with plug-and-play support for diverse agents as task executors. It also enables a controllable performance-cost trade-off, allowing the system to approach Pareto-efficient. Across three challenging benchmarks (GAIA, SWE-Bench, Terminal-Bench), AOrchestra achieves 16.28% relative improvement against the strongest baseline when paired with Gemini-3-Flash. The code is available at: https://github.com/FoundationAgents/AOrchestra
☆ Efficient Estimation of Kernel Surrogate Models for Task Attribution ICLR 2026
Modern AI agents such as large language models are trained on diverse tasks -- translation, code generation, mathematical reasoning, and text prediction -- simultaneously. A key question is to quantify how each individual training task influences performance on a target task, a problem we refer to as task attribution. The direct approach, leave-one-out retraining, measures the effect of removing each task, but is computationally infeasible at scale. An alternative approach that builds surrogate models to predict a target task's performance for any subset of training tasks has emerged in recent literature. Prior work focuses on linear surrogate models, which capture first-order relationships, but miss nonlinear interactions such as synergy, antagonism, or XOR-type effects. In this paper, we first consider a unified task weighting framework for analyzing task attribution methods, and show a new connection between linear surrogate models and influence functions through a second-order analysis. Then, we introduce kernel surrogate models, which more effectively represent second-order task interactions. To efficiently learn the kernel surrogate, we develop a gradient-based estimation procedure that leverages a first-order approximation of pretrained models; empirically, this yields accurate estimates with less than $2\%$ relative error without repeated retraining. Experiments across multiple domains -- including math reasoning in transformers, in-context learning, and multi-objective reinforcement learning -- demonstrate the effectiveness of kernel surrogate models. They achieve a $25\%$ higher correlation with the leave-one-out ground truth than linear surrogates and influence-function baselines. When used for downstream task selection, kernel surrogate models yield a $40\%$ improvement in demonstration selection for in-context learning and multi-objective reinforcement learning benchmarks.
comment: 27 pages. To appear in ICLR 2026
☆ Reward Redistribution for CVaR MDPs using a Bellman Operator on L-infinity
Tail-end risk measures such as static conditional value-at-risk (CVaR) are used in safety-critical applications to prevent rare, yet catastrophic events. Unlike risk-neutral objectives, the static CVaR of the return depends on entire trajectories without admitting a recursive Bellman decomposition in the underlying Markov decision process. A classical resolution relies on state augmentation with a continuous variable. However, unless restricted to a specialized class of admissible value functions, this formulation induces sparse rewards and degenerate fixed points. In this work, we propose a novel formulation of the static CVaR objective based on augmentation. Our alternative approach leads to a Bellman operator with: (1) dense per-step rewards; (2) contracting properties on the full space of bounded value functions. Building on this theoretical foundation, we develop risk-averse value iteration and model-free Q-learning algorithms that rely on discretized augmented states. We further provide convergence guarantees and approximation error bounds due to discretization. Empirical results demonstrate that our algorithms successfully learn CVaR-sensitive policies and achieve effective performance-safety trade-offs.
☆ DiffLOB: Diffusion Models for Counterfactual Generation in Limit Order Books
Modern generative models for limit order books (LOBs) can reproduce realistic market dynamics, but remain fundamentally passive: they either model what typically happens without accounting for hypothetical future market conditions, or they require interaction with another agent to explore alternative outcomes. This limits their usefulness for stress testing, scenario analysis, and decision-making. We propose \textbf{DiffLOB}, a regime-conditioned \textbf{Diff}usion model for controllable and counterfactual generation of \textbf{LOB} trajectories. DiffLOB explicitly conditions the generative process on future market regimes--including trend, volatility, liquidity, and order-flow imbalance, which enables the model to answer counterfactual queries of the form: ``If the future market regime were X instead of Y, how would the limit order book evolve?'' Our systematic evaluation framework for counterfactual LOB generation consists of three criteria: (1) \textit{Controllable Realism}, measuring how well generated trajectories can reproduce marginal distributions, temporal dependence structure and regime variables; (2) \textit{Counterfactual validity}, testing whether interventions on future regimes induce consistent changes in the generated LOB dynamics; (3) \textit{Counterfactual usefulness}, assessing whether synthetic counterfactual trajectories improve downstream prediction of future market regimes.
comment: 12 pages, 8 figures
☆ An Empirical Study of Collective Behaviors and Social Dynamics in Large Language Model Agents
Large Language Models (LLMs) increasingly mediate our social, cultural, and political interactions. While they can simulate some aspects of human behavior and decision-making, it is still underexplored whether repeated interactions with other agents amplify their biases or lead to exclusionary behaviors. To this end, we study Chirper.ai-an LLM-driven social media platform-analyzing 7M posts and interactions among 32K LLM agents over a year. We start with homophily and social influence among LLMs, learning that similar to humans', their social networks exhibit these fundamental phenomena. Next, we study the toxic language of LLMs, its linguistic features, and their interaction patterns, finding that LLMs show different structural patterns in toxic posting than humans. After studying the ideological leaning in LLMs posts, and the polarization in their community, we focus on how to prevent their potential harmful activities. We present a simple yet effective method, called Chain of Social Thought (CoST), that reminds LLM agents to avoid harmful posting.
☆ UniGeM: Unifying Data Mixing and Selection via Geometric Exploration and Mining
The scaling of Large Language Models (LLMs) is increasingly limited by data quality. Most methods handle data mixing and sample selection separately, which can break the structure in code corpora. We introduce \textbf{UniGeM}, a framework that unifies mixing and selection by treating data curation as a \textit{manifold approximation} problem without training proxy models or relying on external reference datasets. UniGeM operates hierarchically: \textbf{Macro-Exploration} learns mixing weights with stability-based clustering; \textbf{Micro-Mining} filters high-quality instances by their geometric distribution to ensure logical consistency. Validated by training 8B and 16B MoE models on 100B tokens, UniGeM achieves \textbf{2.0$\times$ data efficiency} over a random baseline and further improves overall performance compared to SOTA methods in reasoning-heavy evaluations and multilingual generalization.
☆ Decision-oriented benchmarking to transform AI weather forecast access: Application to the Indian monsoon
Artificial intelligence weather prediction (AIWP) models now often outperform traditional physics-based models on common metrics while requiring orders-of-magnitude less computing resources and time. Open-access AIWP models thus hold promise as transformational tools for helping low- and middle-income populations make decisions in the face of high-impact weather shocks. Yet, current approaches to evaluating AIWP models focus mainly on aggregated meteorological metrics without considering local stakeholders' needs in decision-oriented, operational frameworks. Here, we introduce such a framework that connects meteorology, AI, and social sciences. As an example, we apply it to the 150-year-old problem of Indian monsoon forecasting, focusing on benefits to rain-fed agriculture, which is highly susceptible to climate change. AIWP models skillfully predict an agriculturally relevant onset index at regional scales weeks in advance when evaluated out-of-sample using deterministic and probabilistic metrics. This framework informed a government-led effort in 2025 to send 38 million Indian farmers AI-based monsoon onset forecasts, which captured an unusual weeks-long pause in monsoon progression. This decision-oriented benchmarking framework provides a key component of a blueprint for harnessing the power of AIWP models to help large vulnerable populations adapt to weather shocks in the face of climate variability and change.
☆ Zero-shot large vision-language model prompting for automated bone identification in paleoradiology x-ray archives
Paleoradiology, the use of modern imaging technologies to study archaeological and anthropological remains, offers new windows on millennial scale patterns of human health. Unfortunately, the radiographs collected during field campaigns are heterogeneous: bones are disarticulated, positioning is ad hoc, and laterality markers are often absent. Additionally, factors such as age at death, age of bone, sex, and imaging equipment introduce high variability. Thus, content navigation, such as identifying a subset of images with a specific projection view, can be time consuming and difficult, making efficient triaging a bottleneck for expert analysis. We report a zero shot prompting strategy that leverages a state of the art Large Vision Language Model (LVLM) to automatically identify the main bone, projection view, and laterality in such images. Our pipeline converts raw DICOM files to bone windowed PNGs, submits them to the LVLM with a carefully engineered prompt, and receives structured JSON outputs, which are extracted and formatted onto a spreadsheet in preparation for validation. On a random sample of 100 images reviewed by an expert board certified paleoradiologist, the system achieved 92% main bone accuracy, 80% projection view accuracy, and 100% laterality accuracy, with low or medium confidence flags for ambiguous cases. These results suggest that LVLMs can substantially accelerate code word development for large paleoradiology datasets, allowing for efficient content navigation in future anthropology workflows.
☆ Cognitively Diverse Multiple-Choice Question Generation: A Hybrid Multi-Agent Framework with Large Language Models
Recent advances in large language models (LLMs) have made automated multiple-choice question (MCQ) generation increasingly feasible; however, reliably producing items that satisfy controlled cognitive demands remains a challenge. To address this gap, we introduce ReQUESTA, a hybrid, multi-agent framework for generating cognitively diverse MCQs that systematically target text-based, inferential, and main idea comprehension. ReQUESTA decomposes MCQ authoring into specialized subtasks and coordinates LLM-powered agents with rule-based components to support planning, controlled generation, iterative evaluation, and post-processing. We evaluated the framework in a large-scale reading comprehension study using academic expository texts, comparing ReQUESTA-generated MCQs with those produced by a single-pass GPT-5 zero-shot baseline. Psychometric analyses of learner responses assessed item difficulty and discrimination, while expert raters evaluated question quality across multiple dimensions, including topic relevance and distractor quality. Results showed that ReQUESTA-generated items were consistently more challenging, more discriminative, and more strongly aligned with overall reading comprehension performance. Expert evaluations further indicated stronger alignment with central concepts and superior distractor linguistic consistency and semantic plausibility, particularly for inferential questions. These findings demonstrate that hybrid, agentic orchestration can systematically improve the reliability and controllability of LLM-based generation, highlighting workflow design as a key lever for structured artifact generation beyond single-pass prompting.
comment: This manuscript is under review at Electronics
☆ Anytime Pretraining: Horizon-Free Learning-Rate Schedules with Weight Averaging
Large language models are increasingly trained in continual or open-ended settings, where the total training horizon is not known in advance. Despite this, most existing pretraining recipes are not anytime: they rely on horizon-dependent learning rate schedules and extensive tuning under a fixed compute budget. In this work, we provide a theoretical analysis demonstrating the existence of anytime learning schedules for overparameterized linear regression, and we highlight the central role of weight averaging - also known as model merging - in achieving the minimax convergence rates of stochastic gradient descent. We show that these anytime schedules polynomially decay with time, with the decay rate determined by the source and capacity conditions of the problem. Empirically, we evaluate 150M and 300M parameter language models trained at 1-32x Chinchilla scale, comparing constant learning rates with weight averaging and $1/\sqrt{t}$ schedules with weight averaging against a well-tuned cosine schedule. Across the full training range, the anytime schedules achieve comparable final loss to cosine decay. Taken together, our results suggest that weight averaging combined with simple, horizon-free step sizes offers a practical and effective anytime alternative to cosine learning rate schedules for large language model pretraining.
☆ Agent Primitives: Reusable Latent Building Blocks for Multi-Agent Systems
While existing multi-agent systems (MAS) can handle complex problems by enabling collaboration among multiple agents, they are often highly task-specific, relying on manually crafted agent roles and interaction prompts, which leads to increased architectural complexity and limited reusability across tasks. Moreover, most MAS communicate primarily through natural language, making them vulnerable to error accumulation and instability in long-context, multi-stage interactions within internal agent histories. In this work, we propose \textbf{Agent Primitives}, a set of reusable latent building blocks for LLM-based MAS. Inspired by neural network design, where complex models are built from reusable components, we observe that many existing MAS architectures can be decomposed into a small number of recurring internal computation patterns. Based on this observation, we instantiate three primitives: Review, Voting and Selection, and Planning and Execution. All primitives communicate internally via key-value (KV) cache, which improves both robustness and efficiency by mitigating information degradation across multi-stage interactions. To enable automatic system construction, an Organizer agent selects and composes primitives for each query, guided by a lightweight knowledge pool of previously successful configurations, forming a primitive-based MAS. Experiments show that primitives-based MAS improve average accuracy by 12.0-16.5\% over single-agent baselines, reduce token usage and inference latency by approximately 3$\times$-4$\times$ compared to text-based MAS, while incurring only 1.3$\times$-1.6$\times$ overhead relative to single-agent inference and providing more stable performance across model backbones.
comment: 16 pages
☆ OCRTurk: A Comprehensive OCR Benchmark for Turkish EACL 2026
Document parsing is now widely used in applications, such as large-scale document digitization, retrieval-augmented generation, and domain-specific pipelines in healthcare and education. Benchmarking these models is crucial for assessing their reliability and practical robustness. Existing benchmarks mostly target high-resource languages and provide limited coverage for low-resource settings, such as Turkish. Moreover, existing studies on Turkish document parsing lack a standardized benchmark that reflects real-world scenarios and document diversity. To address this gap, we introduce OCRTurk, a Turkish document parsing benchmark covering multiple layout elements and document categories at three difficulty levels. OCRTurk consists of 180 Turkish documents drawn from academic articles, theses, slide decks, and non-academic articles. We evaluate seven OCR models on OCRTurk using element-wise metrics. Across difficulty levels, PaddleOCR achieves the strongest overall results, leading most element-wise metrics except figures and attaining high Normalized Edit Distance scores in easy, medium, and hard subsets. We also observe performance variation by document type. Models perform well on non-academic documents, while slideshows become the most challenging.
comment: Accepted by EACL 2026 SIGTURK
LLM-Inspired Pretrain-Then-Finetune for Small-Data, Large-Scale Optimization
We consider small-data, large-scale decision problems in which a firm must make many operational decisions simultaneously (e.g., across a large product portfolio) while observing only a few, potentially noisy, data points per instance. Inspired by the success of large language models (LLMs), we propose a pretrain-then-finetune approach built on a designed Transformer model to address this challenge. The model is first pretrained on large-scale, domain-informed synthetic data that encode managerial knowledge and structural features of the decision environment, and is then fine-tuned on real observations. This new pipeline offers two complementary advantages: pretraining injects domain knowledge into the learning process and enables the training of high-capacity models using abundant synthetic data, while finetuning adapts the pretrained model to the operational environment and improves alignment with the true data-generating regime. While we have leveraged the Transformer's state-of-the-art representational capacity, particularly its attention mechanism, to efficiently extract cross-task structure, our approach is not an off-the-shelf application. Instead, it relies on problem-specific architectural design and a tailored training procedure to match the decision setting. Theoretically, we develop the first comprehensive error analysis regarding Transformer learning in relevant contexts, establishing nonasymptotic guarantees that validate the method's effectiveness. Critically, our analysis reveals how pretraining and fine-tuning jointly determine performance, with the dominant contribution governed by whichever is more favorable. In particular, finetuning exhibits an economies-of-scale effect, whereby transfer learning becomes increasingly effective as the number of instances grows.
☆ Rethinking the Reranker: Boundary-Aware Evidence Selection for Robust Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) systems remain brittle under realistic retrieval noise, even when the required evidence appears in the top-K results. A key reason is that retrievers and rerankers optimize solely for relevance, often selecting either trivial, answer-revealing passages or evidence that lacks the critical information required to answer the question, without considering whether the evidence is suitable for the generator. We propose BAR-RAG, which reframes the reranker as a boundary-aware evidence selector that targets the generator's Goldilocks Zone -- evidence that is neither trivially easy nor fundamentally unanswerable for the generator, but is challenging yet sufficient for inference and thus provides the strongest learning signal. BAR-RAG trains the selector with reinforcement learning using generator feedback, and adopts a two-stage pipeline that fine-tunes the generator under the induced evidence distribution to mitigate the distribution mismatch between training and inference. Experiments on knowledge-intensive question answering benchmarks show that BAR-RAG consistently improves end-to-end performance under noisy retrieval, achieving an average gain of 10.3 percent over strong RAG and reranking baselines while substantially improving robustness. Code is publicly avaliable at https://github.com/GasolSun36/BAR-RAG.
comment: 19 pages, 8 tables, 5 figures
☆ TodyComm: Task-Oriented Dynamic Communication for Multi-Round LLM-based Multi-Agent System
Multi-round LLM-based multi-agent systems rely on effective communication structures to support collaboration across rounds. However, most existing methods employ a fixed communication topology during inference, which falls short in many realistic applications where the agents' roles may change \textit{across rounds} due to dynamic adversary, task progression, or time-varying constraints such as communication bandwidth. In this paper, we propose addressing this issue through TodyComm, a \textbf{t}ask-\textbf{o}riented \textbf{dy}namic \textbf{comm}unication algorithm. It produces behavior-driven collaboration topologies that adapt to the dynamics at each round, optimizing the utility for the task through policy gradient. Experiments on five benchmarks demonstrate that under both dynamic adversary and communications budgets, TodyComm delivers superior task effectiveness while retaining token efficiency and scalability.
☆ QuAIL: Quality-Aware Inertial Learning for Robust Training under Data Corruption
Tabular machine learning systems are frequently trained on data affected by non-uniform corruption, including noisy measurements, missing entries, and feature-specific biases. In practice, these defects are often documented only through column-level reliability indicators rather than instance-wise quality annotations, limiting the applicability of many robustness and cleaning techniques. We present QuAIL, a quality-informed training mechanism that incorporates feature reliability priors directly into the learning process. QuAIL augments existing models with a learnable feature-modulation layer whose updates are selectively constrained by a quality-dependent proximal regularizer, thereby inducing controlled adaptation across features of varying trustworthiness. This stabilizes optimization under structured corruption without explicit data repair or sample-level reweighting. Empirical evaluation across 50 classification and regression datasets demonstrates that QuAIL consistently improves average performance over neural baselines under both random and value-dependent corruption, with especially robust behavior in low-data and systematically biased settings. These results suggest that incorporating feature reliability information directly into optimization dynamics is a practical and effective approach for resilient tabular learning.
☆ Universal One-third Time Scaling in Learning Peaked Distributions
Training large language models (LLMs) is computationally expensive, partly because the loss exhibits slow power-law convergence whose origin remains debatable. Through systematic analysis of toy models and empirical evaluation of LLMs, we show that this behavior can arise intrinsically from the use of softmax and cross-entropy. When learning peaked probability distributions, e.g., next-token distributions, these components yield power-law vanishing losses and gradients, creating a fundamental optimization bottleneck. This ultimately leads to power-law time scaling of the loss with a universal exponent of $1/3$. Our results provide a mechanistic explanation for observed neural scaling and suggest new directions for improving LLM training efficiency.
comment: 24 pages, 6 main text figures, 27 figures in total
☆ ContraLog: Log File Anomaly Detection with Contrastive Learning and Masked Language Modeling
Log files record computational events that reflect system state and behavior, making them a primary source of operational insights in modern computer systems. Automated anomaly detection on logs is therefore critical, yet most established methods rely on log parsers that collapse messages into discrete templates, discarding variable values and semantic content. We propose ContraLog, a parser-free and self-supervised method that reframes log anomaly detection as predicting continuous message embeddings rather than discrete template IDs. ContraLog combines a message encoder that produces rich embeddings for individual log messages with a sequence encoder to model temporal dependencies within sequences. The model is trained with a combination of masked language modeling and contrastive learning to predict masked message embeddings based on the surrounding context. Experiments on the HDFS, BGL, and Thunderbird benchmark datasets empirically demonstrate effectiveness on complex datasets with diverse log messages. Additionally, we find that message embeddings generated by ContraLog carry meaningful information and are predictive of anomalies even without sequence context. These results highlight embedding-level prediction as an approach for log anomaly detection, with potential applicability to other event sequences.
comment: 26 pages with 16 figures
☆ Equilibrium Propagation for Non-Conservative Systems
Equilibrium Propagation (EP) is a physics-inspired learning algorithm that uses stationary states of a dynamical system both for inference and learning. In its original formulation it is limited to conservative systems, $\textit{i.e.}$ to dynamics which derive from an energy function. Given their importance in applications, it is important to extend EP to nonconservative systems, $\textit{i.e.}$ systems with non-reciprocal interactions. Previous attempts to generalize EP to such systems failed to compute the exact gradient of the cost function. Here we propose a framework that extends EP to arbitrary nonconservative systems, including feedforward networks. We keep the key property of equilibrium propagation, namely the use of stationary states both for inference and learning. However, we modify the dynamics in the learning phase by a term proportional to the non-reciprocal part of the interaction so as to obtain the exact gradient of the cost function. This algorithm can also be derived using a variational formulation that generates the learning dynamics through an energy function defined over an augmented state space. Numerical experiments using the MNIST database show that this algorithm achieves better performance and learns faster than previous proposals.
comment: 19 pages (9 pages main text), 7 figures
☆ Efficient Sequential Neural Network with Spatial-Temporal Attention and Linear LSTM for Robust Lane Detection Using Multi-Frame Images
Lane detection is a crucial perception task for all levels of automated vehicles (AVs) and Advanced Driver Assistance Systems, particularly in mixed-traffic environments where AVs must interact with human-driven vehicles (HDVs) and challenging traffic scenarios. Current methods lack versatility in delivering accurate, robust, and real-time compatible lane detection, especially vision-based methods often neglect critical regions of the image and their spatial-temporal (ST) salience, leading to poor performance in difficult circumstances such as serious occlusion and dazzle lighting. This study introduces a novel sequential neural network model with a spatial-temporal attention mechanism to focus on key features of lane lines and exploit salient ST correlations among continuous image frames. The proposed model, built on a standard encoder-decoder structure and common neural network backbones, is trained and evaluated on three large-scale open-source datasets. Extensive experiments demonstrate the strength and robustness of the proposed model, outperforming state-of-the-art methods in various testing scenarios. Furthermore, with the ST attention mechanism, the developed sequential neural network models exhibit fewer parameters and reduced Multiply-Accumulate Operations (MACs) compared to baseline sequential models, highlighting their computational efficiency. Relevant data, code, and models are released at https://doi.org/10.4121/4619cab6-ae4a-40d5-af77-582a77f3d821.
comment: 14 pages, 9 figures, under review by IEEE T-ITS
☆ Mitigating Conversational Inertia in Multi-Turn Agents
Large language models excel as few-shot learners when provided with appropriate demonstrations, yet this strength becomes problematic in multiturn agent scenarios, where LLMs erroneously mimic their own previous responses as few-shot examples. Through attention analysis, we identify conversational inertia, a phenomenon where models exhibit strong diagonal attention to previous responses, which is associated with imitation bias that constrains exploration. This reveals a tension when transforming few-shot LLMs into agents: longer context enriches environmental feedback for exploitation, yet also amplifies conversational inertia that undermines exploration. Our key insight is that for identical states, actions generated with longer contexts exhibit stronger inertia than those with shorter contexts, enabling construction of preference pairs without environment rewards. Based on this, we propose Context Preference Learning to calibrate model preferences to favor low-inertia responses over highinertia ones. We further provide context management strategies at inference time to balance exploration and exploitation. Experimental results across eight agentic environments and one deep research scenario validate that our framework reduces conversational inertia and achieves performance improvements.
RAGTurk: Best Practices for Retrieval Augmented Generation in Turkish EACL 2026
Retrieval-Augmented Generation (RAG) enhances LLM factuality, yet design guidance remains English-centric, limiting insights for morphologically rich languages like Turkish. We address this by constructing a comprehensive Turkish RAG dataset derived from Turkish Wikipedia and CulturaX, comprising question-answer pairs and relevant passage chunks. We benchmark seven stages of the RAG pipeline, from query transformation and reranking to answer refinement, without task-specific fine-tuning. Our results show that complex methods like HyDE maximize accuracy (85%) that is considerably higher than the baseline (78.70%). Also a Pareto-optimal configuration using Cross-encoder Reranking and Context Augmentation achieves comparable performance (84.60%) with much lower cost. We further demonstrate that over-stacking generative modules can degrade performance by distorting morphological cues, whereas simple query clarification with robust reranking offers an effective solution.
comment: Accepted by EACL 2026 SIGTURK
☆ Search-R2: Enhancing Search-Integrated Reasoning via Actor-Refiner Collaboration
Search-integrated reasoning enables language agents to transcend static parametric knowledge by actively querying external sources. However, training these agents via reinforcement learning is hindered by the multi-scale credit assignment problem: existing methods typically rely on sparse, trajectory-level rewards that fail to distinguish between high-quality reasoning and fortuitous guesses, leading to redundant or misleading search behaviors. To address this, we propose Search-R2, a novel Actor-Refiner collaboration framework that enhances reasoning through targeted intervention, with both components jointly optimized during training. Our approach decomposes the generation process into an Actor, which produces initial reasoning trajectories, and a Meta-Refiner, which selectively diagnoses and repairs flawed steps via a 'cut-and-regenerate' mechanism. To provide fine-grained supervision, we introduce a hybrid reward design that couples outcome correctness with a dense process reward quantifying the information density of retrieved evidence. Theoretically, we formalize the Actor-Refiner interaction as a smoothed mixture policy, proving that selective correction yields strict performance gains over strong baselines. Extensive experiments across various general and multi-hop QA datasets demonstrate that Search-R2 consistently outperforms strong RAG and RL-based baselines across model scales, achieving superior reasoning accuracy with minimal overhead.
☆ Tutorial on Reasoning for IR & IR for Reasoning ECIR 2026
Information retrieval has long focused on ranking documents by semantic relatedness. Yet many real-world information needs demand more: enforcement of logical constraints, multi-step inference, and synthesis of multiple pieces of evidence. Addressing these requirements is, at its core, a problem of reasoning. Across AI communities, researchers are developing diverse solutions for the problem of reasoning, from inference-time strategies and post-training of LLMs, to neuro-symbolic systems, Bayesian and probabilistic frameworks, geometric representations, and energy-based models. These efforts target the same problem: to move beyond pattern-matching systems toward structured, verifiable inference. However, they remain scattered across disciplines, making it difficult for IR researchers to identify the most relevant ideas and opportunities. To help navigate the fragmented landscape of research in reasoning, this tutorial first articulates a working definition of reasoning within the context of information retrieval and derives from it a unified analytical framework. The framework maps existing approaches along axes that reflect the core components of the definition. By providing a comprehensive overview of recent approaches and mapping current methods onto the defined axes, we expose their trade-offs and complementarities, highlight where IR can benefit from cross-disciplinary advances, and illustrate how retrieval process itself can play a central role in broader reasoning systems. The tutorial will equip participants with both a conceptual framework and practical guidance for enhancing reasoning-capable IR systems, while situating IR as a domain that both benefits and contributes to the broader development of reasoning methodologies.
comment: Accepted to ECIR 2026
☆ BIRDTurk: Adaptation of the BIRD Text-to-SQL Dataset to Turkish EACL 2026
Text-to-SQL systems have achieved strong performance on English benchmarks, yet their behavior in morphologically rich, low-resource languages remains largely unexplored. We introduce BIRDTurk, the first Turkish adaptation of the BIRD benchmark, constructed through a controlled translation pipeline that adapts schema identifiers to Turkish while strictly preserving the logical structure and execution semantics of SQL queries and databases. Translation quality is validated on a sample size determined by the Central Limit Theorem to ensure 95% confidence, achieving 98.15% accuracy on human-evaluated samples. Using BIRDTurk, we evaluate inference-based prompting, agentic multi-stage reasoning, and supervised fine-tuning. Our results reveal that Turkish introduces consistent performance degradation, driven by both structural linguistic divergence and underrepresentation in LLM pretraining, while agentic reasoning demonstrates stronger cross-lingual robustness. Supervised fine-tuning remains challenging for standard multilingual baselines but scales effectively with modern instruction-tuned models. BIRDTurk provides a controlled testbed for cross-lingual Text-to-SQL evaluation under realistic database conditions. We release the training and development splits to support future research.
comment: Accepted by EACL 2026 SIGTURK
☆ Can LLMs Do Rocket Science? Exploring the Limits of Complex Reasoning with GTOC 12
Large Language Models (LLMs) have demonstrated remarkable proficiency in code generation and general reasoning, yet their capacity for autonomous multi-stage planning in high-dimensional, physically constrained environments remains an open research question. This study investigates the limits of current AI agents by evaluating them against the 12th Global Trajectory Optimization Competition (GTOC 12), a complex astrodynamics challenge requiring the design of a large-scale asteroid mining campaign. We adapt the MLE-Bench framework to the domain of orbital mechanics and deploy an AIDE-based agent architecture to autonomously generate and refine mission solutions. To assess performance beyond binary validity, we employ an "LLM-as-a-Judge" methodology, utilizing a rubric developed by domain experts to evaluate strategic viability across five structural categories. A comparative analysis of models, ranging from GPT-4-Turbo to reasoning-enhanced architectures like Gemini 2.5 Pro, and o3, reveals a significant trend: the average strategic viability score has nearly doubled in the last two years (rising from 9.3 to 17.2 out of 26). However, we identify a critical capability gap between strategy and execution. While advanced models demonstrate sophisticated conceptual understanding, correctly framing objective functions and mission architectures, they consistently fail at implementation due to physical unit inconsistencies, boundary condition errors, and inefficient debugging loops. We conclude that, while current LLMs often demonstrate sufficient knowledge and intelligence to tackle space science tasks, they remain limited by an implementation barrier, functioning as powerful domain facilitators rather than fully autonomous engineers.
comment: Extended version of the paper presented at AIAA SciTech 2026 Forum. Includes futher experiments, corrections and new appendix
☆ Controlling Output Rankings in Generative Engines for LLM-based Search
The way customers search for and choose products is changing with the rise of large language models (LLMs). LLM-based search, or generative engines, provides direct product recommendations to users, rather than traditional online search results that require users to explore options themselves. However, these recommendations are strongly influenced by the initial retrieval order of LLMs, which disadvantages small businesses and independent creators by limiting their visibility. In this work, we propose CORE, an optimization method that \textbf{C}ontrols \textbf{O}utput \textbf{R}ankings in g\textbf{E}nerative Engines for LLM-based search. Since the LLM's interactions with the search engine are black-box, CORE targets the content returned by search engines as the primary means of influencing output rankings. Specifically, CORE optimizes retrieved content by appending strategically designed optimization content to steer the ranking of outputs. We introduce three types of optimization content: string-based, reasoning-based, and review-based, demonstrating their effectiveness in shaping output rankings. To evaluate CORE in realistic settings, we introduce ProductBench, a large-scale benchmark with 15 product categories and 200 products per category, where each product is associated with its top-10 recommendations collected from Amazon's search interface. Extensive experiments on four LLMs with search capabilities (GPT-4o, Gemini-2.5, Claude-4, and Grok-3) demonstrate that CORE achieves an average Promotion Success Rate of \textbf{91.4\% @Top-5}, \textbf{86.6\% @Top-3}, and \textbf{80.3\% @Top-1}, across 15 product categories, outperforming existing ranking manipulation methods while preserving the fluency of optimized content.
comment: 23 pages
A Lightweight Library for Energy-Based Joint-Embedding Predictive Architectures
We present EB-JEPA, an open-source library for learning representations and world models using Joint-Embedding Predictive Architectures (JEPAs). JEPAs learn to predict in representation space rather than pixel space, avoiding the pitfalls of generative modeling while capturing semantically meaningful features suitable for downstream tasks. Our library provides modular, self-contained implementations that illustrate how representation learning techniques developed for image-level self-supervised learning can transfer to video, where temporal dynamics add complexity, and ultimately to action-conditioned world models, where the model must additionally learn to predict the effects of control inputs. Each example is designed for single-GPU training within a few hours, making energy-based self-supervised learning accessible for research and education. We provide ablations of JEA components on CIFAR-10. Probing these representations yields 91% accuracy, indicating that the model learns useful features. Extending to video, we include a multi-step prediction example on Moving MNIST that demonstrates how the same principles scale to temporal modeling. Finally, we show how these representations can drive action-conditioned world models, achieving a 97% planning success rate on the Two Rooms navigation task. Comprehensive ablations reveal the critical importance of each regularization component for preventing representation collapse. Code is available at https://github.com/facebookresearch/eb_jepa.
☆ APEX: Probing Neural Networks via Activation Perturbation
Prior work on probing neural networks primarily relies on input-space analysis or parameter perturbation, both of which face fundamental limitations in accessing structural information encoded in intermediate representations. We introduce Activation Perturbation for EXploration (APEX), an inference-time probing paradigm that perturbs hidden activations while keeping both inputs and model parameters fixed. We theoretically show that activation perturbation induces a principled transition from sample-dependent to model-dependent behavior by suppressing input-specific signals and amplifying representation-level structure, and further establish that input perturbation corresponds to a constrained special case of this framework. Through representative case studies, we demonstrate the practical advantages of APEX. In the small-noise regime, APEX provides a lightweight and efficient measure of sample regularity that aligns with established metrics, while also distinguishing structured from randomly labeled models and revealing semantically coherent prediction transitions. In the large-noise regime, APEX exposes training-induced model-level biases, including a pronounced concentration of predictions on the target class in backdoored models. Overall, our results show that APEX offers an effective perspective for exploring, and understanding neural networks beyond what is accessible from input space alone.
☆ $V_0$: A Generalist Value Model for Any Policy at State Zero
Policy gradient methods rely on a baseline to measure the relative advantage of an action, ensuring the model reinforces behaviors that outperform its current average capability. In the training of Large Language Models (LLMs) using Actor-Critic methods (e.g., PPO), this baseline is typically estimated by a Value Model (Critic) often as large as the policy model itself. However, as the policy continuously evolves, the value model requires expensive, synchronous incremental training to accurately track the shifting capabilities of the policy. To avoid this overhead, Group Relative Policy Optimization (GRPO) eliminates the coupled value model by using the average reward of a group of rollouts as the baseline; yet, this approach necessitates extensive sampling to maintain estimation stability. In this paper, we propose $V_0$, a Generalist Value Model capable of estimating the expected performance of any model on unseen prompts without requiring parameter updates. We reframe value estimation by treating the policy's dynamic capability as an explicit context input; specifically, we leverage a history of instruction-performance pairs to dynamically profile the model, departing from the traditional paradigm that relies on parameter fitting to perceive capability shifts. Focusing on value estimation at State Zero (i.e., the initial prompt, hence $V_0$), our model serves as a critical resource scheduler. During GRPO training, $V_0$ predicts success rates prior to rollout, allowing for efficient sampling budget allocation; during deployment, it functions as a router, dispatching instructions to the most cost-effective and suitable model. Empirical results demonstrate that $V_0$ significantly outperforms heuristic budget allocation and achieves a Pareto-optimal trade-off between performance and cost in LLM routing tasks.
☆ Don't believe everything you read: Understanding and Measuring MCP Behavior under Misleading Tool Descriptions
The Model Context Protocol (MCP) enables large language models to invoke external tools through natural-language descriptions, forming the foundation of many AI agent applications. However, MCP does not enforce consistency between documented tool behavior and actual code execution, even though MCP Servers often run with broad system privileges. This gap introduces a largely unexplored security risk. We study how mismatches between externally presented tool descriptions and underlying implementations systematically shape the mental models and decision-making behavior of intelligent agents. Specifically, we present the first large-scale study of description-code inconsistency in the MCP ecosystem. We design an automated static analysis framework and apply it to 10,240 real-world MCP Servers across 36 categories. Our results show that while most servers are highly consistent, approximately 13% exhibit substantial mismatches that can enable undocumented privileged operations, hidden state mutations, or unauthorized financial actions. We further observe systematic differences across application categories, popularity levels, and MCP marketplaces. Our findings demonstrate that description-code inconsistency is a concrete and prevalent attack surface in MCP-based AI agents, and motivate the need for systematic auditing and stronger transparency guarantees in future agent ecosystems.
☆ Use Graph When It Needs: Efficiently and Adaptively Integrating Retrieval-Augmented Generation with Graphs
Large language models (LLMs) often struggle with knowledge-intensive tasks due to hallucinations and outdated parametric knowledge. While Retrieval-Augmented Generation (RAG) addresses this by integrating external corpora, its effectiveness is limited by fragmented information in unstructured domain documents. Graph-augmented RAG (GraphRAG) emerged to enhance contextual reasoning through structured knowledge graphs, yet paradoxically underperforms vanilla RAG in real-world scenarios, exhibiting significant accuracy drops and prohibitive latency despite gains on complex queries. We identify the rigid application of GraphRAG to all queries, regardless of complexity, as the root cause. To resolve this, we propose an efficient and adaptive GraphRAG framework called EA-GraphRAG that dynamically integrates RAG and GraphRAG paradigms through syntax-aware complexity analysis. Our approach introduces: (i) a syntactic feature constructor that parses each query and extracts a set of structural features; (ii) a lightweight complexity scorer that maps these features to a continuous complexity score; and (iii) a score-driven routing policy that selects dense RAG for low-score queries, invokes graph-based retrieval for high-score queries, and applies complexity-aware reciprocal rank fusion to handle borderline cases. Extensive experiments on a comprehensive benchmark, consisting of two single-hop and two multi-hop QA benchmarks, demonstrate that our EA-GraphRAG significantly improves accuracy, reduces latency, and achieves state-of-the-art performance in handling mixed scenarios involving both simple and complex queries.
☆ EHRWorld: A Patient-Centric Medical World Model for Long-Horizon Clinical Trajectories
World models offer a principled framework for simulating future states under interventions, but realizing such models in complex, high-stakes domains like medicine remains challenging. Recent large language models (LLMs) have achieved strong performance on static medical reasoning tasks, raising the question of whether they can function as dynamic medical world models capable of simulating disease progression and treatment outcomes over time. In this work, we show that LLMs only incorporating medical knowledge struggle to maintain consistent patient states under sequential interventions, leading to error accumulation in long-horizon clinical simulation. To address this limitation, we introduce EHRWorld, a patient-centric medical world model trained under a causal sequential paradigm, together with EHRWorld-110K, a large-scale longitudinal clinical dataset derived from real-world electronic health records. Extensive evaluations demonstrate that EHRWorld significantly outperforms naive LLM-based baselines, achieving more stable long-horizon simulation, improved modeling of clinically sensitive events, and favorable reasoning efficiency, highlighting the necessity of training on causally grounded, temporally evolving clinical data for reliable and robust medical world modeling.
☆ EVE: Efficient Verification of Data Erasure through Customized Perturbation in Approximate Unlearning
Verifying whether the machine unlearning process has been properly executed is critical but remains underexplored. Some existing approaches propose unlearning verification methods based on backdooring techniques. However, these methods typically require participation in the model's initial training phase to backdoor the model for later verification, which is inefficient and impractical. In this paper, we propose an efficient verification of erasure method (EVE) for verifying machine unlearning without requiring involvement in the model's initial training process. The core idea is to perturb the unlearning data to ensure the model prediction of the specified samples will change before and after unlearning with perturbed data. The unlearning users can leverage the observation of the changes as a verification signal. Specifically, the perturbations are designed with two key objectives: ensuring the unlearning effect and altering the unlearned model's prediction of target samples. We formalize the perturbation generation as an adversarial optimization problem, solving it by aligning the unlearning gradient with the gradient of boundary change for target samples. We conducted extensive experiments, and the results show that EVE can verify machine unlearning without involving the model's initial training process, unlike backdoor-based methods. Moreover, EVE significantly outperforms state-of-the-art unlearning verification methods, offering significant speedup in efficiency while enhancing verification accuracy. The source code of EVE is released at \uline{https://anonymous.4open.science/r/EVE-C143}, providing a novel tool for verification of machine unlearning.
☆ HySparse: A Hybrid Sparse Attention Architecture with Oracle Token Selection and KV Cache Sharing
This work introduces Hybrid Sparse Attention (HySparse), a new architecture that interleaves each full attention layer with several sparse attention layers. While conceptually simple, HySparse strategically derives each sparse layer's token selection and KV caches directly from the preceding full attention layer. This architecture resolves two fundamental limitations of prior sparse attention methods. First, conventional approaches typically rely on additional proxies to predict token importance, introducing extra complexity and potentially suboptimal performance. In contrast, HySparse uses the full attention layer as a precise oracle to identify important tokens. Second, existing sparse attention designs often reduce computation without saving KV cache. HySparse enables sparse attention layers to reuse the full attention KV cache, thereby reducing both computation and memory. We evaluate HySparse on both 7B dense and 80B MoE models. Across all settings, HySparse consistently outperforms both full attention and hybrid SWA baselines. Notably, in the 80B MoE model with 49 total layers, only 5 layers employ full attention, yet HySparse achieves substantial performance gains while reducing KV cache storage by nearly 10x.
comment: 17 pages, 2 figures
☆ ELIQ: A Label-Free Framework for Quality Assessment of Evolving AI-Generated Images
Generative text-to-image models are advancing at an unprecedented pace, continuously shifting the perceptual quality ceiling and rendering previously collected labels unreliable for newer generations. To address this, we present ELIQ, a Label-free Framework for Quality Assessment of Evolving AI-generated Images. Specifically, ELIQ focuses on visual quality and prompt-image alignment, automatically constructs positive and aspect-specific negative pairs to cover both conventional distortions and AIGC-specific distortion modes, enabling transferable supervision without human annotations. Building on these pairs, ELIQ adapts a pre-trained multimodal model into a quality-aware critic via instruction tuning and predicts two-dimensional quality using lightweight gated fusion and a Quality Query Transformer. Experiments across multiple benchmarks demonstrate that ELIQ consistently outperforms existing label-free methods, generalizes from AI-generated content (AIGC) to user-generated content (UGC) scenarios without modification, and paves the way for scalable and label-free quality assessment under continuously evolving generative models. The code will be released upon publication.
☆ When Single Answer Is Not Enough: Rethinking Single-Step Retrosynthesis Benchmarks for LLMs
Recent progress has expanded the use of large language models (LLMs) in drug discovery, including synthesis planning. However, objective evaluation of retrosynthesis performance remains limited. Existing benchmarks and metrics typically rely on published synthetic procedures and Top-K accuracy based on single ground-truth, which does not capture the open-ended nature of real-world synthesis planning. We propose a new benchmarking framework for single-step retrosynthesis that evaluates both general-purpose and chemistry-specialized LLMs using ChemCensor, a novel metric for chemical plausibility. By emphasizing plausibility over exact match, this approach better aligns with human synthesis planning practices. We also introduce CREED, a novel dataset comprising millions of ChemCensor-validated reaction records for LLM training, and use it to train a model that improves over the LLM baselines under this benchmark.
☆ Persona Generators: Generating Diverse Synthetic Personas at Scale
Evaluating AI systems that interact with humans requires understanding their behavior across diverse user populations, but collecting representative human data is often expensive or infeasible, particularly for novel technologies or hypothetical future scenarios. Recent work in Generative Agent-Based Modeling has shown that large language models can simulate human-like synthetic personas with high fidelity, accurately reproducing the beliefs and behaviors of specific individuals. However, most approaches require detailed data about target populations and often prioritize density matching (replicating what is most probable) rather than support coverage (spanning what is possible), leaving long-tail behaviors underexplored. We introduce Persona Generators, functions that can produce diverse synthetic populations tailored to arbitrary contexts. We apply an iterative improvement loop based on AlphaEvolve, using large language models as mutation operators to refine our Persona Generator code over hundreds of iterations. The optimization process produces lightweight Persona Generators that can automatically expand small descriptions into populations of diverse synthetic personas that maximize coverage of opinions and preferences along relevant diversity axes. We demonstrate that evolved generators substantially outperform existing baselines across six diversity metrics on held-out contexts, producing populations that span rare trait combinations difficult to achieve in standard LLM outputs.
☆ Group Selection as a Safeguard Against AI Substitution
Reliance on generative AI can reduce cultural variance and diversity, especially in creative work. This reduction in variance has already led to problems in model performance, including model collapse and hallucination. In this paper, we examine the long-term consequences of AI use for human cultural evolution and the conditions under which widespread AI use may lead to "cultural collapse", a process in which reliance on AI-generated content reduces human variation and innovation and slows cumulative cultural evolution. Using an agent-based model and evolutionary game theory, we compare two types of AI use: complement and substitute. AI-complement users seek suggestions and guidance while remaining the main producers of the final output, whereas AI-substitute users provide minimal input, and rely on AI to produce most of the output. We then study how these use strategies compete and spread under evolutionary dynamics. We find that AI-substitute users prevail under individual-level selection despite the stronger reduction in cultural variance. By contrast, AI-complement users can benefit their groups by maintaining the variance needed for exploration, and can therefore be favored under cultural group selection when group boundaries are strong. Overall, our findings shed light on the long-term, population-level effects of AI adoption and inform policy and organizational strategies to mitigate these risks.
comment: 19 pages, 7 Figures
☆ Morphe: High-Fidelity Generative Video Streaming with Vision Foundation Model
Video streaming is a fundamental Internet service, while the quality still cannot be guaranteed especially in poor network conditions such as bandwidth-constrained and remote areas. Existing works mainly work towards two directions: traditional pixel-codec streaming nearly approaches its limit and is hard to step further in compression; the emerging neural-enhanced or generative streaming usually fall short in latency and visual fidelity, hindering their practical deployment. Inspired by the recent success of vision foundation model (VFM), we strive to harness the powerful video understanding and processing capacities of VFM to achieve generalization, high fidelity and loss resilience for real-time video streaming with even higher compression rate. We present the first revolutionized paradigm that enables VFM-based end-to-end generative video streaming towards this goal. Specifically, Morphe employs joint training of visual tokenizers and variable-resolution spatiotemporal optimization under simulated network constraints. Additionally, a robust streaming system is constructed that leverages intelligent packet dropping to resist real-world network perturbations. Extensive evaluation demonstrates that Morphe achieves comparable visual quality while saving 62.5\% bandwidth compared to H.265, and accomplishes real-time, loss-resilient video delivery in challenging network environments, representing a milestone in VFM-enabled multimedia streaming solutions.
comment: Accepted by NSDI 2026 Fall
☆ D3PIA: A Discrete Denoising Diffusion Model for Piano Accompaniment Generation From Lead sheet ICASSP
Generating piano accompaniments in the symbolic music domain is a challenging task that requires producing a complete piece of piano music from given melody and chord constraints, such as those provided by a lead sheet. In this paper, we propose a discrete diffusion-based piano accompaniment generation model, D3PIA, leveraging local alignment between lead sheet and accompaniment in piano-roll representation. D3PIA incorporates Neighborhood Attention (NA) to both encode the lead sheet and condition it for predicting note states in the piano accompaniment. This design enhances local contextual modeling by efficiently attending to nearby melody and chord conditions. We evaluate our model using the POP909 dataset, a widely used benchmark for piano accompaniment generation. Objective evaluation results demonstrate that D3PIA preserves chord conditions more faithfully compared to continuous diffusion-based and Transformer-based baselines. Furthermore, a subjective listening test indicates that D3PIA generates more musically coherent accompaniments than the comparison models.
comment: Accepted at 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
☆ Live or Lie: Action-Aware Capsule Multiple Instance Learning for Risk Assessment in Live Streaming Platforms
Live streaming has become a cornerstone of today's internet, enabling massive real-time social interactions. However, it faces severe risks arising from sparse, coordinated malicious behaviors among multiple participants, which are often concealed within normal activities and challenging to detect timely and accurately. In this work, we provide a pioneering study on risk assessment in live streaming rooms, characterized by weak supervision where only room-level labels are available. We formulate the task as a Multiple Instance Learning (MIL) problem, treating each room as a bag and defining structured user-timeslot capsules as instances. These capsules represent subsequences of user actions within specific time windows, encapsulating localized behavioral patterns. Based on this formulation, we propose AC-MIL, an Action-aware Capsule MIL framework that models both individual behaviors and group-level coordination patterns. AC-MIL captures multi-granular semantics and behavioral cues through a serial and parallel architecture that jointly encodes temporal dynamics and cross-user dependencies. These signals are integrated for robust room-level risk prediction, while also offering interpretable evidence at the behavior segment level. Extensive experiments on large-scale industrial datasets from Douyin demonstrate that AC-MIL significantly outperforms MIL and sequential baselines, establishing new state-of-the-art performance in room-level risk assessment for live streaming. Moreover, AC-MIL provides capsule-level interpretability, enabling identification of risky behavior segments as actionable evidence for intervention. The project page is available at: https://qiaoyran.github.io/AC-MIL/.
☆ Not All Negative Samples Are Equal: LLMs Learn Better from Plausible Reasoning
Learning from negative samples holds great promise for improving Large Language Model (LLM) reasoning capability, yet existing methods treat all incorrect responses as equally informative, overlooking the crucial role of sample quality. To address this, we propose Plausible Negative Samples (PNS), a method that synthesizes high-quality negative samples exhibiting expected format and structural coherence while ultimately yielding incorrect answers. PNS trains a dedicated model via reverse reinforcement learning (RL) guided by a composite reward combining format compliance, accuracy inversion, reward model assessment, and chain-of-thought evaluation, generating responses nearly indistinguishable from correct solutions. We further validate PNS as a plug-and-play data source for preference optimization across three backbone models on seven mathematical reasoning benchmarks. Results demonstrate that PNS consistently outperforms other negative sample synthesis methods, achieving an average improvement of 2.03% over RL-trained models.
☆ Mitigating Staleness in Asynchronous Pipeline Parallelism via Basis Rotation
Asynchronous pipeline parallelism maximizes hardware utilization by eliminating the pipeline bubbles inherent in synchronous execution, offering a path toward efficient large-scale distributed training. However, this efficiency gain can be compromised by gradient staleness, where the immediate model updates with delayed gradients introduce noise into the optimization process. Crucially, we identify a critical, yet often overlooked, pathology: this delay scales linearly with pipeline depth, fundamentally undermining the very scalability that the method originally intends to provide. In this work, we investigate this inconsistency and bridge the gap by rectifying delayed gradients through basis rotation, restoring scalable asynchronous training while maintaining performance. Specifically, we observe that the deleterious effects of delayed gradients are exacerbated when the Hessian eigenbasis is misaligned with the standard coordinate basis. We demonstrate that this misalignment prevents coordinate-wise adaptive schemes, such as Adam, from effectively leveraging curvature-aware adaptivity. This failure leads to significant oscillations in the optimization trajectory and, consequently, slower convergence. We substantiate these findings through both rigorous theoretical analysis and empirical evaluation. To address this challenge, we propose the use of basis rotation, demonstrating that it effectively mitigates the alignment issue and significantly accelerates convergence in asynchronous settings. For example, our training of a 1B-parameter LLM with basis rotation achieves the same training loss in 76.8% fewer iterations compared to the best-performing asynchronous pipeline parallel training baseline.
comment: Preprint. Under review
CMR: Contractive Mapping Embeddings for Robust Humanoid Locomotion on Unstructured Terrains
Robust disturbance rejection remains a longstanding challenge in humanoid locomotion, particularly on unstructured terrains where sensing is unreliable and model mismatch is pronounced. While perception information, such as height map, enhances terrain awareness, sensor noise and sim-to-real gaps can destabilize policies in practice. In this work, we provide theoretical analysis that bounds the return gap under observation noise, when the induced latent dynamics are contractive. Furthermore, we present Contractive Mapping for Robustness (CMR) framework that maps high-dimensional, disturbance-prone observations into a latent space, where local perturbations are attenuated over time. Specifically, this approach couples contrastive representation learning with Lipschitz regularization to preserve task-relevant geometry while explicitly controlling sensitivity. Notably, the formulation can be incorporated into modern deep reinforcement learning pipelines as an auxiliary loss term with minimal additional technical effort required. Further, our extensive humanoid experiments show that CMR potently outperforms other locomotion algorithms under increased noise.
☆ Explaining the Explainer: Understanding the Inner Workings of Transformer-based Symbolic Regression Models
Following their success across many domains, transformers have also proven effective for symbolic regression (SR); however, the internal mechanisms underlying their generation of mathematical operators remain largely unexplored. Although mechanistic interpretability has successfully identified circuits in language and vision models, it has not yet been applied to SR. In this article, we introduce PATCHES, an evolutionary circuit discovery algorithm that identifies compact and correct circuits for SR. Using PATCHES, we isolate 28 circuits, providing the first circuit-level characterisation of an SR transformer. We validate these findings through a robust causal evaluation framework based on key notions such as faithfulness, completeness, and minimality. Our analysis shows that mean patching with performance-based evaluation most reliably isolates functionally correct circuits. In contrast, we demonstrate that direct logit attribution and probing classifiers primarily capture correlational features rather than causal ones, limiting their utility for circuit discovery. Overall, these results establish SR as a high-potential application domain for mechanistic interpretability and propose a principled methodology for circuit discovery.
comment: 8 pages, 5 figures
☆ Generative Decompression: Optimal Lossy Decoding Against Distribution Mismatch
This paper addresses optimal decoding strategies in lossy compression where the assumed distribution for compressor design mismatches the actual (true) distribution of the source. This problem has immediate relevance in standardized communication systems where the decoder acquires side information or priors about the true distribution that are unavailable to the fixed encoder. We formally define the mismatched quantization problem, demonstrating that the optimal reconstruction rule, termed generative decompression, aligns with classical Bayesian estimation by taking the conditional expectation under the true distribution given the quantization indices and adapting it to fixed-encoder constraints. This strategy effectively performs a generative Bayesian correction on the decoder side, strictly outperforming the conventional centroid rule. We extend this framework to transmission over noisy channels, deriving a robust soft-decoding rule that quantifies the inefficiency of standard modular source--channel separation architectures under mismatch. Furthermore, we generalize the approach to task-oriented decoding, showing that the optimal strategy shifts from conditional mean estimation to maximum a posteriori (MAP) detection. Experimental results on Gaussian sources and deep-learning-based semantic classification demonstrate that generative decompression closes a vast majority of the performance gap to the ideal joint-optimization benchmark, enabling adaptive, high-fidelity reconstruction without modifying the encoder.
☆ Reparameterization Flow Policy Optimization
Reparameterization Policy Gradient (RPG) has emerged as a powerful paradigm for model-based reinforcement learning, enabling high sample efficiency by backpropagating gradients through differentiable dynamics. However, prior RPG approaches have been predominantly restricted to Gaussian policies, limiting their performance and failing to leverage recent advances in generative models. In this work, we identify that flow policies, which generate actions via differentiable ODE integration, naturally align with the RPG framework, a connection not established in prior work. However, naively exploiting this synergy proves ineffective, often suffering from training instability and a lack of exploration. We propose Reparameterization Flow Policy Optimization (RFO). RFO computes policy gradients by backpropagating jointly through the flow generation process and system dynamics, unlocking high sample efficiency without requiring intractable log-likelihood calculations. RFO includes two tailored regularization terms for stability and exploration. We also propose a variant of RFO with action chunking. Extensive experiments on diverse locomotion and manipulation tasks, involving both rigid and soft bodies with state or visual inputs, demonstrate the effectiveness of RFO. Notably, on a challenging locomotion task controlling a soft-body quadruped, RFO achieves almost $2\times$ the reward of the state-of-the-art baseline.
☆ DeepDFA: Injecting Temporal Logic in Deep Learning for Sequential Subsymbolic Applications
Integrating logical knowledge into deep neural network training is still a hard challenge, especially for sequential or temporally extended domains involving subsymbolic observations. To address this problem, we propose DeepDFA, a neurosymbolic framework that integrates high-level temporal logic - expressed as Deterministic Finite Automata (DFA) or Moore Machines - into neural architectures. DeepDFA models temporal rules as continuous, differentiable layers, enabling symbolic knowledge injection into subsymbolic domains. We demonstrate how DeepDFA can be used in two key settings: (i) static image sequence classification, and (ii) policy learning in interactive non-Markovian environments. Across extensive experiments, DeepDFA outperforms traditional deep learning models (e.g., LSTMs, GRUs, Transformers) and novel neuro-symbolic systems, achieving state-of-the-art results in temporal knowledge integration. These results highlight the potential of DeepDFA to bridge subsymbolic learning and symbolic reasoning in sequential tasks.
☆ Self-Verification Dilemma: Experience-Driven Suppression of Overused Checking in LLM Reasoning
Large Reasoning Models (LRMs) achieve strong performance by generating long reasoning traces with reflection. Through a large-scale empirical analysis, we find that a substantial fraction of reflective steps consist of self-verification (recheck) that repeatedly confirm intermediate results. These rechecks occur frequently across models and benchmarks, yet the vast majority are confirmatory rather than corrective, rarely identifying errors and altering reasoning outcomes. This reveals a mismatch between how often self-verification is activated and how often it is actually useful. Motivated by this, we propose a novel, experience-driven test-time framework that reduces the overused verification. Our method detects the activation of recheck behavior, consults an offline experience pool of past verification outcomes, and estimates whether a recheck is likely unnecessary via efficient retrieval. When historical experience suggests unnecessary, a suppression signal redirects the model to proceed. Across multiple model and benchmarks, our approach reduces token usage up to 20.3% while maintaining the accuracy, and in some datasets even yields accuracy improvements.
comment: 19 pages, 8 figures
☆ When Routing Collapses: On the Degenerate Convergence of LLM Routers
LLM routing aims to achieve a favorable quality--cost trade-off by dynamically assigning easy queries to smaller models and harder queries to stronger ones. However, across both unimodal and multimodal settings, we uncover a pervasive yet underexplored failure mode in existing routers: as the user's cost budget increases, routers systematically default to the most capable and most expensive model even when cheaper models already suffice. As a result, current routers under-utilize small models, wasting computation and monetary cost and undermining the core promise of routing; we term this phenomenon routing collapse. We attribute routing collapse to an objective--decision mismatch: many routers are trained to predict scalar performance scores, whereas routing decisions ultimately depend on discrete comparisons among candidate models. Consequently, small prediction errors can flip relative orderings and trigger suboptimal selections. To bridge this gap, we propose EquiRouter, a decision-aware router that directly learns model rankings, restoring the role of smaller models and mitigating routing collapse. On RouterBench, EquiRouter reduces cost by about 17\% at GPT-4-level performance compared to the strongest prior router. Our code is available at https://github.com/AIGNLAI/EquiRouter.
☆ ScDiVa: Masked Discrete Diffusion for Joint Modeling of Single-Cell Identity and Expression
Single-cell RNA-seq profiles are high-dimensional, sparse, and unordered, causing autoregressive generation to impose an artificial ordering bias and suffer from error accumulation. To address this, we propose scDiVa, a masked discrete diffusion foundation model that aligns generation with the dropout-like corruption process by defining a continuous-time forward masking mechanism in token space. ScDiVa features a bidirectional denoiser that jointly models discrete gene identities and continuous values, utilizing entropy-normalized serialization and a latent anchor token to maximize information efficiency and preserve global cell identity. The model is trained via depth-invariant time sampling and a dual denoising objective to simulate varying sparsity levels while ensuring precise recovery of both identity and magnitude. Pre-trained on 59 million cells, scDiVa achieves strong transfer performance across major benchmarks, including batch integration, cell type annotation, and perturbation response prediction. These results suggest that masked discrete diffusion serves as a biologically coherent and effective alternative to autoregression.
comment: 19 pages, 11 figures
☆ IntentRL: Training Proactive User-intent Agents for Open-ended Deep Research via Reinforcement Learning
Deep Research (DR) agents extend Large Language Models (LLMs) beyond parametric knowledge by autonomously retrieving and synthesizing evidence from large web corpora into long-form reports, enabling a long-horizon agentic paradigm. However, unlike real-time conversational assistants, DR is computationally expensive and time-consuming, creating an autonomy-interaction dilemma: high autonomy on ambiguous user queries often leads to prolonged execution with unsatisfactory outcomes. To address this, we propose IntentRL, a framework that trains proactive agents to clarify latent user intents before starting long-horizon research. To overcome the scarcity of open-ended research data, we introduce a scalable pipeline that expands a few seed samples into high-quality dialogue turns via a shallow-to-deep intent refinement graph. We further adopt a two-stage reinforcement learning (RL) strategy: Stage I applies RL on offline dialogues to efficiently learn general user-interaction behavior, while Stage II uses the trained agent and a user simulator for online rollouts to strengthen adaptation to diverse user feedback. Extensive experiments show that IntentRL significantly improves both intent hit rate and downstream task performance, outperforming the built-in clarify modules of closed-source DR agents and proactive LLM baselines.
comment: Preprint
☆ The Dual Role of Abstracting over the Irrelevant in Symbolic Explanations: Cognitive Effort vs. Understanding
Explanations are central to human cognition, yet AI systems often produce outputs that are difficult to understand. While symbolic AI offers a transparent foundation for interpretability, raw logical traces often impose a high extraneous cognitive load. We investigate how formal abstractions, specifically removal and clustering, impact human reasoning performance and cognitive effort. Utilizing Answer Set Programming (ASP) as a formal framework, we define a notion of irrelevant details to be abstracted over to obtain simplified explanations. Our cognitive experiments, in which participants classified stimuli across domains with explanations derived from an answer set program, show that clustering details significantly improve participants' understanding, while removal of details significantly reduce cognitive effort, supporting the hypothesis that abstraction enhances human-centered symbolic explanations.
comment: 8 pages, 5 figures
☆ Beyond Variance: Prompt-Efficient RLVR via Rare-Event Amplification and Bidirectional Pairing
Reinforcement learning with verifiable rewards (RLVR) is effective for training large language models on deterministic outcome reasoning tasks. Prior work shows RLVR works with few prompts, but prompt selection is often based only on training-accuracy variance, leading to unstable optimization directions and weaker transfer. We revisit prompt selection from a mechanism-level view and argue that an effective minibatch should provide both (i) a reliable positive anchor and (ii) explicit negative learning signals from rare failures. Based on this principle, we propose \emph{positive--negative pairing}: at each update, we sample a hard-but-solvable $q^{+}$ and an easy-but-brittle prompt $q^{-}$(high success rate but not perfect), characterized by low and high empirical success rates under multiple rollouts. We further introduce Weighted GRPO, which reweights binary outcomes at the pair level and uses group-normalized advantages to amplify rare successes on $q^{+}$ into sharp positive guidance while turning rare failures on $q^{-}$ into strong negative penalties. This bidirectional signal provides informative learning feedback for both successes and failures, improving sample efficiency without suppressing exploration. On Qwen2.5-Math-7B, a single paired minibatch per update consistently outperforms a GRPO baseline that selects two prompts via commonly used variance-based selection heuristics: AIME~2025 Pass@8 improves from 16.8 to 22.2, and AMC23 Pass@64 from 94.0 to 97.0, while remaining competitive with large-scale RLVR trained from a pool of 1209 training prompts. Similar gains are observed on Qwen2.5-Math-7B-Instruct.
☆ Hierarchical Concept-to-Appearance Guidance for Multi-Subject Image Generation
Multi-subject image generation aims to synthesize images that faithfully preserve the identities of multiple reference subjects while following textual instructions. However, existing methods often suffer from identity inconsistency and limited compositional control, as they rely on diffusion models to implicitly associate text prompts with reference images. In this work, we propose Hierarchical Concept-to-Appearance Guidance (CAG), a framework that provides explicit, structured supervision from high-level concepts to fine-grained appearances. At the conceptual level, we introduce a VAE dropout training strategy that randomly omits reference VAE features, encouraging the model to rely more on robust semantic signals from a Visual Language Model (VLM) and thereby promoting consistent concept-level generation in the absence of complete appearance cues. At the appearance level, we integrate the VLM-derived correspondences into a correspondence-aware masked attention module within the Diffusion Transformer (DiT). This module restricts each text token to attend only to its matched reference regions, ensuring precise attribute binding and reliable multi-subject composition. Extensive experiments demonstrate that our method achieves state-of-the-art performance on the multi-subject image generation, substantially improving prompt following and subject consistency.
CRL-VLA: Continual Vision-Language-Action Learning
Lifelong learning is critical for embodied agents in open-world environments, where reinforcement learning fine-tuning has emerged as an important paradigm to enable Vision-Language-Action (VLA) models to master dexterous manipulation through environmental interaction. Thus, Continual Reinforcement Learning (CRL) is a promising pathway for deploying VLA models in lifelong robotic scenarios, yet balancing stability (retaining old skills) and plasticity (learning new ones) remains a formidable challenge for existing methods. We introduce CRL-VLA, a framework for continual post-training of VLA models with rigorous theoretical bounds. We derive a unified performance bound linking the stability-plasticity trade-off to goal-conditioned advantage magnitude, scaled by policy divergence. CRL-VLA resolves this dilemma via asymmetric regulation: constraining advantage magnitudes on prior tasks while enabling controlled growth on new tasks. This is realized through a simple but effective dual-critic architecture with novel Goal-Conditioned Value Formulation (GCVF), where a frozen critic anchors semantic consistency and a trainable estimator drives adaptation. Experiments on the LIBERO benchmark demonstrate that CRL-VLA effectively harmonizes these conflicting objectives, outperforming baselines in both anti-forgetting and forward adaptation.
☆ Ontology-to-tools compilation for executable semantic constraint enforcement in LLM agents
We introduce ontology-to-tools compilation as a proof-of-principle mechanism for coupling large language models (LLMs) with formal domain knowledge. Within The World Avatar (TWA), ontological specifications are compiled into executable tool interfaces that LLM-based agents must use to create and modify knowledge graph instances, enforcing semantic constraints during generation rather than through post-hoc validation. Extending TWA's semantic agent composition framework, the Model Context Protocol (MCP) and associated agents are integral components of the knowledge graph ecosystem, enabling structured interaction between generative models, symbolic constraints, and external resources. An agent-based workflow translates ontologies into ontology-aware tools and iteratively applies them to extract, validate, and repair structured knowledge from unstructured scientific text. Using metal-organic polyhedra synthesis literature as an illustrative case, we show how executable ontological semantics can guide LLM behaviour and reduce manual schema and prompt engineering, establishing a general paradigm for embedding formal knowledge into generative systems.
☆ DiscoverLLM: From Executing Intents to Discovering Them
To handle ambiguous and open-ended requests, Large Language Models (LLMs) are increasingly trained to interact with users to surface intents they have not yet expressed (e.g., ask clarification questions). However, users are often ambiguous because they have not yet formed their intents: they must observe and explore outcomes to discover what they want. Simply asking "what kind of tone do you want?" fails when users themselves do not know. We introduce DiscoverLLM, a novel and generalizable framework that trains LLMs to help users form and discover their intents. Central to our approach is a novel user simulator that models cognitive state with a hierarchy of intents that progressively concretize as the model surfaces relevant options -- where the degree of concretization serves as a reward signal that models can be trained to optimize. Resulting models learn to collaborate with users by adaptively diverging (i.e., explore options) when intents are unclear, and converging (i.e., refine and implement) when intents concretize. Across proposed interactive benchmarks in creative writing, technical writing, and SVG drawing, DiscoverLLM achieves over 10% higher task performance while reducing conversation length by up to 40%. In a user study with 75 human participants, DiscoverLLM improved conversation satisfaction and efficiency compared to baselines.
☆ Socratic-Geo: Synthetic Data Generation and Geometric Reasoning via Multi-Agent Interaction
Multimodal Large Language Models (MLLMs) have significantly advanced vision-language understanding. However, even state-of-the-art models struggle with geometric reasoning, revealing a critical bottleneck: the extreme scarcity of high-quality image-text pairs. Human annotation is prohibitively expensive, while automated methods fail to ensure fidelity and training effectiveness. Existing approaches either passively adapt to available images or employ inefficient random exploration with filtering, decoupling generation from learning needs. We propose Socratic-Geo, a fully autonomous framework that dynamically couples data synthesis with model learning through multi-agent interaction. The Teacher agent generates parameterized Python scripts with reflective feedback (Reflect for solvability, RePI for visual validity), ensuring image-text pair purity. The Solver agent optimizes reasoning through preference learning, with failure paths guiding Teacher's targeted augmentation. Independently, the Generator learns image generation capabilities on accumulated "image-code-instruction" triplets, distilling programmatic drawing intelligence into visual generation. Starting from only 108 seed problems, Socratic-Solver achieves 49.11 on six benchmarks using one-quarter of baseline data, surpassing strong baselines by 2.43 points. Socratic-Generator achieves 42.4% on GenExam, establishing new state-of-the-art for open-source models, surpassing Seedream-4.0 (39.8%) and approaching Gemini-2.5-Flash-Image (43.1%).
comment: 18pages
☆ Feasible strategies for conflict resolution within intuitionistic fuzzy preference-based conflict situations
In three-way conflict analysis, preference-based conflict situations characterize agents' attitudes towards issues by formally modeling their preferences over pairs of issues. However, existing preference-based conflict models rely exclusively on three qualitative relations, namely, preference, converse, and indifference, to describe agents' attitudes towards issue pairs, which significantly limits their capacity in capturing the essence of conflict. To overcome this limitation, we introduce the concept of an intuitionistic fuzzy preference-based conflict situation that captures agents' attitudes towards issue pairs with finer granularity than that afforded by classical preference-based models. Afterwards, we develop intuitionistic fuzzy preference-based conflict measures within this framework, and construct three-way conflict analysis models for trisecting the set of agent pairs, the agent set, and the issue set. Additionally, relative loss functions built on the proposed conflict functions are employed to calculate thresholds for three-way conflict analysis. Finally, we present adjustment mechanism-based feasible strategies that simultaneously account for both adjustment magnitudes and conflict degrees, together with an algorithm for constructing such feasible strategies, and provide an illustrative example to demonstrate the validity and effectiveness of the proposed model.
☆ Risk Awareness Injection: Calibrating Vision-Language Models for Safety without Compromising Utility
Vision language models (VLMs) extend the reasoning capabilities of large language models (LLMs) to cross-modal settings, yet remain highly vulnerable to multimodal jailbreak attacks. Existing defenses predominantly rely on safety fine-tuning or aggressive token manipulations, incurring substantial training costs or significantly degrading utility. Recent research shows that LLMs inherently recognize unsafe content in text, and the incorporation of visual inputs in VLMs frequently dilutes risk-related signals. Motivated by this, we propose Risk Awareness Injection (RAI), a lightweight and training-free framework for safety calibration that restores LLM-like risk recognition by amplifying unsafe signals in VLMs. Specifically, RAI constructs an Unsafe Prototype Subspace from language embeddings and performs targeted modulation on selected high-risk visual tokens, explicitly activating safety-critical signals within the cross-modal feature space. This modulation restores the model's LLM-like ability to detect unsafe content from visual inputs, while preserving the semantic integrity of original tokens for cross-modal reasoning. Extensive experiments across multiple jailbreak and utility benchmarks demonstrate that RAI substantially reduces attack success rate without compromising task performance.
☆ Precision in Practice: Knowledge Guided Code Summarizing Grounded in Industrial Expectations
Code summaries are essential for helping developers understand code functionality and reducing maintenance and collaboration costs. Although recent advances in large language models (LLMs) have significantly improved automatic code summarization, the practical usefulness of generated summaries in industrial settings remains insufficiently explored. In collaboration with documentation experts from the industrial HarmonyOS project, we conducted a questionnaire study showing that over 57.4% of code summaries produced by state-of-the-art approaches were rejected due to violations of developers' expectations for industrial documentation. Beyond semantic similarity to reference summaries, developers emphasize additional requirements, including the use of appropriate domain terminology, explicit function categorization, and the avoidance of redundant implementation details. To address these expectations, we propose ExpSum, an expectation-aware code summarization approach that integrates function metadata abstraction, informative metadata filtering, context-aware domain knowledge retrieval, and constraint-driven prompting to guide LLMs in generating structured, expectation-aligned summaries. We evaluate ExpSum on the HarmonyOS project and widely used code summarization benchmarks. Experimental results show that ExpSum consistently outperforms all baselines, achieving improvements of up to 26.71% in BLEU-4 and 20.10% in ROUGE-L on HarmonyOS. Furthermore, LLM-based evaluations indicate that ExpSum-generated summaries better align with developer expectations across other projects, demonstrating its effectiveness for industrial code documentation.
☆ On the Entropy Dynamics in Reinforcement Fine-Tuning of Large Language Models
Entropy serves as a critical metric for measuring the diversity of outputs generated by large language models (LLMs), providing valuable insights into their exploration capabilities. While recent studies increasingly focus on monitoring and adjusting entropy to better balance exploration and exploitation in reinforcement fine-tuning (RFT), a principled understanding of entropy dynamics during this process is yet to be thoroughly investigated. In this paper, we establish a theoretical framework for analyzing the entropy dynamics during the RFT process, which begins with a discriminant expression that quantifies entropy change under a single logit update. This foundation enables the derivation of a first-order expression for entropy change, which can be further extended to the update formula of Group Relative Policy Optimization (GRPO). The corollaries and insights drawn from the theoretical analysis inspire the design of entropy control methods, and also offer a unified lens for interpreting various entropy-based methods in existing studies. We provide empirical evidence to support the main conclusions of our analysis and demonstrate the effectiveness of the derived entropy-discriminator clipping methods. This study yields novel insights into RFT training dynamics, providing theoretical support and practical strategies for optimizing the exploration-exploitation balance during LLM fine-tuning.
☆ Chain-of-Goals Hierarchical Policy for Long-Horizon Offline Goal-Conditioned RL
Offline goal-conditioned reinforcement learning remains challenging for long-horizon tasks. While hierarchical approaches mitigate this issue by decomposing tasks, most existing methods rely on separate high- and low-level networks and generate only a single intermediate subgoal, making them inadequate for complex tasks that require coordinating multiple intermediate decisions. To address this limitation, we draw inspiration from the chain-of-thought paradigm and propose the Chain-of-Goals Hierarchical Policy (CoGHP), a novel framework that reformulates hierarchical decision-making as autoregressive sequence modeling within a unified architecture. Given a state and a final goal, CoGHP autoregressively generates a sequence of latent subgoals followed by the primitive action, where each latent subgoal acts as a reasoning step that conditions subsequent predictions. To implement this efficiently, we pioneer the use of an MLP-Mixer backbone, which supports cross-token communication and captures structural relationships among state, goal, latent subgoals, and action. Across challenging navigation and manipulation benchmarks, CoGHP consistently outperforms strong offline baselines, demonstrating improved performance on long-horizon tasks.
comment: 22 pages
☆ Toward a Sustainable Federated Learning Ecosystem: A Practical Least Core Mechanism for Payoff Allocation
Emerging network paradigms and applications increasingly rely on federated learning (FL) to enable collaborative intelligence while preserving privacy. However, the sustainability of such collaborative environments hinges on a fair and stable payoff allocation mechanism. Focusing on coalition stability, this paper introduces a payoff allocation framework based on the least core (LC) concept. Unlike traditional methods, the LC prioritizes the cohesion of the federation by minimizing the maximum dissatisfaction among all potential subgroups, ensuring that no participant has an incentive to break away. To adapt this game-theoretic concept to practical, large-scale networks, we propose a streamlined implementation with a stack-based pruning algorithm, effectively balancing computational efficiency with allocation precision. Case studies in federated intrusion detection demonstrate that our mechanism correctly identifies pivotal contributors and strategic alliances. The results confirm that the practical LC framework promotes stable collaboration and fosters a sustainable FL ecosystem.
comment: 7 pages, 3 figures, submitted to IEEE Network
☆ An Approximate Ascent Approach To Prove Convergence of PPO
Proximal Policy Optimization (PPO) is among the most widely used deep reinforcement learning algorithms, yet its theoretical foundations remain incomplete. Most importantly, convergence and understanding of fundamental PPO advantages remain widely open. Under standard theory assumptions we show how PPO's policy update scheme (performing multiple epochs of minibatch updates on multi-use rollouts with a surrogate gradient) can be interpreted as approximated policy gradient ascent. We show how to control the bias accumulated by the surrogate gradients and use techniques from random reshuffling to prove a convergence theorem for PPO that sheds light on PPO's success. Additionally, we identify a previously overlooked issue in truncated Generalized Advantage Estimation commonly used in PPO. The geometric weighting scheme induces infinite mass collapse onto the longest $k$-step advantage estimator at episode boundaries. Empirical evaluations show that a simple weight correction can yield substantial improvements in environments with strong terminal signal, such as Lunar Lander.
☆ Rethinking Benign Relearning: Syntax as the Hidden Driver of Unlearning Failures ICLR 2026
Machine unlearning aims to remove specific content from trained models while preserving overall performance. However, the phenomenon of benign relearning, in which forgotten information reemerges even from benign fine-tuning data, reveals that existing unlearning methods remain fundamentally fragile. A common explanation attributes this effect to topical relevance, but we find this account insufficient. Through systematic analysis, we demonstrate that syntactic similarity, rather than topicality, is the primary driver: across benchmarks, syntactically similar data consistently trigger recovery even without topical overlap, due to their alignment in representations and gradients with the forgotten content. Motivated by this insight, we introduce syntactic diversification, which paraphrases the original forget queries into heterogeneous structures prior to unlearning. This approach effectively suppresses benign relearning, accelerates forgetting, and substantially alleviates the trade-off between unlearning efficacy and model utility.
comment: Accepted at ICLR 2026
☆ SLIM-Diff: Shared Latent Image-Mask Diffusion with Lp loss for Data-Scarce Epilepsy FLAIR MRI
Focal cortical dysplasia (FCD) lesions in epilepsy FLAIR MRI are subtle and scarce, making joint image--mask generative modeling prone to instability and memorization. We propose SLIM-Diff, a compact joint diffusion model whose main contributions are (i) a single shared-bottleneck U-Net that enforces tight coupling between anatomy and lesion geometry from a 2-channel image+mask representation, and (ii) loss-geometry tuning via a tunable $L_p$ objective. As an internal baseline, we include the canonical DDPM-style objective ($ε$-prediction with $L_2$ loss) and isolate the effect of prediction parameterization and $L_p$ geometry under a matched setup. Experiments show that $x_0$-prediction is consistently the strongest choice for joint synthesis, and that fractional sub-quadratic penalties ($L_{1.5}$) improve image fidelity while $L_2$ better preserves lesion mask morphology. Our code and model weights are available in https://github.com/MarioPasc/slim-diff
comment: 6 pages, 2 figures, 1 table, conference paper
☆ MeKi: Memory-based Expert Knowledge Injection for Efficient LLM Scaling
Scaling Large Language Models (LLMs) typically relies on increasing the number of parameters or test-time computations to boost performance. However, these strategies are impractical for edge device deployment due to limited RAM and NPU resources. Despite hardware constraints, deploying performant LLM on edge devices such as smartphone remains crucial for user experience. To address this, we propose MeKi (Memory-based Expert Knowledge Injection), a novel system that scales LLM capacity via storage space rather than FLOPs. MeKi equips each Transformer layer with token-level memory experts that injects pre-stored semantic knowledge into the generation process. To bridge the gap between training capacity and inference efficiency, we employ a re-parameterization strategy to fold parameter matrices used during training into a compact static lookup table. By offloading the knowledge to ROM, MeKi decouples model capacity from computational cost, introducing zero inference latency overhead. Extensive experiments demonstrate that MeKi significantly outperforms dense LLM baselines with identical inference speed, validating the effectiveness of memory-based scaling paradigm for on-device LLMs. Project homepage is at https://github.com/ningding-o/MeKi.
☆ GFlowPO: Generative Flow Network as a Language Model Prompt Optimizer
Finding effective prompts for language models (LMs) is critical yet notoriously difficult: the prompt space is combinatorially large, rewards are sparse due to expensive target-LM evaluation. Yet, existing RL-based prompt optimizers often rely on on-policy updates and a meta-prompt sampled from a fixed distribution, leading to poor sample efficiency. We propose GFlowPO, a probabilistic prompt optimization framework that casts prompt search as a posterior inference problem over latent prompts regularized by a meta-prompted reference-LM prior. In the first step, we fine-tune a lightweight prompt-LM with an off-policy Generative Flow Network (GFlowNet) objective, using a replay-based training policy that reuses past prompt evaluations to enable sample-efficient exploration. In the second step, we introduce Dynamic Memory Update (DMU), a training-free mechanism that updates the meta-prompt by injecting both (i) diverse prompts from a replay buffer and (ii) top-performing prompts from a small priority queue, thereby progressively concentrating the search process on high-reward regions. Across few-shot text classification, instruction induction benchmarks, and question answering tasks, GFlowPO consistently outperforms recent discrete prompt optimization baselines.
☆ Causal Graph Learning via Distributional Invariance of Cause-Effect Relationship
This paper introduces a new framework for recovering causal graphs from observational data, leveraging the observation that the distribution of an effect, conditioned on its causes, remains invariant to changes in the prior distribution of those causes. This insight enables a direct test for potential causal relationships by checking the variance of their corresponding effect-cause conditional distributions across multiple downsampled subsets of the data. These subsets are selected to reflect different prior cause distributions, while preserving the effect-cause conditional relationships. Using this invariance test and exploiting an (empirical) sparsity of most causal graphs, we develop an algorithm that efficiently uncovers causal relationships with quadratic complexity in the number of observational variables, reducing the processing time by up to 25x compared to state-of-the-art methods. Our empirical experiments on a varied benchmark of large-scale datasets show superior or equivalent performance compared to existing works, while achieving enhanced scalability.
☆ Building Interpretable Models for Moral Decision-Making AAAI'26
We build a custom transformer model to study how neural networks make moral decisions on trolley-style dilemmas. The model processes structured scenarios using embeddings that encode who is affected, how many people, and which outcome they belong to. Our 2-layer architecture achieves 77% accuracy on Moral Machine data while remaining small enough for detailed analysis. We use different interpretability techniques to uncover how moral reasoning distributes across the network, demonstrating that biases localize to distinct computational stages among other findings.
comment: 8 pages, 4 figures, accepted to AAAI'26 Machine Ethics Workshop
☆ Robustness as an Emergent Property of Task Performance
Robustness is often regarded as a critical future challenge for real-world applications, where stability is essential. However, as models often learn tasks in a similar order, we hypothesize that easier tasks will be easier regardless of how they are presented to the model. Indeed, in this paper, we show that as models approach high performance on a task, robustness is effectively achieved. Through an empirical analysis of multiple models across diverse datasets and configurations (e.g., paraphrases, different temperatures), we find a strong positive correlation. Moreover, we find that robustness is primarily driven by task-specific competence rather than inherent model-level properties, challenging current approaches that treat robustness as an independent capability. Thus, from a high-level perspective, we may expect that as new tasks saturate, model robustness on these tasks will emerge accordingly. For researchers, this implies that explicit efforts to measure and improve robustness may warrant reduced emphasis, as such robustness is likely to develop alongside performance gains. For practitioners, it acts as a sign that indeed the tasks that the literature deals with are unreliable, but on easier past tasks, the models are reliable and ready for real-world deployment.
☆ Tiled Prompts: Overcoming Prompt Underspecification in Image and Video Super-Resolution
Text-conditioned diffusion models have advanced image and video super-resolution by using prompts as semantic priors, but modern super-resolution pipelines typically rely on latent tiling to scale to high resolutions, where a single global caption causes prompt underspecification. A coarse global prompt often misses localized details (prompt sparsity) and provides locally irrelevant guidance (prompt misguidance) that can be amplified by classifier-free guidance. We propose Tiled Prompts, a unified framework for image and video super-resolution that generates a tile-specific prompt for each latent tile and performs super-resolution under locally text-conditioned posteriors, providing high-information guidance that resolves prompt underspecification with minimal overhead. Experiments on high resolution real-world images and videos show consistent gains in perceptual quality and text alignment, while reducing hallucinations and tile-level artifacts relative to global-prompt baselines.
comment: 13 pages, 7 figures
♻ ☆ Reuse your FLOPs: Scaling RL on Hard Problems by Conditioning on Very Off-Policy Prefixes
Typical reinforcement learning (RL) methods for LLM reasoning waste compute on hard problems, where correct on-policy traces are rare, policy gradients vanish, and learning stalls. To bootstrap more efficient RL, we consider reusing old sampling FLOPs (from prior inference or RL training) in the form of off-policy traces. Standard off-policy methods supervise against off-policy data, causing instabilities during RL optimization. We introduce PrefixRL, where we condition on the prefix of successful off-policy traces and run on-policy RL to complete them, side-stepping off-policy instabilities. PrefixRL boosts the learning signal on hard problems by modulating the difficulty of the problem through the off-policy prefix length. We prove that the PrefixRL objective is not only consistent with the standard RL objective but also more sample efficient. Empirically, we discover back-generalization: training only on prefixed problems generalizes to out-of-distribution unprefixed performance, with learned strategies often differing from those in the prefix. In our experiments, we source the off-policy traces by rejection sampling with the base model, creating a self-improvement loop. On hard reasoning problems, PrefixRL reaches the same training reward 2x faster than the strongest baseline (SFT on off-policy data then RL), even after accounting for the compute spent on the initial rejection sampling, and increases the final reward by 3x. The gains transfer to held-out benchmarks, and PrefixRL is still effective when off-policy traces are derived from a different model family, validating its flexibility in practical settings.
♻ ☆ Polynomial Neural Sheaf Diffusion: A Spectral Filtering Approach on Cellular Sheaves ICML 2026
Sheaf Neural Networks equip graph structures with a cellular sheaf: a geometric structure which assigns local vector spaces (stalks) and a linear learnable restriction/transport maps to nodes and edges, yielding an edge-aware inductive bias that handles heterophily and limits oversmoothing. However, common Neural Sheaf Diffusion implementations rely on SVD-based sheaf normalization and dense per-edge restriction maps, which scale with stalk dimension, require frequent Laplacian rebuilds, and yield brittle gradients. To address these limitations, we introduce Polynomial Neural Sheaf Diffusion (PolyNSD), a new sheaf diffusion approach whose propagation operator is a degree-K polynomial in a normalised sheaf Laplacian, evaluated via a stable three-term recurrence on a spectrally rescaled operator. This provides an explicit K-hop receptive field in a single layer (independently of the stalk dimension), with a trainable spectral response obtained as a convex mixture of K+1 orthogonal polynomial basis responses. PolyNSD enforces stability via convex mixtures, spectral rescaling, and residual/gated paths, reaching new state-of-the-art results on both homophilic and heterophilic benchmarks, inverting the Neural Sheaf Diffusion trend by obtaining these results with just diagonal restriction maps, decoupling performance from large stalk dimension, while reducing runtime and memory requirements.
comment: Under Review at ICML 2026
♻ ☆ MixGRPO: Unlocking Flow-based GRPO Efficiency with Mixed ODE-SDE
Although GRPO substantially enhances flow matching models in human preference alignment of image generation, methods such as FlowGRPO and DanceGRPO still exhibit inefficiency due to the necessity of sampling and optimizing over all denoising steps specified by the Markov Decision Process (MDP). In this paper, we propose $\textbf{MixGRPO}$, a novel framework that leverages the flexibility of mixed sampling strategies through the integration of stochastic differential equations (SDE) and ordinary differential equations (ODE). This streamlines the optimization process within the MDP to improve efficiency and boost performance. Specifically, MixGRPO introduces a sliding window mechanism, using SDE sampling and GRPO-guided optimization only within the window, while applying ODE sampling outside. This design confines sampling randomness to the time-steps within the window, thereby reducing the optimization overhead, and allowing for more focused gradient updates to accelerate convergence. Additionally, as time-steps beyond the sliding window are not involved in optimization, higher-order solvers are supported for faster sampling. So we present a faster variant, termed $\textbf{MixGRPO-Flash}$, which further improves training efficiency while achieving comparable performance. MixGRPO exhibits substantial gains across multiple dimensions of human preference alignment, outperforming DanceGRPO in both effectiveness and efficiency, with nearly 50% lower training time. Notably, MixGRPO-Flash further reduces training time by 71%.
♻ ☆ Multi-Agent Pathfinding Under Team-Connected Communication Constraint via Adaptive Path Expansion and Dynamic Leading
This paper proposes a novel planning framework to handle a multi-agent pathfinding problem under team-connected communication constraint, where all agents must have a connected communication channel to the rest of the team during their entire movements. Standard multi-agent path finding approaches (e.g., priority-based search) have potential in this domain but fail when neighboring configurations at start and goal differ. Their single-expansion approach -- computing each agent's path from the start to the goal in just a single expansion -- cannot reliably handle planning under communication constraints for agents as their neighbors change during navigating. Similarly, leader-follower approaches (e.g., platooning) are effective at maintaining team communication, but fixing the leader at the outset of planning can cause planning to become stuck in dense-clutter environments, limiting their practical utility. To overcome this limitation, we propose a novel two-level multi-agent pathfinding framework that integrates two techniques: adaptive path expansion to expand agent paths to their goals in multiple stages; and dynamic leading technique that enables the reselection of the leading agent during each agent path expansion whenever progress cannot be made. Simulation experiments show the efficiency of our planners, which can handle up to 25 agents across five environment types under a limited communication range constraint and up to 11-12 agents on three environment types under line-of-sight communication constraint, exceeding 90% success-rate where baselines routinely fail.
♻ ☆ Measuring Agents in Production
LLM-based agents already operate in production across many industries, yet we lack an understanding of what technical methods make deployments successful. We present the first systematic study of Measuring Agents in Production, MAP, using first-hand data from agent developers. We conducted 20 case studies via in-depth interviews and surveyed 306 practitioners across 26 domains. We investigate why organizations build agents, how they build them, how they evaluate them, and their top development challenges. Our study finds that production agents are built using simple, controllable approaches: 68% execute at most 10 steps before human intervention, 70% rely on prompting off-the-shelf models instead of weight tuning, and 74% depend primarily on human evaluation. Reliability (consistent correct behavior over time) remains the top development challenge, which practitioners currently address through systems-level design. MAP documents the current state of production agents, providing the research community with visibility into deployment realities and under-explored research avenues.
♻ ☆ PAINT: Parallel-in-time Neural Twins for Dynamical System Reconstruction
Neural surrogates have shown great potential in simulating dynamical systems, while offering real-time capabilities. We envision Neural Twins as a progression of neural surrogates, aiming to create digital replicas of real systems. A neural twin consumes measurements at test time to update its state, thereby enabling context-specific decision-making. We argue, that a critical property of neural twins is their ability to remain on-trajectory, i.e., to stay close to the true system state over time. We introduce Parallel-in-time Neural Twins (PAINT), an architecture-agnostic family of methods for modeling dynamical systems from measurements. PAINT trains a generative neural network to model the distribution of states in parallel over time. At test time, states are predicted from measurements in a sliding window fashion. Our theoretical analysis shows that PAINT is on-trajectory, whereas autoregressive models generally are not. Empirically, we evaluate our method on a challenging two-dimensional turbulent fluid dynamics problem. The results demonstrate that PAINT stays on-trajectory and predicts system states from sparse measurements with high fidelity. These findings underscore PAINT's potential for developing neural twins that stay on-trajectory, enabling more accurate state estimation and decision-making.
comment: 28 pages, 23 figures
♻ ☆ PluriHarms: Benchmarking the Full Spectrum of Human Judgments on AI Harm
Current AI safety frameworks, which often treat harmfulness as binary, lack the flexibility to handle borderline cases where humans meaningfully disagree. To build more pluralistic systems, it is essential to move beyond consensus and instead understand where and why disagreements arise. We introduce PluriHarms, a benchmark designed to systematically study human harm judgments across two key dimensions -- the harm axis (benign to harmful) and the agreement axis (agreement to disagreement). Our scalable framework generates prompts that capture diverse AI harms and human values while targeting cases with high disagreement rates, validated by human data. The benchmark includes 150 prompts with 15,000 ratings from 100 human annotators, enriched with demographic and psychological traits and prompt-level features of harmful actions, effects, and values. Our analyses show that prompts that relate to imminent risks and tangible harms amplify perceived harmfulness, while annotator traits (e.g., toxicity experience, education) and their interactions with prompt content explain systematic disagreement. We benchmark AI safety models and alignment methods on PluriHarms, finding that while personalization significantly improves prediction of human harm judgments, considerable room remains for future progress. By explicitly targeting value diversity and disagreement, our work provides a principled benchmark for moving beyond "one-size-fits-all" safety toward pluralistically safe AI.
♻ ☆ The Epistemic Planning Domain Definition Language: Official Guideline
Epistemic planning extends (multi-agent) automated planning by making agents' knowledge and beliefs first-class aspects of the planning formalism. One of the most well-known frameworks for epistemic planning is Dynamic Epistemic Logic (DEL), which offers an rich and natural semantics for modelling problems in this setting. The high expressive power provided by DEL make DEL-based epistemic planning a challenging problem to tackle both theoretically, and in practical implementations. As a result, existing epistemic planners often target different DEL fragments, and typically rely on ad hoc languages to represent benchmarks, and sometimes no language at all. This fragmentation hampers comparison, reuse, and systematic benchmark development. We address these issues by introducing the Epistemic Planning Domain Definition Language (EPDDL). EPDDL provides a unique PDDL-like representation that captures the entire DEL semantics, enabling uniform specification of epistemic planning tasks. Our main contributions are: 1. A formal development of abstract event models, a novel representation for epistemic actions used to define the semantics of our language; 2. A formal specification of EPDDL's syntax and semantics grounded in DEL with abstract event models. Through examples of representative benchmarks, we illustrate how EPDDL facilitates interoperability, reproducible evaluation, and future advances in epistemic planning.
♻ ☆ Self-Foveate: Enhancing Diversity and Difficulty of Synthesized Instructions from Unsupervised Text via Multi-Level Foveation ACL 2025
Synthesizing high-quality instruction data from unsupervised text is a promising paradigm for training large language models (LLMs), yet automated methods for this task still exhibit significant limitations in the diversity and difficulty of synthesized instructions. To address these challenges, we propose Self-Foveate, an LLM-driven method for instruction synthesis. Inspired by hierarchical human visual perception, Self-Foveate introduces a "Micro-Scatter-Macro" multi-level foveation methodology that guides the extraction of textual information at three complementary granularities, from fine-grained details through cross-region connections to holistic patterns, thereby enhancing both the diversity and difficulty of synthesized instructions. Furthermore, a re-synthesis module is incorporated to improve the fidelity of instructions to source text and their overall quality. Comprehensive experiments across multiple unsupervised corpora and diverse model architectures demonstrate that Self-Foveate consistently outperforms existing methods. We publicly release our code at https://github.com/Mubuky/Self-Foveate
comment: Accepted to ACL 2025 (Findings). 23 pages, 4 figures
♻ ☆ How to Trick Your AI TA: A Systematic Study of Academic Jailbreaking in LLM Code Evaluation SP
The use of Large Language Models (LLMs) as automatic judges for code evaluation is becoming increasingly prevalent in academic environments. But their reliability can be compromised by students who may employ adversarial prompting strategies in order to induce misgrading and secure undeserved academic advantages. In this paper, we present the first large-scale study of jailbreaking LLM-based automated code evaluators in academic context. Our contributions are: (i) We systematically adapt 20+ jailbreaking strategies for jailbreaking AI code evaluators in the academic context, defining a new class of attacks termed academic jailbreaking. (ii) We release a poisoned dataset of 25K adversarial student submissions, specifically designed for the academic code-evaluation setting, sourced from diverse real-world coursework and paired with rubrics and human-graded references, and (iii) In order to capture the multidimensional impact of academic jailbreaking, we systematically adapt and define three jailbreaking metrics (Jailbreak Success Rate, Score Inflation, and Harmfulness). (iv) We comprehensively evalulate the academic jailbreaking attacks using six LLMs. We find that these models exhibit significant vulnerability, particularly to persuasive and role-play-based attacks (up to 97% JSR). Our adversarial dataset and benchmark suite lay the groundwork for next-generation robust LLM-based evaluators in academic code assessment.
comment: This manuscript has been withdrawn by the authors because the methodology and results have been superseded by a more rigorous framework (SPACI and AST-ASIP). The corrected and expanded findings are now available in arXiv:2601.21360. Please cite the new manuscript instead
♻ ☆ Toward Learning POMDPs Beyond Full-Rank Actions and State Observability
We are interested in enabling autonomous agents to learn and reason about systems with hidden states, such as locking mechanisms. We cast this problem as learning the parameters of a discrete Partially Observable Markov Decision Process (POMDP). The agent begins with knowledge of the POMDP's actions and observation spaces, but not its state space, transitions, or observation models. These properties must be constructed from a sequence of actions and observations. Spectral approaches to learning models of partially observable domains, such as Predictive State Representations (PSRs), learn representations of state that are sufficient to predict future outcomes. PSR models, however, do not have explicit transition and observation system models that can be used with different reward functions to solve different planning problems. Under a mild set of rankness assumptions on the products of transition and observation matrices, we show how PSRs learn POMDP matrices up to a similarity transform, and this transform may be estimated via tensor decomposition methods. Our method learns observation matrices and transition matrices up to a partition of states, where the states in a single partition have the same observation distributions corresponding to actions whose transition matrices are full-rank. Our experiments suggest that explicit observation and transition likelihoods can be leveraged to generate new plans for different goals and reward functions after the model has been learned. We also show that learning a POMDP beyond a partition of states is impossible from sequential data by constructing two POMDPs that agree on all observation distributions but differ in their transition dynamics.
comment: Update abstract
♻ ☆ Abacus: A Cost-Based Optimizer for Semantic Operator Systems VLDB'26
LLMs enable an exciting new class of data processing applications over large collections of unstructured documents. Several new programming frameworks have enabled developers to build these applications by composing them out of semantic operators: a declarative set of AI-powered data transformations with natural language specifications. These include LLM-powered maps, filters, joins, etc. used for document processing tasks such as information extraction, summarization, and more. While systems of semantic operators have achieved strong performance on benchmarks, they can be difficult to optimize. An optimizer for this setting must determine how to physically implement each semantic operator in a way that optimizes the system globally. Existing optimizers are limited in the number of optimizations they can apply, and most (if not all) cannot optimize system quality, cost, or latency subject to constraint(s) on the other dimensions. In this paper we present Abacus, an extensible, cost-based optimizer which searches for the best implementation of a semantic operator system given a (possibly constrained) optimization objective. Abacus estimates operator performance by leveraging a minimal set of validation examples, prior beliefs about operator performance, and/or an LLM judge. We evaluate Abacus on document processing workloads in the biomedical and legal domains (BioDEX; CUAD) and multi-modal question answering (MMQA). We demonstrate that, on-average, systems optimized by Abacus achieve 6.7%-39.4% better quality and are 10.8x cheaper and 3.4x faster than the next best system.
comment: To be published in VLDB'26, 14 pages, 8 figures
♻ ☆ Information-Theoretic Causal Bounds under Unmeasured Confounding
We develop a data-driven information-theoretic framework for sharp partial identification of causal effects under unmeasured confounding. Existing approaches often rely on restrictive assumptions, such as bounded or discrete outcomes; require external inputs (for example, instrumental variables, proxies, or user-specified sensitivity parameters); necessitate full structural causal model specifications; or focus solely on population-level averages while neglecting covariate-conditional treatment effects. We overcome all four limitations simultaneously by establishing novel information-theoretic, data-driven divergence bounds. Our key theoretical contribution shows that the f-divergence between the observational distribution P(Y | A = a, X = x) and the interventional distribution P(Y | do(A = a), X = x) is upper bounded by a function of the propensity score alone. This result enables sharp partial identification of conditional causal effects directly from observational data, without requiring external sensitivity parameters, auxiliary variables, full structural specifications, or outcome boundedness assumptions. For practical implementation, we develop a semiparametric estimator satisfying Neyman orthogonality (Chernozhukov et al., 2018), which ensures square-root-n consistent inference even when nuisance functions are estimated using flexible machine learning methods. Simulation studies and real-world data applications, implemented in the GitHub repository (https://github.com/yonghanjung/Information-Theretic-Bounds), demonstrate that our framework provides tight and valid causal bounds across a wide range of data-generating processes.
♻ ☆ TurkBench: A Benchmark for Evaluating Turkish Large Language Models EACL 2026
With the recent surge in the development of large language models, the need for comprehensive and language-specific evaluation benchmarks has become critical. While significant progress has been made in evaluating English-language models, benchmarks for other languages, particularly those with unique linguistic characteristics such as Turkish, remain less developed. Our study introduces TurkBench, a comprehensive benchmark designed to assess the capabilities of generative large language models in the Turkish language. TurkBench involves 8,151 data samples across 21 distinct subtasks. These are organized under six main categories of evaluation: Knowledge, Language Understanding, Reasoning, Content Moderation, Turkish Grammar and Vocabulary, and Instruction Following. The diverse range of tasks and the culturally relevant data would provide researchers and developers with a valuable tool for evaluating their models and identifying areas for improvement. We further publish our benchmark for online submissions at https://huggingface.co/turkbench
comment: Accepted by EACL 2026 SIGTURK
♻ ☆ Interpreting and Controlling LLM Reasoning through Integrated Policy Gradient
Large language models (LLMs) demonstrate strong reasoning abilities in solving complex real-world problems. Yet, the internal mechanisms driving these complex reasoning behaviors remain opaque. Existing interpretability approaches targeting reasoning either identify components (e.g., neurons) correlated with special textual patterns, or rely on human-annotated contrastive pairs to derive control vectors. Consequently, current methods struggle to precisely localize complex reasoning mechanisms or capture sequential influence from model internal workings to the reasoning outputs. In this paper, built on outcome-oriented and sequential-influence-aware principles, we focus on identifying components that have sequential contribution to reasoning behavior where outcomes are cumulated by long-range effects. We propose Integrated Policy Gradient (IPG), a novel framework that attributes reasoning behaviors to model's inner components by propagating compound outcome-based signals such as post reasoning accuracy backward through model inference trajectories. Empirical evaluations demonstrate that our approach achieves more precise localization and enables reliable modulation of reasoning behaviors (e.g., reasoning capability, reasoning strength) across diverse reasoning models.
♻ ☆ Transformers can do Bayesian Clustering
Bayesian clustering accounts for uncertainty but is computationally demanding at scale. Furthermore, real-world datasets often contain missing values, and simple imputation ignores the associated uncertainty, resulting in suboptimal results. We present Cluster-PFN, a Transformer-based model that extends Prior-Data Fitted Networks (PFNs) to unsupervised Bayesian clustering. Trained entirely on synthetic datasets generated from a finite Gaussian Mixture Model (GMM) prior, Cluster-PFN learns to estimate the posterior distribution over both the number of clusters and the cluster assignments. Our method estimates the number of clusters more accurately than handcrafted model selection procedures such as AIC, BIC and Variational Inference (VI), and achieves clustering quality competitive with VI while being orders of magnitude faster. Cluster-PFN can be trained on complex priors that include missing data, outperforming imputation-based baselines on real-world genomic datasets, at high missingness. These results show that the Cluster-PFN can provide scalable and flexible Bayesian clustering.
♻ ☆ Uncertainty-driven Adaptive Exploration AAMAS 2026
Adaptive exploration methods propose ways to learn complex policies via alternating between exploration and exploitation. An important question for such methods is to determine the appropriate moment to switch between exploration and exploitation and vice versa. This is critical in domains that require the learning of long and complex sequences of actions. In this work, we present a generic adaptive exploration framework that employs uncertainty to address this important issue in a principled manner. Our framework includes previous adaptive exploration approaches as special cases. Moreover, we can incorporate in our framework any uncertainty-measuring mechanism of choice, for instance mechanisms used in intrinsic motivation or epistemic uncertainty-based exploration methods. We experimentally demonstrate that our framework gives rise to adaptive exploration strategies that outperform standard ones across several environments.
comment: This is an extended version (full paper + appendix) of the paper titled "A Novel Framework for Uncertainty-Driven Adaptive Exploration" accepted as a full paper at AAMAS 2026. The accepted paper can be found in https://openreview.net/forum?id=j5awxzdsU9
♻ ☆ The Path of Least Resistance: Guiding LLM Reasoning Trajectories with Prefix Consensus ICLR 2026
Large language models achieve strong reasoning performance, but inference strategies such as Self-Consistency (SC) are computationally expensive, as they fully expand all reasoning traces. We introduce PoLR (Path of Least Resistance), the first inference-time method to leverage prefix consistency for compute-efficient reasoning. PoLR clusters short prefixes of reasoning traces, identifies the dominant cluster, and expands all paths in that cluster, preserving the accuracy benefits of SC while substantially reducing token usage and latency. Our theoretical analysis, framed via mutual information and entropy, explains why early reasoning steps encode strong signals predictive of final correctness. Empirically, PoLR consistently matches or exceeds SC across GSM8K, MATH500, AIME24/25, and GPQA-DIAMOND, reducing token usage by up to 60% and wall-clock latency by up to 50%. Moreover, PoLR is fully complementary to adaptive inference methods (e.g., Adaptive Consistency, Early-Stopping SC) and can serve as a drop-in pre-filter, making SC substantially more efficient and scalable without requiring model fine-tuning.
comment: Accepted at ICLR 2026. https://openreview.net/forum?id=hrnSqERgPn
♻ ☆ NOBLE -- Neural Operator with Biologically-informed Latent Embeddings to Capture Experimental Variability in Biological Neuron Models
Characterizing the cellular properties of neurons is fundamental to understanding their function in the brain. In this quest, the generation of bio-realistic models is central towards integrating multimodal cellular data sets and establishing causal relationships. However, current modeling approaches remain constrained by the limited availability and intrinsic variability of experimental neuronal data. The deterministic formalism of bio-realistic models currently precludes accounting for the natural variability observed experimentally. While deep learning is becoming increasingly relevant in this space, it fails to capture the full biophysical complexity of neurons, their nonlinear voltage dynamics, and variability. To address these shortcomings, we introduce NOBLE, a neural operator framework that learns a mapping from a continuous frequency-modulated embedding of interpretable neuron features to the somatic voltage response induced by current injection. Trained on synthetic data generated from bio-realistic neuron models, NOBLE predicts distributions of neural dynamics accounting for the intrinsic experimental variability. Unlike conventional bio-realistic neuron models, interpolating within the embedding space offers models whose dynamics are consistent with experimentally observed responses. NOBLE enables the efficient generation of synthetic neurons that closely resemble experimental data and exhibit trial-to-trial variability, offering a $4200\times$ speedup over the numerical solver. NOBLE is the first scaled-up deep learning framework that validates its generalization with real experimental data. To this end, NOBLE captures fundamental neural properties in a unique and emergent manner that opens the door to a better understanding of cellular composition and computations, neuromorphic architectures, large-scale brain circuits, and general neuroAI applications.
♻ ☆ Mapping the Unseen: Unified Promptable Panoptic Mapping with Dynamic Labeling using Foundation Models
Panoptic maps enable robots to reason about both geometry and semantics. However, open-vocabulary models repeatedly produce closely related labels that split panoptic entities and degrade volumetric consistency. The proposed UPPM advances open-world scene understanding by leveraging foundation models to introduce a panoptic Dynamic Descriptor that reconciles open-vocabulary labels with unified category structure and geometric size priors. The fusion for such dynamic descriptors is performed within a multi-resolution multi-TSDF map using language-guided open-vocabulary panoptic segmentation and semantic retrieval, resulting in a persistent and promptable panoptic map without additional model training. Based on our evaluation experiments, UPPM shows the best overall performance in terms of the map reconstruction accuracy and the panoptic segmentation quality. The ablation study investigates the contribution for each component of UPPM (custom NMS, blurry-frame filtering, and unified semantics) to the overall system performance. Consequently, UPPM preserves open-vocabulary interpretability while delivering strong geometric and panoptic accuracy.
♻ ☆ Advancing AI Research Assistants with Expert-Involved Learning
Large language models (LLMs) and large multimodal models (LMMs) promise to accelerate biomedical discovery, yet their reliability remains unclear. We introduce ARIEL (AI Research Assistant for Expert-in-the-Loop Learning), an open-source evaluation and optimization framework that pairs a curated multimodal biomedical corpus with expert-vetted tasks to probe two capabilities: full-length article summarization and fine-grained figure interpretation. Using uniform protocols and blinded PhD-level evaluation, we find that state-of-the-art models generate fluent but incomplete summaries, whereas LMMs struggle with detailed visual reasoning. We later observe that prompt engineering and lightweight fine-tuning substantially improve textual coverage, and a compute-scaled inference strategy enhances visual question answering. We build an ARIEL agent that integrates textual and visual cues, and we show it can propose testable mechanistic hypotheses. ARIEL delineates current strengths and limitations of foundation models, and provides a reproducible platform for advancing trustworthy AI in biomedicine.
comment: 36 pages, 7 figures
♻ ☆ Infinite-World: Scaling Interactive World Models to 1000-Frame Horizons via Pose-Free Hierarchical Memory
We propose Infinite-World, a robust interactive world model capable of maintaining coherent visual memory over 1000+ frames in complex real-world environments. While existing world models can be efficiently optimized on synthetic data with perfect ground-truth, they lack an effective training paradigm for real-world videos due to noisy pose estimations and the scarcity of viewpoint revisits. To bridge this gap, we first introduce a Hierarchical Pose-free Memory Compressor (HPMC) that recursively distills historical latents into a fixed-budget representation. By jointly optimizing the compressor with the generative backbone, HPMC enables the model to autonomously anchor generations in the distant past with bounded computational cost, eliminating the need for explicit geometric priors. Second, we propose an Uncertainty-aware Action Labeling module that discretizes continuous motion into a tri-state logic. This strategy maximizes the utilization of raw video data while shielding the deterministic action space from being corrupted by noisy trajectories, ensuring robust action-response learning. Furthermore, guided by insights from a pilot toy study, we employ a Revisit-Dense Finetuning Strategy using a compact, 30-minute dataset to efficiently activate the model's long-range loop-closure capabilities. Extensive experiments, including objective metrics and user studies, demonstrate that Infinite-World achieves superior performance in visual quality, action controllability, and spatial consistency.
comment: project page: https://rq-wu.github.io/projects/infinite-world/index.html
♻ ☆ Code2Bench: Scaling Source and Rigor for Dynamic Benchmark Construction
The evaluation of code-generating Large Language Models (LLMs) is fundamentally constrained by two intertwined challenges: a reliance on static, easily contaminated problem sources and the use of superficial, low-rigor testing. This paper introduces a new benchmark construction philosophy, Dual Scaling, designed to systematically address both limitations. Our approach involves continuously scaling the source of problems from dynamic, real-world code repositories and systematically scaling the rigor of tests via automated, high-coverage Property-Based Testing (PBT). We instantiate this philosophy in CODE2BENCH, an end-to-end framework that leverages Scope Graph analysis for principled dependency classification and a 100% branch coverage quality gate to ensure test suite integrity. Using this framework, we construct CODE2BENCH-2509, a new benchmark suite with native instances in both Python and Java. Our extensive evaluation of 10 state-of-the-art LLMs on CODE2BENCH-2509, powered by a novel "diagnostic fingerprint" visualization, yields three key insights: (1) models exhibit a fundamental performance gap, excelling at API application (Weakly Self-Contained tasks) but struggling with algorithmic synthesis (Self-Contained tasks); (2) a model's performance is profoundly shaped by the target language's ecosystem, a nuance we are the first to systematically quantify; and (3) our rigorous, scaled testing is critical in uncovering an "illusion of correctness" prevalent in simpler benchmarks. Our work presents a robust, scalable, and diagnostic paradigm for the next generation of LLM evaluation in software engineering. The code, data, and results are available at https://code2bench.github.io/.
♻ ☆ Spiking Neural Networks for Continuous Control via End-to-End Model-Based Learning
Despite recent progress in training spiking neural networks (SNNs) for classification, their application to continuous motor control remains limited. Here, we demonstrate that fully spiking architectures can be trained end-to-end to control robotic arms with multiple degrees of freedom in continuous environments. Our predictive-control framework combines Leaky Integrate-and-Fire dynamics with surrogate gradients, jointly optimizing a forward model for dynamics prediction and a policy network for goal-directed action. We evaluate this approach on both a planar 2D reaching task and a simulated 6-DOF Franka Emika Panda robot with torque control. In direct comparison to non-spiking recurrent baselines trained under the same predictive-control pipeline, the proposed SNN achieves comparable task performance while using substantially fewer parameters. An extensive ablation study highlights the role of initialization, learnable time constants, adaptive thresholds, and latent-space compression as key contributors to stable training and effective control. Together, these findings establish spiking neural networks as a viable and scalable substrate for high-dimensional continuous control, while emphasizing the importance of principled architectural and training design.
♻ ☆ Building spatial world models from sparse transitional episodic memories ICLR 2026
Many animals possess a remarkable capacity to rapidly construct flexible cognitive maps of their environments. These maps are crucial for ethologically relevant behaviors such as navigation, exploration, and planning. Existing computational models typically require long sequential trajectories to build accurate maps, but neuroscience evidence suggests maps can also arise from integrating disjoint experiences governed by consistent spatial rules. We introduce the Episodic Spatial World Model (ESWM), a novel framework that constructs spatial maps from sparse, disjoint episodic memories. Across environments of varying complexity, ESWM predicts unobserved transitions from minimal experience, and the geometry of its latent space aligns with that of the environment. Because it operates on episodic memories that can be independently stored and updated, ESWM is inherently adaptive, enabling rapid adjustment to environmental changes. Furthermore, we demonstrate that ESWM readily enables near-optimal strategies for exploring novel environments and navigating between arbitrary points, all without the need for additional training. Our work demonstrates how neuroscience-inspired principles of episodic memory can advance the development of more flexible and generalizable world models.
comment: Accepted ICLR 2026
♻ ☆ Accurate and Efficient World Modeling with Masked Latent Transformers
The Dreamer algorithm has recently obtained remarkable performance across diverse environment domains by training powerful agents with simulated trajectories. However, the compressed nature of its world model's latent space can result in the loss of crucial information, negatively affecting the agent's performance. Recent approaches, such as $Δ$-IRIS and DIAMOND, address this limitation by training more accurate world models. However, these methods require training agents directly from pixels, which reduces training efficiency and prevents the agent from benefiting from the inner representations learned by the world model. In this work, we propose an alternative approach to world modeling that is both accurate and efficient. We introduce EMERALD (Efficient MaskEd latent tRAnsformer worLD model), a world model using a spatial latent state with MaskGIT predictions to generate accurate trajectories in latent space and improve the agent performance. On the Crafter benchmark, EMERALD achieves new state-of-the-art performance, becoming the first method to surpass human experts performance within 10M environment steps. Our method also succeeds to unlock all 22 Crafter achievements at least once during evaluation.
♻ ☆ Driving on Registers
We present DrivoR, a simple and efficient transformer-based architecture for end-to-end autonomous driving. Our approach builds on pretrained Vision Transformers (ViTs) and introduces camera-aware register tokens that compress multi-camera features into a compact scene representation, significantly reducing downstream computation without sacrificing accuracy. These tokens drive two lightweight transformer decoders that generate and then score candidate trajectories. The scoring decoder learns to mimic an oracle and predicts interpretable sub-scores representing aspects such as safety, comfort, and efficiency, enabling behavior-conditioned driving at inference. Despite its minimal design, DrivoR outperforms or matches strong contemporary baselines across NAVSIM-v1, NAVSIM-v2, and the photorealistic closed-loop HUGSIM benchmark. Our results show that a pure-transformer architecture, combined with targeted token compression, is sufficient for accurate, efficient, and adaptive end-to-end driving. Code and checkpoints will be made available via the project page.
♻ ☆ KVzap: Fast, Adaptive, and Faithful KV Cache Pruning
Growing context lengths in transformer-based language models have made the key-value (KV) cache a critical inference bottleneck. While many KV cache pruning methods have been proposed, they have not yet been adopted in major inference engines due to speed--accuracy trade-offs. We introduce KVzap, a fast, input-adaptive approximation of KVzip that works in both prefilling and decoding. On Qwen3-8B, Llama-3.1-8B-Instruct, and Qwen3-32B across long-context and reasoning tasks, KVzap achieves $2$--$4\times$ KV cache compression with negligible accuracy loss and achieves state-of-the-art performance on the KVpress leaderboard. Code and models are available at https://github.com/NVIDIA/kvpress.
♻ ☆ Problem Solved? Information Extraction Design Space for Layout-Rich Documents using LLMs EMNLP'25
This paper defines and explores the design space for information extraction (IE) from layout-rich documents using large language models (LLMs). The three core challenges of layout-aware IE with LLMs are 1) data structuring, 2) model engagement, and 3) output refinement. Our study investigates the sub-problems and methods within these core challenges, such as input representation, chunking, prompting, selection of LLMs, and multimodal models. It examines the effect of different design choices through LayIE-LLM, a new, open-source, layout-aware IE test suite, benchmarking against traditional, fine-tuned IE models. The results on two IE datasets show that LLMs require adjustment of the IE pipeline to achieve competitive performance: the optimized configuration found with LayIE-LLM achieves 13.3--37.5 F1 points more than a general-practice baseline configuration using the same LLM. To find a well-working configuration, we develop a one-factor-at-a-time (OFAT) method that achieves near-optimal results. Our method is only 0.8--1.8 points lower than the best full factorial exploration with a fraction (2.8%) of the required computation. Overall, we demonstrate that, if well-configured, general-purpose LLMs match the performance of specialized models, providing a cost-effective, finetuning-free alternative. Our test-suite is available at https://github.com/gayecolakoglu/LayIE-LLM.
comment: accepted at EMNLP'25
♻ ☆ Conformal Prediction for Causal Effects of Continuous Treatments NeurIPS 2025
Uncertainty quantification of causal effects is crucial for safety-critical applications such as personalized medicine. A powerful approach for this is conformal prediction, which has several practical benefits due to model-agnostic finite-sample guarantees. Yet, existing methods for conformal prediction of causal effects are limited to binary/discrete treatments and make highly restrictive assumptions such as known propensity scores. In this work, we provide a novel conformal prediction method for potential outcomes of continuous treatments. We account for the additional uncertainty introduced through propensity estimation so that our conformal prediction intervals are valid even if the propensity score is unknown. Our contributions are three-fold: (1) We derive finite-sample prediction intervals for potential outcomes of continuous treatments. (2) We provide an algorithm for calculating the derived intervals. (3) We demonstrate the effectiveness of the conformal prediction intervals in experiments on synthetic and real-world datasets. To the best of our knowledge, we are the first to propose conformal prediction for continuous treatments when the propensity score is unknown and must be estimated from data.
comment: Accepted at NeurIPS 2025
♻ ☆ Time2Vec Transformer for Robust Gesture Recognition from Low-Density sEMG
Accurate and responsive myoelectric prosthesis control typically relies on complex, dense multi-sensor arrays, which limits consumer accessibility. This paper presents a novel, data-efficient deep learning framework designed to achieve precise and accurate control using minimal sensor hardware. Leveraging an external dataset of 8 subjects, our approach implements a hybrid Transformer optimized for sparse, two-channel surface electromyography (sEMG). Unlike standard architectures that use fixed positional encodings, we integrate Time2Vec learnable temporal embeddings to capture the stochastic temporal warping inherent in biological signals. Furthermore, we employ a normalized additive fusion strategy that aligns the latent distributions of spatial and temporal features, preventing the destructive interference common in standard implementations. A two-stage curriculum learning protocol is utilized to ensure robust feature extraction despite data scarcity. The proposed architecture achieves a state-of-the-art multi-subject F1-score of 95.7% $\pm$ 0.20% for a 10-class movement set, statistically outperforming both a standard Transformer with fixed encodings and a recurrent CNN-LSTM model. Architectural optimization reveals that a balanced allocation of model capacity between spatial and temporal dimensions yields the highest stability. Furthermore, while direct transfer to a new unseen subject led to poor accuracy due to domain shifts, a rapid calibration protocol utilizing only two trials per gesture recovered performance from 21.0% $\pm$ 2.98% to 96.9% $\pm$ 0.52%. By validating that high-fidelity temporal embeddings can compensate for low spatial resolution, this work challenges the necessity of high-density sensing. The proposed framework offers a robust, cost-effective blueprint for next-generation prosthetic interfaces capable of rapid personalization.
♻ ☆ Understanding-informed Bias Mitigation for Fair CMR Segmentation
Artificial intelligence (AI) is increasingly being used for medical imaging tasks. However, there can be biases in AI models, particularly when they are trained using imbalanced training datasets. One such example has been the strong ethnicity bias effect in cardiac magnetic resonance (CMR) image segmentation models. Although this phenomenon has been reported in a number of publications, little is known about the effectiveness of bias mitigation algorithms in this domain. We aim to investigate the impact of common bias mitigation methods to address bias between Black and White subjects in AI-based CMR segmentation models. Specifically, we use oversampling, importance reweighing and Group DRO as well as combinations of these techniques to mitigate the ethnicity bias. Second, motivated by recent findings on the root causes of AI-based CMR segmentation bias, we evaluate the same methods using models trained and evaluated on cropped CMR images. We find that bias can be mitigated using oversampling, significantly improving performance for the underrepresented Black subjects whilst not significantly reducing the majority White subjects' performance. Using cropped images increases performance for both ethnicities and reduces the bias, whilst adding oversampling as a bias mitigation technique with cropped images reduces the bias further. When testing the models on an external clinical validation set, we find high segmentation performance and no statistically significant bias.
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2025:036
♻ ☆ Dataset-Driven Channel Masks in Transformers for Multivariate Time Series ICASSP 2026
Recent advancements in foundation models have been successfully extended to the time series (TS) domain, facilitated by the emergence of large-scale TS datasets. However, previous efforts have primarily Capturing channel dependency (CD) is essential for modeling multivariate time series (TS), and attention-based methods have been widely employed for this purpose. Nonetheless, these methods primarily focus on modifying the architecture, often neglecting the importance of dataset-specific characteristics. In this work, we introduce the concept of partial channel dependence (PCD) to enhance CD modeling in Transformer-based models by leveraging dataset-specific information to refine the CD captured by the model. To achieve PCD, we propose channel masks (CMs), which are integrated into the attention matrices of Transformers via element-wise multiplication. CMs consist of two components: 1) a similarity matrix that captures relationships between the channels, and 2) dataset-specific and learnable domain parameters that refine the similarity matrix. We validate the effectiveness of PCD across diverse tasks and datasets with various backbones. Code is available at this repository: https://github.com/YonseiML/pcd.
comment: ICASSP 2026. Preliminary version: NeurIPS Workshop on Time Series in the Age of Large Models 2024 (Oral presentation)
♻ ☆ Patronus: Interpretable Diffusion Models with Prototypes
Uncovering the opacity of diffusion-based generative models is urgently needed, as their applications continue to expand while their underlying procedures largely remain a black box. With a critical question -- how can the diffusion generation process be interpreted and understood? -- we proposed Patronus, an interpretable diffusion model that incorporates a prototypical network to encode semantics in visual patches, revealing what visual patterns are modeled and where and when they emerge throughout denoising. This interpretability of Patronus provides deeper insights into the generative mechanism, enabling the detection of shortcut learning via unwanted correlations and the tracing of semantic emergence across timesteps. We evaluate Patronus on four natural image datasets and one medical imaging dataset, demonstrating both faithful interpretability and strong generative performance. With this work, we open new avenues for understanding and steering diffusion models through prototype-based interpretability.\\ Our code is available at https://github.com/nina-weng/patronus}{https://github.com/nina-weng/patronus.
♻ ☆ A Research Roadmap for Augmenting Software Engineering Processes and Software Products with Generative AI
Generative AI (GenAI) is rapidly transforming software engineering (SE) practices, influencing how SE processes are executed, as well as how software systems are developed, operated, and evolved. This paper applies design science research to build a roadmap for GenAI-augmented SE. The process consists of three cycles that incrementally integrate multiple sources of evidence, including collaborative discussions from the FSE 2025 "Software Engineering 2030" workshop, rapid literature reviews, and external feedback sessions involving peers. McLuhan's tetrads were used as a conceptual instrument to systematically capture the transforming effects of GenAI on SE processes and software products.The resulting roadmap identifies four fundamental forms of GenAI augmentation in SE and systematically characterizes their related research challenges and opportunities. These insights are then consolidated into a set of future research directions. By grounding the roadmap in a rigorous multi-cycle process and cross-validating it among independent author teams and peers, the study provides a transparent and reproducible foundation for analyzing how GenAI affects SE processes, methods and tools, and for framing future research within this rapidly evolving area. Based on these findings, the article finally makes ten predictions for SE in the year 2030.
♻ ☆ CP-Agent: Agentic Constraint Programming
The translation of natural language to formal constraint models requires expertise in the problem domain and modeling frameworks. To explore the effectiveness of agentic workflows, we propose CP-Agent, a Python coding agent that uses the ReAct framework with a persistent IPython kernel. We provide the relevant domain knowledge as a project prompt of under 50 lines. The algorithm works by iteratively executing code, observing the solver's feedback, and refining constraint models based on execution results. We evaluate CP-Agent on 101 constraint programming problems from CP-Bench. We made minor changes to the benchmark to address systematic ambiguities in the problem specifications and errors in the ground-truth models. On the clarified benchmark, CP-Agent achieves perfect accuracy on all 101 problems. Our experiments show that minimal guidance outperforms detailed procedural scaffolding. Our experiments also show that explicit task management tools can have both positive and negative effects on focused modeling tasks.
♻ ☆ PRISM: Deriving a White-Box Transformer as a Signal-Noise Decomposition Operator via Maximum Coding Rate Reduction
Deep learning models, particularly Transformers, are often criticized as "black boxes" and lack interpretability. We propose Prism, a white-box attention-based architecture derived from the principles of Maximizing Coding Rate Reduction ($\text{MCR}^2$). By modeling the attention mechanism as a gradient ascent process on a distinct signal-noise manifold, we introduce a specific irrational frequency separation ($π$-RoPE) to enforce incoherence between signal (semantic) and noise (syntactic) subspaces. We show empirical evidence that these geometric inductive biases can induce unsupervised functional disentanglement alone. Prism spontaneously specializes its attention heads into spectrally distinct regimes: low-frequency heads capturing long-range causal dependencies (signal) and high-frequency heads handling local syntactic constraints and structural artifacts. To provide a theoretical grounding for these spectral phenomena, we draw an analogy between attention mechanism and a Hamiltonian dynamical system and identify that the standard geometric progression of Rotary Positional Embeddings (RoPE) induces dense resonance networks (Arnold Tongues), leading to feature rank collapse. Empirical validation on 124M-parameter models trained on OpenWebText demonstrates that Prism spontaneously isolates the Attention Sink pathology and maintains isentropic information flow across layers. Further, we suggest a physics-informed plug-and-play intervention KAM-RoPE for large language models (LLMs). Our results suggest that interpretability and performance can be unified through principled geometric construction, offering a theoretically grounded alternative to heuristic architectural modifications
comment: 12 pages, 6 figures. Derives Transformer as a signal-noise decomposition operator via Maximizing Coding Rate Reduction. Identifies 'Attention Sink' as spectral resonance (Arnold Tongues) and proposes $π$-RoPE for dynamical stability
♻ ☆ video-SALMONN S: Memory-Enhanced Streaming Audio-Visual LLM
Long-duration streaming video understanding is fundamental for future AI agents, yet remains limited by ineffective long-term memory. We introduce video-SALMONN S, a memory-enhanced streaming audio-visual large language model that processes over 3-hour videos at 1 FPS and 360p resolution, outperforming strong non-streaming models under the same memory budget. In addition to token merging or downsampling, video-SALMONN S is the first to employ test-time training (TTT) as a streaming memory mechanism for video understanding. TTT continuously transforms short-term multimodal representations into long-term memory embedded in model parameters. To improve long-range dependency modeling and memory capacity, we propose (i) a TTT_MEM layer with an additional long-span prediction objective, (ii) a two-stage training scheme, and (iii) a modality-aware memory reader. We further introduce the Episodic Learning from Video Memory (ELViM) benchmark, simulating agent-like scenarios where models must learn from videos observed hours earlier. video-SALMONN S consistently outperforms both streaming and non-streaming baselines by 3-7% on long video benchmarks. Notably, video-SALMONN S achieves a 15% absolute accuracy improvement over strong non-streaming models on ELViM, demonstrating strong learning abilities from video memory.
♻ ☆ The Psychology of Learning from Machines: Anthropomorphic AI and the Paradox of Automation in Education
As AI tutors enter classrooms at unprecedented speed, their deployment increasingly outpaces our grasp of the psychological and social consequences of such technology. Yet decades of research in automation psychology, human factors, and human-computer interaction provide crucial insights that remain underutilized in educational AI design. This work synthesizes four research traditions -- automation psychology, human factors engineering, HCI, and philosophy of technology -- to establish a comprehensive framework for understanding how learners psychologically relate to anthropomorphic AI tutors. We identify three persistent challenges intensified by Generative AI's conversational fluency. First, learners exhibit dual trust calibration failures -- automation bias (uncritical acceptance) and algorithm aversion (excessive rejection after errors) -- with an expertise paradox where novices overrely while experts underrely. Second, while anthropomorphic design enhances engagement, it can distract from learning and foster harmful emotional attachment. Third, automation ironies persist: systems meant to aid cognition introduce designer errors, degrade skills through disuse, and create monitoring burdens humans perform poorly. We ground this theoretical synthesis through comparative analysis of over 104,984 YouTube comments across AI-generated philosophical debates and human-created engineering tutorials, revealing domain-dependent trust patterns and strong anthropomorphic projection despite minimal cues. For engineering education, our synthesis mandates differentiated approaches: AI tutoring for technical foundations where automation bias is manageable through proper scaffolding, but human facilitation for design, ethics, and professional judgment where tacit knowledge transmission proves irreplaceable.
comment: camera-ready version of paper accepted at IEEE EDUCON 2026 (acknowledgment added and some typos/errors fixed)
♻ ☆ Don't Overthink it. Preferring Shorter Thinking Chains for Improved LLM Reasoning
Reasoning large language models (LLMs) heavily rely on scaling test-time compute to perform complex reasoning tasks by generating extensive "thinking" chains. While demonstrating impressive results, this approach incurs significant computational costs and inference time. In this work, we challenge the assumption that long thinking chains results in better reasoning capabilities. We first demonstrate that shorter reasoning chains within individual questions are significantly more likely to yield correct answers - up to 34.5% more accurate than the longest chain sampled for the same question. Based on these results, we suggest short-m@k, a novel reasoning LLM inference method. Our method executes k independent generations in parallel and halts computation once the first m thinking processes are done. The final answer is chosen using majority voting among these m chains. Basic short-1@k demonstrates similar or even superior performance over standard majority voting in low-compute settings - using up to 40% fewer thinking tokens. short-3@k, while slightly less efficient than short-1@k, consistently surpasses majority voting across all compute budgets, while still being substantially faster (up to 33% wall time reduction). To further validate our findings, we finetune LLMs using short, long, and randomly selected reasoning chains. We then observe that training on the shorter ones leads to better performance. Our findings suggest rethinking current methods of test-time compute in reasoning LLMs, emphasizing that longer "thinking" does not necessarily translate to improved performance and can, counter-intuitively, lead to degraded results.
♻ ☆ Sensitivity analysis of image classification models using generalized polynomial chaos
Integrating advanced communication protocols in production has accelerated the adoption of data-driven predictive quality methods, notably machine learning (ML) models. However, ML models in image classification often face significant uncertainties arising from model, data, and domain shifts. These uncertainties lead to overconfidence in the classification model's output. To better understand these models, sensitivity analysis can help to analyze the relative influence of input parameters on the output. This work investigates the sensitivity of image classification models used for predictive quality. We propose modeling the distributional domain shifts of inputs with random variables and quantifying their impact on the model's outputs using Sobol indices computed via generalized polynomial chaos (GPC). This approach is validated through a case study involving a welding defect classification problem, utilizing a fine-tuned ResNet18 model and an emblem classification model used in BMW Group production facilities.
♻ ☆ Remapping and navigation of an embedding space via error minimization: a fundamental organizational principle of cognition in natural and artificial systems
The emerging field of diverse intelligence seeks an integrated view of problem-solving in agents of very different provenance, composition, and substrates. From subcellular chemical networks to swarms of organisms, and across evolved, engineered, and chimeric systems, it is hypothesized that scale-invariant principles of decision-making can be discovered. We propose that cognition in both natural and synthetic systems can be characterized and understood by the interplay between two equally important invariants: (1) the remapping of embedding spaces, and (2) the navigation within these spaces. Biological collectives, from single cells to entire organisms (and beyond), remap transcriptional, morphological, physiological, or 3D spaces to maintain homeostasis and regenerate structure, while navigating these spaces through distributed error correction. Modern Artificial Intelligence (AI) systems, including transformers, diffusion models, and neural cellular automata enact analogous processes by remapping data into latent embeddings and refining them iteratively through contextualization. We argue that this dual principle - remapping and navigation of embedding spaces via iterative error minimization - constitutes a substrate-independent invariant of cognition. Recognizing this shared mechanism not only illuminates deep parallels between living systems and artificial models, but also provides a unifying framework for engineering adaptive intelligence across scales.
comment: 41 pages, 5 figures
♻ ☆ SEDformer: Event-Synchronous Spiking Transformers for Irregular Telemetry Time Series Forecasting
Telemetry streams from large-scale Internet-connected systems (e.g., IoT deployments and online platforms) naturally form an irregular multivariate time series (IMTS) whose accurate forecasting is operationally vital. A closer examination reveals a defining Sparsity-Event Duality (SED) property of IMTS, i.e., long stretches with sparse or no observations are punctuated by short, dense bursts where most semantic events (observations) occur. However, existing Graph- and Transformer-based forecasters ignore SED: pre-alignment to uniform grids with heavy padding violates sparsity by inflating sequences and forcing computation at non-informative steps, while relational recasting weakens event semantics by disrupting local temporal continuity. These limitations motivate a more faithful and natural modeling paradigm for IMTS that aligns with its SED property. We find that Spiking Neural Networks meet this requirement, as they communicate via sparse binary spikes and update in an event-driven manner, aligning naturally with the SED nature of IMTS. Therefore, we present SEDformer, an SED-enhanced Spiking Transformer for telemetry IMTS forecasting that couples: (1) a SED-based Spike Encoder converts raw observations into event synchronous spikes using an Event-Aligned LIF neuron, (2) an Event-Preserving Temporal Downsampling module compresses long gaps while retaining salient firings and (3) a stack of SED-based Spike Transformer blocks enable intra-series dependency modeling with a membrane-based linear attention driven by EA-LIF spiking features. Experiments on public telemetry IMTS datasets show that SEDformer attains state-of-the-art forecasting accuracy while reducing energy and memory usage, providing a natural and efficient path for modeling IMTS.
comment: Under review
♻ ☆ Evalet: Evaluating Large Language Models by Fragmenting Outputs into Functions
Practitioners increasingly rely on Large Language Models (LLMs) to evaluate generative AI outputs through "LLM-as-a-Judge" approaches. However, these methods produce holistic scores that obscure which specific elements influenced the assessments. We propose functional fragmentation, a method that dissects each output into key fragments and interprets the rhetoric functions that each fragment serves relative to evaluation criteria -- surfacing the elements of interest and revealing how they fulfill or hinder user goals. We instantiate this approach in Evalet, an interactive system that visualizes fragment-level functions across many outputs to support inspection, rating, and comparison of evaluations. A user study (N=10) found that, while practitioners struggled to validate holistic scores, our approach helped them identify 48% more evaluation misalignments. This helped them calibrate trust in LLM evaluations and rely on them to find more actionable issues in model outputs. Our work shifts LLM evaluation from quantitative scores toward qualitative, fine-grained analysis of model behavior.
comment: The first two authors hold equal contribution. Conditionally accepted to CHI 2026
♻ ☆ A Multicenter Benchmark of Multiple Instance Learning Models for Lymphoma Subtyping from HE-stained Whole Slide Images
Timely and accurate lymphoma diagnosis is essential for guiding cancer treatment. Standard diagnostic practice combines hematoxylin and eosin (HE)-stained whole slide images with immunohistochemistry, flow cytometry, and molecular genetic tests to determine lymphoma subtypes, a process requiring costly equipment, skilled personnel, and causing treatment delays. Deep learning methods could assist pathologists by extracting diagnostic information from routinely available HE-stained slides, yet comprehensive benchmarks for lymphoma subtyping on multicenter data are lacking. In this work, we present the first multicenter lymphoma benchmarking dataset covering four common lymphoma subtypes and healthy control tissue. We systematically evaluate five publicly available pathology foundation models (H-optimus-1, H0-mini, Virchow2, UNI2, Titan) combined with attention-based (AB-MIL) and transformer-based (TransMIL) multiple instance learning aggregators across three magnifications (10x, 20x, 40x). On in-distribution test sets, models achieve multiclass balanced accuracies exceeding 80% across all magnifications, with all foundation models performing similarly and both aggregation methods showing comparable results. The magnification study reveals that 40x resolution is sufficient, with no performance gains from higher resolutions or cross-magnification aggregation. However, on out-of-distribution test sets, performance drops substantially to around 60%, highlighting significant generalization challenges. To advance the field, larger multicenter studies covering additional rare lymphoma subtypes are needed. We provide an automated benchmarking pipeline to facilitate such future research.
comment: 19 pages
♻ ☆ Training-Free Text-Guided Color Editing with Multi-Modal Diffusion Transformer
Text-guided color editing in images and videos is a fundamental yet unsolved problem, requiring fine-grained manipulation of color attributes, including albedo, light source color, and ambient lighting, while preserving physical consistency in geometry, material properties, and light-matter interactions. Existing training-free methods offer broad applicability across editing tasks but struggle with precise color control and often introduce visual inconsistency in both edited and non-edited regions. In this work, we present ColorCtrl, a training-free color editing method that leverages the attention mechanisms of modern Multi-Modal Diffusion Transformers (MM-DiT). By disentangling structure and color through targeted manipulation of attention maps and value tokens, our method enables accurate and consistent color editing, along with word-level control of attribute intensity. Our method modifies only the intended regions specified by the prompt, leaving unrelated areas untouched. Extensive experiments on both SD3 and FLUX.1-dev demonstrate that ColorCtrl outperforms existing training-free approaches and achieves state-of-the-art performances in both edit quality and consistency. Furthermore, our method surpasses strong commercial models such as FLUX.1 Kontext Max and GPT-4o Image Generation in terms of consistency. When extended to video models like CogVideoX, our approach exhibits greater advantages, particularly in maintaining temporal coherence and editing stability. Finally, our method also generalizes to instruction-based editing diffusion models such as Step1X-Edit and FLUX.1 Kontext dev, further demonstrating its versatility.
comment: https://zxyin.github.io/ColorCtrl
♻ ☆ Multi-Agent Causal Reasoning System for Error Pattern Rule Automation in Vehicles
Modern vehicles generate thousands of different discrete events known as Diagnostic Trouble Codes (DTCs). Automotive manufacturers use Boolean combinations of these codes, called error patterns (EPs), to characterize system faults and ensure vehicle safety. Yet, EP rules are still manually handcrafted by domain experts, a process that is expensive and prone to errors as vehicle complexity grows. This paper introduces CAREP (Causal Automated Reasoning for Error Patterns), a multi-agent system that automatizes the generation of EP rules from high-dimensional event sequences of DTCs. CAREP combines a causal discovery agent that identifies potential DTC-EP relations, a contextual information agent that integrates metadata and descriptions, and an orchestrator agent that synthesizes candidate boolean rules together with interpretable reasoning traces. Evaluation on a large-scale automotive dataset with over 29,100 unique DTCs and 474 error patterns demonstrates that CAREP can automatically and accurately discover the unknown EP rules, outperforming LLM-only baselines while providing transparent causal explanations. By uniting practical causal discovery and agent-based reasoning, CAREP represents a step toward fully automated fault diagnostics, enabling scalable, interpretable, and cost-efficient vehicle maintenance.
comment: 7 pages, 3 figures
♻ ☆ SPGCL: Simple yet Powerful Graph Contrastive Learning via SVD-Guided Structural Perturbation
Graph Neural Networks (GNNs) are sensitive to structural noise from adversarial attacks or imperfections. Existing graph contrastive learning (GCL) methods typically rely on either random perturbations (e.g., edge dropping) for diversity or spectral augmentations (e.g., SVD) to preserve structural priors. However, random perturbations are structure-agnostic and may remove critical edges, while SVD-based views often lack sufficient diversity. Integrating these paradigms is challenging as they operate on discrete edge removal and continuous matrix factorization, respectively.We propose SPGCL, a framework for robust GCL via SVD-guided structural perturbation. Leveraging a recently developed SVD-based method that generalizes structural perturbation theory to arbitrary graphs, we design a two-stage strategy: (1) lightweight stochastic edge removal to inject diversity, and (2) truncated SVD to derive a structure-aware scoring matrix for sparse top-$P$ edge recovery. This integration offers three advantages: (1) Robustness to accidental deletion, as important edges can be recovered by SVD-guided scoring; (2) Enrichment with missing links, creating more informative contrastive views by introducing semantically meaningful edges; and (3) Controllable structural discrepancy, ensuring contrastive signals stem from semantic differences rather than edge-number gaps.Furthermore, we incorporate a contrastive fusion module with a global similarity constraint to align embeddings. Extensive experiments on ten benchmark datasets demonstrate that SPGCL consistently improves the robustness and accuracy of GNNs, outperforming state-of-the-art GCL and structure learning methods, validating its effectiveness in integrating previously disparate paradigms.
♻ ☆ Deadline-Aware, Energy-Efficient Control of Domestic Immersion Hot Water Heater AAAI 2026
Typical domestic immersion water heater systems are often operated continuously during winter, heating quickly rather than efficiently and ignoring predictable demand windows and ambient losses. We study deadline-aware control, where the aim is to reach a target temperature at a specified time while minimising energy consumption. We introduce an efficient Gymnasium environment that models an immersion hot water heater with first-order thermal losses and discrete on and off actions of 0 W and 6000 W applied every 120 seconds. Methods include a time-optimal bang-bang baseline, a zero-shot Monte Carlo Tree Search planner, and a Proximal Policy Optimisation policy. We report total energy consumption in watt-hours under identical physical dynamics. Across sweeps of initial temperature from 10 to 30 degrees Celsius, deadline from 30 to 90 steps, and target temperature from 40 to 80 degrees Celsius, PPO achieves the most energy-efficient performance at a 60-step horizon of 2 hours, using 3.23 kilowatt-hours, compared to 4.37 to 10.45 kilowatt-hours for bang-bang control and 4.18 to 6.46 kilowatt-hours for MCTS. This corresponds to energy savings of 26 percent at 30 steps and 69 percent at 90 steps. In a representative trajectory with a 50 kg water mass, 20 degrees Celsius ambient temperature, and a 60 degrees Celsius target, PPO consumes 54 percent less energy than bang-bang control and 33 percent less than MCTS. These results show that learned deadline-aware control reduces energy consumption under identical physical assumptions, while planners provide partial savings without training and learned policies offer near-zero inference cost once trained.
comment: Accepted at AAAI 2026
♻ ☆ IRIS: Implicit Reward-Guided Internal Sifting for Mitigating Multimodal Hallucination
Hallucination remains a fundamental challenge for Multimodal Large Language Models (MLLMs). While Direct Preference Optimization (DPO) is a key alignment framework, existing approaches often rely heavily on costly external evaluators for scoring or rewriting, incurring off-policy learnability gaps and discretization loss. Due to the lack of access to internal states, such feedback overlooks the fine-grained conflicts between different modalities that lead to hallucinations during generation. To address this issue, we propose IRIS (Implicit Reward-Guided Internal Sifting), which leverages continuous implicit rewards in the native log-probability space to preserve full information density and capture internal modal competition. This on-policy paradigm eliminates learnability gaps by utilizing self-generated preference pairs. By sifting these pairs based on multimodal implicit rewards, IRIS ensures that optimization is driven by signals that directly resolve modal conflicts. Extensive experiments demonstrate that IRIS achieves highly competitive performance on key hallucination benchmarks using only 5.7k samples, without requiring any external feedback during preference alignment. These results confirm that IRIS provides an efficient and principled paradigm for mitigating MLLM hallucinations.
♻ ☆ A2D: Any-Order, Any-Step Safety Alignment for Diffusion Language Models ICLR 2026
Diffusion large language models (dLLMs) enable any-order generation, but this flexibility enlarges the attack surface: harmful spans may appear at arbitrary positions, and template-based prefilling attacks such as DIJA bypass response-level refusals. We introduce A2D (Any-Order, Any-Step Defense), a token-level alignment method that aligns dLLMs to emit an [EOS] refusal signal whenever harmful content arises. By aligning safety directly at the token-level under randomized masking, A2D achieves robustness to both any-decoding-order and any-step prefilling attacks under various conditions. It also enables real-time monitoring: dLLMs may begin a response but automatically terminate if unsafe continuation emerges. On safety benchmarks, A2D consistently prevents the generation of harmful outputs, slashing DIJA success rates from over 80% to near-zero (1.3% on LLaDA-8B-Instruct, 0.0% on Dream-v0-Instruct-7B), and thresholded [EOS] probabilities allow early rejection, yielding up to 19.3x faster safe termination.
comment: Accepted at ICLR 2026. Code and models are available at https://ai-isl.github.io/A2D
♻ ☆ Federated Causal Inference from Multi-Site Observational Data via Propensity Score Aggregation
Causal inference typically assumes centralized access to individual-level data. Yet, in practice, data are often decentralized across multiple sites, making centralization infeasible due to privacy, logistical, or legal constraints. We address this problem by estimating the Average Treatment Effect (ATE) from decentralized observational data via a Federated Learning (FL) approach, allowing inference through the exchange of aggregate statistics rather than individual-level data. We propose a novel method to estimate propensity scores via a federated weighted average of local scores using Membership Weights (MW), defined as probabilities of site membership conditional on covariates. MW can be flexibly estimated with parametric or non-parametric classification models using standard FL algorithms. The resulting propensity scores are used to construct Federated Inverse Propensity Weighting (Fed-IPW) and Augmented IPW (Fed-AIPW) estimators. In contrast to meta-analysis methods, which fail when any site violates positivity, our approach exploits heterogeneity in treatment assignment across sites to improve overlap. We show that Fed-IPW and Fed-AIPW perform well under site-level heterogeneity in sample sizes, treatment mechanisms, and covariate distributions. Theoretical analysis and experiments on simulated and real-world data demonstrate clear advantages over meta-analysis and related approaches.
♻ ☆ Privacy-Aware Predictions in Participatory Budgeting
Participatory budgeting is a democratic innovation that empowers citizens to propose and vote on public investment projects. While researchers in computer science focused on improving the voting phase of this process, in this work we aim to support organizers of participatory budgeting campaigns to manage large volumes of project proposals at the submission stage. We propose a privacy-preserving approach to predict which proposals are likely to be funded, using only projects' textual descriptions and anonymous historical voting records, without relying on voter demographics or personally identifiable information.
♻ ☆ Aggregation Queries over Unstructured Text: Benchmark and Agentic Method
Aggregation query over free text is a long-standing yet underexplored problem. Unlike ordinary question answering, aggregate queries require exhaustive evidence collection and systems are required to "find all," not merely "find one." Existing paradigms such as Text-to-SQL and Retrieval-Augmented Generation fail to achieve this completeness. In this work, we formalize entity-level aggregation querying over text in a corpus-bounded setting with strict completeness requirement. To enable principled evaluation, we introduce AGGBench, a benchmark designed to evaluate completeness-oriented aggregation under realistic large-scale corpus. To accompany the benchmark, we propose DFA (Disambiguation--Filtering--Aggregation), a modular agentic baseline that decomposes aggregation querying into interpretable stages and exposes key failure modes related to ambiguity, filtering, and aggregation. Empirical results show that DFA consistently improves aggregation evidence coverage over strong RAG and agentic baselines. The data and code are available in \href{https://anonymous.4open.science/r/DFA-A4C1}.
♻ ☆ CiMRAG: CiM-Aware Domain-Adaptive and Noise-Resilient Retrieval-Augmented Generation for Edge-Based LLMs ICASSP 2026
Personalized virtual assistants powered by large language models (LLMs) on edge devices are attracting growing attention, with Retrieval-Augmented Generation (RAG) emerging as a key method for personalization by retrieving relevant profile data and generating tailored responses. However, deploying RAG on edge devices faces efficiency hurdles due to the rapid growth of profile data, such as user-LLM interactions and recent updates. While Computing-in-Memory (CiM) architectures mitigate this bottleneck by eliminating data movement between memory and processing units via in-situ operations, they are susceptible to environmental noise that can degrade retrieval precision. This poses a critical issue in dynamic, multi-domain edge-based scenarios (e.g., travel, medicine, and law) where both accuracy and adaptability are paramount. To address these challenges, we propose Task-Oriented Noise-resilient Embedding Learning (TONEL), a framework that improves noise robustness and domain adaptability for RAG in noisy edge environments. TONEL employs a noise-aware projection model to learn task-specific embeddings compatible with CiM hardware constraints, enabling accurate retrieval under noisy conditions. Extensive experiments conducted on personalization benchmarks demonstrate the effectiveness and practicality of our methods relative to strong baselines, especially in task-specific noisy scenarios.
comment: Accepted by ICASSP 2026
♻ ☆ Exploring the Global-to-Local Attention Scheme in Graph Transformers: An Empirical Study
Graph Transformers (GTs) show considerable potential in graph representation learning. The architecture of GTs typically integrates Graph Neural Networks (GNNs) with global attention mechanisms either in parallel or as a precursor to attention mechanisms, yielding a local-and-global or local-to-global attention scheme. However, as the global attention mechanism primarily captures long-range dependencies between nodes, these integration schemes may suffer from information loss, where the local neighborhood information learned by GNN could be diluted by the attention mechanism. Therefore, we propose G2LFormer, featuring a novel global-to-local attention scheme where the shallow network layers use attention mechanisms to capture global information, while the deeper layers employ GNN modules to learn local structural information, thereby preventing nodes from ignoring their immediate neighbors. An effective cross-layer information fusion strategy is introduced to allow local layers to retain beneficial information from global layers and alleviate information loss, with acceptable trade-offs in scalability. To validate the feasibility of the global-to-local attention scheme, we compare G2LFormer with state-of-the-art linear GTs and GNNs on node-level and graph-level tasks. The results indicate that G2LFormer exhibits excellent performance while keeping linear complexity.
comment: The article has been accepted by Frontiers of Computer Science (FCS), with the DOI: {10.1007/s11704-026-51718-4}
♻ ☆ UrbanGraph: Physics-Informed Spatio-Temporal Dynamic Heterogeneous Graphs for Urban Microclimate Prediction
With rapid urbanization, predicting urban microclimates has become critical, as it affects building energy demand and public health risks. However, existing generative and homogeneous graph approaches fall short in capturing physical consistency, spatial dependencies, and temporal variability. To address this, we introduce UrbanGraph, a framework founded on a novel structure-based inductive bias. Unlike implicit graph learning, UrbanGraph transforms physical first principles into a dynamic causal topology, explicitly encoding time-varying causalities (e.g., shading and convection) directly into the graph structure to ensure physical consistency and data efficiency. Results show that UrbanGraph achieves state-of-the-art performance across all baselines. Specifically, the use of explicit causal pruning significantly reduces the model's floating-point operations (FLOPs) by 73.8% and increases training speed by 21% compared to implicit graphs. Our contribution includes the first high-resolution benchmark for spatio-temporal microclimate modeling, and a generalizable explicit topological encoding paradigm applicable to urban spatio-temporal dynamics governed by known physical equations.
♻ ☆ Adaptive Rollout Allocation for Online Reinforcement Learning with Verifiable Rewards ICLR 2026
Sampling efficiency is a key bottleneck in reinforcement learning with verifiable rewards. Existing group-based policy optimization methods, such as GRPO, allocate a fixed number of rollouts for all training prompts. This uniform allocation implicitly treats all prompts as equally informative, and could lead to inefficient computational budget usage and impede training progress. We introduce VIP, a Variance-Informed Predictive allocation strategy that allocates a given rollout budget to the prompts in the incumbent batch to minimize the expected gradient variance of the policy update. At each iteration, VIP uses a lightweight Gaussian process model to predict per-prompt success probabilities based on recent rollouts. These probability predictions are translated into variance estimates, which are then fed into a convex optimization problem to determine the optimal rollout allocations under a hard compute budget constraint. Empirical results show that VIP consistently improves sampling efficiency and achieves higher performance than uniform or heuristic allocation strategies in multiple benchmarks.
comment: Accepted at ICLR 2026
♻ ☆ Mechanistic Interpretability as Statistical Estimation: A Variance Analysis
Mechanistic Interpretability (MI) aims to reverse-engineer model behaviors by identifying functional sub-networks. Yet, the scientific validity of these findings depends on their stability. In this work, we argue that circuit discovery is not a standalone task but a statistical estimation problem built upon causal mediation analysis (CMA). We uncover a fundamental instability at this base layer: exact, single-input CMA scores exhibit high intrinsic variance, implying that the causal effect of a component is a volatile random variable rather than a fixed property. We then demonstrate that circuit discovery pipelines inherit this variance and further amplify it. Fast approximation methods, such as Edge Attribution Patching and its successors, introduce additional estimation noise, while aggregating these noisy scores over datasets leads to fragile structural estimates. Consequently, small perturbations in input data or hyperparameters yield vastly different circuits. We systematically decompose these sources of variance and advocate for more rigorous MI practices, prioritizing statistical robustness and routine reporting of stability metrics.
♻ ☆ V2P-Bench: Evaluating Video-Language Understanding with Visual Prompts for Better Human-Model Interaction
Large Vision-Language Models (LVLMs) have made significant strides in the field of video understanding in recent times. Nevertheless, existing video benchmarks predominantly rely on text prompts for evaluation, which often require complex referential language and diminish both the accuracy and efficiency of human model interaction in turn. To address this limitation, we propose V2P-Bench, a robust and comprehensive benchmark for evaluating the ability of LVLMs to understand Video Visual Prompts in human model interaction scenarios. V2P-Bench consists of 980 videos and 1172 well-structured high-quality QA pairs, each paired with manually annotated visual prompt frames. The benchmark spans three main tasks and twelve categories, thereby enabling fine-grained, instance-level evaluation. Through an in-depth analysis of current LVLMs, we identify several key findings: 1) Visual prompts are both more model-friendly and user-friendly in interactive scenarios than text prompts, leading to significantly improved model performance and enhanced user experience. 2) Models are reasonably capable of zero-shot understanding of visual prompts, but struggle with spatiotemporal understanding. Even o1 achieves only 71.8%, far below the human expert score of 88.3%, while most open-source models perform below 60%. 3) LVLMs exhibit pervasive Hack Phenomena in video question answering tasks, which become more pronounced as video length increases and frame sampling density decreases, thereby inflating performance scores artificially. We anticipate that V2P-Bench will not only shed light on these challenges but also serve as a foundational tool for advancing human model interaction and improving the evaluation of video understanding.
comment: Project Page: https://vlm-reasoning.github.io/V2P-Bench/
♻ ☆ Chain-of-Thought Hijacking
Large Reasoning Models (LRMs) improve task performance through extended inference-time reasoning. While prior work suggests this should strengthen safety, we find evidence to the contrary. Long reasoning sequences can be exploited to systematically weaken them. We introduce Chain-of-Thought Hijacking, a jailbreak attack that prepends harmful instructions with extended sequences of benign puzzle reasoning. Across HarmBench, CoT Hijacking achieves attack success rates of 99\%, 94\%, 100\%, and 94\% on Gemini 2.5 Pro, ChatGPT o4 Mini, Grok 3 Mini, and Claude 4 Sonnet. To understand this mechanism, we apply activation probing, attention analysis, and causal interventions. We find that refusal depends on a low-dimensional safety signal that becomes diluted as reasoning grows: mid-layers encode the strength of safety checking, while late layers encode the refusal outcome. These findings demonstrate that explicit chain-of-thought reasoning introduces a systematic vulnerability when combined with answer-prompting cues. We release all evaluation materials to facilitate replication.
Machine Learning 150
☆ PLATE: Plasticity-Tunable Efficient Adapters for Geometry-Aware Continual Learning
We develop a continual learning method for pretrained models that \emph{requires no access to old-task data}, addressing a practical barrier in foundation model adaptation where pretraining distributions are often unavailable. Our key observation is that pretrained networks exhibit substantial \emph{geometric redundancy}, and that this redundancy can be exploited in two complementary ways. First, redundant neurons provide a proxy for dominant pretraining-era feature directions, enabling the construction of approximately protected update subspaces directly from pretrained weights. Second, redundancy offers a natural bias for \emph{where} to place plasticity: by restricting updates to a subset of redundant neurons and constraining the remaining degrees of freedom, we obtain update families with reduced functional drift on the old-data distribution and improved worst-case retention guarantees. These insights lead to \textsc{PLATE} (\textbf{Pla}sticity-\textbf{T}unable \textbf{E}fficient Adapters), a continual learning method requiring no past-task data that provides explicit control over the plasticity-retention trade-off. PLATE parameterizes each layer with a structured low-rank update $ΔW = B A Q^\top$, where $B$ and $Q$ are computed once from pretrained weights and kept frozen, and only $A$ is trained on the new task. The code is available at https://github.com/SalesforceAIResearch/PLATE.
☆ Investigating Quantum Circuit Designs Using Neuro-Evolution GECCO
Designing effective quantum circuits remains a central challenge in quantum computing, as circuit structure strongly influences expressivity, trainability, and hardware feasibility. Current approaches, whether using manually designed circuit templates, fixed heuristics, or automated rules, face limitations in scalability, flexibility, and adaptability, often producing circuits that are poorly matched to the specific problem or quantum hardware. In this work, we propose the Evolutionary eXploration of Augmenting Quantum Circuits (EXAQC), an evolutionary approach to the automated design and training of parameterized quantum circuits (PQCs) which leverages and extends on strategies from neuroevolution and genetic programming. The proposed method jointly searches over gate types, qubit connectivity, parameterization, and circuit depth while respecting hardware and noise constraints. The method supports both Qiskit and Pennylane libraries, allowing the user to configure every aspect. This work highlights evolutionary search as a critical tool for advancing quantum machine learning and variational quantum algorithms, providing a principled pathway toward scalable, problem-aware, and hardware-efficient quantum circuit design. Preliminary results demonstrate that circuits evolved on classification tasks are able to achieve over 90% accuracy on most of the benchmark datasets with a limited computational budget, and are able to emulate target circuit quantum states with high fidelity scores.
comment: Submitted to The Genetic and Evolutionary Computation Conference (GECCO) 2026. Under Review
☆ Understanding and Exploiting Weight Update Sparsity for Communication-Efficient Distributed RL
Reinforcement learning (RL) is a critical component for post-training large language models (LLMs). However, in bandwidth-constrained distributed RL, scalability is often bottlenecked by the synchronization of policy weights from trainers to inference workers, particularly over commodity networks or in decentralized settings. While recent studies suggest that RL updates modify only a small fraction of model parameters, these observations are typically based on coarse checkpoint differences. We present a systematic empirical study of weight-update sparsity at both step-level and multi-step granularities, examining its evolution across training dynamics, off-policy delay, and model scale. We find that update sparsity is consistently high, frequently exceeding 99% across practically relevant settings. Leveraging this structure, we propose PULSE (Patch Updates via Lossless Sparse Encoding), a simple yet highly efficient lossless weight synchronization method that transmits only the indices and values of modified parameters. PULSE is robust to transmission errors and avoids floating-point drift inherent in additive delta schemes. In bandwidth-constrained decentralized environments, our approach achieves over 100x (14 GB to ~108 MB) communication reduction while maintaining bit-identical training dynamics and performance compared to full weight synchronization. By exploiting this structure, PULSE enables decentralized RL training to approach centralized throughput, reducing the bandwidth required for weight synchronization from 20 Gbit/s to 0.2 Gbit/s to maintain high GPU utilization.
comment: 32 pages, 14 figures
☆ Robust Intervention Learning from Emergency Stop Interventions
Human interventions are a common source of data in autonomous systems during testing. These interventions provide an important signal about where the current policy needs improvement, but are often noisy and incomplete. We define Robust Intervention Learning (RIL) as the problem of learning from intervention data while remaining robust to the quality and informativeness of the intervention signal. In the best case, interventions are precise and avoiding them is sufficient to solve the task, but in many realistic settings avoiding interventions is necessary but not sufficient for achieving good performance. We study robust intervention learning in the context of emergency stop interventions and propose Residual Intervention Fine-Tuning (RIFT), a residual fine-tuning algorithm that treats intervention feedback as an incomplete learning signal and explicitly combines it with a prior policy. By framing intervention learning as a fine-tuning problem, our approach leverages structure encoded in the prior policy to resolve ambiguity when intervention signals under-specify the task. We provide theoretical analysis characterizing conditions under which this formulation yields principled policy improvement, and identify regimes where intervention learning is expected to fail. Our experiments reveal that residual fine-tuning enables robust and consistent policy improvement across a range of intervention strategies and prior policy qualities, and highlight robust intervention learning as a promising direction for future work.
☆ Preference-based Conditional Treatment Effects and Policy Learning AISTATS 2026
We introduce a new preference-based framework for conditional treatment effect estimation and policy learning, built on the Conditional Preference-based Treatment Effect (CPTE). CPTE requires only that outcomes be ranked under a preference rule, unlocking flexible modeling of heterogeneous effects with multivariate, ordinal, or preference-driven outcomes. This unifies applications such as conditional probability of necessity and sufficiency, conditional Win Ratio, and Generalized Pairwise Comparisons. Despite the intrinsic non-identifiability of comparison-based estimands, CPTE provides interpretable targets and delivers new identifiability conditions for previous unidentifiable estimands. We present estimation strategies via matching, quantile, and distributional regression, and further design efficient influence-function estimators to correct plug-in bias and maximize policy value. Synthetic and semi-synthetic experiments demonstrate clear performance gains and practical impact.
comment: Accepted to AISTATS 2026; 10 pages + appendix
☆ SymPlex: A Structure-Aware Transformer for Symbolic PDE Solving
We propose SymPlex, a reinforcement learning framework for discovering analytical symbolic solutions to partial differential equations (PDEs) without access to ground-truth expressions. SymPlex formulates symbolic PDE solving as tree-structured decision-making and optimizes candidate solutions using only the PDE and its boundary conditions. At its core is SymFormer, a structure-aware Transformer that models hierarchical symbolic dependencies via tree-relative self-attention and enforces syntactic validity through grammar-constrained autoregressive decoding, overcoming the limited expressivity of sequence-based generators. Unlike numerical and neural approaches that approximate solutions in discretized or implicit function spaces, SymPlex operates directly in symbolic expression space, enabling interpretable and human-readable solutions that naturally represent non-smooth behavior and explicit parametric dependence. Empirical results demonstrate exact recovery of non-smooth and parametric PDE solutions using deep learning-based symbolic methods.
comment: 27 pages
☆ Fast-Slow Efficient Training for Multimodal Large Language Models via Visual Token Pruning
Multimodal Large Language Models (MLLMs) suffer from severe training inefficiency issue, which is associated with their massive model sizes and visual token numbers. Existing efforts in efficient training focus on reducing model sizes or trainable parameters. Inspired by the success of Visual Token Pruning (VTP) in improving inference efficiency, we are exploring another substantial research direction for efficient training by reducing visual tokens. However, applying VTP at the training stage results in a training-inference mismatch: pruning-trained models perform poorly when inferring on non-pruned full visual token sequences. To close this gap, we propose DualSpeed, a fast-slow framework for efficient training of MLLMs. The fast-mode is the primary mode, which incorporates existing VTP methods as plugins to reduce visual tokens, along with a mode isolator to isolate the model's behaviors. The slow-mode is the auxiliary mode, where the model is trained on full visual sequences to retain training-inference consistency. To boost its training, it further leverages self-distillation to learn from the sufficiently trained fast-mode. Together, DualSpeed can achieve both training efficiency and non-degraded performance. Experiments show DualSpeed accelerates the training of LLaVA-1.5 by 2.1$\times$ and LLaVA-NeXT by 4.0$\times$, retaining over 99% performance. Code: https://github.com/dingkun-zhang/DualSpeed
☆ Conformal Thinking: Risk Control for Reasoning on a Compute Budget
Reasoning Large Language Models (LLMs) enable test-time scaling, with dataset-level accuracy improving as the token budget increases, motivating adaptive reasoning -- spending tokens when they improve reliability and stopping early when additional computation is unlikely to help. However, setting the token budget, as well as the threshold for adaptive reasoning, is a practical challenge that entails a fundamental risk-accuracy trade-off. We re-frame the budget setting problem as risk control, limiting the error rate while minimizing compute. Our framework introduces an upper threshold that stops reasoning when the model is confident (risking incorrect output) and a novel parametric lower threshold that preemptively stops unsolvable instances (risking premature stoppage). Given a target risk and a validation set, we use distribution-free risk control to optimally specify these stopping mechanisms. For scenarios with multiple budget controlling criteria, we incorporate an efficiency loss to select the most computationally efficient exiting mechanism. Empirical results across diverse reasoning tasks and models demonstrate the effectiveness of our risk control approach, demonstrating computational efficiency gains from the lower threshold and ensemble stopping mechanisms while adhering to the user-specified risk target.
☆ Antidistillation Fingerprinting
Model distillation enables efficient emulation of frontier large language models (LLMs), creating a need for robust mechanisms to detect when a third-party student model has trained on a teacher model's outputs. However, existing fingerprinting techniques that could be used to detect such distillation rely on heuristic perturbations that impose a steep trade-off between generation quality and fingerprinting strength, often requiring significant degradation of utility to ensure the fingerprint is effectively internalized by the student. We introduce antidistillation fingerprinting (ADFP), a principled approach that aligns the fingerprinting objective with the student's learning dynamics. Building upon the gradient-based framework of antidistillation sampling, ADFP utilizes a proxy model to identify and sample tokens that directly maximize the expected detectability of the fingerprint in the student after fine-tuning, rather than relying on the incidental absorption of the un-targeted biases of a more naive watermark. Experiments on GSM8K and OASST1 benchmarks demonstrate that ADFP achieves a significant Pareto improvement over state-of-the-art baselines, yielding stronger detection confidence with minimal impact on utility, even when the student model's architecture is unknown.
comment: 26 pages, 11 figures
☆ Enhancing Imbalanced Node Classification via Curriculum-Guided Feature Learning and Three-Stage Attention Network
Imbalanced node classification in graph neural networks (GNNs) happens when some labels are much more common than others, which causes the model to learn unfairly and perform badly on the less common classes. To solve this problem, we propose a Curriculum-Guided Feature Learning and Three-Stage Attention Network (CL3AN-GNN), a learning network that uses a three-step attention system (Engage, Enact, Embed) similar to how humans learn. The model begins by engaging with structurally simpler features, defined as (1) local neighbourhood patterns (1-hop), (2) low-degree node attributes, and (3) class-separable node pairs identified via initial graph convolutional networks and graph attention networks (GCN and GAT) embeddings. This foundation enables stable early learning despite label skew. The Enact stage then addresses complicated aspects: (1) connections that require multiple steps, (2) edges that connect different types of nodes, and (3) nodes at the edges of minority classes by using adjustable attention weights. Finally, Embed consolidates these features via iterative message passing and curriculum-aligned loss weighting. We evaluate CL3AN-GNN on eight Open Graph Benchmark datasets spanning social, biological, and citation networks. Experiments show consistent improvements across all datasets in accuracy, F1-score, and AUC over recent state-of-the-art methods. The model's step-by-step method works well with different types of graph datasets, showing quicker results than training everything at once, better performance on new, imbalanced graphs, and clear explanations of each step using gradient stability and attention correlation learning curves. This work provides both a theoretically grounded framework for curriculum learning in GNNs and practical evidence of its effectiveness against imbalances, validated through metrics, convergence speeds, and generalisation tests.
☆ Bridging Online and Offline RL: Contextual Bandit Learning for Multi-Turn Code Generation
Recently, there have been significant research interests in training large language models (LLMs) with reinforcement learning (RL) on real-world tasks, such as multi-turn code generation. While online RL tends to perform better than offline RL, its higher training cost and instability hinders wide adoption. In this paper, we build on the observation that multi-turn code generation can be formulated as a one-step recoverable Markov decision process and propose contextual bandit learning with offline trajectories (Cobalt), a new method that combines the benefits of online and offline RL. Cobalt first collects code generation trajectories using a reference LLM and divides them into partial trajectories as contextual prompts. Then, during online bandit learning, the LLM is trained to complete each partial trajectory prompt through single-step code generation. Cobalt outperforms two multi-turn online RL baselines based on GRPO and VeRPO, and substantially improves R1-Distill 8B and Qwen3 8B by up to 9.0 and 6.2 absolute Pass@1 scores on LiveCodeBench. Also, we analyze LLMs' in-context reward hacking behaviors and augment Cobalt training with perturbed trajectories to mitigate this issue. Overall, our results demonstrate Cobalt as a promising solution for iterative decision-making tasks like multi-turn code generation. Our code and data are available at https://github.com/OSU-NLP-Group/cobalt.
☆ Prediction of Critical Heat Flux in Rod Bundles Using Tube-Based Hybrid Machine Learning Models in CTF
The prediction of critical heat flux (CHF) using machine learning (ML) approaches has become a highly active research activity in recent years, the goal of which is to build models more accurate than current conventional approaches such as empirical correlations or lookup tables (LUTs). Previous work developed and deployed tube-based pure and hybrid ML models in the CTF subchannel code, however, full-scale reactor core simulations require the use of rod bundle geometries. Unlike isolated subchannels, rod bundles experience complex thermal hydraulic phenomena such as channel crossflow, spacer grid losses, and effects from unheated conductors. This study investigates the generalization of ML-based CHF prediction models in rod bundles after being trained on tube-based CHF data. A purely data-driven DNN and two hybrid bias-correction models were implemented in the CTF subchannel code and used to predict CHF location and magnitude in the Combustion Engineering 5-by-5 bundle CHF test series. The W-3 correlation, Bowring correlation, and Groeneveld LUT were used as baseline comparators. On average, all three ML-based approaches produced magnitude and location predictions more accurate than the baseline models, with the hybrid LUT model exhibiting the most favorable performance metrics.
comment: Submitted to the 2026 American Nuclear Society Annual Meeting
☆ Manifold Random Features
We present a new paradigm for creating random features to approximate bi-variate functions (in particular, kernels) defined on general manifolds. This new mechanism of Manifold Random Features (MRFs) leverages discretization of the manifold and the recently introduced technique of Graph Random Features (GRFs) to learn continuous fields on manifolds. Those fields are used to find continuous approximation mechanisms that otherwise, in general scenarios, cannot be derived analytically. MRFs provide positive and bounded features, a key property for accurate, low-variance approximation. We show deep asymptotic connection between GRFs, defined on discrete graph objects, and continuous random features used for regular kernels. As a by-product of our method, we re-discover recently introduced mechanism of Gaussian kernel approximation applied in particular to improve linear-attention Transformers, considering simple random walks on graphs and by-passing original complex mathematical computations. We complement our algorithm with a rigorous theoretical analysis and verify in thorough experimental studies.
☆ Understanding Agent Scaling in LLM-Based Multi-Agent Systems via Diversity
LLM-based multi-agent systems (MAS) have emerged as a promising approach to tackle complex tasks that are difficult for individual LLMs. A natural strategy is to scale performance by increasing the number of agents; however, we find that such scaling exhibits strong diminishing returns in homogeneous settings, while introducing heterogeneity (e.g., different models, prompts, or tools) continues to yield substantial gains. This raises a fundamental question: what limits scaling, and why does diversity help? We present an information-theoretic framework showing that MAS performance is bounded by the intrinsic task uncertainty, not by agent count. We derive architecture-agnostic bounds demonstrating that improvements depend on how many effective channels the system accesses. Homogeneous agents saturate early because their outputs are strongly correlated, whereas heterogeneous agents contribute complementary evidence. We further introduce $K^*$, an effective channel count that quantifies the number of effective channels without ground-truth labels. Empirically, we show that heterogeneous configurations consistently outperform homogeneous scaling: 2 diverse agents can match or exceed the performance of 16 homogeneous agents. Our results provide principled guidelines for building efficient and robust MAS through diversity-aware design. Code and Dataset are available at the link: https://github.com/SafeRL-Lab/Agent-Scaling.
☆ Should I use Synthetic Data for That? An Analysis of the Suitability of Synthetic Data for Data Sharing and Augmentation
Recent advances in generative modelling have led many to see synthetic data as the go-to solution for a range of problems around data access, scarcity, and under-representation. In this paper, we study three prominent use cases: (1) Sharing synthetic data as a proxy for proprietary datasets to enable statistical analyses while protecting privacy, (2) Augmenting machine learning training sets with synthetic data to improve model performance, and (3) Augmenting datasets with synthetic data to reduce variance in statistical estimation. For each use case, we formalise the problem setting and study, through formal analysis and case studies, under which conditions synthetic data can achieve its intended objectives. We identify fundamental and practical limits that constrain when synthetic data can serve as an effective solution for a particular problem. Our analysis reveals that due to these limits many existing or envisioned use cases of synthetic data are a poor problem fit. Our formalisations and classification of synthetic data use cases enable decision makers to assess whether synthetic data is a suitable approach for their specific data availability problem.
comment: BK and TS contributed equally
☆ Fast Sampling for Flows and Diffusions with Lazy and Point Mass Stochastic Interpolants
Stochastic interpolants unify flows and diffusions, popular generative modeling frameworks. A primary hyperparameter in these methods is the interpolation schedule that determines how to bridge a standard Gaussian base measure to an arbitrary target measure. We prove how to convert a sample path of a stochastic differential equation (SDE) with arbitrary diffusion coefficient under any schedule into the unique sample path under another arbitrary schedule and diffusion coefficient. We then extend the stochastic interpolant framework to admit a larger class of point mass schedules in which the Gaussian base measure collapses to a point mass measure. Under the assumption of Gaussian data, we identify lazy schedule families that make the drift identically zero and show that with deterministic sampling one gets a variance-preserving schedule commonly used in diffusion models, whereas with statistically optimal SDE sampling one gets our point mass schedule. Finally, to demonstrate the usefulness of our theoretical results on realistic highly non-Gaussian data, we apply our lazy schedule conversion to a state-of-the-art pretrained flow model and show that this allows for generating images in fewer steps without retraining the model.
☆ Inference-time Unlearning Using Conformal Prediction
Machine unlearning is the process of efficiently removing specific information from a trained machine learning model without retraining from scratch. Existing unlearning methods, which often provide provable guarantees, typically involve retraining a subset of model parameters based on a forget set. While these approaches show promise in certain scenarios, their underlying assumptions are often challenged in real-world applications -- particularly when applied to generative models. Furthermore, updating parameters using these unlearning procedures often degrades the general-purpose capabilities the model acquired during pre-training. Motivated by these shortcomings, this paper considers the paradigm of inference time unlearning -- wherein, the generative model is equipped with an (approximately correct) verifier that judges whether the model's response satisfies appropriate unlearning guarantees. This paper introduces a framework that iteratively refines the quality of the generated responses using feedback from the verifier without updating the model parameters. The proposed framework leverages conformal prediction to reduce computational overhead and provide distribution-free unlearning guarantees. This paper's approach significantly outperforms existing state-of-the-art methods, reducing unlearning error by up to 93% across challenging unlearning benchmarks.
☆ Efficient Estimation of Kernel Surrogate Models for Task Attribution ICLR 2026
Modern AI agents such as large language models are trained on diverse tasks -- translation, code generation, mathematical reasoning, and text prediction -- simultaneously. A key question is to quantify how each individual training task influences performance on a target task, a problem we refer to as task attribution. The direct approach, leave-one-out retraining, measures the effect of removing each task, but is computationally infeasible at scale. An alternative approach that builds surrogate models to predict a target task's performance for any subset of training tasks has emerged in recent literature. Prior work focuses on linear surrogate models, which capture first-order relationships, but miss nonlinear interactions such as synergy, antagonism, or XOR-type effects. In this paper, we first consider a unified task weighting framework for analyzing task attribution methods, and show a new connection between linear surrogate models and influence functions through a second-order analysis. Then, we introduce kernel surrogate models, which more effectively represent second-order task interactions. To efficiently learn the kernel surrogate, we develop a gradient-based estimation procedure that leverages a first-order approximation of pretrained models; empirically, this yields accurate estimates with less than $2\%$ relative error without repeated retraining. Experiments across multiple domains -- including math reasoning in transformers, in-context learning, and multi-objective reinforcement learning -- demonstrate the effectiveness of kernel surrogate models. They achieve a $25\%$ higher correlation with the leave-one-out ground truth than linear surrogates and influence-function baselines. When used for downstream task selection, kernel surrogate models yield a $40\%$ improvement in demonstration selection for in-context learning and multi-objective reinforcement learning benchmarks.
comment: 27 pages. To appear in ICLR 2026
☆ Reward Redistribution for CVaR MDPs using a Bellman Operator on L-infinity
Tail-end risk measures such as static conditional value-at-risk (CVaR) are used in safety-critical applications to prevent rare, yet catastrophic events. Unlike risk-neutral objectives, the static CVaR of the return depends on entire trajectories without admitting a recursive Bellman decomposition in the underlying Markov decision process. A classical resolution relies on state augmentation with a continuous variable. However, unless restricted to a specialized class of admissible value functions, this formulation induces sparse rewards and degenerate fixed points. In this work, we propose a novel formulation of the static CVaR objective based on augmentation. Our alternative approach leads to a Bellman operator with: (1) dense per-step rewards; (2) contracting properties on the full space of bounded value functions. Building on this theoretical foundation, we develop risk-averse value iteration and model-free Q-learning algorithms that rely on discretized augmented states. We further provide convergence guarantees and approximation error bounds due to discretization. Empirical results demonstrate that our algorithms successfully learn CVaR-sensitive policies and achieve effective performance-safety trade-offs.
☆ Reasoning Cache: Continual Improvement Over Long Horizons via Short-Horizon RL
Large Language Models (LLMs) that can continually improve beyond their training budgets are able to solve increasingly difficult problems by adapting at test time, a property we refer to as extrapolation. However, standard reinforcement learning (RL) operates over fixed problem distributions and training budgets, which limits extrapolation amidst distribution shift at test time. To address this, we introduce RC, an iterative decoding algorithm that replaces standard autoregressive decoding during both training and inference. RC exploits an asymmetry between the response generation and summarization capabilities of LLMs to construct reasoning chains that consistently improve across iterations. Models trained to use RC can extrapolate and continually improve over reasoning horizons more than an order of magnitude longer than those seen during training. Empirically, training a 4B model with RC using a 16k-token training budget improves performance on HMMT 2025 from 40% to nearly 70% with 0.5m tokens at test time, outperforming both comparably sized models and many larger reasoning LLMs. Finally, we also show that models trained with RC can more effectively leverage existing scaffolds to further scale test-time performance, due to the improved summary-conditioned generation abilities learned through training.
comment: preprint
☆ UniGeM: Unifying Data Mixing and Selection via Geometric Exploration and Mining
The scaling of Large Language Models (LLMs) is increasingly limited by data quality. Most methods handle data mixing and sample selection separately, which can break the structure in code corpora. We introduce \textbf{UniGeM}, a framework that unifies mixing and selection by treating data curation as a \textit{manifold approximation} problem without training proxy models or relying on external reference datasets. UniGeM operates hierarchically: \textbf{Macro-Exploration} learns mixing weights with stability-based clustering; \textbf{Micro-Mining} filters high-quality instances by their geometric distribution to ensure logical consistency. Validated by training 8B and 16B MoE models on 100B tokens, UniGeM achieves \textbf{2.0$\times$ data efficiency} over a random baseline and further improves overall performance compared to SOTA methods in reasoning-heavy evaluations and multilingual generalization.
☆ Reasoning with Latent Tokens in Diffusion Language Models
Discrete diffusion models have recently become competitive with autoregressive models for language modeling, even outperforming them on reasoning tasks requiring planning and global coherence, but they require more computation at inference time. We trace this trade-off to a key mechanism: diffusion models are trained to jointly predict a distribution over all unknown tokens, including those that will not actually be decoded in the current step. Ablating this joint prediction yields faster inference but degrades performance, revealing that accurate prediction at the decoded position relies on joint reasoning about the distribution of undecoded tokens. We interpret these as latent tokens and introduce a method for modulating their number, demonstrating empirically that this enables a smooth tradeoff between inference speed and sample quality. Furthermore, we demonstrate that latent tokens can be introduced into autoregressive models through an auxiliary multi-token prediction objective, yielding substantial improvements on the same reasoning tasks where they have traditionally struggled. Our results suggest that latent tokens, while arising naturally in diffusion, represent a general mechanism for improving performance on tasks requiring global coherence or lookahead.
☆ Decision-oriented benchmarking to transform AI weather forecast access: Application to the Indian monsoon
Artificial intelligence weather prediction (AIWP) models now often outperform traditional physics-based models on common metrics while requiring orders-of-magnitude less computing resources and time. Open-access AIWP models thus hold promise as transformational tools for helping low- and middle-income populations make decisions in the face of high-impact weather shocks. Yet, current approaches to evaluating AIWP models focus mainly on aggregated meteorological metrics without considering local stakeholders' needs in decision-oriented, operational frameworks. Here, we introduce such a framework that connects meteorology, AI, and social sciences. As an example, we apply it to the 150-year-old problem of Indian monsoon forecasting, focusing on benefits to rain-fed agriculture, which is highly susceptible to climate change. AIWP models skillfully predict an agriculturally relevant onset index at regional scales weeks in advance when evaluated out-of-sample using deterministic and probabilistic metrics. This framework informed a government-led effort in 2025 to send 38 million Indian farmers AI-based monsoon onset forecasts, which captured an unusual weeks-long pause in monsoon progression. This decision-oriented benchmarking framework provides a key component of a blueprint for harnessing the power of AIWP models to help large vulnerable populations adapt to weather shocks in the face of climate variability and change.
☆ Conditional Flow Matching for Visually-Guided Acoustic Highlighting
Visually-guided acoustic highlighting seeks to rebalance audio in alignment with the accompanying video, creating a coherent audio-visual experience. While visual saliency and enhancement have been widely studied, acoustic highlighting remains underexplored, often leading to misalignment between visual and auditory focus. Existing approaches use discriminative models, which struggle with the inherent ambiguity in audio remixing, where no natural one-to-one mapping exists between poorly-balanced and well-balanced audio mixes. To address this limitation, we reframe this task as a generative problem and introduce a Conditional Flow Matching (CFM) framework. A key challenge in iterative flow-based generation is that early prediction errors -- in selecting the correct source to enhance -- compound over steps and push trajectories off-manifold. To address this, we introduce a rollout loss that penalizes drift at the final step, encouraging self-correcting trajectories and stabilizing long-range flow integration. We further propose a conditioning module that fuses audio and visual cues before vector field regression, enabling explicit cross-modal source selection. Extensive quantitative and qualitative evaluations show that our method consistently surpasses the previous state-of-the-art discriminative approach, establishing that visually-guided audio remixing is best addressed through generative modeling.
☆ Soft Sensor for Bottom-Hole Pressure Estimation in Petroleum Wells Using Long Short-Term Memory and Transfer Learning
Monitoring bottom-hole variables in petroleum wells is essential for production optimization, safety, and emissions reduction. Permanent Downhole Gauges (PDGs) provide real-time pressure data but face reliability and cost issues. We propose a machine learning-based soft sensor to estimate flowing Bottom-Hole Pressure (BHP) using wellhead and topside measurements. A Long Short-Term Memory (LSTM) model is introduced and compared with Multi-Layer Perceptron (MLP) and Ridge Regression. We also pioneer Transfer Learning for adapting models across operational environments. Tested on real offshore datasets from Brazil's Pre-salt basin, the methodology achieved Mean Absolute Percentage Error (MAPE) consistently below 2\%, outperforming benchmarks. This work offers a cost-effective, accurate alternative to physical sensors, with broad applicability across diverse reservoir and flow conditions.
☆ Fast-MWEM: Private Data Release in Sublinear Time
The Multiplicative Weights Exponential Mechanism (MWEM) is a fundamental iterative framework for private data analysis, with broad applications such as answering $m$ linear queries, or privately solving systems of $m$ linear constraints. However, a critical bottleneck hindering its scalability is the $Θ(m)$ time complexity required to execute the exponential mechanism in each iteration. We introduce a modification to the MWEM framework that improves the per-iteration runtime dependency to $Θ(\sqrt{m})$ in expectation. This is done via a lazy sampling approach to the Report-Noisy-Max mechanism, which we implement efficiently using Gumbel noise and a $k$-Nearest Neighbor data structure. This allows for the rapid selection of the approximate score in the exponential mechanism without an exhaustive linear scan. We apply our accelerated framework to the problems of private linear query release and solving Linear Programs (LPs) under neighboring constraint conditions and low-sensitivity assumptions. Experimental evaluation confirms that our method provides a substantial runtime improvement over classic MWEM.
☆ Efficient Variance-reduced Estimation from Generative EHR Models: The SCOPE and REACH Estimators
Generative models trained using self-supervision of tokenized electronic health record (EHR) timelines show promise for clinical outcome prediction. This is typically done using Monte Carlo simulation for future patient trajectories. However, existing approaches suffer from three key limitations: sparse estimate distributions that poorly differentiate patient risk levels, extreme computational costs, and high sampling variance. We propose two new estimators: the Sum of Conditional Outcome Probability Estimator (SCOPE) and Risk Estimation from Anticipated Conditional Hazards (REACH), that leverage next-token probability distributions discarded by standard Monte Carlo. We prove both estimators are unbiased and that REACH guarantees variance reduction over Monte Carlo sampling for any model and outcome. Empirically, on hospital mortality prediction in MIMIC-IV using the ETHOS-ARES framework, SCOPE and REACH match 100-sample Monte Carlo performance using only 10-11 samples (95% CI: [9,11]), representing a ~10x reduction in inference cost without degrading calibration. For ICU admission prediction, efficiency gains are more modest (~1.2x), which we attribute to the outcome's lower "spontaneity," a property we characterize theoretically and empirically. These methods substantially improve the feasibility of deploying generative EHR models in resource-constrained clinical settings.
comment: 10 pages, 2 figures
☆ Efficient Training of Boltzmann Generators Using Off-Policy Log-Dispersion Regularization
Sampling from unnormalized probability densities is a central challenge in computational science. Boltzmann generators are generative models that enable independent sampling from the Boltzmann distribution of physical systems at a given temperature. However, their practical success depends on data-efficient training, as both simulation data and target energy evaluations are costly. To this end, we propose off-policy log-dispersion regularization (LDR), a novel regularization framework that builds on a generalization of the log-variance objective. We apply LDR in the off-policy setting in combination with standard data-based training objectives, without requiring additional on-policy samples. LDR acts as a shape regularizer of the energy landscape by leveraging additional information in the form of target energy labels. The proposed regularization framework is broadly applicable, supporting unbiased or biased simulation datasets as well as purely variational training without access to target samples. Across all benchmarks, LDR improves both final performance and data efficiency, with sample efficiency gains of up to one order of magnitude.
☆ VR-VFL: Joint Rate and Client Selection for Vehicular Federated Learning Under Imperfect CSI
Federated learning in vehicular edge networks faces major challenges in efficient resource allocation, largely due to high vehicle mobility and the presence of imperfect channel state information. Many existing methods oversimplify these realities, often assuming fixed communication rounds or ideal channel conditions, which limits their effectiveness in real-world scenarios. To address this, we propose variable rate vehicular federated learning (VR-VFL), a novel federated learning method designed specifically for vehicular networks under imperfect channel state information. VR-VFL combines dynamic client selection with adaptive transmission rate selection, while also allowing round times to flex in response to changing wireless conditions. At its core, VR-VFL is built on a bi-objective optimization framework that strikes a balance between improving learning convergence and minimizing the time required to complete each round. By accounting for both the challenges of mobility and realistic wireless constraints, VR-VFL offers a more practical and efficient approach to federated learning in vehicular edge networks. Simulation results show that the proposed VR-VFL scheme achieves convergence approximately 40% faster than other methods in the literature.
comment: This paper has been accepted for presentation at IEEE ICC 2026
☆ Anytime Pretraining: Horizon-Free Learning-Rate Schedules with Weight Averaging
Large language models are increasingly trained in continual or open-ended settings, where the total training horizon is not known in advance. Despite this, most existing pretraining recipes are not anytime: they rely on horizon-dependent learning rate schedules and extensive tuning under a fixed compute budget. In this work, we provide a theoretical analysis demonstrating the existence of anytime learning schedules for overparameterized linear regression, and we highlight the central role of weight averaging - also known as model merging - in achieving the minimax convergence rates of stochastic gradient descent. We show that these anytime schedules polynomially decay with time, with the decay rate determined by the source and capacity conditions of the problem. Empirically, we evaluate 150M and 300M parameter language models trained at 1-32x Chinchilla scale, comparing constant learning rates with weight averaging and $1/\sqrt{t}$ schedules with weight averaging against a well-tuned cosine schedule. Across the full training range, the anytime schedules achieve comparable final loss to cosine decay. Taken together, our results suggest that weight averaging combined with simple, horizon-free step sizes offers a practical and effective anytime alternative to cosine learning rate schedules for large language model pretraining.
☆ Data-Driven Graph Filters via Adaptive Spectral Shaping
We introduce Adaptive Spectral Shaping, a data-driven framework for graph filtering that learns a reusable baseline spectral kernel and modulates it with a small set of Gaussian factors. The resulting multi-peak, multi-scale responses allocate energy to heterogeneous regions of the Laplacian spectrum while remaining interpretable via explicit centers and bandwidths. To scale, we implement filters with Chebyshev polynomial expansions, avoiding eigendecompositions. We further propose Transferable Adaptive Spectral Shaping (TASS): the baseline kernel is learned on source graphs and, on a target graph, kept fixed while only the shaping parameters are adapted, enabling few-shot transfer under matched compute. Across controlled synthetic benchmarks spanning graph families and signal regimes, Adaptive Spectral Shaping reduces reconstruction error relative to fixed-prototype wavelets and learned linear banks, and TASS yields consistent positive transfer. The framework provides compact spectral modules that plug into graph signal processing pipelines and graph neural networks, combining scalability, interpretability, and cross-graph generalization.
☆ Conflict-Resolving and Sharpness-Aware Minimization for Generalized Knowledge Editing with Multiple Updates
Large language models (LLMs) rely on internal knowledge to solve many downstream tasks, making it crucial to keep them up to date. Since full retraining is expensive, prior work has explored efficient alternatives such as model editing and parameter-efficient fine-tuning. However, these approaches often break down in practice due to poor generalization across inputs, limited stability, and knowledge conflict. To address these limitations, we propose the CoRSA (Conflict-Resolving and Sharpness-Aware Minimization) training framework, a parameter-efficient, holistic approach for knowledge editing with multiple updates. CoRSA tackles multiple challenges simultaneously: it improves generalization to different input forms and enhances stability across multiple updates by minimizing loss curvature, and resolves conflicts by maximizing the margin between new and prior knowledge. Across three widely used fact editing benchmarks, CoRSA achieves significant gains in generalization, outperforming baselines with average absolute improvements of 12.42% over LoRA and 10% over model editing methods. With multiple updates, it maintains high update efficacy while reducing catastrophic forgetting by 27.82% compared to LoRA. CoRSA also generalizes to the code domain, outperforming the strongest baseline by 5.48% Pass@5 in update efficacy.
comment: 22 pages, 8 figures. Code link: https://github.com/duykhuongnguyen/CoRSA
LLM-Inspired Pretrain-Then-Finetune for Small-Data, Large-Scale Optimization
We consider small-data, large-scale decision problems in which a firm must make many operational decisions simultaneously (e.g., across a large product portfolio) while observing only a few, potentially noisy, data points per instance. Inspired by the success of large language models (LLMs), we propose a pretrain-then-finetune approach built on a designed Transformer model to address this challenge. The model is first pretrained on large-scale, domain-informed synthetic data that encode managerial knowledge and structural features of the decision environment, and is then fine-tuned on real observations. This new pipeline offers two complementary advantages: pretraining injects domain knowledge into the learning process and enables the training of high-capacity models using abundant synthetic data, while finetuning adapts the pretrained model to the operational environment and improves alignment with the true data-generating regime. While we have leveraged the Transformer's state-of-the-art representational capacity, particularly its attention mechanism, to efficiently extract cross-task structure, our approach is not an off-the-shelf application. Instead, it relies on problem-specific architectural design and a tailored training procedure to match the decision setting. Theoretically, we develop the first comprehensive error analysis regarding Transformer learning in relevant contexts, establishing nonasymptotic guarantees that validate the method's effectiveness. Critically, our analysis reveals how pretraining and fine-tuning jointly determine performance, with the dominant contribution governed by whichever is more favorable. In particular, finetuning exhibits an economies-of-scale effect, whereby transfer learning becomes increasingly effective as the number of instances grows.
☆ QuAIL: Quality-Aware Inertial Learning for Robust Training under Data Corruption
Tabular machine learning systems are frequently trained on data affected by non-uniform corruption, including noisy measurements, missing entries, and feature-specific biases. In practice, these defects are often documented only through column-level reliability indicators rather than instance-wise quality annotations, limiting the applicability of many robustness and cleaning techniques. We present QuAIL, a quality-informed training mechanism that incorporates feature reliability priors directly into the learning process. QuAIL augments existing models with a learnable feature-modulation layer whose updates are selectively constrained by a quality-dependent proximal regularizer, thereby inducing controlled adaptation across features of varying trustworthiness. This stabilizes optimization under structured corruption without explicit data repair or sample-level reweighting. Empirical evaluation across 50 classification and regression datasets demonstrates that QuAIL consistently improves average performance over neural baselines under both random and value-dependent corruption, with especially robust behavior in low-data and systematically biased settings. These results suggest that incorporating feature reliability information directly into optimization dynamics is a practical and effective approach for resilient tabular learning.
☆ Universal One-third Time Scaling in Learning Peaked Distributions
Training large language models (LLMs) is computationally expensive, partly because the loss exhibits slow power-law convergence whose origin remains debatable. Through systematic analysis of toy models and empirical evaluation of LLMs, we show that this behavior can arise intrinsically from the use of softmax and cross-entropy. When learning peaked probability distributions, e.g., next-token distributions, these components yield power-law vanishing losses and gradients, creating a fundamental optimization bottleneck. This ultimately leads to power-law time scaling of the loss with a universal exponent of $1/3$. Our results provide a mechanistic explanation for observed neural scaling and suggest new directions for improving LLM training efficiency.
comment: 24 pages, 6 main text figures, 27 figures in total
☆ Improved Analysis of the Accelerated Noisy Power Method with Applications to Decentralized PCA
We analyze the Accelerated Noisy Power Method, an algorithm for Principal Component Analysis in the setting where only inexact matrix-vector products are available, which can arise for instance in decentralized PCA. While previous works have established that acceleration can improve convergence rates compared to the standard Noisy Power Method, these guarantees require overly restrictive upper bounds on the magnitude of the perturbations, limiting their practical applicability. We provide an improved analysis of this algorithm, which preserves the accelerated convergence rate under much milder conditions on the perturbations. We show that our new analysis is worst-case optimal, in the sense that the convergence rate cannot be improved, and that the noise conditions we derive cannot be relaxed without sacrificing convergence guarantees. We demonstrate the practical relevance of our results by deriving an accelerated algorithm for decentralized PCA, which has similar communication costs to non-accelerated methods. To our knowledge, this is the first decentralized algorithm for PCA with provably accelerated convergence.
☆ Neural Attention Search Linear: Towards Adaptive Token-Level Hybrid Attention Models
The quadratic computational complexity of softmax transformers has become a bottleneck in long-context scenarios. In contrast, linear attention model families provide a promising direction towards a more efficient sequential model. These linear attention models compress past KV values into a single hidden state, thereby efficiently reducing complexity during both training and inference. However, their expressivity remains limited by the size of their hidden state. Previous work proposed interleaving softmax and linear attention layers to reduce computational complexity while preserving expressivity. Nevertheless, the efficiency of these models remains bottlenecked by their softmax attention layers. In this paper, we propose Neural Attention Search Linear (NAtS-L), a framework that applies both linear attention and softmax attention operations within the same layer on different tokens. NAtS-L automatically determines whether a token can be handled by a linear attention model, i.e., tokens that have only short-term impact and can be encoded into fixed-size hidden states, or require softmax attention, i.e., tokens that contain information related to long-term retrieval and need to be preserved for future queries. By searching for optimal Gated DeltaNet and softmax attention combinations across tokens, we show that NAtS-L provides a strong yet efficient token-level hybrid architecture.
comment: 17 pages, 8 figures
☆ ContraLog: Log File Anomaly Detection with Contrastive Learning and Masked Language Modeling
Log files record computational events that reflect system state and behavior, making them a primary source of operational insights in modern computer systems. Automated anomaly detection on logs is therefore critical, yet most established methods rely on log parsers that collapse messages into discrete templates, discarding variable values and semantic content. We propose ContraLog, a parser-free and self-supervised method that reframes log anomaly detection as predicting continuous message embeddings rather than discrete template IDs. ContraLog combines a message encoder that produces rich embeddings for individual log messages with a sequence encoder to model temporal dependencies within sequences. The model is trained with a combination of masked language modeling and contrastive learning to predict masked message embeddings based on the surrounding context. Experiments on the HDFS, BGL, and Thunderbird benchmark datasets empirically demonstrate effectiveness on complex datasets with diverse log messages. Additionally, we find that message embeddings generated by ContraLog carry meaningful information and are predictive of anomalies even without sequence context. These results highlight embedding-level prediction as an approach for log anomaly detection, with potential applicability to other event sequences.
comment: 26 pages with 16 figures
☆ Equilibrium Propagation for Non-Conservative Systems
Equilibrium Propagation (EP) is a physics-inspired learning algorithm that uses stationary states of a dynamical system both for inference and learning. In its original formulation it is limited to conservative systems, $\textit{i.e.}$ to dynamics which derive from an energy function. Given their importance in applications, it is important to extend EP to nonconservative systems, $\textit{i.e.}$ systems with non-reciprocal interactions. Previous attempts to generalize EP to such systems failed to compute the exact gradient of the cost function. Here we propose a framework that extends EP to arbitrary nonconservative systems, including feedforward networks. We keep the key property of equilibrium propagation, namely the use of stationary states both for inference and learning. However, we modify the dynamics in the learning phase by a term proportional to the non-reciprocal part of the interaction so as to obtain the exact gradient of the cost function. This algorithm can also be derived using a variational formulation that generates the learning dynamics through an energy function defined over an augmented state space. Numerical experiments using the MNIST database show that this algorithm achieves better performance and learns faster than previous proposals.
comment: 19 pages (9 pages main text), 7 figures
☆ Efficient Sequential Neural Network with Spatial-Temporal Attention and Linear LSTM for Robust Lane Detection Using Multi-Frame Images
Lane detection is a crucial perception task for all levels of automated vehicles (AVs) and Advanced Driver Assistance Systems, particularly in mixed-traffic environments where AVs must interact with human-driven vehicles (HDVs) and challenging traffic scenarios. Current methods lack versatility in delivering accurate, robust, and real-time compatible lane detection, especially vision-based methods often neglect critical regions of the image and their spatial-temporal (ST) salience, leading to poor performance in difficult circumstances such as serious occlusion and dazzle lighting. This study introduces a novel sequential neural network model with a spatial-temporal attention mechanism to focus on key features of lane lines and exploit salient ST correlations among continuous image frames. The proposed model, built on a standard encoder-decoder structure and common neural network backbones, is trained and evaluated on three large-scale open-source datasets. Extensive experiments demonstrate the strength and robustness of the proposed model, outperforming state-of-the-art methods in various testing scenarios. Furthermore, with the ST attention mechanism, the developed sequential neural network models exhibit fewer parameters and reduced Multiply-Accumulate Operations (MACs) compared to baseline sequential models, highlighting their computational efficiency. Relevant data, code, and models are released at https://doi.org/10.4121/4619cab6-ae4a-40d5-af77-582a77f3d821.
comment: 14 pages, 9 figures, under review by IEEE T-ITS
☆ Mitigating Conversational Inertia in Multi-Turn Agents
Large language models excel as few-shot learners when provided with appropriate demonstrations, yet this strength becomes problematic in multiturn agent scenarios, where LLMs erroneously mimic their own previous responses as few-shot examples. Through attention analysis, we identify conversational inertia, a phenomenon where models exhibit strong diagonal attention to previous responses, which is associated with imitation bias that constrains exploration. This reveals a tension when transforming few-shot LLMs into agents: longer context enriches environmental feedback for exploitation, yet also amplifies conversational inertia that undermines exploration. Our key insight is that for identical states, actions generated with longer contexts exhibit stronger inertia than those with shorter contexts, enabling construction of preference pairs without environment rewards. Based on this, we propose Context Preference Learning to calibrate model preferences to favor low-inertia responses over highinertia ones. We further provide context management strategies at inference time to balance exploration and exploitation. Experimental results across eight agentic environments and one deep research scenario validate that our framework reduces conversational inertia and achieves performance improvements.
☆ Sequential Group Composition: A Window into the Mechanics of Deep Learning
How do neural networks trained over sequences acquire the ability to perform structured operations, such as arithmetic, geometric, and algorithmic computation? To gain insight into this question, we introduce the sequential group composition task. In this task, networks receive a sequence of elements from a finite group encoded in a real vector space and must predict their cumulative product. The task can be order-sensitive and requires a nonlinear architecture to be learned. Our analysis isolates the roles of the group structure, encoding statistics, and sequence length in shaping learning. We prove that two-layer networks learn this task one irreducible representation of the group at a time in an order determined by the Fourier statistics of the encoding. These networks can perfectly learn the task, but doing so requires a hidden width exponential in the sequence length $k$. In contrast, we show how deeper models exploit the associativity of the task to dramatically improve this scaling: recurrent neural networks compose elements sequentially in $k$ steps, while multilayer networks compose adjacent pairs in parallel in $\log k$ layers. Overall, the sequential group composition task offers a tractable window into the mechanics of deep learning.
☆ Reinforcement Fine-Tuning for History-Aware Dense Retriever in RAG
Retrieval-augmented generation (RAG) enables large language models (LLMs) to produce evidence-based responses, and its performance hinges on the matching between the retriever and LLMs. Retriever optimization has emerged as an efficient alternative to fine-tuning LLMs. However, existing solutions suffer from objective mismatch between retriever optimization and the goal of RAG pipeline. Reinforcement learning (RL) provides a promising solution to address this limitation, yet applying RL to retriever optimization introduces two fundamental challenges: 1) the deterministic retrieval is incompatible with RL formulations, and 2) state aliasing arises from query-only retrieval in multi-hop reasoning. To address these challenges, we replace deterministic retrieval with stochastic sampling and formulate RAG as a Markov decision process, making retriever optimizable by RL. Further, we incorporate retrieval history into the state at each retrieval step to mitigate state aliasing. Extensive experiments across diverse RAG pipelines, datasets, and retriever scales demonstrate consistent improvements of our approach in RAG performance.
comment: On going work. Codes are released at https://github.com/zyc140345/HARR
☆ CTTVAE: Latent Space Structuring for Conditional Tabular Data Generation on Imbalanced Datasets
Generating synthetic tabular data under severe class imbalance is essential for domains where rare but high-impact events drive decision-making. However, most generative models either overlook minority groups or fail to produce samples that are useful for downstream learning. We introduce CTTVAE, a Conditional Transformer-based Tabular Variational Autoencoder equipped with two complementary mechanisms: (i) a class-aware triplet margin loss that restructures the latent space for sharper intra-class compactness and inter-class separation, and (ii) a training-by-sampling strategy that adaptively increases exposure to underrepresented groups. Together, these components form CTTVAE+TBS, a framework that consistently yields more representative and utility-aligned samples without destabilizing training. Across six real-world benchmarks, CTTVAE+TBS achieves the strongest downstream utility on minority classes, often surpassing models trained on the original imbalanced data while maintaining competitive fidelity and bridging the gap for privacy for interpolation-based sampling methods and deep generative methods. Ablation studies further confirm that both latent structuring and targeted sampling contribute to these gains. By explicitly prioritizing downstream performance in rare categories, CTTVAE+TBS provides a robust and interpretable solution for conditional tabular data generation, with direct applicability to industries such as healthcare, fraud detection, and predictive maintenance where even small gains in minority cases can be critical.
TRE: Encouraging Exploration in the Trust Region
Entropy regularization is a standard technique in reinforcement learning (RL) to enhance exploration, yet it yields negligible effects or even degrades performance in Large Language Models (LLMs). We attribute this failure to the cumulative tail risk inherent to LLMs with massive vocabularies and long generation horizons. In such environments, standard global entropy maximization indiscriminately dilutes probability mass into the vast tail of invalid tokens rather than focusing on plausible candidates, thereby disrupting coherent reasoning. To address this, we propose Trust Region Entropy (TRE), a method that encourages exploration strictly within the model's trust region. Extensive experiments across mathematical reasoning (MATH), combinatorial search (Countdown), and preference alignment (HH) tasks demonstrate that TRE consistently outperforms vanilla PPO, standard entropy regularization, and other exploration baselines. Our code is available at https://github.com/WhyChaos/TRE-Encouraging-Exploration-in-the-Trust-Region.
☆ Ultra Fast PDE Solving via Physics Guided Few-step Diffusion
Diffusion-based models have demonstrated impressive accuracy and generalization in solving partial differential equations (PDEs). However, they still face significant limitations, such as high sampling costs and insufficient physical consistency, stemming from their many-step iterative sampling mechanism and lack of explicit physics constraints. To address these issues, we propose Phys-Instruct, a novel physics-guided distillation framework which not only (1) compresses a pre-trained diffusion PDE solver into a few-step generator via matching generator and prior diffusion distributions to enable rapid sampling, but also (2) enhances the physics consistency by explicitly injecting PDE knowledge through a PDE distillation guidance. Physic-Instruct is built upon a solid theoretical foundation, leading to a practical physics-constrained training objective that admits tractable gradients. Across five PDE benchmarks, Phys-Instruct achieves orders-of-magnitude faster inference while reducing PDE error by more than 8 times compared to state-of-the-art diffusion baselines. Moreover, the resulting unconditional student model functions as a compact prior, enabling efficient and physically consistent inference for various downstream conditional tasks. Our results indicate that Phys-Instruct is a novel, effective, and efficient framework for ultra-fast PDE solving powered by deep generative models.
☆ Quantization-Aware Regularizers for Deep Neural Networks Compression
Deep Neural Networks reached state-of-the-art performance across numerous domains, but this progress has come at the cost of increasingly large and over-parameterized models, posing serious challenges for deployment on resource-constrained devices. As a result, model compression has become essential, and -- among compression techniques -- weight quantization is largely used and particularly effective, yet it typically introduces a non-negligible accuracy drop. However, it is usually applied to already trained models, without influencing how the parameter space is explored during the learning phase. In contrast, we introduce per-layer regularization terms that drive weights to naturally form clusters during training, integrating quantization awareness directly into the optimization process. This reduces the accuracy loss typically associated with quantization methods while preserving their compression potential. Furthermore, in our framework quantization representatives become network parameters, marking, to the best of our knowledge, the first approach to embed quantization parameters directly into the backpropagation procedure. Experiments on CIFAR-10 with AlexNet and VGG16 models confirm the effectiveness of the proposed strategy.
☆ Simulation-Based Inference via Regression Projection and Batched Discrepancies
We analyze a lightweight simulation-based inference method that infers simulator parameters using only a regression-based projection of the observed data. After fitting a surrogate linear regression once, the procedure simulates small batches at the proposed parameter values and assigns kernel weights based on the resulting batch-residual discrepancy, producing a self-normalized pseudo-posterior that is simple, parallelizable, and requires access only to the fitted regression coefficients rather than raw observations. We formalize the construction as an importance-sampling approximation to a population target that averages over simulator randomness, prove consistency as the number of parameter draws grows, and establish stability in estimating the surrogate regression from finite samples. We then characterize the asymptotic concentration as the batch size increases and the bandwidth shrinks, showing that the pseudo-posterior concentrates on an identified set determined by the chosen projection, thereby clarifying when the method yields point versus set identification. Experiments on a tractable nonlinear model and on a cosmological calibration task using the DREAMS simulation suite illustrate the computational advantages of regression-based projections and the identifiability limitations arising from low-information summaries.
comment: comments are welcome,
☆ Generator-based Graph Generation via Heat Diffusion ICML
Graph generative modelling has become an essential task due to the wide range of applications in chemistry, biology, social networks, and knowledge representation. In this work, we propose a novel framework for generating graphs by adapting the Generator Matching (arXiv:2410.20587) paradigm to graph-structured data. We leverage the graph Laplacian and its associated heat kernel to define a continous-time diffusion on each graph. The Laplacian serves as the infinitesimal generator of this diffusion, and its heat kernel provides a family of conditional perturbations of the initial graph. A neural network is trained to match this generator by minimising a Bregman divergence between the true generator and a learnable surrogate. Once trained, the surrogate generator is used to simulate a time-reversed diffusion process to sample new graph structures. Our framework unifies and generalises existing diffusion-based graph generative models, injecting domain-specific inductive bias via the Laplacian, while retaining the flexibility of neural approximators. Experimental studies demonstrate that our approach captures structural properties of real and synthetic graphs effectively.
comment: Submitted to ICML; 8+15 pages; 20 figures
☆ Explanations Leak: Membership Inference with Differential Privacy and Active Learning Defense
Counterfactual explanations (CFs) are increasingly integrated into Machine Learning as a Service (MLaaS) systems to improve transparency; however, ML models deployed via APIs are already vulnerable to privacy attacks such as membership inference and model extraction, and the impact of explanations on this threat landscape remains insufficiently understood. In this work, we focus on the problem of how CFs expand the attack surface of MLaaS by strengthening membership inference attacks (MIAs), and on the need to design defense mechanisms that mitigate this emerging risk without undermining utility and explainability. First, we systematically analyze how exposing CFs through query-based APIs enables more effective shadow-based MIAs. Second, we propose a defense framework that integrates Differential Privacy (DP) with Active Learning (AL) to jointly reduce memorization and limit effective training data exposure. Finally, we conduct an extensive empirical evaluation to characterize the three-way trade-off between privacy leakage, predictive performance, and explanation quality. Our findings highlight the need to carefully balance transparency, utility, and privacy in the responsible deployment of explainable MLaaS systems.
☆ SAGE-5GC: Security-Aware Guidelines for Evaluating Anomaly Detection in the 5G Core Network
Machine learning-based anomaly detection systems are increasingly being adopted in 5G Core networks to monitor complex, high-volume traffic. However, most existing approaches are evaluated under strong assumptions that rarely hold in operational environments, notably the availability of independent and identically distributed (IID) data and the absence of adaptive attackers.In this work, we study the problem of detecting 5G attacks \textit{in the wild}, focusing on realistic deployment settings. We propose a set of Security-Aware Guidelines for Evaluating anomaly detectors in 5G Core Network (SAGE-5GC), driven by domain knowledge and consideration of potential adversarial threats. Using a realistic 5G Core dataset, we first train several anomaly detectors and assess their baseline performance against standard 5GC control-plane cyberattacks targeting PFCP-based network services.We then extend the evaluation to adversarial settings, where an attacker tries to manipulate the observable features of the network traffic to evade detection, under the constraint that the intended functionality of the malicious traffic is preserved. Starting from a selected set of controllable features, we analyze model sensitivity and adversarial robustness through randomized perturbations. Finally, we introduce a practical optimization strategy based on genetic algorithms that operates exclusively on attacker-controllable features and does not require prior knowledge of the underlying detection model. Our experimental results show that adversarially crafted attacks can substantially degrade detection performance, underscoring the need for robust, security-aware evaluation methodologies for anomaly detection in 5G networks deployed in the wild.
comment: ITASEC-2026
☆ APEX: Probing Neural Networks via Activation Perturbation
Prior work on probing neural networks primarily relies on input-space analysis or parameter perturbation, both of which face fundamental limitations in accessing structural information encoded in intermediate representations. We introduce Activation Perturbation for EXploration (APEX), an inference-time probing paradigm that perturbs hidden activations while keeping both inputs and model parameters fixed. We theoretically show that activation perturbation induces a principled transition from sample-dependent to model-dependent behavior by suppressing input-specific signals and amplifying representation-level structure, and further establish that input perturbation corresponds to a constrained special case of this framework. Through representative case studies, we demonstrate the practical advantages of APEX. In the small-noise regime, APEX provides a lightweight and efficient measure of sample regularity that aligns with established metrics, while also distinguishing structured from randomly labeled models and revealing semantically coherent prediction transitions. In the large-noise regime, APEX exposes training-induced model-level biases, including a pronounced concentration of predictions on the target class in backdoored models. Overall, our results show that APEX offers an effective perspective for exploring, and understanding neural networks beyond what is accessible from input space alone.
☆ $V_0$: A Generalist Value Model for Any Policy at State Zero
Policy gradient methods rely on a baseline to measure the relative advantage of an action, ensuring the model reinforces behaviors that outperform its current average capability. In the training of Large Language Models (LLMs) using Actor-Critic methods (e.g., PPO), this baseline is typically estimated by a Value Model (Critic) often as large as the policy model itself. However, as the policy continuously evolves, the value model requires expensive, synchronous incremental training to accurately track the shifting capabilities of the policy. To avoid this overhead, Group Relative Policy Optimization (GRPO) eliminates the coupled value model by using the average reward of a group of rollouts as the baseline; yet, this approach necessitates extensive sampling to maintain estimation stability. In this paper, we propose $V_0$, a Generalist Value Model capable of estimating the expected performance of any model on unseen prompts without requiring parameter updates. We reframe value estimation by treating the policy's dynamic capability as an explicit context input; specifically, we leverage a history of instruction-performance pairs to dynamically profile the model, departing from the traditional paradigm that relies on parameter fitting to perceive capability shifts. Focusing on value estimation at State Zero (i.e., the initial prompt, hence $V_0$), our model serves as a critical resource scheduler. During GRPO training, $V_0$ predicts success rates prior to rollout, allowing for efficient sampling budget allocation; during deployment, it functions as a router, dispatching instructions to the most cost-effective and suitable model. Empirical results demonstrate that $V_0$ significantly outperforms heuristic budget allocation and achieves a Pareto-optimal trade-off between performance and cost in LLM routing tasks.
☆ Optimization and Generation in Aerodynamics Inverse Design
Inverse design with physics-based objectives is challenging because it couples high-dimensional geometry with expensive simulations, as exemplified by aerodynamic shape optimization for drag reduction. We revisit inverse design through two canonical solutions, the optimal design point and the optimal design distribution, and relate them to optimization and guided generation. Building on this view, we propose a new training loss for cost predictors and a density-gradient optimization method that improves objectives while preserving plausible shapes. We further unify existing training-free guided generation methods. To address their inability to approximate conditional covariance in high dimensions, we develop a time- and memory-efficient algorithm for approximate covariance estimation. Experiments on a controlled 2D study and high-fidelity 3D aerodynamic benchmarks (car and aircraft), validated by OpenFOAM simulations and miniature wind-tunnel tests with 3D-printed prototypes, demonstrate consistent gains in both optimization and guided generation. Additional offline RL results further support the generality of our approach.
☆ Asymmetric Hierarchical Anchoring for Audio-Visual Joint Representation: Resolving Information Allocation Ambiguity for Robust Cross-Modal Generalization
Audio-visual joint representation learning under Cross-Modal Generalization (CMG) aims to transfer knowledge from a labeled source modality to an unlabeled target modality through a unified discrete representation space. Existing symmetric frameworks often suffer from information allocation ambiguity, where the absence of structural inductive bias leads to semantic-specific leakage across modalities. We propose Asymmetric Hierarchical Anchoring (AHA), which enforces directional information allocation by designating a structured semantic anchor within a shared hierarchy. In our instantiation, we exploit the hierarchical discrete representations induced by audio Residual Vector Quantization (RVQ) to guide video feature distillation into a shared semantic space. To ensure representational purity, we replace fragile mutual information estimators with a GRL-based adversarial decoupler that explicitly suppresses semantic leakage in modality-specific branches, and introduce Local Sliding Alignment (LSA) to encourage fine-grained temporal alignment across modalities. Extensive experiments on AVE and AVVP benchmarks demonstrate that AHA consistently outperforms symmetric baselines in cross-modal transfer. Additional analyses on talking-face disentanglement experiment further validate that the learned representations exhibit improved semantic consistency and disentanglement, indicating the broader applicability of the proposed framework.
comment: 18 pages, 11 figures
☆ EHRWorld: A Patient-Centric Medical World Model for Long-Horizon Clinical Trajectories
World models offer a principled framework for simulating future states under interventions, but realizing such models in complex, high-stakes domains like medicine remains challenging. Recent large language models (LLMs) have achieved strong performance on static medical reasoning tasks, raising the question of whether they can function as dynamic medical world models capable of simulating disease progression and treatment outcomes over time. In this work, we show that LLMs only incorporating medical knowledge struggle to maintain consistent patient states under sequential interventions, leading to error accumulation in long-horizon clinical simulation. To address this limitation, we introduce EHRWorld, a patient-centric medical world model trained under a causal sequential paradigm, together with EHRWorld-110K, a large-scale longitudinal clinical dataset derived from real-world electronic health records. Extensive evaluations demonstrate that EHRWorld significantly outperforms naive LLM-based baselines, achieving more stable long-horizon simulation, improved modeling of clinically sensitive events, and favorable reasoning efficiency, highlighting the necessity of training on causally grounded, temporally evolving clinical data for reliable and robust medical world modeling.
☆ EVE: Efficient Verification of Data Erasure through Customized Perturbation in Approximate Unlearning
Verifying whether the machine unlearning process has been properly executed is critical but remains underexplored. Some existing approaches propose unlearning verification methods based on backdooring techniques. However, these methods typically require participation in the model's initial training phase to backdoor the model for later verification, which is inefficient and impractical. In this paper, we propose an efficient verification of erasure method (EVE) for verifying machine unlearning without requiring involvement in the model's initial training process. The core idea is to perturb the unlearning data to ensure the model prediction of the specified samples will change before and after unlearning with perturbed data. The unlearning users can leverage the observation of the changes as a verification signal. Specifically, the perturbations are designed with two key objectives: ensuring the unlearning effect and altering the unlearned model's prediction of target samples. We formalize the perturbation generation as an adversarial optimization problem, solving it by aligning the unlearning gradient with the gradient of boundary change for target samples. We conducted extensive experiments, and the results show that EVE can verify machine unlearning without involving the model's initial training process, unlike backdoor-based methods. Moreover, EVE significantly outperforms state-of-the-art unlearning verification methods, offering significant speedup in efficiency while enhancing verification accuracy. The source code of EVE is released at \uline{https://anonymous.4open.science/r/EVE-C143}, providing a novel tool for verification of machine unlearning.
☆ Riemannian Neural Optimal Transport
Computational optimal transport (OT) offers a principled framework for generative modeling. Neural OT methods, which use neural networks to learn an OT map (or potential) from data in an amortized way, can be evaluated out of sample after training, but existing approaches are tailored to Euclidean geometry. Extending neural OT to high-dimensional Riemannian manifolds remains an open challenge. In this paper, we prove that any method for OT on manifolds that produces discrete approximations of transport maps necessarily suffers from the curse of dimensionality: achieving a fixed accuracy requires a number of parameters that grows exponentially with the manifold dimension. Motivated by this limitation, we introduce Riemannian Neural OT (RNOT) maps, which are continuous neural-network parameterizations of OT maps on manifolds that avoid discretization and incorporate geometric structure by construction. Under mild regularity assumptions, we prove that RNOT maps approximate Riemannian OT maps with sub-exponential complexity in the dimension. Experiments on synthetic and real datasets demonstrate improved scalability and competitive performance relative to discretization-based baselines.
comment: 58 pages
☆ CoGenCast: A Coupled Autoregressive-Flow Generative Framework for Time Series Forecasting
Time series forecasting can be viewed as a generative problem that requires both semantic understanding over contextual conditions and stochastic modeling of continuous temporal dynamics. Existing approaches typically rely on either autoregressive large language models (LLMs) for semantic context modeling or diffusion-like models for continuous probabilistic generation. However, neither method alone can adequately model both aspects simultaneously. In this work, we propose CoGenCast, a hybrid generative framework that couples pre-trained LLMs with flow-matching mechanism for effective time series forecasting. Specifically, we reconfigure pre-trained decoder-only LLMs into a native forecasting encoder-decoder backbone by modifying only the attention topology, enabling bidirectional context encoding and causal representation generation. Building on this, a flow-matching mechanism is further integrated to model temporal evolution, capturing continuous stochastic dynamics conditioned on the autoregressively generated representation. Notably, CoGenCast naturally supports multimodal forecasting and cross-domain unified training. Extensive experiments on multiple benchmarks show that CoGenCast consistently outperforms previous compared baselines. Code is available at https://github.com/liuyaguo/_CoGenCast.
☆ NPCNet: Navigator-Driven Pseudo Text for Deep Clustering of Early Sepsis Phenotyping
Sepsis is a heterogeneous syndrome. Identifying clinically distinct phenotypes may enable more precise treatment strategies. In recent years, many researchers have applied clustering algorithms to sepsis patients. However, the clustering process rarely incorporates clinical relevance, potentially limiting to reflect clinically distinct phenotypes. We propose NPCNet, a novel deep clustering network with a target navigator that integrates temporal Electronic Health Records (EHRs) to better align sepsis phenotypes with clinical significance. We identify four sepsis phenotypes ($α$, $β$, $γ$, and $δ$) with divergence in SOFA trajectories. Notably, while $α$ and $δ$ phenotypes both show severe conditions in the early stage, NPCNet effectively differentiates patients who are likely to improve ($α$) from those at risk of deterioration ($δ$). Furthermore, through the treatment effect analysis, we discover that $α$, $β$, and $δ$ phenotypes may benefit from early vasopressor administration. The results show that NPCNet enhances precision treatment strategies by uncovering clinically distinct phenotypes.
☆ When Single Answer Is Not Enough: Rethinking Single-Step Retrosynthesis Benchmarks for LLMs
Recent progress has expanded the use of large language models (LLMs) in drug discovery, including synthesis planning. However, objective evaluation of retrosynthesis performance remains limited. Existing benchmarks and metrics typically rely on published synthetic procedures and Top-K accuracy based on single ground-truth, which does not capture the open-ended nature of real-world synthesis planning. We propose a new benchmarking framework for single-step retrosynthesis that evaluates both general-purpose and chemistry-specialized LLMs using ChemCensor, a novel metric for chemical plausibility. By emphasizing plausibility over exact match, this approach better aligns with human synthesis planning practices. We also introduce CREED, a novel dataset comprising millions of ChemCensor-validated reaction records for LLM training, and use it to train a model that improves over the LLM baselines under this benchmark.
☆ How to Train Your Resistive Network: Generalized Equilibrium Propagation and Analytical Learning
Machine learning is a powerful method of extracting meaning from data; unfortunately, current digital hardware is extremely energy-intensive. There is interest in an alternative analog computing implementation that could match the performance of traditional machine learning while being significantly more energy-efficient. However, it remains unclear how to train such analog computing systems while adhering to locality constraints imposed by the physical (as opposed to digital) nature of these systems. Local learning algorithms such as Equilibrium Propagation and Coupled Learning have been proposed to address this issue. In this paper, we develop an algorithm to exactly calculate gradients using a graph theoretic and analytical framework for Kirchhoff's laws. We also introduce Generalized Equilibrium Propagation, a framework encompassing a broad class of Hebbian learning algorithms, including Coupled Learning and Equilibrium Propagation, and show how our algorithm compares. We demonstrate our algorithm using numerical simulations and show that we can train resistor networks without the need for a replica or readout over all resistors, only at the output layer. We also show that under the analytical gradient approach, it is possible to update only a subset of the resistance values without a strong degradation in performance.
comment: 8 pages double column; plus 16 supp mat.;
☆ Can Large Language Models Generalize Procedures Across Representations?
Large language models (LLMs) are trained and tested extensively on symbolic representations such as code and graphs, yet real-world user tasks are often specified in natural language. To what extent can LLMs generalize across these representations? Here, we approach this question by studying isomorphic tasks involving procedures represented in code, graphs, and natural language (e.g., scheduling steps in planning). We find that training LLMs with popular post-training methods on graphs or code data alone does not reliably generalize to corresponding natural language tasks, while training solely on natural language can lead to inefficient performance gains. To address this gap, we propose a two-stage data curriculum that first trains on symbolic, then natural language data. The curriculum substantially improves model performance across model families and tasks. Remarkably, a 1.5B Qwen model trained by our method can closely match zero-shot GPT-4o in naturalistic planning. Finally, our analysis suggests that successful cross-representation generalization can be interpreted as a form of generative analogy, which our curriculum effectively encourages.
☆ MatGPTQ: Accurate and Efficient Post-Training Matryoshka Quantization
Matryoshka Quantization (MatQuant) is a recent quantization approach showing that a single integer-quantized model can be served across multiple precisions, by slicing the most significant bits (MSB) at inference time. This enables a single checkpoint to cover a wide range of memory and latency budgets, but renders quantization much more challenging. In particular, the initial MatQuant relies on expensive quantization-aware training (QAT) variants, rather than fast one-shot post training quantization (PTQ), and lacks open-source and kernel support. We address all of these limitations by introducing Post-Training Matryoshka Quantization (MatGPTQ), a new PTQ pipeline that produces a single parent model jointly optimized for multiple target precisions in one-shot, based on a small calibration set. MatGPTQ casts Matryoshka quantization as a multi-precision objective with bit-slicing and cross-bit error compensation, resulting in an algorithm that produces a multi-bit-width, "sliceable" model in a single pass. We also incorporate a new budget-aware search for heterogeneous per-layer bit-witdhs and provide efficient kernels that implement slicing and mixed-precision execution. Across standard LLMs and benchmarks, MatGPTQ preserves high-bit accuracy while substantially improving performance at low-bit-witdh settings. Overall, we establish a new state of the art for Matryoshka-style post-training quantization and make single-checkpoint, multi-precision deployment open and practical. Code is available at https://github.com/IST-DASLab/MatGPTQ.
comment: Preprint
☆ Sparse Training of Neural Networks based on Multilevel Mirror Descent
We introduce a dynamic sparse training algorithm based on linearized Bregman iterations / mirror descent that exploits the naturally incurred sparsity by alternating between periods of static and dynamic sparsity pattern updates. The key idea is to combine sparsity-inducing Bregman iterations with adaptive freezing of the network structure to enable efficient exploration of the sparse parameter space while maintaining sparsity. We provide convergence guaranties by embedding our method in a multilevel optimization framework. Furthermore, we empirically show that our algorithm can produce highly sparse and accurate models on standard benchmarks. We also show that the theoretical number of FLOPs compared to SGD training can be reduced from 38% for standard Bregman iterations to 6% for our method while maintaining test accuracy.
☆ Robust Representation Learning in Masked Autoencoders
Masked Autoencoders (MAEs) achieve impressive performance in image classification tasks, yet the internal representations they learn remain less understood. This work started as an attempt to understand the strong downstream classification performance of MAE. In this process we discover that representations learned with the pretraining and fine-tuning, are quite robust - demonstrating a good classification performance in the presence of degradations, such as blur and occlusions. Through layer-wise analysis of token embeddings, we show that pretrained MAE progressively constructs its latent space in a class-aware manner across network depth: embeddings from different classes lie in subspaces that become increasingly separable. We further observe that MAE exhibits early and persistent global attention across encoder layers, in contrast to standard Vision Transformers (ViTs). To quantify feature robustness, we introduce two sensitivity indicators: directional alignment between clean and perturbed embeddings, and head-wise retention of active features under degradations. These studies help establish the robust classification performance of MAEs.
comment: 11 pages, 8 figures, and 3 tables
☆ WARP Logic Neural Networks
Fast and efficient AI inference is increasingly important, and recent models that directly learn low-level logic operations have achieved state-of-the-art performance. However, existing logic neural networks incur high training costs, introduce redundancy or rely on approximate gradients, which limits scalability. To overcome these limitations, we introduce WAlsh Relaxation for Probabilistic (WARP) logic neural networks -- a novel gradient-based framework that efficiently learns combinations of hardware-native logic blocks. We show that WARP yields the most parameter-efficient representation for exactly learning Boolean functions and that several prior approaches arise as restricted special cases. Training is improved by introducing learnable thresholding and residual initialization, while we bridge the gap between relaxed training and discrete logic inference through stochastic smoothing. Experiments demonstrate faster convergence than state-of-the-art baselines, while scaling effectively to deeper architectures and logic functions with higher input arity.
comment: Under review
☆ Live or Lie: Action-Aware Capsule Multiple Instance Learning for Risk Assessment in Live Streaming Platforms
Live streaming has become a cornerstone of today's internet, enabling massive real-time social interactions. However, it faces severe risks arising from sparse, coordinated malicious behaviors among multiple participants, which are often concealed within normal activities and challenging to detect timely and accurately. In this work, we provide a pioneering study on risk assessment in live streaming rooms, characterized by weak supervision where only room-level labels are available. We formulate the task as a Multiple Instance Learning (MIL) problem, treating each room as a bag and defining structured user-timeslot capsules as instances. These capsules represent subsequences of user actions within specific time windows, encapsulating localized behavioral patterns. Based on this formulation, we propose AC-MIL, an Action-aware Capsule MIL framework that models both individual behaviors and group-level coordination patterns. AC-MIL captures multi-granular semantics and behavioral cues through a serial and parallel architecture that jointly encodes temporal dynamics and cross-user dependencies. These signals are integrated for robust room-level risk prediction, while also offering interpretable evidence at the behavior segment level. Extensive experiments on large-scale industrial datasets from Douyin demonstrate that AC-MIL significantly outperforms MIL and sequential baselines, establishing new state-of-the-art performance in room-level risk assessment for live streaming. Moreover, AC-MIL provides capsule-level interpretability, enabling identification of risky behavior segments as actionable evidence for intervention. The project page is available at: https://qiaoyran.github.io/AC-MIL/.
☆ Rank-Learner: Orthogonal Ranking of Treatment Effects
Many decision-making problems require ranking individuals by their treatment effects rather than estimating the exact effect magnitudes. Examples include prioritizing patients for preventive care interventions, or ranking customers by the expected incremental impact of an advertisement. Surprisingly, while causal effect estimation has received substantial attention in the literature, the problem of directly learning rankings of treatment effects has largely remained unexplored. In this paper, we introduce Rank-Learner, a novel two-stage learner that directly learns the ranking of treatment effects from observational data. We first show that naive approaches based on precise treatment effect estimation solve a harder problem than necessary for ranking, while our Rank-Learner optimizes a pairwise learning objective that recovers the true treatment effect ordering, without explicit CATE estimation. We further show that our Rank-Learner is Neyman-orthogonal and thus comes with strong theoretical guarantees, including robustness to estimation errors in the nuisance functions. In addition, our Rank-Learner is model-agnostic, and can be instantiated with arbitrary machine learning models (e.g., neural networks). We demonstrate the effectiveness of our method through extensive experiments where Rank-Learner consistently outperforms standard CATE estimators and non-orthogonal ranking methods. Overall, we provide practitioners with a new, orthogonal two-stage learner for ranking individuals by their treatment effects.
☆ Not All Negative Samples Are Equal: LLMs Learn Better from Plausible Reasoning
Learning from negative samples holds great promise for improving Large Language Model (LLM) reasoning capability, yet existing methods treat all incorrect responses as equally informative, overlooking the crucial role of sample quality. To address this, we propose Plausible Negative Samples (PNS), a method that synthesizes high-quality negative samples exhibiting expected format and structural coherence while ultimately yielding incorrect answers. PNS trains a dedicated model via reverse reinforcement learning (RL) guided by a composite reward combining format compliance, accuracy inversion, reward model assessment, and chain-of-thought evaluation, generating responses nearly indistinguishable from correct solutions. We further validate PNS as a plug-and-play data source for preference optimization across three backbone models on seven mathematical reasoning benchmarks. Results demonstrate that PNS consistently outperforms other negative sample synthesis methods, achieving an average improvement of 2.03% over RL-trained models.
☆ Mitigating Staleness in Asynchronous Pipeline Parallelism via Basis Rotation
Asynchronous pipeline parallelism maximizes hardware utilization by eliminating the pipeline bubbles inherent in synchronous execution, offering a path toward efficient large-scale distributed training. However, this efficiency gain can be compromised by gradient staleness, where the immediate model updates with delayed gradients introduce noise into the optimization process. Crucially, we identify a critical, yet often overlooked, pathology: this delay scales linearly with pipeline depth, fundamentally undermining the very scalability that the method originally intends to provide. In this work, we investigate this inconsistency and bridge the gap by rectifying delayed gradients through basis rotation, restoring scalable asynchronous training while maintaining performance. Specifically, we observe that the deleterious effects of delayed gradients are exacerbated when the Hessian eigenbasis is misaligned with the standard coordinate basis. We demonstrate that this misalignment prevents coordinate-wise adaptive schemes, such as Adam, from effectively leveraging curvature-aware adaptivity. This failure leads to significant oscillations in the optimization trajectory and, consequently, slower convergence. We substantiate these findings through both rigorous theoretical analysis and empirical evaluation. To address this challenge, we propose the use of basis rotation, demonstrating that it effectively mitigates the alignment issue and significantly accelerates convergence in asynchronous settings. For example, our training of a 1B-parameter LLM with basis rotation achieves the same training loss in 76.8% fewer iterations compared to the best-performing asynchronous pipeline parallel training baseline.
comment: Preprint. Under review
☆ A Function-Space Stability Boundary for Generalization in Interpolating Learning Systems
Modern learning systems often interpolate training data while still generalizing well, yet it remains unclear when algorithmic stability explains this behavior. We model training as a function-space trajectory and measure sensitivity to single-sample perturbations along this trajectory. We propose a contractive propagation condition and a stability certificate obtained by unrolling the resulting recursion. A small certificate implies stability-based generalization, while we also prove that there exist interpolating regimes with small risk where such contractive sensitivity cannot hold, showing that stability is not a universal explanation. Experiments confirm that certificate growth predicts generalization differences across optimizers, step sizes, and dataset perturbations. The framework therefore identifies regimes where stability explains generalization and where alternative mechanisms must account for success.
comment: 10 pages, 8 figures,
☆ Explaining the Explainer: Understanding the Inner Workings of Transformer-based Symbolic Regression Models
Following their success across many domains, transformers have also proven effective for symbolic regression (SR); however, the internal mechanisms underlying their generation of mathematical operators remain largely unexplored. Although mechanistic interpretability has successfully identified circuits in language and vision models, it has not yet been applied to SR. In this article, we introduce PATCHES, an evolutionary circuit discovery algorithm that identifies compact and correct circuits for SR. Using PATCHES, we isolate 28 circuits, providing the first circuit-level characterisation of an SR transformer. We validate these findings through a robust causal evaluation framework based on key notions such as faithfulness, completeness, and minimality. Our analysis shows that mean patching with performance-based evaluation most reliably isolates functionally correct circuits. In contrast, we demonstrate that direct logit attribution and probing classifiers primarily capture correlational features rather than causal ones, limiting their utility for circuit discovery. Overall, these results establish SR as a high-potential application domain for mechanistic interpretability and propose a principled methodology for circuit discovery.
comment: 8 pages, 5 figures
☆ Generative Decompression: Optimal Lossy Decoding Against Distribution Mismatch
This paper addresses optimal decoding strategies in lossy compression where the assumed distribution for compressor design mismatches the actual (true) distribution of the source. This problem has immediate relevance in standardized communication systems where the decoder acquires side information or priors about the true distribution that are unavailable to the fixed encoder. We formally define the mismatched quantization problem, demonstrating that the optimal reconstruction rule, termed generative decompression, aligns with classical Bayesian estimation by taking the conditional expectation under the true distribution given the quantization indices and adapting it to fixed-encoder constraints. This strategy effectively performs a generative Bayesian correction on the decoder side, strictly outperforming the conventional centroid rule. We extend this framework to transmission over noisy channels, deriving a robust soft-decoding rule that quantifies the inefficiency of standard modular source--channel separation architectures under mismatch. Furthermore, we generalize the approach to task-oriented decoding, showing that the optimal strategy shifts from conditional mean estimation to maximum a posteriori (MAP) detection. Experimental results on Gaussian sources and deep-learning-based semantic classification demonstrate that generative decompression closes a vast majority of the performance gap to the ideal joint-optimization benchmark, enabling adaptive, high-fidelity reconstruction without modifying the encoder.
☆ Reparameterization Flow Policy Optimization
Reparameterization Policy Gradient (RPG) has emerged as a powerful paradigm for model-based reinforcement learning, enabling high sample efficiency by backpropagating gradients through differentiable dynamics. However, prior RPG approaches have been predominantly restricted to Gaussian policies, limiting their performance and failing to leverage recent advances in generative models. In this work, we identify that flow policies, which generate actions via differentiable ODE integration, naturally align with the RPG framework, a connection not established in prior work. However, naively exploiting this synergy proves ineffective, often suffering from training instability and a lack of exploration. We propose Reparameterization Flow Policy Optimization (RFO). RFO computes policy gradients by backpropagating jointly through the flow generation process and system dynamics, unlocking high sample efficiency without requiring intractable log-likelihood calculations. RFO includes two tailored regularization terms for stability and exploration. We also propose a variant of RFO with action chunking. Extensive experiments on diverse locomotion and manipulation tasks, involving both rigid and soft bodies with state or visual inputs, demonstrate the effectiveness of RFO. Notably, on a challenging locomotion task controlling a soft-body quadruped, RFO achieves almost $2\times$ the reward of the state-of-the-art baseline.
☆ Lookahead Path Likelihood Optimization for Diffusion LLMs
Diffusion Large Language Models (dLLMs) support arbitrary-order generation, yet their inference performance critically depends on the unmasking order. Existing strategies rely on heuristics that greedily optimize local confidence, offering limited guidance for identifying unmasking paths that are globally consistent and accurate. To bridge this gap, we introduce path log-likelihood (Path LL), a trajectory-conditioned objective that strongly correlates with downstream accuracy and enables principled selection of unmasking paths. To optimize Path LL at inference time, we propose POKE, an efficient value estimator that predicts the expected future Path LL of a partial decoding trajectory. We then integrate this lookahead signal into POKE-SMC, a Sequential Monte Carlo-based search framework for dynamically identifying optimal unmasking paths. Extensive experiments across 6 reasoning tasks show that POKE-SMC consistently improves accuracy, achieving 2%--3% average gains over strong decoding-time scaling baselines at comparable inference overhead on LLaDA models and advancing the accuracy--compute Pareto frontier.
☆ DALI: A Workload-Aware Offloading Framework for Efficient MoE Inference on Local PCs
Mixture of Experts (MoE) architectures significantly enhance the capacity of LLMs without proportional increases in computation, but at the cost of a vast parameter size. Offloading MoE expert parameters to host memory and leveraging both CPU and GPU computation has recently emerged as a promising direction to support such models on resourceconstrained local PC platforms. While promising, we notice that existing approaches mismatch the dynamic nature of expert workloads, which leads to three fundamental inefficiencies: (1) Static expert assignment causes severe CPUGPU load imbalance, underutilizing CPU and GPU resources; (2) Existing prefetching techniques fail to accurately predict high-workload experts, leading to costly inaccurate prefetches; (3) GPU cache policies neglect workload dynamics, resulting in poor hit rates and limited effectiveness. To address these challenges, we propose DALI, a workloaDAware offLoadIng framework for efficient MoE inference on local PCs. To fully utilize hardware resources, DALI first dynamically assigns experts to CPU or GPU by modeling assignment as a 0-1 integer optimization problem and solving it efficiently using a Greedy Assignment strategy at runtime. To improve prefetching accuracy, we develop a Residual-Based Prefetching method leveraging inter-layer residual information to accurately predict high-workload experts. Additionally, we introduce a Workload-Aware Cache Replacement policy that exploits temporal correlation in expert activations to improve GPU cache efficiency. By evaluating across various MoE models and settings, DALI achieves significant speedups in the both prefill and decoding phases over the state-of-the-art offloading frameworks.
☆ Least but not Last: Fine-tuning Intermediate Principal Components for Better Performance-Forgetting Trade-Offs
Low-Rank Adaptation (LoRA) methods have emerged as crucial techniques for adapting large pre-trained models to downstream tasks under computational and memory constraints. However, they face a fundamental challenge in balancing task-specific performance gains against catastrophic forgetting of pre-trained knowledge, where existing methods provide inconsistent recommendations. This paper presents a comprehensive analysis of the performance-forgetting trade-offs inherent in low-rank adaptation using principal components as initialization. Our investigation reveals that fine-tuning intermediate components leads to better balance and show more robustness to high learning rates than first (PiSSA) and last (MiLoRA) components in existing work. Building on these findings, we provide a practical approach for initialization of LoRA that offers superior trade-offs. We demonstrate in a thorough empirical study on a variety of computer vision and NLP tasks that our approach improves accuracy and reduces forgetting, also in continual learning scenarios.
☆ A Minimal Task Reveals Emergent Path Integration and Object-Location Binding in a Predictive Sequence Model
Adaptive cognition requires structured internal models representing objects and their relations. Predictive neural networks are often proposed to form such "world models", yet their underlying mechanisms remain unclear. One hypothesis is that action-conditioned sequential prediction suffices for learning such world models. In this work, we investigate this possibility in a minimal in-silico setting. Sequentially sampling tokens from 2D continuous token scenes, a recurrent neural network is trained to predict the upcoming token from current input and a saccade-like displacement. On novel scenes, prediction accuracy improves across the sequence, indicating in-context learning. Decoding analyses reveal path integration and dynamic binding of token identity to position. Interventional analyses show that new bindings can be learned late in sequence and that out-of-distribution bindings can be learned. Together, these results demonstrate how structured representations that rely on flexible binding emerge to support prediction, offering a mechanistic account of sequential world modeling relevant to cognitive science.
comment: 7 pages, 4 figures
☆ DeepDFA: Injecting Temporal Logic in Deep Learning for Sequential Subsymbolic Applications
Integrating logical knowledge into deep neural network training is still a hard challenge, especially for sequential or temporally extended domains involving subsymbolic observations. To address this problem, we propose DeepDFA, a neurosymbolic framework that integrates high-level temporal logic - expressed as Deterministic Finite Automata (DFA) or Moore Machines - into neural architectures. DeepDFA models temporal rules as continuous, differentiable layers, enabling symbolic knowledge injection into subsymbolic domains. We demonstrate how DeepDFA can be used in two key settings: (i) static image sequence classification, and (ii) policy learning in interactive non-Markovian environments. Across extensive experiments, DeepDFA outperforms traditional deep learning models (e.g., LSTMs, GRUs, Transformers) and novel neuro-symbolic systems, achieving state-of-the-art results in temporal knowledge integration. These results highlight the potential of DeepDFA to bridge subsymbolic learning and symbolic reasoning in sequential tasks.
☆ Self-Verification Dilemma: Experience-Driven Suppression of Overused Checking in LLM Reasoning
Large Reasoning Models (LRMs) achieve strong performance by generating long reasoning traces with reflection. Through a large-scale empirical analysis, we find that a substantial fraction of reflective steps consist of self-verification (recheck) that repeatedly confirm intermediate results. These rechecks occur frequently across models and benchmarks, yet the vast majority are confirmatory rather than corrective, rarely identifying errors and altering reasoning outcomes. This reveals a mismatch between how often self-verification is activated and how often it is actually useful. Motivated by this, we propose a novel, experience-driven test-time framework that reduces the overused verification. Our method detects the activation of recheck behavior, consults an offline experience pool of past verification outcomes, and estimates whether a recheck is likely unnecessary via efficient retrieval. When historical experience suggests unnecessary, a suppression signal redirects the model to proceed. Across multiple model and benchmarks, our approach reduces token usage up to 20.3% while maintaining the accuracy, and in some datasets even yields accuracy improvements.
comment: 19 pages, 8 figures
☆ ScDiVa: Masked Discrete Diffusion for Joint Modeling of Single-Cell Identity and Expression
Single-cell RNA-seq profiles are high-dimensional, sparse, and unordered, causing autoregressive generation to impose an artificial ordering bias and suffer from error accumulation. To address this, we propose scDiVa, a masked discrete diffusion foundation model that aligns generation with the dropout-like corruption process by defining a continuous-time forward masking mechanism in token space. ScDiVa features a bidirectional denoiser that jointly models discrete gene identities and continuous values, utilizing entropy-normalized serialization and a latent anchor token to maximize information efficiency and preserve global cell identity. The model is trained via depth-invariant time sampling and a dual denoising objective to simulate varying sparsity levels while ensuring precise recovery of both identity and magnitude. Pre-trained on 59 million cells, scDiVa achieves strong transfer performance across major benchmarks, including batch integration, cell type annotation, and perturbation response prediction. These results suggest that masked discrete diffusion serves as a biologically coherent and effective alternative to autoregression.
comment: 19 pages, 11 figures
☆ Scaling Continual Learning with Bi-Level Routing Mixture-of-Experts
Continual learning, especially class-incremental learning (CIL), on the basis of a pre-trained model (PTM) has garnered substantial research interest in recent years. However, how to effectively learn both discriminative and comprehensive feature representations while maintaining stability and plasticity over very long task sequences remains an open problem. We propose CaRE, a scalable {C}ontinual Le{a}rner with efficient Bi-Level {R}outing Mixture-of-{E}xperts (BR-MoE). The core idea of BR-MoE is a bi-level routing mechanism: a router selection stage that dynamically activates relevant task-specific routers, followed by an expert routing phase that dynamically activates and aggregates experts, aiming to inject discriminative and comprehensive representations into every intermediate network layer. On the other hand, we introduce a challenging evaluation protocol for comprehensively assessing CIL methods across very long task sequences spanning hundreds of tasks. Extensive experiments show that CaRE demonstrates leading performance across a variety of datasets and task settings, including commonly used CIL datasets with classical CIL settings (e.g., 5-20 tasks). To the best of our knowledge, CaRE is the first continual learner that scales to very long task sequences (ranging from 100 to over 300 non-overlapping tasks), while outperforming all baselines by a large margin on such task sequences. Code will be publicly released at https://github.com/LMMMEng/CaRE.git.
☆ IntentRL: Training Proactive User-intent Agents for Open-ended Deep Research via Reinforcement Learning
Deep Research (DR) agents extend Large Language Models (LLMs) beyond parametric knowledge by autonomously retrieving and synthesizing evidence from large web corpora into long-form reports, enabling a long-horizon agentic paradigm. However, unlike real-time conversational assistants, DR is computationally expensive and time-consuming, creating an autonomy-interaction dilemma: high autonomy on ambiguous user queries often leads to prolonged execution with unsatisfactory outcomes. To address this, we propose IntentRL, a framework that trains proactive agents to clarify latent user intents before starting long-horizon research. To overcome the scarcity of open-ended research data, we introduce a scalable pipeline that expands a few seed samples into high-quality dialogue turns via a shallow-to-deep intent refinement graph. We further adopt a two-stage reinforcement learning (RL) strategy: Stage I applies RL on offline dialogues to efficiently learn general user-interaction behavior, while Stage II uses the trained agent and a user simulator for online rollouts to strengthen adaptation to diverse user feedback. Extensive experiments show that IntentRL significantly improves both intent hit rate and downstream task performance, outperforming the built-in clarify modules of closed-source DR agents and proactive LLM baselines.
comment: Preprint
☆ Soft-Radial Projection for Constrained End-to-End Learning
Integrating hard constraints into deep learning is essential for safety-critical systems. Yet existing constructive layers that project predictions onto constraint boundaries face a fundamental bottleneck: gradient saturation. By collapsing exterior points onto lower-dimensional surfaces, standard orthogonal projections induce rank-deficient Jacobians, which nullify gradients orthogonal to active constraints and hinder optimization. We introduce Soft-Radial Projection, a differentiable reparameterization layer that circumvents this issue through a radial mapping from Euclidean space into the interior of the feasible set. This construction guarantees strict feasibility while preserving a full-rank Jacobian almost everywhere, thereby preventing the optimization stalls typical of boundary-based methods. We theoretically prove that the architecture retains the universal approximation property and empirically show improved convergence behavior and solution quality over state-of-the-art optimization- and projection-based baselines.
☆ Causal Inference on Networks under Misspecified Exposure Mappings: A Partial Identification Framework
Estimating treatment effects in networks is challenging, as each potential outcome depends on the treatments of all other nodes in the network. To overcome this difficulty, existing methods typically impose an exposure mapping that compresses the treatment assignments in the network into a low-dimensional summary. However, if this mapping is misspecified, standard estimators for direct and spillover effects can be severely biased. We propose a novel partial identification framework for causal inference on networks to assess the robustness of treatment effects under misspecifications of the exposure mapping. Specifically, we derive sharp upper and lower bounds on direct and spillover effects under such misspecifications. As such, our framework presents a novel application of causal sensitivity analysis to exposure mappings. We instantiate our framework for three canonical exposure settings widely used in practice: (i) weighted means of the neighborhood treatments, (ii) threshold-based exposure mappings, and (iii) truncated neighborhood interference in the presence of higher-order spillovers. Furthermore, we develop orthogonal estimators for these bounds and prove that the resulting bound estimates are valid, sharp, and efficient. Our experiments show the bounds remain informative and provide reliable conclusions under misspecification of exposure mappings.
☆ Beyond Variance: Prompt-Efficient RLVR via Rare-Event Amplification and Bidirectional Pairing
Reinforcement learning with verifiable rewards (RLVR) is effective for training large language models on deterministic outcome reasoning tasks. Prior work shows RLVR works with few prompts, but prompt selection is often based only on training-accuracy variance, leading to unstable optimization directions and weaker transfer. We revisit prompt selection from a mechanism-level view and argue that an effective minibatch should provide both (i) a reliable positive anchor and (ii) explicit negative learning signals from rare failures. Based on this principle, we propose \emph{positive--negative pairing}: at each update, we sample a hard-but-solvable $q^{+}$ and an easy-but-brittle prompt $q^{-}$(high success rate but not perfect), characterized by low and high empirical success rates under multiple rollouts. We further introduce Weighted GRPO, which reweights binary outcomes at the pair level and uses group-normalized advantages to amplify rare successes on $q^{+}$ into sharp positive guidance while turning rare failures on $q^{-}$ into strong negative penalties. This bidirectional signal provides informative learning feedback for both successes and failures, improving sample efficiency without suppressing exploration. On Qwen2.5-Math-7B, a single paired minibatch per update consistently outperforms a GRPO baseline that selects two prompts via commonly used variance-based selection heuristics: AIME~2025 Pass@8 improves from 16.8 to 22.2, and AMC23 Pass@64 from 94.0 to 97.0, while remaining competitive with large-scale RLVR trained from a pool of 1209 training prompts. Similar gains are observed on Qwen2.5-Math-7B-Instruct.
☆ Score-based diffusion models for diffuse optical tomography with uncertainty quantification
Score-based diffusion models are a recently developed framework for posterior sampling in Bayesian inverse problems with a state-of-the-art performance for severely ill-posed problems by leveraging a powerful prior distribution learned from empirical data. Despite generating significant interest especially in the machine-learning community, a thorough study of realistic inverse problems in the presence of modelling error and utilization of physical measurement data is still outstanding. In this work, the framework of unconditional representation for the conditional score function (UCoS) is evaluated for linearized difference imaging in diffuse optical tomography (DOT). DOT uses boundary measurements of near-infrared light to estimate the spatial distribution of absorption and scattering parameters in biological tissues. The problem is highly ill-posed and thus sensitive to noise and modelling errors. We introduce a novel regularization approach that prevents overfitting of the score function by constructing a mixed score composed of a learned and a model-based component. Validation of this approach is done using both simulated and experimental measurement data. The experiments demonstrate that a data-driven prior distribution results in posterior samples with low variance, compared to classical model-based estimation, and centred around the ground truth, even in the context of a highly ill-posed problem and in the presence of modelling errors.
CRL-VLA: Continual Vision-Language-Action Learning
Lifelong learning is critical for embodied agents in open-world environments, where reinforcement learning fine-tuning has emerged as an important paradigm to enable Vision-Language-Action (VLA) models to master dexterous manipulation through environmental interaction. Thus, Continual Reinforcement Learning (CRL) is a promising pathway for deploying VLA models in lifelong robotic scenarios, yet balancing stability (retaining old skills) and plasticity (learning new ones) remains a formidable challenge for existing methods. We introduce CRL-VLA, a framework for continual post-training of VLA models with rigorous theoretical bounds. We derive a unified performance bound linking the stability-plasticity trade-off to goal-conditioned advantage magnitude, scaled by policy divergence. CRL-VLA resolves this dilemma via asymmetric regulation: constraining advantage magnitudes on prior tasks while enabling controlled growth on new tasks. This is realized through a simple but effective dual-critic architecture with novel Goal-Conditioned Value Formulation (GCVF), where a frozen critic anchors semantic consistency and a trainable estimator drives adaptation. Experiments on the LIBERO benchmark demonstrate that CRL-VLA effectively harmonizes these conflicting objectives, outperforming baselines in both anti-forgetting and forward adaptation.
☆ Acceleration of Atomistic NEGF: Algorithms, Parallelization, and Machine Learning
The Non-equilibrium Green's function (NEGF) formalism is a particularly powerful method to simulate the quantum transport properties of nanoscale devices such as transistors, photo-diodes, or memory cells, in the ballistic limit of transport or in the presence of various scattering sources such as electronphonon, electron-photon, or even electron-electron interactions. The inclusion of all these mechanisms has been first demonstrated in small systems, composed of a few atoms, before being scaled up to larger structures made of thousands of atoms. Also, the accuracy of the models has kept improving, from empirical to fully ab-initio ones, e.g., density functional theory (DFT). This paper summarizes key (algorithmic) achievements that have allowed us to bring DFT+NEGF simulations closer to the dimensions and functionality of realistic systems. The possibility of leveraging graph neural networks and machine learning to speed up ab-initio device simulations is discussed as well.
☆ DiscoverLLM: From Executing Intents to Discovering Them
To handle ambiguous and open-ended requests, Large Language Models (LLMs) are increasingly trained to interact with users to surface intents they have not yet expressed (e.g., ask clarification questions). However, users are often ambiguous because they have not yet formed their intents: they must observe and explore outcomes to discover what they want. Simply asking "what kind of tone do you want?" fails when users themselves do not know. We introduce DiscoverLLM, a novel and generalizable framework that trains LLMs to help users form and discover their intents. Central to our approach is a novel user simulator that models cognitive state with a hierarchy of intents that progressively concretize as the model surfaces relevant options -- where the degree of concretization serves as a reward signal that models can be trained to optimize. Resulting models learn to collaborate with users by adaptively diverging (i.e., explore options) when intents are unclear, and converging (i.e., refine and implement) when intents concretize. Across proposed interactive benchmarks in creative writing, technical writing, and SVG drawing, DiscoverLLM achieves over 10% higher task performance while reducing conversation length by up to 40%. In a user study with 75 human participants, DiscoverLLM improved conversation satisfaction and efficiency compared to baselines.
☆ CoCoEmo: Composable and Controllable Human-Like Emotional TTS via Activation Steering
Emotional expression in human speech is nuanced and compositional, often involving multiple, sometimes conflicting, affective cues that may diverge from linguistic content. In contrast, most expressive text-to-speech systems enforce a single utterance-level emotion, collapsing affective diversity and suppressing mixed or text-emotion-misaligned expression. While activation steering via latent direction vectors offers a promising solution, it remains unclear whether emotion representations are linearly steerable in TTS, where steering should be applied within hybrid TTS architectures, and how such complex emotion behaviors should be evaluated. This paper presents the first systematic analysis of activation steering for emotional control in hybrid TTS models, introducing a quantitative, controllable steering framework, and multi-rater evaluation protocols that enable composable mixed-emotion synthesis and reliable text-emotion mismatch synthesis. Our results demonstrate, for the first time, that emotional prosody and expressive variability are primarily synthesized by the TTS language module instead of the flow-matching module, and also provide a lightweight steering approach for generating natural, human-like emotional speech.
☆ Most Convolutional Networks Suffer from Small Adversarial Perturbations
The existence of adversarial examples is relatively understood for random fully connected neural networks, but much less so for convolutional neural networks (CNNs). The recent work [Daniely, 2025] establishes that adversarial examples can be found in CNNs, in some non-optimal distance from the input. We extend over this work and prove that adversarial examples in random CNNs with input dimension $d$ can be found already in $\ell_2$-distance of order $\lVert x \rVert /\sqrt{d}$ from the input $x$, which is essentially the nearest possible. We also show that such adversarial small perturbations can be found using a single step of gradient descent. To derive our results we use Fourier decomposition to efficiently bound the singular values of a random linear convolutional operator, which is the main ingredient of a CNN layer. This bound might be of independent interest.
☆ Enhancing Quantum Diffusion Models for Complex Image Generation
Quantum generative models offer a novel approach to exploring high-dimensional Hilbert spaces but face significant challenges in scalability and expressibility when applied to multi-modal distributions. In this study, we explore a Hybrid Quantum-Classical U-Net architecture integrated with Adaptive Non-Local Observables (ANO) as a potential solution to these hurdles. By compressing classical data into a dense quantum latent space and utilizing trainable observables, our model aims to extract non-local features that complement classical processing. We also investigate the role of Skip Connections in preserving semantic information during the reverse diffusion process. Experimental results on the full MNIST dataset (digits 0-9) demonstrate that the proposed architecture is capable of generating structurally coherent and recognizable images for all digit classes. While hardware constraints still impose limitations on resolution, our findings suggest that hybrid architectures with adaptive measurements provide a feasible pathway for mitigating mode collapse and enhancing generative capabilities in the NISQ era.
comment: 18 pages, 6 figures
☆ Risk Awareness Injection: Calibrating Vision-Language Models for Safety without Compromising Utility
Vision language models (VLMs) extend the reasoning capabilities of large language models (LLMs) to cross-modal settings, yet remain highly vulnerable to multimodal jailbreak attacks. Existing defenses predominantly rely on safety fine-tuning or aggressive token manipulations, incurring substantial training costs or significantly degrading utility. Recent research shows that LLMs inherently recognize unsafe content in text, and the incorporation of visual inputs in VLMs frequently dilutes risk-related signals. Motivated by this, we propose Risk Awareness Injection (RAI), a lightweight and training-free framework for safety calibration that restores LLM-like risk recognition by amplifying unsafe signals in VLMs. Specifically, RAI constructs an Unsafe Prototype Subspace from language embeddings and performs targeted modulation on selected high-risk visual tokens, explicitly activating safety-critical signals within the cross-modal feature space. This modulation restores the model's LLM-like ability to detect unsafe content from visual inputs, while preserving the semantic integrity of original tokens for cross-modal reasoning. Extensive experiments across multiple jailbreak and utility benchmarks demonstrate that RAI substantially reduces attack success rate without compromising task performance.
☆ The Label Horizon Paradox: Rethinking Supervision Targets in Financial Forecasting
While deep learning has revolutionized financial forecasting through sophisticated architectures, the design of the supervision signal itself is rarely scrutinized. We challenge the canonical assumption that training labels must strictly mirror inference targets, uncovering the Label Horizon Paradox: the optimal supervision signal often deviates from the prediction goal, shifting across intermediate horizons governed by market dynamics. We theoretically ground this phenomenon in a dynamic signal-noise trade-off, demonstrating that generalization hinges on the competition between marginal signal realization and noise accumulation. To operationalize this insight, we propose a bi-level optimization framework that autonomously identifies the optimal proxy label within a single training run. Extensive experiments on large-scale financial datasets demonstrate consistent improvements over conventional baselines, thereby opening new avenues for label-centric research in financial forecasting.
☆ Improving the Linearized Laplace Approximation via Quadratic Approximations
Deep neural networks (DNNs) often produce overconfident out-of-distribution predictions, motivating Bayesian uncertainty quantification. The Linearized Laplace Approximation (LLA) achieves this by linearizing the DNN and applying Laplace inference to the resulting model. Importantly, the linear model is also used for prediction. We argue this linearization in the posterior may degrade fidelity to the true Laplace approximation. To alleviate this problem, without increasing significantly the computational cost, we propose the Quadratic Laplace Approximation (QLA). QLA approximates each second order factor in the approximate Laplace log-posterior using a rank-one factor obtained via efficient power iterations. QLA is expected to yield a posterior precision closer to that of the full Laplace without forming the full Hessian, which is typically intractable. For prediction, QLA also uses the linearized model. Empirically, QLA yields modest yet consistent uncertainty estimation improvements over LLA on five regression datasets.
comment: 6 pages, 1 table. Accepted at European Symposium on Artificial Neural Networks (ESANN 2026) as poster presentation
☆ On the Entropy Dynamics in Reinforcement Fine-Tuning of Large Language Models
Entropy serves as a critical metric for measuring the diversity of outputs generated by large language models (LLMs), providing valuable insights into their exploration capabilities. While recent studies increasingly focus on monitoring and adjusting entropy to better balance exploration and exploitation in reinforcement fine-tuning (RFT), a principled understanding of entropy dynamics during this process is yet to be thoroughly investigated. In this paper, we establish a theoretical framework for analyzing the entropy dynamics during the RFT process, which begins with a discriminant expression that quantifies entropy change under a single logit update. This foundation enables the derivation of a first-order expression for entropy change, which can be further extended to the update formula of Group Relative Policy Optimization (GRPO). The corollaries and insights drawn from the theoretical analysis inspire the design of entropy control methods, and also offer a unified lens for interpreting various entropy-based methods in existing studies. We provide empirical evidence to support the main conclusions of our analysis and demonstrate the effectiveness of the derived entropy-discriminator clipping methods. This study yields novel insights into RFT training dynamics, providing theoretical support and practical strategies for optimizing the exploration-exploitation balance during LLM fine-tuning.
☆ From Vicious to Virtuous Cycles: Synergistic Representation Learning for Unsupervised Video Object-Centric Learning ICLR 2026
Unsupervised object-centric learning models, particularly slot-based architectures, have shown great promise in decomposing complex scenes. However, their reliance on reconstruction-based training creates a fundamental conflict between the sharp, high-frequency attention maps of the encoder and the spatially consistent but blurry reconstruction maps of the decoder. We identify that this discrepancy gives rise to a vicious cycle: the noisy feature map from the encoder forces the decoder to average over possibilities and produce even blurrier outputs, while the gradient computed from blurry reconstruction maps lacks high-frequency details necessary to supervise encoder features. To break this cycle, we introduce Synergistic Representation Learning (SRL) that establishes a virtuous cycle where the encoder and decoder mutually refine one another. SRL leverages the encoder's sharpness to deblur the semantic boundary within the decoder output, while exploiting the decoder's spatial consistency to denoise the encoder's features. This mutual refinement process is stabilized by a warm-up phase with a slot regularization objective that initially allocates distinct entities per slot. By bridging the representational gap between the encoder and decoder, SRL achieves state-of-the-art results on video object-centric learning benchmarks. Codes are available at https://github.com/hynnsk/SRL.
comment: ICLR 2026; Code is available at https://github.com/hynnsk/SRL
☆ Chain-of-Goals Hierarchical Policy for Long-Horizon Offline Goal-Conditioned RL
Offline goal-conditioned reinforcement learning remains challenging for long-horizon tasks. While hierarchical approaches mitigate this issue by decomposing tasks, most existing methods rely on separate high- and low-level networks and generate only a single intermediate subgoal, making them inadequate for complex tasks that require coordinating multiple intermediate decisions. To address this limitation, we draw inspiration from the chain-of-thought paradigm and propose the Chain-of-Goals Hierarchical Policy (CoGHP), a novel framework that reformulates hierarchical decision-making as autoregressive sequence modeling within a unified architecture. Given a state and a final goal, CoGHP autoregressively generates a sequence of latent subgoals followed by the primitive action, where each latent subgoal acts as a reasoning step that conditions subsequent predictions. To implement this efficiently, we pioneer the use of an MLP-Mixer backbone, which supports cross-token communication and captures structural relationships among state, goal, latent subgoals, and action. Across challenging navigation and manipulation benchmarks, CoGHP consistently outperforms strong offline baselines, demonstrating improved performance on long-horizon tasks.
comment: 22 pages
☆ An Approximate Ascent Approach To Prove Convergence of PPO
Proximal Policy Optimization (PPO) is among the most widely used deep reinforcement learning algorithms, yet its theoretical foundations remain incomplete. Most importantly, convergence and understanding of fundamental PPO advantages remain widely open. Under standard theory assumptions we show how PPO's policy update scheme (performing multiple epochs of minibatch updates on multi-use rollouts with a surrogate gradient) can be interpreted as approximated policy gradient ascent. We show how to control the bias accumulated by the surrogate gradients and use techniques from random reshuffling to prove a convergence theorem for PPO that sheds light on PPO's success. Additionally, we identify a previously overlooked issue in truncated Generalized Advantage Estimation commonly used in PPO. The geometric weighting scheme induces infinite mass collapse onto the longest $k$-step advantage estimator at episode boundaries. Empirical evaluations show that a simple weight correction can yield substantial improvements in environments with strong terminal signal, such as Lunar Lander.
♻ ☆ Reuse your FLOPs: Scaling RL on Hard Problems by Conditioning on Very Off-Policy Prefixes
Typical reinforcement learning (RL) methods for LLM reasoning waste compute on hard problems, where correct on-policy traces are rare, policy gradients vanish, and learning stalls. To bootstrap more efficient RL, we consider reusing old sampling FLOPs (from prior inference or RL training) in the form of off-policy traces. Standard off-policy methods supervise against off-policy data, causing instabilities during RL optimization. We introduce PrefixRL, where we condition on the prefix of successful off-policy traces and run on-policy RL to complete them, side-stepping off-policy instabilities. PrefixRL boosts the learning signal on hard problems by modulating the difficulty of the problem through the off-policy prefix length. We prove that the PrefixRL objective is not only consistent with the standard RL objective but also more sample efficient. Empirically, we discover back-generalization: training only on prefixed problems generalizes to out-of-distribution unprefixed performance, with learned strategies often differing from those in the prefix. In our experiments, we source the off-policy traces by rejection sampling with the base model, creating a self-improvement loop. On hard reasoning problems, PrefixRL reaches the same training reward 2x faster than the strongest baseline (SFT on off-policy data then RL), even after accounting for the compute spent on the initial rejection sampling, and increases the final reward by 3x. The gains transfer to held-out benchmarks, and PrefixRL is still effective when off-policy traces are derived from a different model family, validating its flexibility in practical settings.
♻ ☆ Polynomial Neural Sheaf Diffusion: A Spectral Filtering Approach on Cellular Sheaves ICML 2026
Sheaf Neural Networks equip graph structures with a cellular sheaf: a geometric structure which assigns local vector spaces (stalks) and a linear learnable restriction/transport maps to nodes and edges, yielding an edge-aware inductive bias that handles heterophily and limits oversmoothing. However, common Neural Sheaf Diffusion implementations rely on SVD-based sheaf normalization and dense per-edge restriction maps, which scale with stalk dimension, require frequent Laplacian rebuilds, and yield brittle gradients. To address these limitations, we introduce Polynomial Neural Sheaf Diffusion (PolyNSD), a new sheaf diffusion approach whose propagation operator is a degree-K polynomial in a normalised sheaf Laplacian, evaluated via a stable three-term recurrence on a spectrally rescaled operator. This provides an explicit K-hop receptive field in a single layer (independently of the stalk dimension), with a trainable spectral response obtained as a convex mixture of K+1 orthogonal polynomial basis responses. PolyNSD enforces stability via convex mixtures, spectral rescaling, and residual/gated paths, reaching new state-of-the-art results on both homophilic and heterophilic benchmarks, inverting the Neural Sheaf Diffusion trend by obtaining these results with just diagonal restriction maps, decoupling performance from large stalk dimension, while reducing runtime and memory requirements.
comment: Under Review at ICML 2026
♻ ☆ ME-IGM: Individual-Global-Max in Maximum Entropy Multi-Agent Reinforcement Learning AAMAS 2026
Multi-agent credit assignment is a fundamental challenge for cooperative multi-agent reinforcement learning (MARL), where a team of agents learn from shared reward signals. The Individual-Global-Max (IGM) condition is a widely used principle for multi-agent credit assignment, requiring that the joint action determined by individual Q-functions maximizes the global Q-value. Meanwhile, the principle of maximum entropy has been leveraged to enhance exploration in MARL. However, we identify a critical limitation in existing maximum entropy MARL methods: a misalignment arises between local policies and the joint policy that maximizes the global Q-value, leading to violations of the IGM condition. To address this misalignment, we propose an order-preserving transformation. Building on it, we introduce ME-IGM, a novel maximum entropy MARL algorithm compatible with any credit assignment mechanism that satisfies the IGM condition while enjoying the benefits of maximum entropy exploration. We empirically evaluate two variants of ME-IGM: ME-QMIX and ME-QPLEX, in non-monotonic matrix games, and demonstrate their state-of-the-art performance across 17 scenarios in SMAC-v2 and Overcooked.
comment: Published in the Proceedings of the 25th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2026)
♻ ☆ Measuring Agents in Production
LLM-based agents already operate in production across many industries, yet we lack an understanding of what technical methods make deployments successful. We present the first systematic study of Measuring Agents in Production, MAP, using first-hand data from agent developers. We conducted 20 case studies via in-depth interviews and surveyed 306 practitioners across 26 domains. We investigate why organizations build agents, how they build them, how they evaluate them, and their top development challenges. Our study finds that production agents are built using simple, controllable approaches: 68% execute at most 10 steps before human intervention, 70% rely on prompting off-the-shelf models instead of weight tuning, and 74% depend primarily on human evaluation. Reliability (consistent correct behavior over time) remains the top development challenge, which practitioners currently address through systems-level design. MAP documents the current state of production agents, providing the research community with visibility into deployment realities and under-explored research avenues.
♻ ☆ Admissibility of Stein Shrinkage for Batch Normalization in the Presence of Adversarial Attacks
Batch normalization (BN) is a ubiquitous operation in deep neural networks, primarily used to improve stability and regularization during training. BN centers and scales feature maps using sample means and variances, which are naturally suited for Stein's shrinkage estimation. Applying such shrinkage yields more accurate mean and variance estimates of the batch in the mean-squared-error sense. In this paper, we prove that the Stein shrinkage estimator of the mean and variance dominates over the sample mean and variance estimators, respectively, in the presence of adversarial attacks modeled using sub-Gaussian distributions. Furthermore, by construction, the James-Stein (JS) BN yields a smaller local Lipschitz constant compared to the vanilla BN, implying better regularity properties and potentially improved robustness. This facilitates and justifies the application of Stein shrinkage to estimate the mean and variance parameters in BN and the use of it in image classification and segmentation tasks with and without adversarial attacks. We present SOTA performance results using this Stein-corrected BN in a standard ResNet architecture applied to the task of image classification using CIFAR-10 data, 3D CNN on PPMI (neuroimaging) data, and image segmentation using HRNet on Cityscape data with and without adversarial attacks.
♻ ☆ Toward Learning POMDPs Beyond Full-Rank Actions and State Observability
We are interested in enabling autonomous agents to learn and reason about systems with hidden states, such as locking mechanisms. We cast this problem as learning the parameters of a discrete Partially Observable Markov Decision Process (POMDP). The agent begins with knowledge of the POMDP's actions and observation spaces, but not its state space, transitions, or observation models. These properties must be constructed from a sequence of actions and observations. Spectral approaches to learning models of partially observable domains, such as Predictive State Representations (PSRs), learn representations of state that are sufficient to predict future outcomes. PSR models, however, do not have explicit transition and observation system models that can be used with different reward functions to solve different planning problems. Under a mild set of rankness assumptions on the products of transition and observation matrices, we show how PSRs learn POMDP matrices up to a similarity transform, and this transform may be estimated via tensor decomposition methods. Our method learns observation matrices and transition matrices up to a partition of states, where the states in a single partition have the same observation distributions corresponding to actions whose transition matrices are full-rank. Our experiments suggest that explicit observation and transition likelihoods can be leveraged to generate new plans for different goals and reward functions after the model has been learned. We also show that learning a POMDP beyond a partition of states is impossible from sequential data by constructing two POMDPs that agree on all observation distributions but differ in their transition dynamics.
comment: Update abstract
♻ ☆ Grokking in LLM Pretraining? Monitor Memorization-to-Generalization without Test ICLR 2026
This paper presents the first study of grokking in practical LLM pretraining. Specifically, we investigate when an LLM memorizes the training data, when its generalization on downstream tasks starts to improve, and what happens if there is a lag between the two. Unlike existing works studying when a small model generalizes to limited and specified tasks during thousands epochs' training on algorithmic data, we focus on a practical setting for LLMs, i.e., one-epoch pretraining of next-token prediction on a cross-domain, large-scale corpus, and generalization on diverse benchmark tasks covering math/commonsense reasoning, code generation, and domain-specific retrieval. Our study, for the first time, verifies that grokking still emerges in pretraining mixture-of-experts (MoE) LLMs, though different local data groups may enter their grokking stages asynchronously due to the heterogeneity of their distributions and attributions to others. To find a mechanistic interpretation of this local grokking, we investigate the dynamics of training data's pathways (i.e., expert choices across layers in MoE). Our primary discovery is that the pathways evolve from random, non-smooth across layers, instance-specific to more structured and transferable across samples, despite the converged pretraining loss. This depicts a transition from memorization to generalization. Two novel metrics are developed to quantify these patterns: one computes the pathway similarity between samples, while the other measures the consistency of aggregated experts between subsequent layers for each sample. These training data based metrics induce zero cost but can faithfully track and monitor the generalization of LLMs on downstream tasks, which, in conventional settings, requires costly instruction tuning and benchmark evaluation.
comment: Accepted at ICLR 2026
♻ ☆ Redirection for Erasing Memory (REM): Towards a universal unlearning method for corrupted data ICLR 2026
Machine unlearning is studied for a multitude of tasks, but specialization of unlearning methods to particular tasks has made their systematic comparison challenging. To address this issue, we propose a conceptual space to characterize diverse corrupted data unlearning tasks in vision classifiers. This space is described by two dimensions, the discovery rate (the fraction of the corrupted data that are known at unlearning time) and the statistical regularity of the corrupted data (from random exemplars to shared concepts). Methods proposed previously have been targeted at portions of this space and-we show-fail predictably outside these regions. We propose a novel method, Redirection for Erasing Memory (REM), whose key feature is that corrupted data are redirected to dedicated neurons introduced at unlearning time and then discarded or deactivated to suppress the influence of corrupted data. REM performs strongly across the space of tasks, in contrast to prior SOTA methods that fail outside the regions for which they were designed.
comment: Accepted as a main track paper at ICLR 2026 https://openreview.net/forum?id=xG0mQ4Xsfm
♻ ☆ Sample-Near-Optimal Agnostic Boosting with Improved Running Time ALT 2026
Boosting is a powerful method that turns weak learners, which perform only slightly better than random guessing, into strong learners with high accuracy. While boosting is well understood in the classic setting, it is less so in the agnostic case, where no assumptions are made about the data. Indeed, only recently was the sample complexity of agnostic boosting nearly settled arXiv:2503.09384, but the known algorithm achieving this bound has exponential running time. In this work, we propose the first agnostic boosting algorithm with near-optimal sample complexity, running in time polynomial in the sample size when considering the other parameters of the problem fixed.
comment: 28 pages, 0 figures. Accepted at the 37th International Conference on Algorithmic Learning Theory (ALT 2026)
♻ ☆ Information-Theoretic Causal Bounds under Unmeasured Confounding
We develop a data-driven information-theoretic framework for sharp partial identification of causal effects under unmeasured confounding. Existing approaches often rely on restrictive assumptions, such as bounded or discrete outcomes; require external inputs (for example, instrumental variables, proxies, or user-specified sensitivity parameters); necessitate full structural causal model specifications; or focus solely on population-level averages while neglecting covariate-conditional treatment effects. We overcome all four limitations simultaneously by establishing novel information-theoretic, data-driven divergence bounds. Our key theoretical contribution shows that the f-divergence between the observational distribution P(Y | A = a, X = x) and the interventional distribution P(Y | do(A = a), X = x) is upper bounded by a function of the propensity score alone. This result enables sharp partial identification of conditional causal effects directly from observational data, without requiring external sensitivity parameters, auxiliary variables, full structural specifications, or outcome boundedness assumptions. For practical implementation, we develop a semiparametric estimator satisfying Neyman orthogonality (Chernozhukov et al., 2018), which ensures square-root-n consistent inference even when nuisance functions are estimated using flexible machine learning methods. Simulation studies and real-world data applications, implemented in the GitHub repository (https://github.com/yonghanjung/Information-Theretic-Bounds), demonstrate that our framework provides tight and valid causal bounds across a wide range of data-generating processes.
♻ ☆ Convex Loss Functions for Support Vector Machines (SVMs) and Neural Networks
We propose a new convex loss for Support Vector Machines, both for the binary classification and for the regression models. Therefore, we show the mathematical derivation of the dual problems and we experiment with them on several small datasets. The minimal dimension of those datasets is due to the difficult scalability of the SVM method to bigger instances. This preliminary study should prove that using pattern correlations inside the loss function could enhance the generalisation performances. Our method consistently achieved comparable or superior performance, with improvements of up to 2.0% in F1 scores for classification tasks and 1.0% reduction in Mean Squared Error (MSE) for regression tasks across various datasets, compared to standard losses. Coherently, results show that generalisation measures are never worse than the standard losses and several times they are better. In our opinion, it should be considered a careful study of this loss, coupled with shallow and deep neural networks. In fact, we present some novel results obtained with those architectures.
♻ ☆ A Two-Timescale Primal-Dual Framework for Reinforcement Learning via Online Dual Variable Guidance
We study reinforcement learning by combining recent advances in regularized linear programming formulations with the classical theory of stochastic approximation. Motivated by the challenge of designing algorithms that leverage off-policy data while maintaining on-policy exploration, we propose PGDA-RL, a novel primal-dual Projected Gradient Descent-Ascent algorithm for solving regularized Markov Decision Processes (MDPs). PGDA-RL integrates experience replay-based gradient estimation with a two-timescale decomposition of the underlying nested optimization problem. The algorithm operates asynchronously, interacts with the environment through a single trajectory of correlated data, and updates its policy online in response to the dual variable associated with the occupancy measure of the underlying MDP. We prove that PGDA-RL converges almost surely to the optimal value function and policy of the regularized MDP. Our convergence analysis relies on tools from stochastic approximation theory and holds under weaker assumptions than those required by existing primal-dual RL approaches, notably removing the need for a simulator or a fixed behavioral policy. Under a strengthened ergodicity assumption on the underlying Markov chain, we establish a last-iterate finite-time guarantee with $\tilde{O} (k^{-2/3})$ mean-square convergence, aligning with the best-known rates for two-timescale stochastic approximation methods under Markovian sampling and biased gradient estimates.
comment: 54 pages, 1 figure; Revised version with additional finite-time convergence results
♻ ☆ The Powers of Precision: Structure-Informed Detection in Complex Systems -- From Customer Churn to Seizure Onset
Emergent phenomena -- onset of epileptic seizures, sudden customer churn, or pandemic outbreaks -- often arise from hidden causal interactions in complex systems. We propose a machine learning method for their early detection that addresses a core challenge: unveiling and harnessing a system's latent causal structure despite the data-generating process being unknown and partially observed. The method learns an optimal feature representation from a one-parameter family of estimators -- powers of the empirical covariance or precision matrix -- offering a principled way to tune in to the underlying structure driving the emergence of critical events. A supervised learning module then classifies the learned representation. We prove structural consistency of the family and demonstrate the empirical soundness of our approach on seizure detection and churn prediction, attaining competitive results in both. Beyond prediction, and toward explainability, we ascertain that the optimal covariance power exhibits evidence of good identifiability while capturing structural signatures, thus reconciling predictive performance with interpretable statistical structure.
♻ ☆ Interpreting and Controlling LLM Reasoning through Integrated Policy Gradient
Large language models (LLMs) demonstrate strong reasoning abilities in solving complex real-world problems. Yet, the internal mechanisms driving these complex reasoning behaviors remain opaque. Existing interpretability approaches targeting reasoning either identify components (e.g., neurons) correlated with special textual patterns, or rely on human-annotated contrastive pairs to derive control vectors. Consequently, current methods struggle to precisely localize complex reasoning mechanisms or capture sequential influence from model internal workings to the reasoning outputs. In this paper, built on outcome-oriented and sequential-influence-aware principles, we focus on identifying components that have sequential contribution to reasoning behavior where outcomes are cumulated by long-range effects. We propose Integrated Policy Gradient (IPG), a novel framework that attributes reasoning behaviors to model's inner components by propagating compound outcome-based signals such as post reasoning accuracy backward through model inference trajectories. Empirical evaluations demonstrate that our approach achieves more precise localization and enables reliable modulation of reasoning behaviors (e.g., reasoning capability, reasoning strength) across diverse reasoning models.
♻ ☆ Transformers can do Bayesian Clustering
Bayesian clustering accounts for uncertainty but is computationally demanding at scale. Furthermore, real-world datasets often contain missing values, and simple imputation ignores the associated uncertainty, resulting in suboptimal results. We present Cluster-PFN, a Transformer-based model that extends Prior-Data Fitted Networks (PFNs) to unsupervised Bayesian clustering. Trained entirely on synthetic datasets generated from a finite Gaussian Mixture Model (GMM) prior, Cluster-PFN learns to estimate the posterior distribution over both the number of clusters and the cluster assignments. Our method estimates the number of clusters more accurately than handcrafted model selection procedures such as AIC, BIC and Variational Inference (VI), and achieves clustering quality competitive with VI while being orders of magnitude faster. Cluster-PFN can be trained on complex priors that include missing data, outperforming imputation-based baselines on real-world genomic datasets, at high missingness. These results show that the Cluster-PFN can provide scalable and flexible Bayesian clustering.
♻ ☆ An Overview of Low-Rank Structures in the Training and Adaptation of Large Models
The substantial computational demands of modern large-scale deep learning present significant challenges for efficient training and deployment. Recent research has revealed a widespread phenomenon wherein deep networks inherently learn low-rank structures in their weights and representations during training. This tutorial paper provides a comprehensive review of advances in identifying and exploiting these low-rank structures, bridging mathematical foundations with practical applications. We present two complementary theoretical perspectives on the emergence of low-rankness: viewing it through the optimization dynamics of gradient descent throughout training, and understanding it as a result of implicit regularization effects at convergence. Practically, these theoretical perspectives provide a foundation for understanding the success of techniques such as Low-Rank Adaptation (LoRA) in fine-tuning, inspire new parameter-efficient low-rank training strategies, and explain the effectiveness of masked training approaches like dropout and masked self-supervised learning.
comment: Authors are listed alphabetically; 37 pages, 15 figures; minor revision at IEEE Signal Processing Magazine
♻ ☆ Uncertainty-driven Adaptive Exploration AAMAS 2026
Adaptive exploration methods propose ways to learn complex policies via alternating between exploration and exploitation. An important question for such methods is to determine the appropriate moment to switch between exploration and exploitation and vice versa. This is critical in domains that require the learning of long and complex sequences of actions. In this work, we present a generic adaptive exploration framework that employs uncertainty to address this important issue in a principled manner. Our framework includes previous adaptive exploration approaches as special cases. Moreover, we can incorporate in our framework any uncertainty-measuring mechanism of choice, for instance mechanisms used in intrinsic motivation or epistemic uncertainty-based exploration methods. We experimentally demonstrate that our framework gives rise to adaptive exploration strategies that outperform standard ones across several environments.
comment: This is an extended version (full paper + appendix) of the paper titled "A Novel Framework for Uncertainty-Driven Adaptive Exploration" accepted as a full paper at AAMAS 2026. The accepted paper can be found in https://openreview.net/forum?id=j5awxzdsU9
♻ ☆ Probabilistic Predictions of Process-Induced Deformation in Carbon/Epoxy Composites Using a Deep Operator Network
Fiber reinforcement and polymer matrix respond differently to manufacturing conditions due to mismatch in coefficient of thermal expansion and matrix shrinkage during curing of thermosets. These heterogeneities generate residual stresses over multiple length scales, whose partial release leads to process-induced deformation (PID), requiring accurate prediction and mitigation via optimized non-isothermal cure cycles. This study considers a unidirectional AS4 carbon fiber/amine bi-functional epoxy prepreg and models PID using a two-mechanism framework that accounts for thermal expansion/shrinkage and cure shrinkage. The model is validated against manufacturing trials to identify initial and boundary conditions, then used to generate PID responses for a diverse set of non-isothermal cure cycles (time-temperature profiles). Building on this physics-based foundation, we develop a data-driven surrogate based on Deep Operator Networks (DeepONets). A DeepONet is trained on a dataset combining high-fidelity simulations with targeted experimental measurements of PID. We extend this to a Feature-wise Linear Modulation (FiLM) DeepONet, where branch-network features are modulated by external parameters, including the initial degree of cure, enabling prediction of time histories of degree of cure, viscosity, and deformation. Because experimental data are available only at limited time instances (for example, final deformation), we use transfer learning: simulation-trained trunk and branch networks are fixed and only the final layer is updated using measured final deformation. Finally, we augment the framework with Ensemble Kalman Inversion (EKI) to quantify uncertainty under experimental conditions and to support optimization of cure schedules for reduced PID in composites.
comment: 21 pages, 13 figures
♻ ☆ NOBLE -- Neural Operator with Biologically-informed Latent Embeddings to Capture Experimental Variability in Biological Neuron Models
Characterizing the cellular properties of neurons is fundamental to understanding their function in the brain. In this quest, the generation of bio-realistic models is central towards integrating multimodal cellular data sets and establishing causal relationships. However, current modeling approaches remain constrained by the limited availability and intrinsic variability of experimental neuronal data. The deterministic formalism of bio-realistic models currently precludes accounting for the natural variability observed experimentally. While deep learning is becoming increasingly relevant in this space, it fails to capture the full biophysical complexity of neurons, their nonlinear voltage dynamics, and variability. To address these shortcomings, we introduce NOBLE, a neural operator framework that learns a mapping from a continuous frequency-modulated embedding of interpretable neuron features to the somatic voltage response induced by current injection. Trained on synthetic data generated from bio-realistic neuron models, NOBLE predicts distributions of neural dynamics accounting for the intrinsic experimental variability. Unlike conventional bio-realistic neuron models, interpolating within the embedding space offers models whose dynamics are consistent with experimentally observed responses. NOBLE enables the efficient generation of synthetic neurons that closely resemble experimental data and exhibit trial-to-trial variability, offering a $4200\times$ speedup over the numerical solver. NOBLE is the first scaled-up deep learning framework that validates its generalization with real experimental data. To this end, NOBLE captures fundamental neural properties in a unique and emergent manner that opens the door to a better understanding of cellular composition and computations, neuromorphic architectures, large-scale brain circuits, and general neuroAI applications.
♻ ☆ Dynamic Priors in Bayesian Optimization for Hyperparameter Optimization
Bayesian optimization (BO) is a widely used approach to hyperparameter optimization (HPO). However, most existing HPO methods only incorporate expert knowledge during initialization, limiting practitioners' ability to influence the optimization process as new insights emerge. This limits the applicability of BO in iterative machine learning development workflows. We propose DynaBO, a BO framework that enables continuous user control of the optimization process. Over time, DynaBO leverages provided user priors by augmenting the acquisition function with decaying, prior-weighted preferences while preserving asymptotic convergence guarantees. To reinforce robustness, we introduce a data-driven safeguard that detects and can be used to reject misleading priors. We prove theoretical results on near-certain convergence, robustness to adversarial priors, and accelerated convergence when informative priors are provided. Extensive experiments across various HPO benchmarks show that DynaBO consistently outperforms our state-of-the-art competitors across all benchmarks and for all prior kinds. Our results demonstrate that DynaBO enables reliable and efficient collaborative BO, bridging automated and manually controlled model development.
comment: 8 pages plus references and appendix
♻ ☆ Joint Estimation of Piano Dynamics and Metrical Structure with a Multi-task Multi-Scale Network ICASSP2026
Estimating piano dynamic from audio recordings is a fundamental challenge in computational music analysis. In this paper, we propose an efficient multi-task network that jointly predicts dynamic levels, change points, beats, and downbeats from a shared latent representation. These four targets form the metrical structure of dynamics in the music score. Inspired by recent vocal dynamic research, we use a multi-scale network as the backbone, which takes Bark-scale specific loudness as the input feature. Compared to log-Mel as input, this reduces model size from 14.7 M to 0.5 M, enabling long sequential input. We use a 60-second audio length in audio segmentation, which doubled the length of beat tracking commonly used. Evaluated on the public MazurkaBL dataset, our model achieves state-of-the-art results across all tasks. This work sets a new benchmark for piano dynamic estimation and delivers a powerful and compact tool, paving the way for large-scale, resource-efficient analysis of musical expression.
comment: Accepted to ICASSP2026 conference
♻ ☆ Bias-Reduced Estimation of Finite Mixtures: An Application to Latent Group Structures in Panel Data
Finite mixture models are widely used in econometric analyses to capture unobserved heterogeneity. This paper shows that maximum likelihood estimation of finite mixtures of parametric densities can suffer from substantial finite-sample bias in all parameters under mild regularity conditions. The bias arises from the influence of outliers in component densities with unbounded or large support and increases with the degree of overlap among mixture components. I show that maximizing the classification-mixture likelihood function, equipped with a consistent classifier, yields parameter estimates that are less biased than those obtained by standard maximum likelihood estimation (MLE). I then derive the asymptotic distribution of the resulting estimator and provide conditions under which oracle efficiency is achieved. Monte Carlo simulations show that conventional mixture MLE exhibits pronounced finite-sample bias, which diminishes as the sample size or the statistical distance between component densities tends to infinity. The simulations further show that the proposed estimation strategy generally outperforms standard MLE in finite samples in terms of both bias and mean squared errors under relatively weak assumptions. An empirical application to latent group panel structures using health administrative data shows that the proposed approach reduces out-of-sample prediction error by approximately 17.6% relative to the best results obtained from standard MLE procedures.
♻ ☆ An End-to-End Approach for Microgrid Probabilistic Forecasting and Robust Operation via Decision-focused Learning
High penetration of renewable energy sources (RES) introduces significant uncertainty and intermittency into microgrid operations, posing challenges to economic and reliable scheduling. To address this, this paper proposes an end-to-end decision-focused framework that jointly optimizes probabilistic forecasting and robust operation for microgrids. A multilayer encoder-decoder (MED) probabilistic forecasting model is integrated with a two-stage robust optimization (TSRO) model involving direct load control (DLC) through a differentiable decision pathway, enabling gradient-based feedback from operational outcomes to improve forecasting performance. Unlike conventional sequential approaches, the proposed method aligns forecasting accuracy with operational objectives by directly minimizing decision regret via a surrogate smart predict-then-optimize (SPO) loss function. This integration ensures that probabilistic forecasts are optimized for downstream decisions, enhancing both economic efficiency and robustness. Case studies on modified IEEE 33-bus and 69-bus systems demonstrate that the proposed framework achieves superior forecasting accuracy and operational performance, reducing total and net operation costs by up to 18% compared with conventional forecasting and optimization combinations. The results verify the effectiveness and scalability of the end-to-end decision-focused approach for resilient and cost-efficient microgrid management under uncertainty.
comment: 10 pages
♻ ☆ fev-bench: A Realistic Benchmark for Time Series Forecasting
Benchmark quality is critical for meaningful evaluation and sustained progress in time series forecasting, particularly with the rise of pretrained models. Existing benchmarks often have limited domain coverage or overlook real-world settings such as tasks with covariates. Their aggregation procedures frequently lack statistical rigor, making it unclear whether observed performance differences reflect true improvements or random variation. Many benchmarks lack consistent evaluation infrastructure or are too rigid for integration into existing pipelines. To address these gaps, we propose fev-bench, a benchmark of 100 forecasting tasks across seven domains, including 46 with covariates. Supporting the benchmark, we introduce fev, a lightweight Python library for forecasting evaluation emphasizing reproducibility and integration with existing workflows. Using fev, fev-bench employs principled aggregation with bootstrapped confidence intervals to report performance along two dimensions: win rates and skill scores. We report results on fev-bench for pretrained, statistical, and baseline models and identify promising future research directions.
♻ ☆ Spiking Neural Networks for Continuous Control via End-to-End Model-Based Learning
Despite recent progress in training spiking neural networks (SNNs) for classification, their application to continuous motor control remains limited. Here, we demonstrate that fully spiking architectures can be trained end-to-end to control robotic arms with multiple degrees of freedom in continuous environments. Our predictive-control framework combines Leaky Integrate-and-Fire dynamics with surrogate gradients, jointly optimizing a forward model for dynamics prediction and a policy network for goal-directed action. We evaluate this approach on both a planar 2D reaching task and a simulated 6-DOF Franka Emika Panda robot with torque control. In direct comparison to non-spiking recurrent baselines trained under the same predictive-control pipeline, the proposed SNN achieves comparable task performance while using substantially fewer parameters. An extensive ablation study highlights the role of initialization, learnable time constants, adaptive thresholds, and latent-space compression as key contributors to stable training and effective control. Together, these findings establish spiking neural networks as a viable and scalable substrate for high-dimensional continuous control, while emphasizing the importance of principled architectural and training design.
♻ ☆ Improved Stochastic Optimization of LogSumExp
The LogSumExp function, dual to the Kullback-Leibler (KL) divergence, plays a central role in many important optimization problems, including entropy-regularized optimal transport (OT) and distributionally robust optimization (DRO). In practice, when the number of exponential terms inside the logarithm is large or infinite, optimization becomes challenging since computing the gradient requires differentiating every term. We propose a novel convexity- and smoothness-preserving approximation to LogSumExp that can be efficiently optimized using stochastic gradient methods. This approximation is rooted in a sound modification of the KL divergence in the dual, resulting in a new $f$-divergence called the safe KL divergence. Our experiments and theoretical analysis of the LogSumExp-based stochastic optimization, arising in DRO and continuous OT, demonstrate the advantages of our approach over existing baselines.
comment: 17 pages, 5 figures, 2 tables; updated experiment in subsection 3.3
♻ ☆ Accurate and Efficient World Modeling with Masked Latent Transformers
The Dreamer algorithm has recently obtained remarkable performance across diverse environment domains by training powerful agents with simulated trajectories. However, the compressed nature of its world model's latent space can result in the loss of crucial information, negatively affecting the agent's performance. Recent approaches, such as $Δ$-IRIS and DIAMOND, address this limitation by training more accurate world models. However, these methods require training agents directly from pixels, which reduces training efficiency and prevents the agent from benefiting from the inner representations learned by the world model. In this work, we propose an alternative approach to world modeling that is both accurate and efficient. We introduce EMERALD (Efficient MaskEd latent tRAnsformer worLD model), a world model using a spatial latent state with MaskGIT predictions to generate accurate trajectories in latent space and improve the agent performance. On the Crafter benchmark, EMERALD achieves new state-of-the-art performance, becoming the first method to surpass human experts performance within 10M environment steps. Our method also succeeds to unlock all 22 Crafter achievements at least once during evaluation.
♻ ☆ Simple Denoising Diffusion Language Models
Recent Uniform State Diffusion Models (USDMs), initialized from a uniform prior, offer the promise of fast text generation due to their inherent self-correction ability compared to masked diffusion models. However, they still rely on complex loss formulations with additional computational overhead, which hinders scalability. In this work, we explore a simplified denoising-based loss for USDMs that optimizes only noise-replaced tokens, stabilizing training while matching the performance of prior methods with more complex objectives. In addition, we introduce an efficient regularization term to mitigate corruption toward uniform output distributions, which further improves performance. We demonstrate the effectiveness and efficiency of our simple and improved loss formulations by pretraining models on widely used text datasets for USDMs. More importantly, our conclusions scale to larger models, showing strong potential for large-scale training.
♻ ☆ Methodology for Comparing Machine Learning Algorithms for Survival Analysis
This study presents a comparative methodological analysis of six machine learning models for survival analysis (MLSA). Using data from nearly 45,000 colorectal cancer patients in the Hospital-Based Cancer Registries of São Paulo, we evaluated Random Survival Forest (RSF), Gradient Boosting for Survival Analysis (GBSA), Survival SVM (SSVM), XGBoost-Cox (XGB-Cox), XGBoost-AFT (XGB-AFT), and LightGBM (LGBM), capable of predicting survival considering censored data. Hyperparameter optimization was performed with different samplers, and model performance was assessed using the Concordance Index (C-Index), C-Index IPCW, time-dependent AUC, and Integrated Brier Score (IBS). Survival curves produced by the models were compared with predictions from classification algorithms, and predictor interpretation was conducted using SHAP and permutation importance. XGB-AFT achieved the best performance (C-Index = 0.7618; IPCW = 0.7532), followed by GBSA and RSF. The results highlight the potential and applicability of MLSA to improve survival prediction and support decision making.
♻ ☆ KVzap: Fast, Adaptive, and Faithful KV Cache Pruning
Growing context lengths in transformer-based language models have made the key-value (KV) cache a critical inference bottleneck. While many KV cache pruning methods have been proposed, they have not yet been adopted in major inference engines due to speed--accuracy trade-offs. We introduce KVzap, a fast, input-adaptive approximation of KVzip that works in both prefilling and decoding. On Qwen3-8B, Llama-3.1-8B-Instruct, and Qwen3-32B across long-context and reasoning tasks, KVzap achieves $2$--$4\times$ KV cache compression with negligible accuracy loss and achieves state-of-the-art performance on the KVpress leaderboard. Code and models are available at https://github.com/NVIDIA/kvpress.
♻ ☆ SLIME: Stabilized Likelihood Implicit Margin Enforcement for Preference Optimization
Direct preference optimization methods have emerged as a computationally efficient alternative to Reinforcement Learning from Human Feedback (RLHF) for aligning Large Language Models (LLMs). Latest approaches have streamlined the alignment process by deriving implicit reward functions, yet they often suffer from a critical objective mismatch: optimizing the relative margin between chosen and rejected responses does not guarantee the preservation of the chosen response's absolute likelihood. This can lead to unlearning, where the model degrades the probability of high-quality outputs to satisfy margin constraints, and formatting collapse caused by the over-penalization of rejected sequences. In this work, we introduce SLIME (Stabilized Likelihood Implicit Margin Enforcement), a reference-free alignment objective designed to decouple preference learning from generation quality. SLIME incorporates a three-pronged objective: (1) an anchoring term to maximize the likelihood of preferred responses; (2) a stabilizing penalty that prevents the probabilities of rejected tokens from collapsing to zero; and (3) a dual-margin mechanism that combines hard and soft constraints for precise boundary shaping. Our results demonstrate that SLIME achieves superior performance compared to state-of-the-art baselines while maintaining higher generation stability.
♻ ☆ Designing ReLU Generative Networks to Enumerate Trees with a Given Tree Edit Distance
The generation of trees with a specified tree edit distance has significant applications across various fields, including computational biology, structured data analysis, and image processing. Recently, generative networks have been increasingly employed to synthesize new data that closely resembles the original datasets. However, the appropriate size and depth of generative networks required to generate data with a specified tree edit distance remain unclear. In this paper, we theoretically establish the existence and construction of generative networks capable of producing trees similar to a given tree with respect to the tree edit distance. Specifically, for a given rooted, ordered, and vertex-labeled tree T of size n + 1 with labels from an alphabet Σ, and a non-negative integer d, we prove that all rooted, ordered, and vertex-labeled trees over Σwith tree edit distance at most d from T can be generated using a ReLU-based generative network with size O(n^3 ) and constant depth. The proposed networks were implemented and evaluated for generating trees with up to 21 nodes. Due to their deterministic architecture, the networks successfully generated all valid trees within the specified tree edit distance. In contrast, state-of-the-art graph generative models GraphRNN and GraphGDP, which rely on non-deterministic mechanisms, produced significantly fewer valid trees, achieving validation rates of only up to 35% and 48%, respectively. These findings provide a theoretical foundation towards construction of compact generative models and open new directions for exact and valid tree-structured data generation. An implementation of the proposed networks is available at https://github.com/MGANN-KU/TreeGen_ReLUNetworks.
♻ ☆ Relational reasoning and inductive bias in transformers and large language models
Transformer-based models have demonstrated remarkable reasoning abilities, but the mechanisms underlying relational reasoning remain poorly understood. We investigate how transformers perform \textit{transitive inference}, a classic relational reasoning task which requires inference indirectly related items (e.g., if $A>B$ and $B>C$, then $A>C$), comparing in-weights learning (IWL) and in-context learning (ICL) strategies. We find that IWL naturally induces a generalization bias towards transitive inference despite training only on adjacent items, whereas ICL models develop induction circuits implementing match-and-copy strategies that fail to encode hierarchical relationships. However, when pre-trained on in-context linear regression tasks, transformers successfully exhibit in-context generalizable transitive inference, displaying both \textit{symbolic distance} and \textit{terminal item effects} characteristic of human and animal performance, without forming induction circuits. We extend these findings to large language models, demonstrating that prompting with linear geometric scaffolds improves transitive inference, while circular geometries (which violate transitivity by allowing wraparound) impair performance, particularly when models cannot rely on stored knowledge. Together, these results reveal that both the training regime and the geometric structure of induced representations critically determine transformers' capacity for transitive inference.
comment: 15 pages, 10 figures
♻ ☆ Conformal Prediction for Causal Effects of Continuous Treatments NeurIPS 2025
Uncertainty quantification of causal effects is crucial for safety-critical applications such as personalized medicine. A powerful approach for this is conformal prediction, which has several practical benefits due to model-agnostic finite-sample guarantees. Yet, existing methods for conformal prediction of causal effects are limited to binary/discrete treatments and make highly restrictive assumptions such as known propensity scores. In this work, we provide a novel conformal prediction method for potential outcomes of continuous treatments. We account for the additional uncertainty introduced through propensity estimation so that our conformal prediction intervals are valid even if the propensity score is unknown. Our contributions are three-fold: (1) We derive finite-sample prediction intervals for potential outcomes of continuous treatments. (2) We provide an algorithm for calculating the derived intervals. (3) We demonstrate the effectiveness of the conformal prediction intervals in experiments on synthetic and real-world datasets. To the best of our knowledge, we are the first to propose conformal prediction for continuous treatments when the propensity score is unknown and must be estimated from data.
comment: Accepted at NeurIPS 2025
♻ ☆ Trustworthy AI-based crack-tip segmentation using domain-guided explanations
Ensuring the trustworthiness and robustness of deep learning models remains a fundamental challenge, particularly in high-stakes scientific applications. In this study, we present a framework called attention-guided training that combines explainable artificial intelligence techniques with quantitative evaluation and domain-specific priors to guide model attention. We demonstrate that domain-specific feedback on model explanations during training can enhance the model's generalization capabilities. We validate our approach on the task of semantic crack tip segmentation in digital image correlation data, which is a key application in the fracture mechanical characterization of materials. By aligning model attention with physically meaningful stress fields, such as those described by Williams' analytical solution, attention-guided training ensures that the model focuses on physically relevant regions. This finally leads to improved generalization and more faithful explanations.
comment: This is the Accepted Manuscript version of an article accepted for publication in Machine Learning: Science and Technology. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/2632-2153/ae3660
♻ ☆ Latent Space Representation of Electricity Market Curves: Maintaining Structural Integrity
Efficiently representing supply and demand curves is vital for energy market analysis and downstream modelling; however, dimensionality reduction often produces reconstructions that violate fundamental economic principles such as monotonicity. This paper evaluates the performance of PCA, Kernel PCA, UMAP, and AutoEncoder across 2d and 3d latent spaces. During preprocessing, we transform the original data to achieve a unified structure, mitigate outlier effects, and focus on critical curve segments. To ensure theoretical validity, we integrate Isotonic Regression as an optional post-processing step to enforce monotonic constraints on reconstructed outputs. Results from a three-year hourly MIBEL dataset demonstrate that the non-linear technique UMAP consistently outperforms other methods, securing the top rank across multiple error metrics. Furthermore, Isotonic Regression serves as a crucial corrective layer, significantly reducing error and restoring physical validity for several methods. We argue that UMAP`s local structure preservation, combined with intelligent post-processing, provides a robust foundation for downstream tasks such as forecasting, classification, and clustering.
comment: 8 pages, 3 figures
♻ ☆ Time2Vec Transformer for Robust Gesture Recognition from Low-Density sEMG
Accurate and responsive myoelectric prosthesis control typically relies on complex, dense multi-sensor arrays, which limits consumer accessibility. This paper presents a novel, data-efficient deep learning framework designed to achieve precise and accurate control using minimal sensor hardware. Leveraging an external dataset of 8 subjects, our approach implements a hybrid Transformer optimized for sparse, two-channel surface electromyography (sEMG). Unlike standard architectures that use fixed positional encodings, we integrate Time2Vec learnable temporal embeddings to capture the stochastic temporal warping inherent in biological signals. Furthermore, we employ a normalized additive fusion strategy that aligns the latent distributions of spatial and temporal features, preventing the destructive interference common in standard implementations. A two-stage curriculum learning protocol is utilized to ensure robust feature extraction despite data scarcity. The proposed architecture achieves a state-of-the-art multi-subject F1-score of 95.7% $\pm$ 0.20% for a 10-class movement set, statistically outperforming both a standard Transformer with fixed encodings and a recurrent CNN-LSTM model. Architectural optimization reveals that a balanced allocation of model capacity between spatial and temporal dimensions yields the highest stability. Furthermore, while direct transfer to a new unseen subject led to poor accuracy due to domain shifts, a rapid calibration protocol utilizing only two trials per gesture recovered performance from 21.0% $\pm$ 2.98% to 96.9% $\pm$ 0.52%. By validating that high-fidelity temporal embeddings can compensate for low spatial resolution, this work challenges the necessity of high-density sensing. The proposed framework offers a robust, cost-effective blueprint for next-generation prosthetic interfaces capable of rapid personalization.
♻ ☆ Beyond Predictive Uncertainty: Reliable Representation Learning with Structural Constraints
Uncertainty estimation in machine learning has traditionally focused on the prediction stage, aiming to quantify confidence in model outputs while treating learned representations as deterministic and reliable by default. In this work, we challenge this implicit assumption and argue that reliability should be regarded as a first-class property of learned representations themselves. We propose a principled framework for reliable representation learning that explicitly models representation-level uncertainty and leverages structural constraints as inductive biases to regularize the space of feasible representations. Our approach introduces uncertainty-aware regularization directly in the representation space, encouraging representations that are not only predictive but also stable, well-calibrated, and robust to noise and structural perturbations. Structural constraints, such as sparsity, relational structure, or feature-group dependencies, are incorporated to define meaningful geometry and reduce spurious variability in learned representations, without assuming fully correct or noise-free structure. Importantly, the proposed framework is independent of specific model architectures and can be integrated with a wide range of representation learning methods.
comment: 22 pages, 5 figures, 5 propositions
♻ ☆ Dataset-Driven Channel Masks in Transformers for Multivariate Time Series ICASSP 2026
Recent advancements in foundation models have been successfully extended to the time series (TS) domain, facilitated by the emergence of large-scale TS datasets. However, previous efforts have primarily Capturing channel dependency (CD) is essential for modeling multivariate time series (TS), and attention-based methods have been widely employed for this purpose. Nonetheless, these methods primarily focus on modifying the architecture, often neglecting the importance of dataset-specific characteristics. In this work, we introduce the concept of partial channel dependence (PCD) to enhance CD modeling in Transformer-based models by leveraging dataset-specific information to refine the CD captured by the model. To achieve PCD, we propose channel masks (CMs), which are integrated into the attention matrices of Transformers via element-wise multiplication. CMs consist of two components: 1) a similarity matrix that captures relationships between the channels, and 2) dataset-specific and learnable domain parameters that refine the similarity matrix. We validate the effectiveness of PCD across diverse tasks and datasets with various backbones. Code is available at this repository: https://github.com/YonseiML/pcd.
comment: ICASSP 2026. Preliminary version: NeurIPS Workshop on Time Series in the Age of Large Models 2024 (Oral presentation)
♻ ☆ Patronus: Interpretable Diffusion Models with Prototypes
Uncovering the opacity of diffusion-based generative models is urgently needed, as their applications continue to expand while their underlying procedures largely remain a black box. With a critical question -- how can the diffusion generation process be interpreted and understood? -- we proposed Patronus, an interpretable diffusion model that incorporates a prototypical network to encode semantics in visual patches, revealing what visual patterns are modeled and where and when they emerge throughout denoising. This interpretability of Patronus provides deeper insights into the generative mechanism, enabling the detection of shortcut learning via unwanted correlations and the tracing of semantic emergence across timesteps. We evaluate Patronus on four natural image datasets and one medical imaging dataset, demonstrating both faithful interpretability and strong generative performance. With this work, we open new avenues for understanding and steering diffusion models through prototype-based interpretability.\\ Our code is available at https://github.com/nina-weng/patronus}{https://github.com/nina-weng/patronus.
♻ ☆ Contrastive Geometric Learning Unlocks Unified Structure- and Ligand-Based Drug Design
Structure-based and ligand-based computational drug design have traditionally relied on disjoint data sources and modeling assumptions, limiting their joint use at scale. In this work, we introduce Contrastive Geometric Learning for Unified Computational Drug Design (ConGLUDe), a single contrastive geometric model that unifies structure- and ligand-based training. ConGLUDe couples a geometric protein encoder that produces whole-protein representations and implicit embeddings of predicted binding sites with a fast ligand encoder, removing the need for pre-defined pockets. By aligning ligands with both global protein representations and multiple candidate binding sites through contrastive learning, ConGLUDe supports ligand-conditioned pocket prediction in addition to virtual screening and target fishing, while being trained jointly on protein-ligand complexes and large-scale bioactivity data. Across diverse benchmarks, ConGLUDe achieves competitive zero-shot virtual screening performance, substantially outperforms existing methods on a challenging target fishing task, and demonstrates state-of-the-art ligand-conditioned pocket selection. These results highlight the advantages of unified structure-ligand training and position ConGLUDe as a step toward general-purpose foundation models for drug discovery.
comment: ELLIS ML4Molecules Workshop 2025, ELLIS Unconference, Copenhagen 2025 Revised version with additional timing evaluation
♻ ☆ Discrete Latent Structure in Neural Networks
Many types of data from fields including natural language processing, computer vision, and bioinformatics, are well represented by discrete, compositional structures such as trees, sequences, or matchings. Latent structure models are a powerful tool for learning to extract such representations, offering a way to incorporate structural bias, discover insight about the data, and interpret decisions. However, effective training is challenging, as neural networks are typically designed for continuous computation. This text explores three broad strategies for learning with discrete latent structure: continuous relaxation, surrogate gradients, and probabilistic estimation. Our presentation relies on consistent notations for a wide range of models. As such, we reveal many new connections between latent structure learning strategies, showing how most consist of the same small set of fundamental building blocks, but use them differently, leading to substantially different applicability and properties.
♻ ☆ A Research Roadmap for Augmenting Software Engineering Processes and Software Products with Generative AI
Generative AI (GenAI) is rapidly transforming software engineering (SE) practices, influencing how SE processes are executed, as well as how software systems are developed, operated, and evolved. This paper applies design science research to build a roadmap for GenAI-augmented SE. The process consists of three cycles that incrementally integrate multiple sources of evidence, including collaborative discussions from the FSE 2025 "Software Engineering 2030" workshop, rapid literature reviews, and external feedback sessions involving peers. McLuhan's tetrads were used as a conceptual instrument to systematically capture the transforming effects of GenAI on SE processes and software products.The resulting roadmap identifies four fundamental forms of GenAI augmentation in SE and systematically characterizes their related research challenges and opportunities. These insights are then consolidated into a set of future research directions. By grounding the roadmap in a rigorous multi-cycle process and cross-validating it among independent author teams and peers, the study provides a transparent and reproducible foundation for analyzing how GenAI affects SE processes, methods and tools, and for framing future research within this rapidly evolving area. Based on these findings, the article finally makes ten predictions for SE in the year 2030.
♻ ☆ CP-Agent: Agentic Constraint Programming
The translation of natural language to formal constraint models requires expertise in the problem domain and modeling frameworks. To explore the effectiveness of agentic workflows, we propose CP-Agent, a Python coding agent that uses the ReAct framework with a persistent IPython kernel. We provide the relevant domain knowledge as a project prompt of under 50 lines. The algorithm works by iteratively executing code, observing the solver's feedback, and refining constraint models based on execution results. We evaluate CP-Agent on 101 constraint programming problems from CP-Bench. We made minor changes to the benchmark to address systematic ambiguities in the problem specifications and errors in the ground-truth models. On the clarified benchmark, CP-Agent achieves perfect accuracy on all 101 problems. Our experiments show that minimal guidance outperforms detailed procedural scaffolding. Our experiments also show that explicit task management tools can have both positive and negative effects on focused modeling tasks.
♻ ☆ PRISM: Deriving a White-Box Transformer as a Signal-Noise Decomposition Operator via Maximum Coding Rate Reduction
Deep learning models, particularly Transformers, are often criticized as "black boxes" and lack interpretability. We propose Prism, a white-box attention-based architecture derived from the principles of Maximizing Coding Rate Reduction ($\text{MCR}^2$). By modeling the attention mechanism as a gradient ascent process on a distinct signal-noise manifold, we introduce a specific irrational frequency separation ($π$-RoPE) to enforce incoherence between signal (semantic) and noise (syntactic) subspaces. We show empirical evidence that these geometric inductive biases can induce unsupervised functional disentanglement alone. Prism spontaneously specializes its attention heads into spectrally distinct regimes: low-frequency heads capturing long-range causal dependencies (signal) and high-frequency heads handling local syntactic constraints and structural artifacts. To provide a theoretical grounding for these spectral phenomena, we draw an analogy between attention mechanism and a Hamiltonian dynamical system and identify that the standard geometric progression of Rotary Positional Embeddings (RoPE) induces dense resonance networks (Arnold Tongues), leading to feature rank collapse. Empirical validation on 124M-parameter models trained on OpenWebText demonstrates that Prism spontaneously isolates the Attention Sink pathology and maintains isentropic information flow across layers. Further, we suggest a physics-informed plug-and-play intervention KAM-RoPE for large language models (LLMs). Our results suggest that interpretability and performance can be unified through principled geometric construction, offering a theoretically grounded alternative to heuristic architectural modifications
comment: 12 pages, 6 figures. Derives Transformer as a signal-noise decomposition operator via Maximizing Coding Rate Reduction. Identifies 'Attention Sink' as spectral resonance (Arnold Tongues) and proposes $π$-RoPE for dynamical stability
♻ ☆ Sensitivity analysis of image classification models using generalized polynomial chaos
Integrating advanced communication protocols in production has accelerated the adoption of data-driven predictive quality methods, notably machine learning (ML) models. However, ML models in image classification often face significant uncertainties arising from model, data, and domain shifts. These uncertainties lead to overconfidence in the classification model's output. To better understand these models, sensitivity analysis can help to analyze the relative influence of input parameters on the output. This work investigates the sensitivity of image classification models used for predictive quality. We propose modeling the distributional domain shifts of inputs with random variables and quantifying their impact on the model's outputs using Sobol indices computed via generalized polynomial chaos (GPC). This approach is validated through a case study involving a welding defect classification problem, utilizing a fine-tuned ResNet18 model and an emblem classification model used in BMW Group production facilities.
♻ ☆ SEDformer: Event-Synchronous Spiking Transformers for Irregular Telemetry Time Series Forecasting
Telemetry streams from large-scale Internet-connected systems (e.g., IoT deployments and online platforms) naturally form an irregular multivariate time series (IMTS) whose accurate forecasting is operationally vital. A closer examination reveals a defining Sparsity-Event Duality (SED) property of IMTS, i.e., long stretches with sparse or no observations are punctuated by short, dense bursts where most semantic events (observations) occur. However, existing Graph- and Transformer-based forecasters ignore SED: pre-alignment to uniform grids with heavy padding violates sparsity by inflating sequences and forcing computation at non-informative steps, while relational recasting weakens event semantics by disrupting local temporal continuity. These limitations motivate a more faithful and natural modeling paradigm for IMTS that aligns with its SED property. We find that Spiking Neural Networks meet this requirement, as they communicate via sparse binary spikes and update in an event-driven manner, aligning naturally with the SED nature of IMTS. Therefore, we present SEDformer, an SED-enhanced Spiking Transformer for telemetry IMTS forecasting that couples: (1) a SED-based Spike Encoder converts raw observations into event synchronous spikes using an Event-Aligned LIF neuron, (2) an Event-Preserving Temporal Downsampling module compresses long gaps while retaining salient firings and (3) a stack of SED-based Spike Transformer blocks enable intra-series dependency modeling with a membrane-based linear attention driven by EA-LIF spiking features. Experiments on public telemetry IMTS datasets show that SEDformer attains state-of-the-art forecasting accuracy while reducing energy and memory usage, providing a natural and efficient path for modeling IMTS.
comment: Under review
♻ ☆ Scalable Linearized Laplace Approximation via Surrogate Neural Kernel
We introduce a scalable method to approximate the kernel of the Linearized Laplace Approximation (LLA). For this, we use a surrogate deep neural network (DNN) that learns a compact feature representation whose inner product replicates the Neural Tangent Kernel (NTK). This avoids the need to compute large Jacobians. Training relies solely on efficient Jacobian-vector products, allowing to compute predictive uncertainty on large-scale pre-trained DNNs. Experimental results show similar or improved uncertainty estimation and calibration compared to existing LLA approximations. Notwithstanding, biasing the learned kernel significantly enhances out-of-distribution detection. This remarks the benefits of the proposed method for finding better kernels than the NTK in the context of LLA to compute prediction uncertainty given a pre-trained DNN.
comment: 6 pages, 1 table. Accepted at European Symposium on Artificial Neural Networks (ESANN 2026) as oral presentation
♻ ☆ SPGCL: Simple yet Powerful Graph Contrastive Learning via SVD-Guided Structural Perturbation
Graph Neural Networks (GNNs) are sensitive to structural noise from adversarial attacks or imperfections. Existing graph contrastive learning (GCL) methods typically rely on either random perturbations (e.g., edge dropping) for diversity or spectral augmentations (e.g., SVD) to preserve structural priors. However, random perturbations are structure-agnostic and may remove critical edges, while SVD-based views often lack sufficient diversity. Integrating these paradigms is challenging as they operate on discrete edge removal and continuous matrix factorization, respectively.We propose SPGCL, a framework for robust GCL via SVD-guided structural perturbation. Leveraging a recently developed SVD-based method that generalizes structural perturbation theory to arbitrary graphs, we design a two-stage strategy: (1) lightweight stochastic edge removal to inject diversity, and (2) truncated SVD to derive a structure-aware scoring matrix for sparse top-$P$ edge recovery. This integration offers three advantages: (1) Robustness to accidental deletion, as important edges can be recovered by SVD-guided scoring; (2) Enrichment with missing links, creating more informative contrastive views by introducing semantically meaningful edges; and (3) Controllable structural discrepancy, ensuring contrastive signals stem from semantic differences rather than edge-number gaps.Furthermore, we incorporate a contrastive fusion module with a global similarity constraint to align embeddings. Extensive experiments on ten benchmark datasets demonstrate that SPGCL consistently improves the robustness and accuracy of GNNs, outperforming state-of-the-art GCL and structure learning methods, validating its effectiveness in integrating previously disparate paradigms.
Information Retrieval 33
☆ Multimodal Generative Recommendation for Fusing Semantic and Collaborative Signals
Sequential recommender systems rank relevant items by modeling a user's interaction history and computing the inner product between the resulting user representation and stored item embeddings. To avoid the significant memory overhead of storing large item sets, the generative recommendation paradigm instead models each item as a series of discrete semantic codes. Here, the next item is predicted by an autoregressive model that generates the code sequence corresponding to the predicted item. However, despite promising ranking capabilities on small datasets, these methods have yet to surpass traditional sequential recommenders on large item sets, limiting their adoption in the very scenarios they were designed to address. To resolve this, we propose MSCGRec, a Multimodal Semantic and Collaborative Generative Recommender. MSCGRec incorporates multiple semantic modalities and introduces a novel self-supervised quantization learning approach for images based on the DINO framework. Additionally, MSCGRec fuses collaborative and semantic signals by extracting collaborative features from sequential recommenders and treating them as a separate modality. Finally, we propose constrained sequence learning that restricts the large output space during training to the set of permissible tokens. We empirically demonstrate on three large real-world datasets that MSCGRec outperforms both sequential and generative recommendation baselines and provide an extensive ablation study to validate the impact of each component.
☆ Bringing Reasoning to Generative Recommendation Through the Lens of Cascaded Ranking WWW2026
Generative Recommendation (GR) has become a promising end-to-end approach with high FLOPS utilization for resource-efficient recommendation. Despite the effectiveness, we show that current GR models suffer from a critical \textbf{bias amplification} issue, where token-level bias escalates as token generation progresses, ultimately limiting the recommendation diversity and hurting the user experience. By comparing against the key factor behind the success of traditional multi-stage pipelines, we reveal two limitations in GR that can amplify the bias: homogeneous reliance on the encoded history, and fixed computational budgets that prevent deeper user preference understanding. To combat the bias amplification issue, it is crucial for GR to 1) incorporate more heterogeneous information, and 2) allocate greater computational resources at each token generation step. To this end, we propose CARE, a simple yet effective cascaded reasoning framework for debiased GR. To incorporate heterogeneous information, we introduce a progressive history encoding mechanism, which progressively incorporates increasingly fine-grained history information as the generation process advances. To allocate more computations, we propose a query-anchored reasoning mechanism, which seeks to perform a deeper understanding of historical information through parallel reasoning steps. We instantiate CARE on three GR backbones. Empirical results on four datasets show the superiority of CARE in recommendation accuracy, diversity, efficiency, and promising scalability. The codes and datasets are available at https://github.com/Linxyhaha/CARE.
comment: Accepted by WWW2026
RAGTurk: Best Practices for Retrieval Augmented Generation in Turkish EACL 2026
Retrieval-Augmented Generation (RAG) enhances LLM factuality, yet design guidance remains English-centric, limiting insights for morphologically rich languages like Turkish. We address this by constructing a comprehensive Turkish RAG dataset derived from Turkish Wikipedia and CulturaX, comprising question-answer pairs and relevant passage chunks. We benchmark seven stages of the RAG pipeline, from query transformation and reranking to answer refinement, without task-specific fine-tuning. Our results show that complex methods like HyDE maximize accuracy (85%) that is considerably higher than the baseline (78.70%). Also a Pareto-optimal configuration using Cross-encoder Reranking and Context Augmentation achieves comparable performance (84.60%) with much lower cost. We further demonstrate that over-stacking generative modules can degrade performance by distorting morphological cues, whereas simple query clarification with robust reranking offers an effective solution.
comment: Accepted by EACL 2026 SIGTURK
☆ Tutorial on Reasoning for IR & IR for Reasoning ECIR 2026
Information retrieval has long focused on ranking documents by semantic relatedness. Yet many real-world information needs demand more: enforcement of logical constraints, multi-step inference, and synthesis of multiple pieces of evidence. Addressing these requirements is, at its core, a problem of reasoning. Across AI communities, researchers are developing diverse solutions for the problem of reasoning, from inference-time strategies and post-training of LLMs, to neuro-symbolic systems, Bayesian and probabilistic frameworks, geometric representations, and energy-based models. These efforts target the same problem: to move beyond pattern-matching systems toward structured, verifiable inference. However, they remain scattered across disciplines, making it difficult for IR researchers to identify the most relevant ideas and opportunities. To help navigate the fragmented landscape of research in reasoning, this tutorial first articulates a working definition of reasoning within the context of information retrieval and derives from it a unified analytical framework. The framework maps existing approaches along axes that reflect the core components of the definition. By providing a comprehensive overview of recent approaches and mapping current methods onto the defined axes, we expose their trade-offs and complementarities, highlight where IR can benefit from cross-disciplinary advances, and illustrate how retrieval process itself can play a central role in broader reasoning systems. The tutorial will equip participants with both a conceptual framework and practical guidance for enhancing reasoning-capable IR systems, while situating IR as a domain that both benefits and contributes to the broader development of reasoning methodologies.
comment: Accepted to ECIR 2026
☆ Controlling Output Rankings in Generative Engines for LLM-based Search
The way customers search for and choose products is changing with the rise of large language models (LLMs). LLM-based search, or generative engines, provides direct product recommendations to users, rather than traditional online search results that require users to explore options themselves. However, these recommendations are strongly influenced by the initial retrieval order of LLMs, which disadvantages small businesses and independent creators by limiting their visibility. In this work, we propose CORE, an optimization method that \textbf{C}ontrols \textbf{O}utput \textbf{R}ankings in g\textbf{E}nerative Engines for LLM-based search. Since the LLM's interactions with the search engine are black-box, CORE targets the content returned by search engines as the primary means of influencing output rankings. Specifically, CORE optimizes retrieved content by appending strategically designed optimization content to steer the ranking of outputs. We introduce three types of optimization content: string-based, reasoning-based, and review-based, demonstrating their effectiveness in shaping output rankings. To evaluate CORE in realistic settings, we introduce ProductBench, a large-scale benchmark with 15 product categories and 200 products per category, where each product is associated with its top-10 recommendations collected from Amazon's search interface. Extensive experiments on four LLMs with search capabilities (GPT-4o, Gemini-2.5, Claude-4, and Grok-3) demonstrate that CORE achieves an average Promotion Success Rate of \textbf{91.4\% @Top-5}, \textbf{86.6\% @Top-3}, and \textbf{80.3\% @Top-1}, across 15 product categories, outperforming existing ranking manipulation methods while preserving the fluency of optimized content.
comment: 23 pages
☆ Ontology-to-tools compilation for executable semantic constraint enforcement in LLM agents
We introduce ontology-to-tools compilation as a proof-of-principle mechanism for coupling large language models (LLMs) with formal domain knowledge. Within The World Avatar (TWA), ontological specifications are compiled into executable tool interfaces that LLM-based agents must use to create and modify knowledge graph instances, enforcing semantic constraints during generation rather than through post-hoc validation. Extending TWA's semantic agent composition framework, the Model Context Protocol (MCP) and associated agents are integral components of the knowledge graph ecosystem, enabling structured interaction between generative models, symbolic constraints, and external resources. An agent-based workflow translates ontologies into ontology-aware tools and iteratively applies them to extract, validate, and repair structured knowledge from unstructured scientific text. Using metal-organic polyhedra synthesis literature as an illustrative case, we show how executable ontological semantics can guide LLM behaviour and reduce manual schema and prompt engineering, establishing a general paradigm for embedding formal knowledge into generative systems.
☆ Failure is Feedback: History-Aware Backtracking for Agentic Traversal in Multimodal Graphs
Open-domain multimodal document retrieval aims to retrieve specific components (paragraphs, tables, or images) from large and interconnected document corpora. Existing graph-based retrieval approaches typically rely on a uniform similarity metric that overlooks hop-specific semantics, and their rigid pre-defined plans hinder dynamic error correction. These limitations suggest that a retriever should adapt its reasoning to the evolving context and recover intelligently from dead ends. To address these needs, we propose Failure is Feedback (FiF), which casts subgraph retrieval as a sequential decision process and introduces two key innovations. (i) We introduce a history-aware backtracking mechanism; unlike standard backtracking that simply reverts the state, our approach piggybacks on the context of failed traversals, leveraging insights from previous failures. (ii) We implement an economically-rational agentic workflow. Unlike conventional agents with static strategies, our orchestrator employs a cost-aware traversal method to dynamically manage the trade-off between retrieval accuracy and inference costs, escalating to intensive LLM-based reasoning only when the prior failure justifies the additional computational investment. Extensive experiments show that FiF achieves state-of-the-art retrieval on the benchmarks of MultimodalQA, MMCoQA and WebQA.
comment: Project page: https://failureisfeedback.github.io/
☆ RankSteer: Activation Steering for Pointwise LLM Ranking
Large language models (LLMs) have recently shown strong performance as zero-shot rankers, yet their effectiveness is highly sensitive to prompt formulation, particularly role-play instructions. Prior analyses suggest that role-related signals are encoded along activation channels that are largely separate from query-document representations, raising the possibility of steering ranking behavior directly at the activation level rather than through brittle prompt engineering. In this work, we propose RankSteer, a post-hoc activation steering framework for zero-shot pointwise LLM ranking. We characterize ranking behavior through three disentangled and steerable directions in representation space: a \textbf{decision direction} that maps hidden states to relevance scores, an \textbf{evidence direction} that captures relevance signals not directly exploited by the decision head, and a \textbf{role direction} that modulates model behavior without injecting relevance information. Using projection-based interventions at inference time, RankSteer jointly controls these directions to calibrate ranking behavior without modifying model weights or introducing explicit cross-document comparisons. Experiments on TREC DL 20 and multiple BEIR benchmarks show that RankSteer consistently improves ranking quality using only a small number of anchor queries, demonstrating that substantial ranking capacity remains under-utilized in pointwise LLM rankers. We further provide a geometric analysis revealing that steering improves ranking by stabilizing ranking geometry and reducing dispersion, offering new insight into how LLMs internally represent and calibrate relevance judgments.
☆ AesRec: A Dataset for Aesthetics-Aligned Clothing Outfit Recommendation
Clothing recommendation extends beyond merely generating personalized outfits; it serves as a crucial medium for aesthetic guidance. However, existing methods predominantly rely on user-item-outfit interaction behaviors while overlooking explicit representations of clothing aesthetics. To bridge this gap, we present the AesRec benchmark dataset featuring systematic quantitative aesthetic annotations, thereby enabling the development of aesthetics-aligned recommendation systems. Grounded in professional apparel quality standards and fashion aesthetic principles, we define a multidimensional set of indicators. At the item level, six dimensions are independently assessed: silhouette, chromaticity, materiality, craftsmanship, wearability, and item-level impression. Transitioning to the outfit level, the evaluation retains the first five core attributes while introducing stylistic synergy, visual harmony, and outfit-level impression as distinct metrics to capture the collective aesthetic impact. Given the increasing human-like proficiency of Vision-Language Models in multimodal understanding and interaction, we leverage them for large-scale aesthetic scoring. We conduct rigorous human-machine consistency validation on a fashion dataset, confirming the reliability of the generated ratings. Experimental results based on AesRec further demonstrate that integrating quantified aesthetic information into clothing recommendation models can provide aesthetic guidance for users while fulfilling their personalized requirements.
☆ Beyond Exposure: Optimizing Ranking Fairness with Non-linear Time-Income Functions
Ranking is central to information distribution in web search and recommendation. Nowadays, in ranking optimization, the fairness to item providers is viewed as a crucial factor alongside ranking relevance for users. There are currently numerous concepts of fairness and one widely recognized fairness concept is Exposure Fairness. However, it relies primarily on exposure determined solely by position, overlooking other factors that significantly influence income, such as time. To address this limitation, we propose to study ranking fairness when the provider utility is influenced by other contextual factors and is neither equal to nor proportional to item exposure. We give a formal definition of Income Fairness and develop a corresponding measurement metric. Simulated experiments show that existing-exposure-fairness-based ranking algorithms fail to optimize the proposed income fairness. Therefore, we propose the Dynamic-Income-Derivative-aware Ranking Fairness algorithm, which, based on the marginal income gain at the present timestep, uses Taylor-expansion-based gradients to simultaneously optimize effectiveness and income fairness. In both offline and online settings with diverse time-income functions, DIDRF consistently outperforms state-of-the-art methods.
☆ SCASRec: A Self-Correcting and Auto-Stopping Model for Generative Route List Recommendation
Route recommendation systems commonly adopt a multi-stage pipeline involving fine-ranking and re-ranking to produce high-quality ordered recommendations. However, this paradigm faces three critical limitations. First, there is a misalignment between offline training objectives and online metrics. Offline gains do not necessarily translate to online improvements. Actual performance must be validated through A/B testing, which may potentially compromise the user experience. Second, redundancy elimination relies on rigid, handcrafted rules that lack adaptability to the high variance in user intent and the unstructured complexity of real-world scenarios. Third, the strict separation between fine-ranking and re-ranking stages leads to sub-optimal performance. Since each module is optimized in isolation, the fine-ranking stage remains oblivious to the list-level objectives (e.g., diversity) targeted by the re-ranker, thereby preventing the system from achieving a jointly optimized global optimum. To overcome these intertwined challenges, we propose \textbf{SCASRec} (\textbf{S}elf-\textbf{C}orrecting and \textbf{A}uto-\textbf{S}topping \textbf{Rec}ommendation), a unified generative framework that integrates ranking and redundancy elimination into a single end-to-end process. SCASRec introduces a stepwise corrective reward (SCR) to guide list-wise refinement by focusing on hard samples, and employs a learnable End-of-Recommendation (EOR) token to terminate generation adaptively when no further improvement is expected. Experiments on two large-scale, open-sourced route recommendation datasets demonstrate that SCASRec establishes an SOTA in offline and online settings. SCASRec has been fully deployed in a real-world navigation app, demonstrating its effectiveness.
☆ Learning to Select: Query-Aware Adaptive Dimension Selection for Dense Retrieval
Dense retrieval represents queries and docu-002 ments as high-dimensional embeddings, but003 these representations can be redundant at the004 query level: for a given information need, only005 a subset of dimensions is consistently help-006 ful for ranking. Prior work addresses this via007 pseudo-relevance feedback (PRF) based dimen-008 sion importance estimation, which can produce009 query-aware masks without labeled data but010 often relies on noisy pseudo signals and heuris-011 tic test-time procedures. In contrast, super-012 vised adapter methods leverage relevance labels013 to improve embedding quality, yet they learn014 global transformations shared across queries015 and do not explicitly model query-aware di-016 mension importance. We propose a Query-017 Aware Adaptive Dimension Selection frame-018 work that learns to predict per-dimension im-019 portance directly from query embedding. We020 first construct oracle dimension importance dis-021 tributions over embedding dimensions using022 supervised relevance labels, and then train a023 predictor to map a query embedding to these024 label-distilled importance scores. At inference,025 the predictor selects a query-aware subset of026 dimensions for similarity computation based027 solely on the query embedding, without pseudo-028 relevance feedback. Experiments across multi-029 ple dense retrievers and benchmarks show that030 our learned dimension selector improves re-031 trieval effectiveness over the full-dimensional032 baseline as well as PRF-based masking and033 supervised adapter baselines.
☆ To Search or Not to Search: Aligning the Decision Boundary of Deep Search Agents via Causal Intervention
Deep search agents, which autonomously iterate through multi-turn web-based reasoning, represent a promising paradigm for complex information-seeking tasks. However, current agents suffer from critical inefficiency: they conduct excessive searches as they cannot accurately judge when to stop searching and start answering. This stems from outcome-centric training that prioritize final results over the search process itself. We identify the root cause as misaligned decision boundaries, the threshold determining when accumulated information suffices to answer. This causes over-search (redundant searching despite sufficient knowledge) and under-search (premature termination yielding incorrect answers). To address these errors, we propose a comprehensive framework comprising two key components. First, we introduce causal intervention-based diagnosis that identifies boundary errors by comparing factual and counterfactual trajectories at each decision point. Second, we develop Decision Boundary Alignment for Deep Search agents (DAS), which constructs preference datasets from causal feedback and aligns policies via preference optimization. Experiments on public datasets demonstrate that decision boundary errors are pervasive across state-of-the-art agents. Our DAS method effectively calibrates these boundaries, mitigating both over-search and under-search to achieve substantial gains in accuracy and efficiency. Our code and data are publicly available at: https://github.com/Applied-Machine-Learning-Lab/WWW2026_DAS.
☆ Distribution-Aware End-to-End Embedding for Streaming Numerical Features in Click-Through Rate Prediction
This paper explores effective numerical feature embedding for Click-Through Rate prediction in streaming environments. Conventional static binning methods rely on offline statistics of numerical distributions; however, this inherently two-stage process often triggers semantic drift during bin boundary updates. While neural embedding methods enable end-to-end learning, they often discard explicit distributional information. Integrating such information end-to-end is challenging because streaming features often violate the i.i.d. assumption, precluding unbiased estimation of the population distribution via the expectation of order statistics. Furthermore, the critical context dependency of numerical distributions is often neglected. To this end, we propose DAES, an end-to-end framework designed to tackle numerical feature embedding in streaming training scenarios by integrating distributional information with an adaptive modulation mechanism. Specifically, we introduce an efficient reservoir-sampling-based distribution estimation method and two field-aware distribution modulation strategies to capture streaming distributions and field-dependent semantics. DAES significantly outperforms existing approaches as demonstrated by extensive offline and online experiments and has been fully deployed on a leading short-video platform with hundreds of millions of daily active users.
comment: Under review
☆ PAMAS: Self-Adaptive Multi-Agent System with Perspective Aggregation for Misinformation Detection
Misinformation on social media poses a critical threat to information credibility, as its diverse and context-dependent nature complicates detection. Large language model-empowered multi-agent systems (MAS) present a promising paradigm that enables cooperative reasoning and collective intelligence to combat this threat. However, conventional MAS suffer from an information-drowning problem, where abundant truthful content overwhelms sparse and weak deceptive cues. With full input access, agents tend to focus on dominant patterns, and inter-agent communication further amplifies this bias. To tackle this issue, we propose PAMAS, a multi-agent framework with perspective aggregation, which employs hierarchical, perspective-aware aggregation to highlight anomaly cues and alleviate information drowning. PAMAS organizes agents into three roles: Auditors, Coordinators, and a Decision-Maker. Auditors capture anomaly cues from specialized feature subsets; Coordinators aggregate their perspectives to enhance coverage while maintaining diversity; and the Decision-Maker, equipped with evolving memory and full contextual access, synthesizes all subordinate insights to produce the final judgment. Furthermore, to improve efficiency in multi-agent collaboration, PAMAS incorporates self-adaptive mechanisms for dynamic topology optimization and routing-based inference, enhancing both efficiency and scalability. Extensive experiments on multiple benchmark datasets demonstrate that PAMAS achieves superior accuracy and efficiency, offering a scalable and trustworthy way for misinformation detection.
comment: 12 pages
☆ From Speech-to-Spatial: Grounding Utterances on A Live Shared View with Augmented Reality
We introduce Speech-to-Spatial, a referent disambiguation framework that converts verbal remote-assistance instructions into spatially grounded AR guidance. Unlike prior systems that rely on additional cues (e.g., gesture, gaze) or manual expert annotations, Speech-to-Spatial infers the intended target solely from spoken references (speech input). Motivated by our formative study of speech referencing patterns, we characterize recurring ways people specify targets (Direct Attribute, Relational, Remembrance, and Chained) and ground them to our object-centric relational graph. Given an utterance, referent cues are parsed and rendered as persistent in-situ AR visual guidance, reducing iterative micro-guidance ("a bit more to the right", "now, stop.") during remote guidance. We demonstrate the use cases of our system with remote guided assistance and intent disambiguation scenarios. Our evaluation shows that Speechto-Spatial improves task efficiency, reduces cognitive load, and enhances usability compared to a conventional voice-only baseline, transforming disembodied verbal instruction into visually explainable, actionable guidance on a live shared view.
comment: 11 pages, 6 figures. This is the author's version of the article that will appear at the IEEE Conference on Virtual Reality and 3D User Interfaces (IEEE VR) 2026
☆ ALPBench: A Benchmark for Attribution-level Long-term Personal Behavior Understanding
Recent advances in large language models have highlighted their potential for personalized recommendation, where accurately capturing user preferences remains a key challenge. Leveraging their strong reasoning and generalization capabilities, LLMs offer new opportunities for modeling long-term user behavior. To systematically evaluate this, we introduce ALPBench, a Benchmark for Attribution-level Long-term Personal Behavior Understanding. Unlike item-focused benchmarks, ALPBench predicts user-interested attribute combinations, enabling ground-truth evaluation even for newly introduced items. It models preferences from long-term historical behaviors rather than users' explicitly expressed requests, better reflecting enduring interests. User histories are represented as natural language sequences, allowing interpretable, reasoning-based personalization. ALPBench enables fine-grained evaluation of personalization by focusing on the prediction of attribute combinations task that remains highly challenging for current LLMs due to the need to capture complex interactions among multiple attributes and reason over long-term user behavior sequences.
☆ Nemotron ColEmbed V2: Top-Performing Late Interaction embedding models for Visual Document Retrieval
Retrieval-Augmented Generation (RAG) systems have been popular for generative applications, powering language models by injecting external knowledge. Companies have been trying to leverage their large catalog of documents (e.g. PDFs, presentation slides) in such RAG pipelines, whose first step is the retrieval component. Dense retrieval has been a popular approach, where embedding models are used to generate a dense representation of the user query that is closer to relevant content embeddings. More recently, VLM-based embedding models have become popular for visual document retrieval, as they preserve visual information and simplify the indexing pipeline compared to OCR text extraction. Motivated by the growing demand for visual document retrieval, we introduce Nemotron ColEmbed V2, a family of models that achieve state-of-the-art performance on the ViDoRe benchmarks. We release three variants - with 3B, 4B, and 8B parameters - based on pre-trained VLMs: NVIDIA Eagle 2 with Llama 3.2 3B backbone, Qwen3-VL-4B-Instruct and Qwen3-VL-8B-Instruct, respectively. The 8B model ranks first on the ViDoRe V3 leaderboard as of February 03, 2026, achieving an average NDCG@10 of 63.42. We describe the main techniques used across data processing, training, and post-training - such as cluster-based sampling, hard-negative mining, bidirectional attention, late interaction, and model merging - that helped us build our top-performing models. We also discuss compute and storage engineering challenges posed by the late interaction mechanism and present experiments on how to balance accuracy and storage with lower dimension embeddings.
♻ ☆ RANKVIDEO: Reasoning Reranking for Text-to-Video Retrieval
Reranking is a critical component of modern retrieval systems, which typically pair an efficient first-stage retriever with a more expressive model to refine results. While large reasoning models have driven rapid progress in text-centric reranking, reasoning-based reranking for video retrieval remains underexplored. To address this gap, we introduce RANKVIDEO, a reasoning-based reranker for video retrieval that explicitly reasons over query-video pairs using video content to assess relevance. RANKVIDEO is trained using a two-stage curriculum consisting of perception-grounded supervised fine-tuning followed by reranking training that combines pointwise, pairwise, and teacher confidence distillation objectives, and is supported by a data synthesis pipeline for constructing reasoning-intensive query-video pairs. Experiments on the large-scale MultiVENT 2.0 benchmark demonstrate that RANKVIDEO consistently improves retrieval performance within a two-stage framework, yielding an average improvement of 31% on nDCG@10 and outperforming text-only and vision-language reranking alternatives, while more efficient.
♻ ☆ Advancing AI Research Assistants with Expert-Involved Learning
Large language models (LLMs) and large multimodal models (LMMs) promise to accelerate biomedical discovery, yet their reliability remains unclear. We introduce ARIEL (AI Research Assistant for Expert-in-the-Loop Learning), an open-source evaluation and optimization framework that pairs a curated multimodal biomedical corpus with expert-vetted tasks to probe two capabilities: full-length article summarization and fine-grained figure interpretation. Using uniform protocols and blinded PhD-level evaluation, we find that state-of-the-art models generate fluent but incomplete summaries, whereas LMMs struggle with detailed visual reasoning. We later observe that prompt engineering and lightweight fine-tuning substantially improve textual coverage, and a compute-scaled inference strategy enhances visual question answering. We build an ARIEL agent that integrates textual and visual cues, and we show it can propose testable mechanistic hypotheses. ARIEL delineates current strengths and limitations of foundation models, and provides a reproducible platform for advancing trustworthy AI in biomedicine.
comment: 36 pages, 7 figures
♻ ☆ The Algorithmic Self-Portrait: Deconstructing Memory in ChatGPT
To enable personalized and context-aware interactions, conversational AI systems have introduced a new mechanism: Memory. Memory creates what we refer to as the Algorithmic Self-portrait - a new form of personalization derived from users' self-disclosed information divulged within private conversations. While memory enables more coherent exchanges, the underlying processes of memory creation remain opaque, raising critical questions about data sensitivity, user agency, and the fidelity of the resulting portrait. To bridge this research gap, we analyze 2,050 memory entries from 80 real-world ChatGPT users. Our analyses reveal three key findings: (1) A striking 96% of memories in our dataset are created unilaterally by the conversational system, potentially shifting agency away from the user; (2) Memories, in our dataset, contain a rich mix of GDPR-defined personal data (in 28% memories) along with psychological insights about participants (in 52% memories); and (3)~A significant majority of the memories (84%) are directly grounded in user context, indicating faithful representation of the conversations. Finally, we introduce a framework-Attribution Shield-that anticipates these inferences, alerts about potentially sensitive memory inferences, and suggests query reformulations to protect personal information without sacrificing utility.
comment: This paper has been accepted at The ACM Web Conference 2026
♻ ☆ BlossomRec: Block-level Fused Sparse Attention Mechanism for Sequential Recommendations WWW'26
Transformer structures have been widely used in sequential recommender systems (SRS). However, as user interaction histories increase, computational time and memory requirements also grow. This is mainly caused by the standard attention mechanism. Although there exist many methods employing efficient attention and SSM-based models, these approaches struggle to effectively model long sequences and may exhibit unstable performance on short sequences. To address these challenges, we design a sparse attention mechanism, BlossomRec, which models both long-term and short-term user interests through attention computation to achieve stable performance across sequences of varying lengths. Specifically, we categorize user interests in recommendation systems into long-term and short-term interests, and compute them using two distinct sparse attention patterns, with the results combined through a learnable gated output. Theoretically, it significantly reduces the number of interactions participating in attention computation. Extensive experiments on four public datasets demonstrate that BlossomRec, when integrated with state-of-the-art Transformer-based models, achieves comparable or even superior performance while significantly reducing memory usage, providing strong evidence of BlossomRec's efficiency and effectiveness. The code is available at https://github.com/Applied-Machine-Learning-Lab/WWW2026_BlossomRec.
comment: Accepted by WWW'26
♻ ☆ DiffuGR: Generative Document Retrieval with Diffusion Language Models
Generative retrieval (GR) reframes document retrieval as an end-to-end task of generating sequential document identifiers (DocIDs). Existing GR methods predominantly rely on left-to-right auto-regressive decoding, which suffers from two fundamental limitations: (i) a \emph{mismatch between DocID generation and natural language generation}, whereby an incorrect DocID token generated at an early step can lead to entirely erroneous retrieval; and (ii) an \emph{inability to dynamically balance the trade-off between retrieval efficiency and accuracy}, which is crucial for practical applications. To tackle these challenges, we propose generative document retrieval with diffusion language models, termed \emph{DiffuGR}. DiffuGR formulates DocID generation as a discrete diffusion process. During training, DocIDs are corrupted through a stochastic masking process, and a diffusion language model is trained to recover them under a retrieval-aware objective. For inference, DiffuGR generates DocID tokens in parallel and refines them through a controllable number of denoising steps. Unlike auto-regressive decoding, DiffuGR introduce \emph{a novel mechanism to first generate plenty of confident DocID tokens and then refine the generation through diffusion-based denoising}. Moreover, DiffuGR also offers \emph{explicit runtime control over the quality-latency tradeoff}. Extensive experiments on widely-applied retrieval benchmarks show that DiffuGR outperforms strong auto-regressive generative retrievers. Additionally, we verify that DiffuGR achieves flexible control over the quality-latency trade-off via variable denoising budgets.
♻ ☆ Q-Regularized Generative Auto-Bidding: From Suboptimal Trajectories to Optimal Policies
With the rapid development of e-commerce, auto-bidding has become a key asset in optimizing advertising performance under diverse advertiser environments. The current approaches focus on reinforcement learning (RL) and generative models. These efforts imitate offline historical behaviors by utilizing a complex structure with expensive hyperparameter tuning. The suboptimal trajectories further exacerbate the difficulty of policy learning. To address these challenges, we proposes QGA, a novel Q-value regularized Generative Auto-bidding method. In QGA, we propose to plug a Q-value regularization with double Q-learning strategy into the Decision Transformer backbone. This design enables joint optimization of policy imitation and action-value maximization, allowing the learned bidding policy to both leverage experience from the dataset and alleviate the adverse impact of the suboptimal trajectories. Furthermore, to safely explore the policy space beyond the data distribution, we propose a Q-value guided dual-exploration mechanism, in which the DT model is conditioned on multiple return-to-go targets and locally perturbed actions. This entire exploration process is dynamically guided by the aforementioned Q-value module, which provides principled evaluation for each candidate action. Experiments on public benchmarks and simulation environments demonstrate that QGA consistently achieves superior or highly competitive results compared to existing alternatives. Notably, in large-scale real-world A/B testing, QGA achieves a 3.27% increase in Ad GMV and a 2.49% improvement in Ad ROI.
comment: Due to the company's compliance requirements, we would like to wait until the paper is officially published before making it publicly available on arXiv
♻ ☆ Towards Full Candidate Interaction: A Comprehensive Comparison Network for Better Route Recommendation
Route Recommendation (RR) is a core task in route planning within online navigation applications, aiming to recommend the optimal route among candidate routes to users. Industrially, RR adopts the two-stage recall-and-rank framework instead of traditional route planning algorithms primarily for computational efficiency. However, RR fundamentally differs from traditional recommendation systems that follow this paradigm. First, a primary challenge is that route items cannot be assigned unique identifiers. Additionally, RR fundamentally differs from traditional recommendation systems in its approach to feature interaction. These differences render conventional recommendation approaches inadequate for route recommendation scenarios, necessitating specialized methods that can effectively handle route-specific challenges. To address these challenges, we propose a novel method called Comprehensive Comparison Network (CCN) for route recommendation. CCN constructs comparative features by comparing non-overlapping segments between route pairs, enabling difference learning without the infinite scalability issues of ID embeddings. Furthermore, CCN employs a specially designed Comprehensive Comparison Block (CCB) that differs from previous item attention methods to achieve effective cross-interaction between routes using comparison-level features. Moreover, we develop an interpretable Pair Scoring Network (PSN) for route recommendation and introduce a more comprehensive route recommendation dataset to advance research in this field. Experimental results demonstrate the effectiveness of our method, and CCN has been successfully deployed in AMAP for over a year, demonstrating its value in route recommendation.
♻ ☆ Orchestrating Heterogeneous Experts: A Scalable MoE Framework with Anisotropy-Preserving Fusion
In cross-border e-commerce, search relevance modeling faces the dual challenge of extreme linguistic diversity and fine-grained semantic nuances. Existing approaches typically rely on scaling up a single monolithic Large Language Model (LLM). However, our empirical analysis reveals that single models suffer from uneven capability distributions across regions. For example, excelling in English while underperforming in specific Southeast Asian languages. In this work, we shift the paradigm from scaling a single model to orchestrating heterogeneous experts. We propose a scalable Coarse-grained Mixture-of-Experts (MoE) framework that leverages the inherent complementarity of distinct open-source LLMs (e.g., Qwen, Gemma) without expensive pre-training. Unlike standard token-level MoE, our framework dynamically routes entire queries to specialized experts and, crucially, employs an Information-Preserving Concatenation Fusion strategy. We theoretically posit that preserving the distinct embedding manifolds of heterogeneous experts-rather than compressing them via weighted averaging-is essential for capturing complex relevance signals in a multi-model latent space. On datasets spanning six Southeast Asian markets, our MoE improves AUC by 0.72 percentage points over a dense baseline with the same active parameters. Meanwhile, the optimized pipeline achieves 13.72 queries per second (QPS), a 9% throughput improvement.
comment: 4 pages, 2 figures. Accepted at the Workshop on TIME of the ACM Web Conference 2026
♻ ☆ Unifying Ranking and Generation in Query Auto-Completion via Retrieval-Augmented Generation and Multi-Objective Alignment
Query Auto-Completion (QAC) suggests query completions as users type, helping them articulate intent and reach results more efficiently. Existing approaches face fundamental challenges: traditional retrieve-and-rank pipelines have limited long-tail coverage and require extensive feature engineering, while recent generative methods suffer from hallucination and safety risks. We present a unified framework that reformulates QAC as end-to-end list generation through Retrieval-Augmented Generation (RAG) and multi-objective Direct Preference Optimization (DPO). Our approach combines three key innovations: (1) reformulating QAC as end-to-end list generation with multi-objective optimization; (2) defining and deploying a suite of rule-based, model-based, and LLM-as-judge verifiers for QAC, and using them in a comprehensive methodology that combines RAG, multi-objective DPO, and iterative critique-revision for high-quality synthetic data; (3) a hybrid serving architecture enabling efficient production deployment under strict latency constraints. Evaluation on a large-scale commercial search platform demonstrates substantial improvements: offline metrics show gains across all dimensions, human evaluation yields +0.40 to +0.69 preference scores, and a controlled online experiment achieves 5.44\% reduction in keystrokes and 3.46\% increase in suggestion adoption, validating that unified generation with RAG and multi-objective alignment provides an effective solution for production QAC. This work represents a paradigm shift to end-to-end generation powered by large language models, RAG, and multi-objective alignment, establishing a production-validated framework that can benefit the broader search and recommendation industry.
comment: 11 pages, 4 figures
♻ ☆ Evaluating High-Resolution Piano Sustain Pedal Depth Estimation with Musically Informed Metrics
Evaluation for continuous piano pedal depth estimation tasks remains incomplete when relying only on conventional frame-level metrics, which overlook musically important features such as direction-change boundaries and pedal curve contours. To provide more interpretable and musically meaningful insights, we propose an evaluation framework that augments standard frame-level metrics with an action-level assessment measuring direction and timing using segments of press/hold/release states and a gesture-level analysis that evaluates contour similarity of each press-release cycle. We apply this framework to compare an audio-only baseline with two variants: one incorporating symbolic information from MIDI, and another trained in a binary-valued setting, all within a unified architecture. Results show that the MIDI-informed model significantly outperforms the others at action and gesture levels, despite modest frame-level gains. These findings demonstrate that our framework captures musically relevant improvements indiscernible by traditional metrics, offering a more practical and effective approach to evaluating pedal depth estimation models.
♻ ☆ GRAB: An LLM-Inspired Sequence-First Click-Through Rate Prediction Modeling Paradigm
Traditional Deep Learning Recommendation Models (DLRMs) face increasing bottlenecks in performance and efficiency, often struggling with generalization and long-sequence modeling. Inspired by the scaling success of Large Language Models (LLMs), we propose Generative Ranking for Ads at Baidu (GRAB), an end-to-end generative framework for Click-Through Rate (CTR) prediction. GRAB integrates a novel Causal Action-aware Multi-channel Attention (CamA) mechanism to effectively capture temporal dynamics and specific action signals within user behavior sequences. Full-scale online deployment demonstrates that GRAB significantly outperforms established DLRMs, delivering a 3.05% increase in revenue and a 3.49% rise in CTR. Furthermore, the model demonstrates desirable scaling behavior: its expressive power shows a monotonic and approximately linear improvement as longer interaction sequences are utilized.
♻ ☆ Agentic Search in the Wild: Intents and Trajectory Dynamics from 14M+ Real Search Requests
LLM-powered search agents are increasingly being used for multi-step information seeking tasks, yet the IR community lacks empirical understanding of how agentic search sessions unfold and how retrieved evidence is used. This paper presents a large-scale log analysis of agentic search based on 14.44M search requests (3.97M sessions) collected from DeepResearchGym, i.e. an open-source search API accessed by external agentic clients. We sessionize the logs, assign session-level intents and step-wise query-reformulation labels using LLM-based annotation, and propose Context-driven Term Adoption Rate (CTAR) to quantify whether newly introduced query terms are traceable to previously retrieved evidence. Our analyses reveal distinctive behavioral patterns. First, over 90% of multi-turn sessions contain at most ten steps, and 89% of inter-step intervals fall under one minute. Second, behavior varies by intent. Fact-seeking sessions exhibit high repetition that increases over time, while sessions requiring reasoning sustain broader exploration. Third, agents reuse evidence across steps. On average, 54% of newly introduced query terms appear in the accumulated evidence context, with contributions from earlier steps beyond the most recent retrieval. The findings suggest that agentic search may benefit from repetition-aware early stopping, intent-adaptive retrieval budgets, and explicit cross-step context tracking. We plan to release the anonymized logs to support future research.
♻ ☆ RobustExplain: Evaluating Robustness of LLM-Based Explanation Agents for Recommendation
Large Language Models (LLMs) are increasingly used to generate natural-language explanations in recommender systems, acting as explanation agents that reason over user behavior histories. While prior work has focused on explanation fluency and relevance under fixed inputs, the robustness of LLM-generated explanations to realistic user behavior noise remains largely unexplored. In real-world web platforms, interaction histories are inherently noisy due to accidental clicks, temporal inconsistencies, missing values, and evolving preferences, raising concerns about explanation stability and user trust. We present RobustExplain, the first systematic evaluation framework for measuring the robustness of LLM-generated recommendation explanations. RobustExplain introduces five realistic user behavior perturbations evaluated across multiple severity levels and a multi-dimensional robustness metric capturing semantic, keyword, structural, and length consistency. Our goal is to establish a principled, task-level evaluation framework and initial robustness baselines, rather than to provide a comprehensive leaderboard across all available LLMs. Experiments on four representative LLMs (7B--70B) show that current models exhibit only moderate robustness, with larger models achieving up to 8% higher stability. Our results establish the first robustness benchmarks for explanation agents and highlight robustness as a critical dimension for trustworthy, agent-driven recommender systems at web scale.
comment: 8 pages, 4 figures
♻ ☆ Autoregressive Ranking: Bridging the Gap Between Dual and Cross Encoders
The success of Large Language Models (LLMs) has motivated a shift toward generative approaches to retrieval and ranking, aiming to supersede classical Dual Encoders (DEs) and Cross Encoders (CEs). A prominent paradigm is pointwise Autoregressive Ranking (ARR), where an LLM generates document identifiers (docIDs) token-by-token to enable ranking via beam search. ARR offers the promise of superior expressivity compared to DEs while avoiding the prohibitive computational cost of CEs. However, a formal theoretical foundation for this expressive power has been missing. Moreover, the standard next-token prediction loss is rank-agnostic and inappropriate for finetuning an LLM for ranking tasks. In this paper, we first prove that the expressive capacity of ARR is strictly superior to DEs. While a DE requires an embedding dimension that grows linearly with corpus size to achieve arbitrary rankings, ARR can solve it with a constant hidden dimension. We then propose SToICaL (Simple Token-Item Calibrated Loss), a generalized rank-aware training loss for LLM finetuning. By using item-level reweighting and prefix-tree marginalization, we distribute probability mass over valid docID tokens based on their ground-truth relevance. Experiments on WordNet and ESCI datasets verify that our loss suppresses invalid docID generations and significantly improves ranking metrics beyond top-1 retrieval.
comment: 22 pages, 5 figures
♻ ☆ LLMs as Orchestrators: Constraint-Compliant Multi-Agent Optimization for Recommendation Systems
Recommendation systems must optimize multiple objectives while satisfying hard business constraints such as fairness and coverage. For example, an e-commerce platform may require every recommendation list to include items from multiple sellers and at least one newly listed product; violating such constraints--even once--is unacceptable in production. Prior work on multi-objective recommendation and recent LLM-based recommender agents largely treat constraints as soft penalties or focus on item scoring and interaction, leading to frequent violations in real-world deployments. How to leverage LLMs for coordinating constrained optimization in recommendation systems remains underexplored. We propose DualAgent-Rec, an LLM-coordinated dual-agent framework for constrained multi-objective e-commerce recommendation. The framework separates optimization into an Exploitation Agent that prioritizes accuracy under hard constraints and an Exploration Agent that promotes diversity through unconstrained Pareto search. An LLM-based coordinator adaptively allocates resources between agents based on optimization progress and constraint satisfaction, while an adaptive epsilon-relaxation mechanism guarantees feasibility of final solutions. Experiments on the Amazon Reviews 2023 dataset demonstrate that DualAgent-Rec achieves 100% constraint satisfaction and improves Pareto hypervolume by 4-6% over strong baselines, while maintaining competitive accuracy-diversity trade-offs. These results indicate that LLMs can act as effective orchestration agents for deployable and constraint-compliant recommendation systems.
comment: 8 pages, 5 figures
Computation and Language 150
☆ Reward-free Alignment for Conflicting Objectives
Direct alignment methods are increasingly used to align large language models (LLMs) with human preferences. However, many real-world alignment problems involve multiple conflicting objectives, where naive aggregation of preferences can lead to unstable training and poor trade-offs. In particular, weighted loss methods may fail to identify update directions that simultaneously improve all objectives, and existing multi-objective approaches often rely on explicit reward models, introducing additional complexity and distorting user-specified preferences. The contributions of this paper are two-fold. First, we propose a Reward-free Alignment framework for Conflicted Objectives (RACO) that directly leverages pairwise preference data and resolves gradient conflicts via a novel clipped variant of conflict-averse gradient descent. We provide convergence guarantees to Pareto-critical points that respect user-specified objective weights, and further show that clipping can strictly improve convergence rate in the two-objective setting. Second, we improve our method using some heuristics and conduct experiments to demonstrate the compatibility of the proposed framework for LLM alignment. Both qualitative and quantitative evaluations on multi-objective summarization and safety alignment tasks across multiple LLM families (Qwen 3, Llama 3, Gemma 3) show that our method consistently achieves better Pareto trade-offs compared to existing multi-objective alignment baselines.
comment: 27 pages
☆ RLAnything: Forge Environment, Policy, and Reward Model in Completely Dynamic RL System
We propose RLAnything, a reinforcement learning framework that dynamically forges environment, policy, and reward models through closed-loop optimization, amplifying learning signals and strengthening the overall RL system for any LLM or agentic scenarios. Specifically, the policy is trained with integrated feedback from step-wise and outcome signals, while the reward model is jointly optimized via consistency feedback, which in turn further improves policy training. Moreover, our theory-motivated automatic environment adaptation improves training for both the reward and policy models by leveraging critic feedback from each, enabling learning from experience. Empirically, each added component consistently improves the overall system, and RLAnything yields substantial gains across various representative LLM and agentic tasks, boosting Qwen3-VL-8B-Thinking by 9.1% on OSWorld and Qwen2.5-7B-Instruct by 18.7% and 11.9% on AlfWorld and LiveBench, respectively. We also that optimized reward-model signals outperform outcomes that rely on human labels. Code: https://github.com/Gen-Verse/Open-AgentRL
comment: Code: https://github.com/Gen-Verse/Open-AgentRL
☆ RE-TRAC: REcursive TRAjectory Compression for Deep Search Agents
LLM-based deep research agents are largely built on the ReAct framework. This linear design makes it difficult to revisit earlier states, branch into alternative search directions, or maintain global awareness under long contexts, often leading to local optima, redundant exploration, and inefficient search. We propose Re-TRAC, an agentic framework that performs cross-trajectory exploration by generating a structured state representation after each trajectory to summarize evidence, uncertainties, failures, and future plans, and conditioning subsequent trajectories on this state representation. This enables iterative reflection and globally informed planning, reframing research as a progressive process. Empirical results show that Re-TRAC consistently outperforms ReAct by 15-20% on BrowseComp with frontier LLMs. For smaller models, we introduce Re-TRAC-aware supervised fine-tuning, achieving state-of-the-art performance at comparable scales. Notably, Re-TRAC shows a monotonic reduction in tool calls and token usage across rounds, indicating progressively targeted exploration driven by cross-trajectory reflection rather than redundant search.
☆ Training LLMs for Divide-and-Conquer Reasoning Elevates Test-Time Scalability
Large language models (LLMs) have demonstrated strong reasoning capabilities through step-by-step chain-of-thought (CoT) reasoning. Nevertheless, at the limits of model capability, CoT often proves insufficient, and its strictly sequential nature constrains test-time scalability. A potential alternative is divide-and-conquer (DAC) reasoning, which decomposes a complex problem into subproblems to facilitate more effective exploration of the solution. Although promising, our analysis reveals a fundamental misalignment between general-purpose post-training and DAC-style inference, which limits the model's capacity to fully leverage this potential. To bridge this gap and fully unlock LLMs' reasoning capabilities on the most challenging tasks, we propose an end-to-end reinforcement learning (RL) framework to enhance their DAC-style reasoning capacity. At each step, the policy decomposes a problem into a group of subproblems, solves them sequentially, and addresses the original one conditioned on the subproblem solutions, with both decomposition and solution integrated into RL training. Under comparable training, our DAC-style framework endows the model with a higher performance ceiling and stronger test-time scalability, surpassing CoT by 8.6% in Pass@1 and 6.3% in Pass@32 on competition-level benchmarks.
☆ MemSkill: Learning and Evolving Memory Skills for Self-Evolving Agents
Most Large Language Model (LLM) agent memory systems rely on a small set of static, hand-designed operations for extracting memory. These fixed procedures hard-code human priors about what to store and how to revise memory, making them rigid under diverse interaction patterns and inefficient on long histories. To this end, we present \textbf{MemSkill}, which reframes these operations as learnable and evolvable memory skills, structured and reusable routines for extracting, consolidating, and pruning information from interaction traces. Inspired by the design philosophy of agent skills, MemSkill employs a \emph{controller} that learns to select a small set of relevant skills, paired with an LLM-based \emph{executor} that produces skill-guided memories. Beyond learning skill selection, MemSkill introduces a \emph{designer} that periodically reviews hard cases where selected skills yield incorrect or incomplete memories, and evolves the skill set by proposing refinements and new skills. Together, MemSkill forms a closed-loop procedure that improves both the skill-selection policy and the skill set itself. Experiments on LoCoMo, LongMemEval, HotpotQA, and ALFWorld demonstrate that MemSkill improves task performance over strong baselines and generalizes well across settings. Further analyses shed light on how skills evolve, offering insights toward more adaptive, self-evolving memory management for LLM agents.
comment: Code is available at https://github.com/ViktorAxelsen/MemSkill
☆ SPARKLING: Balancing Signal Preservation and Symmetry Breaking for Width-Progressive Learning
Progressive Learning (PL) reduces pre-training computational overhead by gradually increasing model scale. While prior work has extensively explored depth expansion, width expansion remains significantly understudied, with the few existing methods limited to the early stages of training. However, expanding width during the mid-stage is essential for maximizing computational savings, yet it remains a formidable challenge due to severe training instabilities. Empirically, we show that naive initialization at this stage disrupts activation statistics, triggering loss spikes, while copy-based initialization introduces gradient symmetry that hinders feature diversity. To address these issues, we propose SPARKLING (balancing {S}ignal {P}reservation {A}nd symmet{R}y brea{K}ing for width-progressive {L}earn{ING}), a novel framework for mid-stage width expansion. Our method achieves signal preservation via RMS-scale consistency, stabilizing activation statistics during expansion. Symmetry breaking is ensured through asymmetric optimizer state resetting and learning rate re-warmup. Extensive experiments on Mixture-of-Experts (MoE) models demonstrate that, across multiple width axes and optimizer families, SPARKLING consistently outperforms training from scratch and reduces training cost by up to 35% under $2\times$ width expansion.
☆ Avenir-Web: Human-Experience-Imitating Multimodal Web Agents with Mixture of Grounding Experts
Despite advances in multimodal large language models, autonomous web agents still struggle to reliably execute long-horizon tasks on complex and dynamic web interfaces. Existing agents often suffer from inaccurate element grounding, the absence of site-specific procedural knowledge, and unstable long-term task tracking and memory, particularly when operating over complex Document Object Model structures. To address these limitations, we introduce Avenir-Web, a web agent that achieves a new open-source state of the art on the Online-Mind2Web benchmark in real-world deployment. Avenir-Web leverages a Mixture of Grounding Experts, Experience-Imitation Planning for incorporating procedural priors, and a task-tracking checklist combined with adaptive memory to enable robust and seamless interaction across diverse user interface paradigms. We evaluate Avenir-Web on Online-Mind2Web, a rigorous benchmark of live and user-centered web tasks. Our results demonstrate that Avenir-Web significantly surpasses prior open-source agents and attains performance parity with top-tier proprietary models, thereby establishing a new open-source state of the art for reliable web agents on live websites.
☆ Indications of Belief-Guided Agency and Meta-Cognitive Monitoring in Large Language Models
Rapid advancements in large language models (LLMs) have sparked the question whether these models possess some form of consciousness. To tackle this challenge, Butlin et al. (2023) introduced a list of indicators for consciousness in artificial systems based on neuroscientific theories. In this work, we evaluate a key indicator from this list, called HOT-3, which tests for agency guided by a general belief-formation and action selection system that updates beliefs based on meta-cognitive monitoring. We view beliefs as representations in the model's latent space that emerge in response to a given input, and introduce a metric to quantify their dominance during generation. Analyzing the dynamics between competing beliefs across models and tasks reveals three key findings: (1) external manipulations systematically modulate internal belief formation, (2) belief formation causally drives the model's action selection, and (3) models can monitor and report their own belief states. Together, these results provide empirical support for the existence of belief-guided agency and meta-cognitive monitoring in LLMs. More broadly, our work lays methodological groundwork for investigating the emergence of agency, beliefs, and meta-cognition in LLMs.
☆ From Directions to Regions: Decomposing Activations in Language Models via Local Geometry
Activation decomposition methods in language models are tightly coupled to geometric assumptions on how concepts are realized in activation space. Existing approaches search for individual global directions, implicitly assuming linear separability, which overlooks concepts with nonlinear or multi-dimensional structure. In this work, we leverage Mixture of Factor Analyzers (MFA) as a scalable, unsupervised alternative that models the activation space as a collection of Gaussian regions with their local covariance structure. MFA decomposes activations into two compositional geometric objects: the region's centroid in activation space, and the local variation from the centroid. We train large-scale MFAs for Llama-3.1-8B and Gemma-2-2B, and show they capture complex, nonlinear structures in activation space. Moreover, evaluations on localization and steering benchmarks show that MFA outperforms unsupervised baselines, is competitive with supervised localization methods, and often achieves stronger steering performance than sparse autoencoders. Together, our findings position local geometry, expressed through subspaces, as a promising unit of analysis for scalable concept discovery and model control, accounting for complex structures that isolated directions fail to capture.
☆ Abstract Activation Spaces for Content-Invariant Reasoning in Large Language Models
Large Language Models (LLMs) often struggle with deductive judgment in syllogistic reasoning, systematically conflating semantic plausibility with formal validity a phenomenon known as content effect. This bias persists even when models generate step-wise explanations, indicating that intermediate rationales may inherit the same semantic shortcuts that affect answers. Recent approaches propose mitigating this issue by increasing inference-time structural constraints, either by encouraging abstract intermediate representations or by intervening directly in the model's internal computations; however, reliably suppressing semantic interference remains an open challenge. To make formal deduction less sensitive to semantic content, we introduce a framework for abstraction-guided reasoning that explicitly separates structural inference from lexical semantics. We construct paired content-laden and abstract syllogisms and use the model's activations on abstract inputs to define an abstract reasoning space. We then learn lightweight Abstractors that, from content-conditioned residual-stream states, predict representations aligned with this space and integrate these predictions via multi-layer interventions during the forward pass. Using cross-lingual transfer as a test bed, we show that abstraction-aligned steering reduces content-driven errors and improves validity-sensitive performance. Our results position activation-level abstraction as a scalable mechanism for enhancing the robustness of formal reasoning in LLMs against semantic interference.
☆ Drift-Bench: Diagnosing Cooperative Breakdowns in LLM Agents under Input Faults via Multi-Turn Interaction
As Large Language Models transition to autonomous agents, user inputs frequently violate cooperative assumptions (e.g., implicit intent, missing parameters, false presuppositions, or ambiguous expressions), creating execution risks that text-only evaluations do not capture. Existing benchmarks typically assume well-specified instructions or restrict evaluation to text-only, single-turn clarification, and thus do not measure multi-turn disambiguation under grounded execution risk. We introduce \textbf{Drift-Bench}, the first diagnostic benchmark that evaluates agentic pragmatics under input faults through multi-turn clarification across state-oriented and service-oriented execution environments. Grounded in classical theories of communication, \textbf{Drift-Bench} provides a unified taxonomy of cooperative breakdowns and employs a persona-driven user simulator with the \textbf{Rise} evaluation protocol. Experiments show substantial performance drops under these faults, with clarification effectiveness varying across user personas and fault types. \MethodName bridges clarification research and agent safety evaluation, enabling systematic diagnosis of failures that can lead to unsafe executions.
comment: 65 pages, 40 figures
Large Language Models for Mental Health: A Multilingual Evaluation
Large Language Models (LLMs) have remarkable capabilities across NLP tasks. However, their performance in multilingual contexts, especially within the mental health domain, has not been thoroughly explored. In this paper, we evaluate proprietary and open-source LLMs on eight mental health datasets in various languages, as well as their machine-translated (MT) counterparts. We compare LLM performance in zero-shot, few-shot, and fine-tuned settings against conventional NLP baselines that do not employ LLMs. In addition, we assess translation quality across language families and typologies to understand its influence on LLM performance. Proprietary LLMs and fine-tuned open-source LLMs achieve competitive F1 scores on several datasets, often surpassing state-of-the-art results. However, performance on MT data is generally lower, and the extent of this decline varies by language and typology. This variation highlights both the strengths of LLMs in handling mental health tasks in languages other than English and their limitations when translation quality introduces structural or lexical mismatches.
☆ Misconception Diagnosis From Student-Tutor Dialogue: Generate, Retrieve, Rerank
Timely and accurate identification of student misconceptions is key to improving learning outcomes and pre-empting the compounding of student errors. However, this task is highly dependent on the effort and intuition of the teacher. In this work, we present a novel approach for detecting misconceptions from student-tutor dialogues using large language models (LLMs). First, we use a fine-tuned LLM to generate plausible misconceptions, and then retrieve the most promising candidates among these using embedding similarity with the input dialogue. These candidates are then assessed and re-ranked by another fine-tuned LLM to improve misconception relevance. Empirically, we evaluate our system on real dialogues from an educational tutoring platform. We consider multiple base LLM models including LLaMA, Qwen and Claude on zero-shot and fine-tuned settings. We find that our approach improves predictive performance over baseline models and that fine-tuning improves both generated misconception quality and can outperform larger closed-source models. Finally, we conduct ablation studies to both validate the importance of our generation and reranking steps on misconception generation quality.
comment: 21 pages, 8 figures, 8 tables. Joshua Mitton and Prarthana Bhattacharyya contributed equally to this paper
☆ ROG: Retrieval-Augmented LLM Reasoning for Complex First-Order Queries over Knowledge Graphs
Answering first-order logic (FOL) queries over incomplete knowledge graphs (KGs) is difficult, especially for complex query structures that compose projection, intersection, union, and negation. We propose ROG, a retrieval-augmented framework that combines query-aware neighborhood retrieval with large language model (LLM) chain-of-thought reasoning. ROG decomposes a multi-operator query into a sequence of single-operator sub-queries and grounds each step in compact, query-relevant neighborhood evidence. Intermediate answer sets are cached and reused across steps, improving consistency on deep reasoning chains. This design reduces compounding errors and yields more robust inference on complex and negation-heavy queries. Overall, ROG provides a practical alternative to embedding-based logical reasoning by replacing learned operators with retrieval-grounded, step-wise inference. Experiments on standard KG reasoning benchmarks show consistent gains over strong embedding-based baselines, with the largest improvements on high-complexity and negation-heavy query types.
☆ From Sycophancy to Sensemaking: Premise Governance for Human-AI Decision Making
As LLMs expand from assistance to decision support, a dangerous pattern emerges: fluent agreement without calibrated judgment. Low-friction assistants can become sycophantic, baking in implicit assumptions and pushing verification costs onto experts, while outcomes arrive too late to serve as reward signals. In deep-uncertainty decisions (where objectives are contested and reversals are costly), scaling fluent agreement amplifies poor commitments faster than it builds expertise. We argue reliable human-AI partnership requires a shift from answer generation to collaborative premise governance over a knowledge substrate, negotiating only what is decision-critical. A discrepancy-driven control loop operates over this substrate: detecting conflicts, localizing misalignment via typed discrepancies (teleological, epistemic, procedural), and triggering bounded negotiation through decision slices. Commitment gating blocks action on uncommitted load-bearing premises unless overridden under logged risk; value-gated challenge allocates probing under interaction cost. Trust then attaches to auditable premises and evidence standards, not conversational fluency. We illustrate with tutoring and propose falsifiable evaluation criteria.
☆ Proof-RM: A Scalable and Generalizable Reward Model for Math Proof
While Large Language Models (LLMs) have demonstrated strong math reasoning abilities through Reinforcement Learning with *Verifiable Rewards* (RLVR), many advanced mathematical problems are proof-based, with no guaranteed way to determine the authenticity of a proof by simple answer matching. To enable automatic verification, a Reward Model (RM) capable of reliably evaluating full proof processes is required. In this work, we design a *scalable* data-construction pipeline that, with minimal human effort, leverages LLMs to generate a large quantity of high-quality "**question-proof-check**" triplet data. By systematically varying problem sources, generation methods, and model configurations, we create diverse problem-proof pairs spanning multiple difficulty levels, linguistic styles, and error types, subsequently filtered through hierarchical human review for label alignment. Utilizing these data, we train a proof-checking RM, incorporating additional process reward and token weight balance to stabilize the RL process. Our experiments validate the model's scalability and strong performance from multiple perspectives, including reward accuracy, generalization ability and test-time guidance, providing important practical recipes and tools for strengthening LLM mathematical capabilities.
comment: Under review
☆ Automated Multiple Mini Interview (MMI) Scoring
Assessing soft skills such as empathy, ethical judgment, and communication is essential in competitive selection processes, yet human scoring is often inconsistent and biased. While Large Language Models (LLMs) have improved Automated Essay Scoring (AES), we show that state-of-the-art rationale-based fine-tuning methods struggle with the abstract, context-dependent nature of Multiple Mini-Interviews (MMIs), missing the implicit signals embedded in candidate narratives. We introduce a multi-agent prompting framework that breaks down the evaluation process into transcript refinement and criterion-specific scoring. Using 3-shot in-context learning with a large instruct-tuned model, our approach outperforms specialised fine-tuned baselines (Avg QWK 0.62 vs 0.32) and achieves reliability comparable to human experts. We further demonstrate the generalisability of our framework on the ASAP benchmark, where it rivals domain-specific state-of-the-art models without additional training. These findings suggest that for complex, subjective reasoning tasks, structured prompt engineering may offer a scalable alternative to data-intensive fine-tuning, altering how LLMs can be applied to automated assessment.
comment: 18 pages, 2 figures
☆ Why Steering Works: Toward a Unified View of Language Model Parameter Dynamics
Methods for controlling large language models (LLMs), including local weight fine-tuning, LoRA-based adaptation, and activation-based interventions, are often studied in isolation, obscuring their connections and making comparison difficult. In this work, we present a unified view that frames these interventions as dynamic weight updates induced by a control signal, placing them within a single conceptual framework. Building on this view, we propose a unified preference-utility analysis that separates control effects into preference, defined as the tendency toward a target concept, and utility, defined as coherent and task-valid generation, and measures both on a shared log-odds scale using polarity-paired contrastive examples. Across methods, we observe a consistent trade-off between preference and utility: stronger control increases preference while predictably reducing utility. We further explain this behavior through an activation manifold perspective, in which control shifts representations along target-concept directions to enhance preference, while utility declines primarily when interventions push representations off the model's valid-generation manifold. Finally, we introduce a new steering approach SPLIT guided by this analysis that improves preference while better preserving utility. Code is available at https://github.com/zjunlp/EasyEdit/blob/main/examples/SPLIT.md.
comment: Work in progress
☆ Language Steering for Multilingual In-Context Learning
While multilingual large language models have gained widespread adoption, their performance on non-English languages remains substantially inferior to English. This disparity is particularly evident in in-context learning scenarios, where providing demonstrations in English but testing on non-English inputs leads to significant performance degradation. In this paper, we hypothesize that LLMs develop a universal semantic space for understanding languages, where different languages are encoded as distinct directions within this space. Based on this hypothesis, we propose language vectors -- a training-free language steering approach that leverages activation differences between source and target languages to guide model behavior. We steer the model generations by adding the vector to the intermediate model activations during inference. This is done to make the model's internal representations shift towards the target language space without any parameter updates. We evaluate our method across three datasets and test on a total of 19 languages on three different models. Our results show consistent improvements on multilingual in-context learning over baselines across all tasks and languages tested. Beyond performance gains, hierarchical clustering of steering vectors reveals meaningful linguistic structure aligned with language families. These vectors also successfully transfer across tasks, demonstrating that these representations are task-agnostic.
☆ A Large-Scale Dataset for Molecular Structure-Language Description via a Rule-Regularized Method
Molecular function is largely determined by structure. Accurately aligning molecular structure with natural language is therefore essential for enabling large language models (LLMs) to reason about downstream chemical tasks. However, the substantial cost of human annotation makes it infeasible to construct large-scale, high-quality datasets of structure-grounded descriptions. In this work, we propose a fully automated annotation framework for generating precise molecular structure descriptions at scale. Our approach builds upon and extends a rule-based chemical nomenclature parser to interpret IUPAC names and construct enriched, structured XML metadata that explicitly encodes molecular structure. This metadata is then used to guide LLMs in producing accurate natural-language descriptions. Using this framework, we curate a large-scale dataset of approximately $163$k molecule-description pairs. A rigorous validation protocol combining LLM-based and expert human evaluation on a subset of $2,000$ molecules demonstrates a high description precision of $98.6\%$. The resulting dataset provides a reliable foundation for future molecule-language alignment, and the proposed annotation method is readily extensible to larger datasets and broader chemical tasks that rely on structural descriptions.
☆ The Shape of Beliefs: Geometry, Dynamics, and Interventions along Representation Manifolds of Language Models' Posteriors
Large language models (LLMs) represent prompt-conditioned beliefs (posteriors over answers and claims), but we lack a mechanistic account of how these beliefs are encoded in representation space, how they update with new evidence, and how interventions reshape them. We study a controlled setting in which Llama-3.2 generates samples from a normal distribution by implicitly inferring its parameters (mean and standard deviation) given only samples from the distribution in context. We find representations of curved "belief manifolds" for these parameters form with sufficient in-context learning and study how the model adapts when the distribution suddenly changes. While standard linear steering often pushes the model off-manifold and induces coupled, out-of-distribution shifts, geometry and field-aware steering better preserves the intended belief family. Our work demonstrates an example of linear field probing (LFP) as a simple approach to tile the data manifold and make interventions that respect the underlying geometry. We conclude that rich structure emerges naturally in LLMs and that purely linear concept representations are often an inadequate abstraction.
☆ Interpreting and Controlling LLM Reasoning through Integrated Policy Gradient
Large language models (LLMs) demonstrate strong reasoning abilities in solving complex real-world problems. Yet, the internal mechanisms driving these complex reasoning behaviors remain opaque. Existing interpretability approaches targeting reasoning either identify components (e.g., neurons) correlated with special textual patterns, or rely on human-annotated contrastive pairs to derive control vectors. Consequently, current methods struggle to precisely localize complex reasoning mechanisms or capture sequential influence from model internal workings to the reasoning outputs. In this paper, built on outcome-oriented and sequential-influence-aware principles, we focus on identifying components that have sequential contribution to reasoning behavior where outcomes are cumulated by long-range effects. We propose Integrated Policy Gradient (IPG), a novel framework that attributes reasoning behaviors to model's inner components by propagating compound outcome-based signals such as post reasoning accuracy backward through model inference trajectories. Empirical evaluations demonstrate that our approach achieves more precise localization and enables reliable modulation of reasoning behaviors (e.g., reasoning capability, reasoning strength) across diverse reasoning models.
☆ Advancing General-Purpose Reasoning Models with Modular Gradient Surgery
Reinforcement learning (RL) has played a central role in recent advances in large reasoning models (LRMs), yielding strong gains in verifiable and open-ended reasoning. However, training a single general-purpose LRM across diverse domains remains challenging due to pronounced domain heterogeneity. Through a systematic study of two widely used strategies, Sequential RL and Mixed RL, we find that both incur substantial cross-domain interference at the behavioral and gradient levels, resulting in limited overall gains. To address these challenges, we introduce **M**odular **G**radient **S**urgery (**MGS**), which resolves gradient conflicts at the module level within the transformer. When applied to Llama and Qwen models, MGS achieves average improvements of 4.3 (16.6\%) and 4.5 (11.1\%) points, respectively, over standard multi-task RL across three representative domains (math, general chat, and instruction following). Further analysis demonstrates that MGS remains effective under prolonged training. Overall, our study clarifies the sources of interference in multi-domain RL and presents an effective solution for training general-purpose LRMs.
comment: Preprint; Code: https://github.com/StringNLPLAB/MGS; Website: https://modular-gradient-surgery.github.io
☆ Hallucination or Creativity: How to Evaluate AI-Generated Scientific Stories?
Generative AI can turn scientific articles into narratives for diverse audiences, but evaluating these stories remains challenging. Storytelling demands abstraction, simplification, and pedagogical creativity-qualities that are not often well-captured by standard summarization metrics. Meanwhile, factual hallucinations are critical in scientific contexts, yet, detectors often misclassify legitimate narrative reformulations or prove unstable when creativity is involved. In this work, we propose StoryScore, a composite metric for evaluating AI-generated scientific stories. StoryScore integrates semantic alignment, lexical grounding, narrative control, structural fidelity, redundancy avoidance, and entity-level hallucination detection into a unified framework. Our analysis also reveals why many hallucination detection methods fail to distinguish pedagogical creativity from factual errors, highlighting a key limitation: while automatic metrics can effectively assess semantic similarity with original content, they struggle to evaluate how it is narrated and controlled.
☆ Cross-Lingual Stability of LLM Judges Under Controlled Generation: Evidence from Finno-Ugric Languages EACL 2026
Cross-lingual evaluation of large language models (LLMs) typically conflates two sources of variance: genuine model performance differences and measurement instability. We investigate evaluation reliability by holding generation conditions constant while varying target language. Using synthetic customer-support dialogues generated with identical parameters across Estonian, Finnish, and Hungarian, we test whether automatic metrics and LLM-as-a-judge scoring produce stable model rankings across these morphologically rich, related Finno-Ugric languages. With a small set of Estonian native speaker annotations as a reference point, we find systematic ranking instabilities: surface-level metrics (lexical diversity, surface and semantic similarity) maintain cross-language stability, but pragmatic judgments (coherence, instruction-following) exhibit rank inversions and near-zero correlations. Because generation is controlled, these inconsistencies reflect how judge scoring behaves differently across languages rather than true model differences. This controlled design provides a diagnostic probe: evaluation methods that fail to maintain stability under identical generation conditions signal transfer failure before deployment. Our findings suggest that zero-shot judge transfer is unreliable for discourse-level assessment in morphologically rich languages, motivating language-specific calibration against targeted human baselines. We release our controlled generation protocol, synthetic data, and evaluation framework to enable replication across language families at https://github.com/isaac-chung/cross-lingual-stability-judges.
comment: First Workshop on Multilingual Multicultural Evaluation, co-located with EACL 2026
☆ Statistical Learning Theory in Lean 4: Empirical Processes from Scratch
We present the first comprehensive Lean 4 formalization of statistical learning theory (SLT) grounded in empirical process theory. Our end-to-end formal infrastructure implement the missing contents in latest Lean 4 Mathlib library, including a complete development of Gaussian Lipschitz concentration, the first formalization of Dudley's entropy integral theorem for sub-Gaussian processes, and an application to least-squares (sparse) regression with a sharp rate. The project was carried out using a human-AI collaborative workflow, in which humans design proof strategies and AI agents execute tactical proof construction, leading to the human-verified Lean 4 toolbox for SLT. Beyond implementation, the formalization process exposes and resolves implicit assumptions and missing details in standard SLT textbooks, enforcing a granular, line-by-line understanding of the theory. This work establishes a reusable formal foundation and opens the door for future developments in machine learning theory. The code is available at https://github.com/YuanheZ/lean-stat-learning-theory
comment: 19 pages, 2 figures. Comments are welcome
☆ RACA: Representation-Aware Coverage Criteria for LLM Safety Testing
Recent advancements in LLMs have led to significant breakthroughs in various AI applications. However, their sophisticated capabilities also introduce severe safety concerns, particularly the generation of harmful content through jailbreak attacks. Current safety testing for LLMs often relies on static datasets and lacks systematic criteria to evaluate the quality and adequacy of these tests. While coverage criteria have been effective for smaller neural networks, they are not directly applicable to LLMs due to scalability issues and differing objectives. To address these challenges, this paper introduces RACA, a novel set of coverage criteria specifically designed for LLM safety testing. RACA leverages representation engineering to focus on safety-critical concepts within LLMs, thereby reducing dimensionality and filtering out irrelevant information. The framework operates in three stages: first, it identifies safety-critical representations using a small, expert-curated calibration set of jailbreak prompts. Second, it calculates conceptual activation scores for a given test suite based on these representations. Finally, it computes coverage results using six sub-criteria that assess both individual and compositional safety concepts. We conduct comprehensive experiments to validate RACA's effectiveness, applicability, and generalization, where the results demonstrate that RACA successfully identifies high-quality jailbreak prompts and is superior to traditional neuron-level criteria. We also showcase its practical application in real-world scenarios, such as test set prioritization and attack prompt sampling. Furthermore, our findings confirm RACA's generalization to various scenarios and its robustness across various configurations. Overall, RACA provides a new framework for evaluating the safety of LLMs, contributing a valuable technique to the field of testing for AI.
☆ Kimi K2.5: Visual Agentic Intelligence
We introduce Kimi K2.5, an open-source multimodal agentic model designed to advance general agentic intelligence. K2.5 emphasizes the joint optimization of text and vision so that two modalities enhance each other. This includes a series of techniques such as joint text-vision pre-training, zero-vision SFT, and joint text-vision reinforcement learning. Building on this multimodal foundation, K2.5 introduces Agent Swarm, a self-directed parallel agent orchestration framework that dynamically decomposes complex tasks into heterogeneous sub-problems and executes them concurrently. Extensive evaluations show that Kimi K2.5 achieves state-of-the-art results across various domains including coding, vision, reasoning, and agentic tasks. Agent Swarm also reduces latency by up to $4.5\times$ over single-agent baselines. We release the post-trained Kimi K2.5 model checkpoint to facilitate future research and real-world applications of agentic intelligence.
comment: Kimi K2.5 tech report
☆ dziribot: rag based intelligent conversational agent for algerian arabic dialect
The rapid digitalization of customer service has intensified the demand for conversational agents capable of providing accurate and natural interactions. In the Algerian context, this is complicated by the linguistic complexity of Darja, a dialect characterized by non-standardized orthography, extensive code-switching with French, and the simultaneous use of Arabic and Latin (Arabizi) scripts. This paper introduces DziriBOT, a hybrid intelligent conversational agent specifically engineered to overcome these challenges. We propose a multi-layered architecture that integrates specialized Natural Language Understanding (NLU) with Retrieval-Augmented Generation (RAG), allowing for both structured service flows and dynamic, knowledge-intensive responses grounded in curated enterprise documentation. To address the low-resource nature of Darja, we systematically evaluate three distinct approaches: a sparse-feature Rasa pipeline, classical machine learning baselines, and transformer-based fine-tuning. Our experimental results demonstrate that the fine-tuned DziriBERT model achieves state-of-the-art performance. These results significantly outperform traditional baselines, particularly in handling orthographic noise and rare intents. Ultimately, DziriBOT provides a robust, scalable solution that bridges the gap between formal language models and the linguistic realities of Algerian users, offering a blueprint for dialect-aware automation in the regional market.
☆ OpenSeal: Good, Fast, and Cheap Construction of an Open-Source Southeast Asian LLM via Parallel Data
Large language models (LLMs) have proven to be effective tools for a wide range of natural language processing (NLP) applications. Although many LLMs are multilingual, most remain English-centric and perform poorly on low-resource languages. Recently, several Southeast Asia-focused LLMs have been developed, but none are truly open source, as they do not publicly disclose their training data. Truly open-source models are important for transparency and for enabling a deeper and more precise understanding of LLM internals and development, including biases, generalization, and multilinguality. Motivated by recent advances demonstrating the effectiveness of parallel data in improving multilingual performance, we conduct controlled and comprehensive experiments to study the effectiveness of parallel data in continual pretraining of LLMs. Our findings show that using only parallel data is the most effective way to extend an LLM to new languages. Using just 34.7B tokens of parallel data and 180 hours on 8x NVIDIA H200 GPUs, we built OpenSeal, the first truly open Southeast Asian LLM that rivals the performance of existing models of similar size.
☆ OmniCode: A Benchmark for Evaluating Software Engineering Agents
LLM-powered coding agents are redefining how real-world software is developed. To drive the research towards better coding agents, we require challenging benchmarks that can rigorously evaluate the ability of such agents to perform various software engineering tasks. However, popular coding benchmarks such as HumanEval and SWE-Bench focus on narrowly scoped tasks such as competition programming and patch generation. In reality, software engineers have to handle a broader set of tasks for real-world software development. To address this gap, we propose OmniCode, a novel software engineering benchmark that contains a broader and more diverse set of task categories beyond code or patch generation. Overall, OmniCode contains 1794 tasks spanning three programming languages (Python, Java, and C++) and four key categories: bug fixing, test generation, code review fixing, and style fixing. In contrast to prior software engineering benchmarks, the tasks in OmniCode are (1) manually validated to eliminate ill-defined problems, and (2) synthetically crafted or recently curated to avoid data leakage issues, presenting a new framework for synthetically generating diverse software tasks from limited real-world data. We evaluate OmniCode with popular agent frameworks such as SWE-Agent and show that while they may perform well on bug fixing for Python, they fall short on tasks such as Test Generation and in languages such as C++ and Java. For instance, SWE-Agent achieves a maximum of 20.9% with DeepSeek-V3.1 on Java Test Generation tasks. OmniCode aims to serve as a robust benchmark and spur the development of agents that can perform well across different aspects of software development. Code and data are available at https://github.com/seal-research/OmniCode.
☆ Learning While Staying Curious: Entropy-Preserving Supervised Fine-Tuning via Adaptive Self-Distillation for Large Reasoning Models
The standard post-training recipe for large reasoning models, supervised fine-tuning followed by reinforcement learning (SFT-then-RL), may limit the benefits of the RL stage: while SFT imitates expert demonstrations, it often causes overconfidence and reduces generation diversity, leaving RL with a narrowed solution space to explore. Adding entropy regularization during SFT is not a cure-all; it tends to flatten token distributions toward uniformity, increasing entropy without improving meaningful exploration capability. In this paper, we propose CurioSFT, an entropy-preserving SFT method designed to enhance exploration capabilities through intrinsic curiosity. It consists of (a) Self-Exploratory Distillation, which distills the model toward a self-generated, temperature-scaled teacher to encourage exploration within its capability; and (b) Entropy-Guided Temperature Selection, which adaptively adjusts distillation strength to mitigate knowledge forgetting by amplifying exploration at reasoning tokens while stabilizing factual tokens. Extensive experiments on mathematical reasoning tasks demonstrate that, in SFT stage, CurioSFT outperforms the vanilla SFT by 2.5 points on in-distribution tasks and 2.9 points on out-of-distribution tasks. We also verify that exploration capabilities preserved during SFT successfully translate into concrete gains in RL stage, yielding an average improvement of 5.0 points.
☆ Using Correspondence Patterns to Identify Irregular Words in Cognate sets Through Leave-One-Out Validation EACL 2026
Regular sound correspondences constitute the principal evidence in historical language comparison. Despite the heuristic focus on regularity, it is often more an intuitive judgement than a quantified evaluation, and irregularity is more common than expected from the Neogrammarian model. Given the recent progress of computational methods in historical linguistics and the increased availability of standardized lexical data, we are now able to improve our workflows and provide such a quantitative evaluation. Here, we present the balanced average recurrence of correspondence patterns as a new measure of regularity. We also present a new computational method that uses this measure to identify cognate sets that lack regularity with respect to their correspondence patterns. We validate the method through two experiments, using simulated and real data. In the experiments, we employ leave-one-out validation to measure the regularity of cognate sets in which one word form has been replaced by an irregular one, checking how well our method identifies the forms causing the irregularity. Our method achieves an overall accuracy of 85\% with the datasets based on real data. We also show the benefits of working with subsamples of large datasets and how increasing irregularity in the data influences our results. Reflecting on the broader potential of our new regularity measure and the irregular cognate identification method based on it, we conclude that they could play an important role in improving the quality of existing and future datasets in computer-assisted language comparison.
comment: Accepted for the L'Change workshop @ EACL 2026
☆ Am I More Pointwise or Pairwise? Revealing Position Bias in Rubric-Based LLM-as-a-Judge
Large language models (LLMs) are now widely used to evaluate the quality of text, a field commonly referred to as LLM-as-a-judge. While prior works mainly focus on point-wise and pair-wise evaluation paradigms. Rubric-based evaluation, where LLMs select a score from multiple rubrics, has received less analysis. In this work, we show that rubric-based evaluation implicitly resembles a multi-choice setting and therefore has position bias: LLMs prefer score options appearing at specific positions in the rubric list. Through controlled experiments across multiple models and datasets, we demonstrate consistent position bias. To mitigate this bias, we propose a balanced permutation strategy that evenly distributes each score option across positions. We show that aggregating scores across balanced permutations not only reveals latent position bias, but also improves correlation between the LLM-as-a-Judge and human. Our results suggest that rubric-based LLM-as-a-Judge is not inherently point-wise and that simple permutation-based calibration can substantially improve its reliability.
☆ Towards AI Evaluation in Domain-Specific RAG Systems: The AgriHubi Case Study
Large language models show promise for knowledge-intensive domains, yet their use in agriculture is constrained by weak grounding, English-centric training data, and limited real-world evaluation. These issues are amplified for low-resource languages, where high-quality domain documentation exists but remains difficult to access through general-purpose models. This paper presents AgriHubi, a domain-adapted retrieval-augmented generation (RAG) system for Finnish-language agricultural decision support. AgriHubi integrates Finnish agricultural documents with open PORO family models and combines explicit source grounding with user feedback to support iterative refinement. Developed over eight iterations and evaluated through two user studies, the system shows clear gains in answer completeness, linguistic accuracy, and perceived reliability. The results also reveal practical trade-offs between response quality and latency when deploying larger models. This study provides empirical guidance for designing and evaluating domain-specific RAG systems in low-resource language settings.
comment: 6 pages, 2 figures, submitted to MIPRO 2026
☆ Sinhala Physical Common Sense Reasoning Dataset for Global PIQA
This paper presents the first-ever Sinhala physical common sense reasoning dataset created as part of Global PIQA. It contains 110 human-created and verified data samples, where each sample consists of a prompt, the corresponding correct answer, and a wrong answer. Most of the questions refer to the Sri Lankan context, where Sinhala is an official language.
☆ More Than a Quick Glance: Overcoming the Greedy Bias in KV-Cache Compression
While Large Language Models (LLMs) can theoretically support extensive context windows, their actual deployment is constrained by the linear growth of Key-Value (KV) cache memory. Prevailing compression strategies mitigate this through various pruning mechanisms, yet trade-off semantic recall for memory efficiency. In this work, we present LASER-KV (Layer Accumulated Selection with Exact-LSH Recall), a framework designed to test the limits of KV compression under a strict accumulative budgeting policy. We deviate from the standard fixed summary size approach by implementing a block-wise accumulation strategy governed by a protection divisor (n). This allows us to isolate the effects of compression from sliding window artifacts. Our experiments on the Babilong benchmark reveal performance degradation in previous compression methods by 15-30% on various long context tasks. LASER-KV maintains stable performance, achieving superior accuracies by a margin of upto 10% at 128k. These findings challenge the prevailing assumption that attention scores alone are a sufficient proxy for token utility.
☆ Vision-DeepResearch Benchmark: Rethinking Visual and Textual Search for Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have advanced VQA and now support Vision-DeepResearch systems that use search engines for complex visual-textual fact-finding. However, evaluating these visual and textual search abilities is still difficult, and existing benchmarks have two major limitations. First, existing benchmarks are not visual search-centric: answers that should require visual search are often leaked through cross-textual cues in the text questions or can be inferred from the prior world knowledge in current MLLMs. Second, overly idealized evaluation scenario: On the image-search side, the required information can often be obtained via near-exact matching against the full image, while the text-search side is overly direct and insufficiently challenging. To address these issues, we construct the Vision-DeepResearch benchmark (VDR-Bench) comprising 2,000 VQA instances. All questions are created via a careful, multi-stage curation pipeline and rigorous expert review, designed to assess the behavior of Vision-DeepResearch systems under realistic real-world conditions. Moreover, to address the insufficient visual retrieval capabilities of current MLLMs, we propose a simple multi-round cropped-search workflow. This strategy is shown to effectively improve model performance in realistic visual retrieval scenarios. Overall, our results provide practical guidance for the design of future multimodal deep-research systems. The code will be released in https://github.com/Osilly/Vision-DeepResearch.
☆ Evaluating Metalinguistic Knowledge in Large Language Models across the World's Languages
Large language models (LLMs) are routinely evaluated on language use tasks, yet their knowledge of linguistic structure remains poorly understood. Existing linguistic benchmarks typically focus on narrow phenomena, emphasize high-resource languages, and rarely evaluate metalinguistic knowledge-explicit reasoning about language structure rather than language use. Using accuracy and macro F1, together with majority-class and chance baselines, we analyse overall performance and examine variation by linguistic domains and language-related factors. Our results show that metalinguistic knowledge in current LLMs is limited: GPT-4o performs best but achieves only moderate accuracy (0.367), while open-source models lag behind. All models perform above chance but fail to outperform the majority-class baseline, suggesting they capture cross-linguistic patterns but lack fine-grained grammatical distinctions. Performance varies across linguistic domains, with lexical features showing the highest accuracy and phonological features among the lowest, partially reflecting differences in online visibility. At the language level, accuracy shows a strong association with digital language status: languages with higher digital presence and resource availability are evaluated more accurately, while low-resource languages show substantially lower performance. Analyses of predictive factors confirm that resource-related indicators (Wikipedia size, corpus availability) are more informative predictors of accuracy than geographical, genealogical, or sociolinguistic factors. Together, these results suggest that LLMs' metalinguistic knowledge is fragmented and shaped by data availability rather than generalizable grammatical competence across the world's languages. We release our benchmark as an open-source dataset to support systematic evaluation and encourage greater global linguistic diversity in future LLMs.
☆ AR-MAP: Are Autoregressive Large Language Models Implicit Teachers for Diffusion Large Language Models?
Diffusion Large Language Models (DLLMs) have emerged as a powerful alternative to autoregressive models, enabling parallel token generation across multiple positions. However, preference alignment of DLLMs remains challenging due to high variance introduced by Evidence Lower Bound (ELBO)-based likelihood estimation. In this work, we propose AR-MAP, a novel transfer learning framework that leverages preference-aligned autoregressive LLMs (AR-LLMs) as implicit teachers for DLLM alignment. We reveal that DLLMs can effectively absorb alignment knowledge from AR-LLMs through simple weight scaling, exploiting the shared architectural structure between these divergent generation paradigms. Crucially, our approach circumvents the high variance and computational overhead of direct DLLM alignment and comprehensive experiments across diverse preference alignment tasks demonstrate that AR-MAP achieves competitive or superior performance compared to existing DLLM-specific alignment methods, achieving 69.08\% average score across all tasks and models. Our Code is available at https://github.com/AMAP-ML/AR-MAP.
☆ D-CORE: Incentivizing Task Decomposition in Large Reasoning Models for Complex Tool Use
Effective tool use and reasoning are essential capabilities for large reasoning models~(LRMs) to address complex real-world problems. Through empirical analysis, we identify that current LRMs lack the capability of sub-task decomposition in complex tool use scenarios, leading to Lazy Reasoning. To address this, we propose a two-stage training framework D-CORE~(\underline{\textbf{D}}ecomposing tasks and \underline{\textbf{Co}}mposing \underline{\textbf{Re}}asoning processes) that first incentivize the LRMs' task decomposition reasoning capability via self-distillation, followed by diversity-aware reinforcement learning~(RL) to restore LRMs' reflective reasoning capability. D-CORE achieves robust tool-use improvements across diverse benchmarks and model scales. Experiments on BFCLv3 demonstrate superiority of our method: D-CORE-8B reaches 77.7\% accuracy, surpassing the best-performing 8B model by 5.7\%. Meanwhile, D-CORE-14B establishes a new state-of-the-art at 79.3\%, outperforming 70B models despite being 5$\times$ smaller. The source code is available at https://github.com/alibaba/EfficientAI.
☆ Focus-dLLM: Accelerating Long-Context Diffusion LLM Inference via Confidence-Guided Context Focusing
Diffusion Large Language Models (dLLMs) deliver strong long-context processing capability in a non-autoregressive decoding paradigm. However, the considerable computational cost of bidirectional full attention limits the inference efficiency. Although sparse attention is promising, existing methods remain ineffective. This stems from the need to estimate attention importance for tokens yet to be decoded, while the unmasked token positions are unknown during diffusion. In this paper, we present Focus-dLLM, a novel training-free attention sparsification framework tailored for accurate and efficient long-context dLLM inference. Based on the finding that token confidence strongly correlates across adjacent steps, we first design a past confidence-guided indicator to predict unmasked regions. Built upon this, we propose a sink-aware pruning strategy to accurately estimate and remove redundant attention computation, while preserving highly influential attention sinks. To further reduce overhead, this strategy reuses identified sink locations across layers, leveraging the observed cross-layer consistency. Experimental results show that our method offers more than $29\times$ lossless speedup under $32K$ context length. The code is publicly available at: https://github.com/Longxmas/Focus-dLLM
☆ Revisiting Adaptive Rounding with Vectorized Reparameterization for LLM Quantization
Adaptive Rounding has emerged as an alternative to round-to-nearest (RTN) for post-training quantization by enabling cross-element error cancellation. Yet, dense and element-wise rounding matrices are prohibitively expensive for billion-parameter large language models (LLMs). We revisit adaptive rounding from an efficiency perspective and propose VQRound, a parameter-efficient optimization framework that reparameterizes the rounding matrix into a compact codebook. Unlike low-rank alternatives, VQRound minimizes the element-wise worst-case error under $L_\infty$ norm, which is critical for handling heavy-tailed weight distributions in LLMs. Beyond reparameterization, we identify rounding initialization as a decisive factor and develop a lightweight end-to-end finetuning pipeline that optimizes codebooks across all layers using only 128 samples. Extensive experiments on OPT, LLaMA, LLaMA2, and Qwen3 models demonstrate that VQRound achieves better convergence than traditional adaptive rounding at the same number of steps while using as little as 0.2% of the trainable parameters. Our results show that adaptive rounding can be made both scalable and fast-fitting. The code is available at https://github.com/zhoustan/VQRound.
comment: 17 pages, 6 figures, 14 tables
☆ Learning Generative Selection for Best-of-N
Scaling test-time compute via parallel sampling can substantially improve LLM reasoning, but is often limited by Best-of-N selection quality. Generative selection methods, such as GenSelect, address this bottleneck, yet strong selection performance remains largely limited to large models. We show that small reasoning models can acquire strong GenSelect capabilities through targeted reinforcement learning. To this end, we synthesize selection tasks from large-scale math and code instruction datasets by filtering to instances with both correct and incorrect candidate solutions, and train 1.7B-parameter models with DAPO to reward correct selections. Across math (AIME24, AIME25, HMMT25) and code (LiveCodeBench) reasoning benchmarks, our models consistently outperform prompting and majority-voting baselines, often approaching or exceeding much larger models. Moreover, these gains generalize to selecting outputs from stronger models despite training only on outputs from weaker models. Overall, our results establish reinforcement learning as a scalable way to unlock strong generative selection in small models, enabling efficient test-time scaling.
☆ Quantifying the Gap between Understanding and Generation within Unified Multimodal Models
Recent advances in unified multimodal models (UMM) have demonstrated remarkable progress in both understanding and generation tasks. However, whether these two capabilities are genuinely aligned and integrated within a single model remains unclear. To investigate this question, we introduce GapEval, a bidirectional benchmark designed to quantify the gap between understanding and generation capabilities, and quantitatively measure the cognitive coherence of the two "unified" directions. Each question can be answered in both modalities (image and text), enabling a symmetric evaluation of a model's bidirectional inference capability and cross-modal consistency. Experiments reveal a persistent gap between the two directions across a wide range of UMMs with different architectures, suggesting that current models achieve only surface-level unification rather than deep cognitive convergence of the two. To further explore the underlying mechanism, we conduct an empirical study from the perspective of knowledge manipulation to illustrate the underlying limitations. Our findings indicate that knowledge within UMMs often remains disjoint. The capability emergence and knowledge across modalities are unsynchronized, paving the way for further exploration.
☆ EvoMU: Evolutionary Machine Unlearning
Machine unlearning aims to unlearn specified training data (e.g. sensitive or copyrighted material). A prominent approach is to fine-tune an existing model with an unlearning loss that retains overall utility. The space of suitable unlearning loss functions is vast, making the search for an optimal loss function daunting. Additionally, there might not even exist a universally optimal loss function: differences in the structure and overlap of the forget and retain data can cause a loss to work well in one setting but over-unlearn or under-unlearn in another. Our approach EvoMU tackles these two challenges simultaneously. An evolutionary search procedure automatically finds task-specific losses in the vast space of possible unlearning loss functions. This allows us to find dataset-specific losses that match or outperform existing losses from the literature, without the need for a human-in-the-loop. This work is therefore an instance of automatic scientific discovery, a.k.a. an AI co-scientist. In contrast to previous AI co-scientist works, we do so on a budget: We achieve SotA results using a small 4B parameter model (Qwen3-4B-Thinking), showing the potential of AI co-scientists with limited computational resources. Our experimental evaluation shows that we surpass previous loss-based unlearning formulations on TOFU-5%, TOFU-10%, MUSE and WMDP by synthesizing novel unlearning losses. Our code is available at https://github.com/Batorskq/EvoMU.
☆ Understanding the Reversal Curse Mitigation in Masked Diffusion Models through Attention and Training Dynamics
Autoregressive language models (ARMs) suffer from the reversal curse: after learning that "$A$ is $B$", they often fail on the reverse query "$B$ is $A$". Masked diffusion-based language models (MDMs) exhibit this failure in a much weaker form, but the underlying reason has remained unclear. A common explanation attributes this mitigation to the any-order training objective. However, observing "[MASK] is $B$" during training does not necessarily teach the model to handle the reverse prompt "$B$ is [MASK]". We show that the mitigation arises from architectural structure and its interaction with training. In a one-layer Transformer encoder, weight sharing couples the two directions by making forward and reverse attention scores positively correlated. In the same setting, we further show that the corresponding gradients are aligned, so minimizing the forward loss also reduces the reverse loss. Experiments on both controlled toy tasks and large-scale diffusion language models support these mechanisms, explaining why MDMs partially overcome a failure mode that persists in strong ARMs.
☆ There Is More to Refusal in Large Language Models than a Single Direction
Prior work argues that refusal in large language models is mediated by a single activation-space direction, enabling effective steering and ablation. We show that this account is incomplete. Across eleven categories of refusal and non-compliance, including safety, incomplete or unsupported requests, anthropomorphization, and over-refusal, we find that these refusal behaviors correspond to geometrically distinct directions in activation space. Yet despite this diversity, linear steering along any refusal-related direction produces nearly identical refusal to over-refusal trade-offs, acting as a shared one-dimensional control knob. The primary effect of different directions is not whether the model refuses, but how it refuses.
☆ Unifying Masked Diffusion Models with Various Generation Orders and Beyond
Masked diffusion models (MDMs) are a potential alternative to autoregressive models (ARMs) for language generation, but generation quality depends critically on the generation order. Prior work either hard-codes an ordering (e.g., blockwise left-to-right) or learns an ordering policy for a pretrained MDM, which incurs extra cost and can yield suboptimal solutions due to the two-stage optimization. Motivated by this, we propose order-expressive masked diffusion model (OeMDM) for a broad class of diffusion generative processes with various generation orders, enabling the interpretation of MDM, ARM, and block diffusion in a single framework. Furthermore, building on OeMDM, we introduce learnable-order masked diffusion model (LoMDM), which jointly learns the generation ordering and diffusion backbone through a single objective from scratch, enabling the diffusion model to generate text in context-dependent ordering. Empirically, we confirm that LoMDM outperforms various discrete diffusion models across multiple language modeling benchmarks.
comment: Preprint
☆ Out of the Memory Barrier: A Highly Memory Efficient Training System for LLMs with Million-Token Contexts
Training Large Language Models (LLMs) on long contexts is severely constrained by prohibitive GPU memory overhead, not training time. The primary culprits are the activations, whose memory footprints scale linearly with sequence length. We introduce OOMB, a highly memory-efficient training system that directly confronts this barrier. Our approach employs a chunk-recurrent training framework with on-the-fly activation recomputation, which maintains a constant activation memory footprint (O(1)) and shifts the primary bottleneck to the growing KV cache. To manage the KV cache, OOMB integrates a suite of synergistic optimizations: a paged memory manager for both the KV cache and its gradients to eliminate fragmentation, asynchronous CPU offloading to hide data transfer latency, and page-level sparse attention to reduce both computational complexity and communication overhead. The synergy of these techniques yields exceptional efficiency. Our empirical results show that for every additional 10K tokens of context, the end-to-end training memory overhead increases by a mere 10MB for Qwen2.5-7B. This allows training Qwen2.5-7B with a 4M-token context on a single H200 GPU, a feat that would otherwise require a large cluster using context parallelism. This work represents a substantial advance in resource efficiency for long-context LLM training. The source code is available at https://github.com/wenhaoli-xmu/OOMB.
☆ Dicta-LM 3.0: Advancing The Frontier of Hebrew Sovereign LLMs
Open-weight LLMs have been released by frontier labs; however, sovereign Large Language Models (for languages other than English) remain low in supply yet high in demand. Training large language models (LLMs) for low-resource languages such as Hebrew poses unique challenges. In this paper, we introduce Dicta-LM 3.0: an open-weight collection of LLMs trained on substantially-sized corpora of Hebrew and English texts. The model is released in three sizes: 24B - adapted from the Mistral-Small-3.1 base model, 12B - adapted from the NVIDIA Nemotron Nano V2 model, and 1.7B - adapted from the Qwen3-1.7B base model. We are releasing multiple variants of each model, each with a native context length of 65k tokens; base model and chat model with tool-calling support. To rigorously evaluate our models, we introduce a new benchmark suite for evaluation of Hebrew chat-LLMs, covering a diverse set of tasks including Translation, Summarization, Winograd, Israeli Trivia, and Diacritization (nikud). Our work not only addresses the intricacies of training LLMs in low-resource languages but also proposes a framework that can be leveraged for adapting other LLMs to various non-English languages, contributing to the broader field of multilingual NLP.
☆ No Global Plan in Chain-of-Thought: Uncover the Latent Planning Horizon of LLMs
This work stems from prior complementary observations on the dynamics of Chain-of-Thought (CoT): Large Language Models (LLMs) is shown latent planning of subsequent reasoning prior to CoT emergence, thereby diminishing the significance of explicit CoT; whereas CoT remains critical for tasks requiring multi-step reasoning. To deepen the understanding between LLM's internal states and its verbalized reasoning trajectories, we investigate the latent planning strength of LLMs, through our probing method, Tele-Lens, applying to hidden states across diverse task domains. Our empirical results indicate that LLMs exhibit a myopic horizon, primarily conducting incremental transitions without precise global planning. Leveraging this characteristic, we propose a hypothesis on enhancing uncertainty estimation of CoT, which we validate that a small subset of CoT positions can effectively represent the uncertainty of the entire path. We further underscore the significance of exploiting CoT dynamics, and demonstrate that automatic recognition of CoT bypass can be achieved without performance degradation. Our code, data and models are released at https://github.com/lxucs/tele-lens.
☆ Think Dense, Not Long: Dynamic Decoupled Conditional Advantage for Efficient Reasoning
Reinforcement Learning with Verifiable Rewards (RLVR) can elicit strong multi-step reasoning, yet it often encourages overly verbose traces. Moreover, naive length penalties in group-relative optimization can severely hurt accuracy. We attribute this failure to two structural issues: (i) Dilution of Length Baseline, where incorrect responses (with zero length reward) depress the group baseline and over-penalize correct solutions; and (ii) Difficulty-Penalty Mismatch, where a static penalty cannot adapt to problem difficulty, suppressing necessary reasoning on hard instances while leaving redundancy on easy ones. We propose Dynamic Decoupled Conditional Advantage (DDCA) to decouple efficiency optimization from correctness. DDCA computes length advantages conditionally within the correct-response cluster to eliminate baseline dilution, and dynamically scales the penalty strength using the group pass rate as a proxy for difficulty. Experiments on GSM8K, MATH500, AMC23, and AIME25 show that DDCA consistently improves the efficiency--accuracy trade-off relative to adaptive baselines, reducing generated tokens by approximately 60% on simpler tasks (e.g., GSM8K) versus over 20% on harder benchmarks (e.g., AIME25), thereby maintaining or improving accuracy. Code is available at https://github.com/alphadl/DDCA.
☆ LEC-KG: An LLM-Embedding Collaborative Framework for Domain-Specific Knowledge Graph Construction -- A Case Study on SDGs
Constructing domain-specific knowledge graphs from unstructured text remains challenging due to heterogeneous entity mentions, long-tail relation distributions, and the absence of standardized schemas. We present LEC-KG, a bidirectional collaborative framework that integrates the semantic understanding of Large Language Models (LLMs) with the structural reasoning of Knowledge Graph Embeddings (KGE). Our approach features three key components: (1) hierarchical coarse-to-fine relation extraction that mitigates long-tail bias, (2) evidence-guided Chain-of-Thought feedback that grounds structural suggestions in source text, and (3) semantic initialization that enables structural validation for unseen entities. The two modules enhance each other iteratively-KGE provides structure-aware feedback to refine LLM extractions, while validated triples progressively improve KGE representations. We evaluate LEC-KG on Chinese Sustainable Development Goal (SDG) reports, demonstrating substantial improvements over LLM baselines, particularly on low-frequency relations. Through iterative refinement, our framework reliably transforms unstructured policy text into validated knowledge graph triples.
☆ Closing the Loop: Universal Repository Representation with RPG-Encoder
Current repository agents encounter a reasoning disconnect due to fragmented representations, as existing methods rely on isolated API documentation or dependency graphs that lack semantic depth. We consider repository comprehension and generation to be inverse processes within a unified cycle: generation expands intent into implementation, while comprehension compresses implementation back into intent. To address this, we propose RPG-Encoder, a framework that generalizes the Repository Planning Graph (RPG) from a static generative blueprint into a unified, high-fidelity representation. RPG-Encoder closes the reasoning loop through three mechanisms: (1) Encoding raw code into the RPG that combines lifted semantic features with code dependencies; (2) Evolving the topology incrementally to decouple maintenance costs from repository scale, reducing overhead by 95.7%; and (3) Operating as a unified interface for structure-aware navigation. In evaluations, RPG-Encoder establishes state-of-the-art repository understanding on SWE-bench Verified with 93.7% Acc@5 and exceeds the best baseline by over 10% on SWE-bench Live Lite. These results highlight our superior fine-grained localization accuracy in complex codebases. Furthermore, it achieves 98.5% reconstruction coverage on RepoCraft, confirming RPG's high-fidelity capacity to mirror the original codebase and closing the loop between intent and implementation.
☆ WildGraphBench: Benchmarking GraphRAG with Wild-Source Corpora
Graph-based Retrieval-Augmented Generation (GraphRAG) organizes external knowledge as a hierarchical graph, enabling efficient retrieval and aggregation of scattered evidence across multiple documents. However, many existing benchmarks for GraphRAG rely on short, curated passages as external knowledge, failing to adequately evaluate systems in realistic settings involving long contexts and large-scale heterogeneous documents. To bridge this gap, we introduce WildGraphBench, a benchmark designed to assess GraphRAG performance in the wild. We leverage Wikipedia's unique structure, where cohesive narratives are grounded in long and heterogeneous external reference documents, to construct a benchmark reflecting real-word scenarios. Specifically, we sample articles across 12 top-level topics, using their external references as the retrieval corpus and citation-linked statements as ground truth, resulting in 1,100 questions spanning three levels of complexity: single-fact QA, multi-fact QA, and section-level summarization. Experiments across multiple baselines reveal that current GraphRAG pipelines help on multi-fact aggregation when evidence comes from a moderate number of sources, but this aggregation paradigm may overemphasize high-level statements at the expense of fine-grained details, leading to weaker performance on summarization tasks. Project page:https://github.com/BstWPY/WildGraphBench.
comment: https://github.com/BstWPY/WildGraphBench
☆ Dissecting Outlier Dynamics in LLM NVFP4 Pretraining
Training large language models using 4-bit arithmetic enhances throughput and memory efficiency. Yet, the limited dynamic range of FP4 increases sensitivity to outliers. While NVFP4 mitigates quantization error via hierarchical microscaling, a persistent loss gap remains compared to BF16. This study conducts a longitudinal analysis of outlier dynamics across architecture during NVFP4 pretraining, focusing on where they localize, why they occur, and how they evolve temporally. We find that, compared with Softmax Attention (SA), Linear Attention (LA) reduces per-tensor heavy tails but still exhibits persistent block-level spikes under block quantization. Our analysis attributes outliers to specific architectural components: Softmax in SA, gating in LA, and SwiGLU in FFN, with "post-QK" operations exhibiting higher sensitivity to quantization. Notably, outliers evolve from transient spikes early in training to a small set of persistent hot channels (i.e., channels with persistently large magnitudes) in later stages. Based on these findings, we introduce Hot-Channel Patch (HCP), an online compensation mechanism that identifies hot channels and reinjects residuals using hardware-efficient kernels. We then develop CHON, an NVFP4 training recipe integrating HCP with post-QK operation protection. On GLA-1.3B model trained for 60B tokens, CHON reduces the loss gap to BF16 from 0.94% to 0.58% while maintaining downstream accuracy.
comment: 39 pages, 32 figures
☆ Hunt Instead of Wait: Evaluating Deep Data Research on Large Language Models
The agency expected of Agentic Large Language Models goes beyond answering correctly, requiring autonomy to set goals and decide what to explore. We term this investigatory intelligence, distinguishing it from executional intelligence, which merely completes assigned tasks. Data Science provides a natural testbed, as real-world analysis starts from raw data rather than explicit queries, yet few benchmarks focus on it. To address this, we introduce Deep Data Research (DDR), an open-ended task where LLMs autonomously extract key insights from databases, and DDR-Bench, a large-scale, checklist-based benchmark that enables verifiable evaluation. Results show that while frontier models display emerging agency, long-horizon exploration remains challenging. Our analysis highlights that effective investigatory intelligence depends not only on agent scaffolding or merely scaling, but also on intrinsic strategies of agentic models.
comment: 14 pages, 7 tables, 8 figures
☆ Rethinking Genomic Modeling Through Optical Character Recognition
Recent genomic foundation models largely adopt large language model architectures that treat DNA as a one-dimensional token sequence. However, exhaustive sequential reading is structurally misaligned with sparse and discontinuous genomic semantics, leading to wasted computation on low-information background and preventing understanding-driven compression for long contexts. Here, we present OpticalDNA, a vision-based framework that reframes genomic modeling as Optical Character Recognition (OCR)-style document understanding. OpticalDNA renders DNA into structured visual layouts and trains an OCR-capable vision--language model with a \emph{visual DNA encoder} and a \emph{document decoder}, where the encoder produces compact, reconstructible visual tokens for high-fidelity compression. Building on this representation, OpticalDNA defines prompt-conditioned objectives over core genomic primitives-reading, region grounding, subsequence retrieval, and masked span completion-thereby learning layout-aware DNA representations that retain fine-grained genomic information under a reduced effective token budget. Across diverse genomic benchmarks, OpticalDNA consistently outperforms recent baselines; on sequences up to 450k bases, it achieves the best overall performance with nearly $20\times$ fewer effective tokens, and surpasses models with up to $985\times$ more activated parameters while tuning only 256k \emph{trainable} parameters.
☆ NEAT: Neuron-Based Early Exit for Large Reasoning Models
Large Reasoning Models (LRMs) often suffer from \emph{overthinking}, a phenomenon in which redundant reasoning steps are generated after a correct solution has already been reached. Existing early reasoning exit methods primarily rely on output-level heuristics or trained probing models to skip redundant reasoning steps, thereby mitigating overthinking. However, these approaches typically require additional rollout computation or externally labeled datasets. In this paper, we propose \textbf{NEAT}, a \textbf{N}euron-based \textbf{E}arly re\textbf{A}soning exi\textbf{T} framework that monitors neuron-level activation dynamics to enable training-free early exits, without introducing additional test-time computation. NEAT identifies exit-associated neurons and tracks their activation patterns during reasoning to dynamically trigger early exit or suppress reflection, thereby reducing unnecessary reasoning while preserving solution quality. Experiments on four reasoning benchmarks across six models with different scales and architectures show that, for each model, NEAT achieves an average token reduction of 22\% to 28\% when averaged over the four benchmarks, while maintaining accuracy.
☆ Beyond RAG for Agent Memory: Retrieval by Decoupling and Aggregation
Agent memory systems often adopt the standard Retrieval-Augmented Generation (RAG) pipeline, yet its underlying assumptions differ in this setting. RAG targets large, heterogeneous corpora where retrieved passages are diverse, whereas agent memory is a bounded, coherent dialogue stream with highly correlated spans that are often duplicates. Under this shift, fixed top-$k$ similarity retrieval tends to return redundant context, and post-hoc pruning can delete temporally linked prerequisites needed for correct reasoning. We argue retrieval should move beyond similarity matching and instead operate over latent components, following decoupling to aggregation: disentangle memories into semantic components, organise them into a hierarchy, and use this structure to drive retrieval. We propose xMemory, which builds a hierarchy of intact units and maintains a searchable yet faithful high-level node organisation via a sparsity--semantics objective that guides memory split and merge. At inference, xMemory retrieves top-down, selecting a compact, diverse set of themes and semantics for multi-fact queries, and expanding to episodes and raw messages only when it reduces the reader's uncertainty. Experiments on LoCoMo and PerLTQA across the three latest LLMs show consistent gains in answer quality and token efficiency.
☆ From Latent Signals to Reflection Behavior: Tracing Meta-Cognitive Activation Trajectory in R1-Style LLMs
R1-style LLMs have attracted growing attention for their capacity for self-reflection, yet the internal mechanisms underlying such behavior remain unclear. To bridge this gap, we anchor on the onset of reflection behavior and trace its layer-wise activation trajectory. Using the logit lens to read out token-level semantics, we uncover a structured progression: (i) Latent-control layers, where an approximate linear direction encodes the semantics of thinking budget; (ii) Semantic-pivot layers, where discourse-level cues, including turning-point and summarization cues, surface and dominate the probability mass; and (iii) Behavior-overt layers, where the likelihood of reflection-behavior tokens begins to rise until they become highly likely to be sampled. Moreover, our targeted interventions uncover a causal chain across these stages: prompt-level semantics modulate the projection of activations along latent-control directions, thereby inducing competition between turning-point and summarization cues in semantic-pivot layers, which in turn regulates the sampling likelihood of reflection-behavior tokens in behavior-overt layers. Collectively, our findings suggest a human-like meta-cognitive process-progressing from latent monitoring, to discourse-level regulation, and to finally overt self-reflection. Our analysis code can be found at https://github.com/DYR1/S3-CoT.
☆ S3-CoT: Self-Sampled Succinct Reasoning Enables Efficient Chain-of-Thought LLMs
Large language models (LLMs) equipped with chain-of-thought (CoT) achieve strong performance and offer a window into LLM behavior. However, recent evidence suggests that improvements in CoT capabilities often come with redundant reasoning processes, motivating a key question: Can LLMs acquire a fast-thinking mode analogous to human System 1 reasoning? To explore this, our study presents a self-sampling framework based on activation steering for efficient CoT learning. Our method can induce style-aligned and variable-length reasoning traces from target LLMs themselves without any teacher guidance, thereby alleviating a central bottleneck of SFT-based methods-the scarcity of high-quality supervision data. Using filtered data by gold answers, we perform SFT for efficient CoT learning with (i) a human-like dual-cognitive system, and (ii) a progressive compression curriculum. Furthermore, we explore a self-evolution regime in which SFT is driven solely by prediction-consistent data of variable-length variants, eliminating the need for gold answers. Extensive experiments on math benchmarks, together with cross-domain generalization tests in medicine, show that our method yields stable improvements for both general and R1-style LLMs. Our data and model checkpoints can be found at https://github.com/DYR1/S3-CoT.
☆ Beyond Local Edits: Embedding-Virtualized Knowledge for Broader Evaluation and Preservation of Model Editing
Knowledge editing methods for large language models are commonly evaluated using predefined benchmarks that assess edited facts together with a limited set of related or neighboring knowledge. While effective, such evaluations remain confined to finite, dataset-bounded samples, leaving the broader impact of editing on the model's knowledge system insufficiently understood. To address this gap, we introduce Embedding-Virtualized Knowledge (EVK) that characterizes model knowledge through controlled perturbations in embedding space, enabling the exploration of a substantially broader and virtualized knowledge region beyond explicit data annotations. Based on EVK, we construct an embedding-level evaluation benchmark EVK-Bench that quantifies potential knowledge drift induced by editing, revealing effects that are not captured by conventional sample-based metrics. Furthermore, we propose a plug-and-play EVK-Align module that constrains embedding-level knowledge drift during editing and can be seamlessly integrated into existing editing methods. Experiments demonstrate that our approach enables more comprehensive evaluation while significantly improving knowledge preservation without sacrificing editing accuracy.
☆ Orthogonal Hierarchical Decomposition for Structure-Aware Table Understanding with Large Language Models
Complex tables with multi-level headers, merged cells and heterogeneous layouts pose persistent challenges for LLMs in both understanding and reasoning. Existing approaches typically rely on table linearization or normalized grid modeling. However, these representations struggle to explicitly capture hierarchical structures and cross-dimensional dependencies, which can lead to misalignment between structural semantics and textual representations for non-standard tables. To address this issue, we propose an Orthogonal Hierarchical Decomposition (OHD) framework that constructs structure-preserving input representations of complex tables for LLMs. OHD introduces an Orthogonal Tree Induction (OTI) method based on spatial--semantic co-constraints, which decomposes irregular tables into a column tree and a row tree to capture vertical and horizontal hierarchical dependencies, respectively. Building on this representation, we design a dual-pathway association protocol to symmetrically reconstruct semantic lineage of each cell, and incorporate an LLM as a semantic arbitrator to align multi-level semantic information. We evaluate OHD framework on two complex table question answering benchmarks, AITQA and HiTab. Experimental results show that OHD consistently outperforms existing representation paradigms across multiple evaluation metrics.
comment: Work in process
☆ Mixture-of-Experts with Intermediate CTC Supervision for Accented Speech Recognition
Accented speech remains a persistent challenge for automatic speech recognition (ASR), as most models are trained on data dominated by a few high-resource English varieties, leading to substantial performance degradation for other accents. Accent-agnostic approaches improve robustness yet struggle with heavily accented or unseen varieties, while accent-specific methods rely on limited and often noisy labels. We introduce Moe-Ctc, a Mixture-of-Experts architecture with intermediate CTC supervision that jointly promotes expert specialization and generalization. During training, accent-aware routing encourages experts to capture accent-specific patterns, which gradually transitions to label-free routing for inference. Each expert is equipped with its own CTC head to align routing with transcription quality, and a routing-augmented loss further stabilizes optimization. Experiments on the Mcv-Accent benchmark demonstrate consistent gains across both seen and unseen accents in low- and high-resource conditions, achieving up to 29.3% relative WER reduction over strong FastConformer baselines.
☆ Breaking the Static Graph: Context-Aware Traversal for Robust Retrieval-Augmented Generation
Recent advances in Retrieval-Augmented Generation (RAG) have shifted from simple vector similarity to structure-aware approaches like HippoRAG, which leverage Knowledge Graphs (KGs) and Personalized PageRank (PPR) to capture multi-hop dependencies. However, these methods suffer from a "Static Graph Fallacy": they rely on fixed transition probabilities determined during indexing. This rigidity ignores the query-dependent nature of edge relevance, causing semantic drift where random walks are diverted into high-degree "hub" nodes before reaching critical downstream evidence. Consequently, models often achieve high partial recall but fail to retrieve the complete evidence chain required for multi-hop queries. To address this, we propose CatRAG, Context-Aware Traversal for robust RAG, a framework that builds on the HippoRAG 2 architecture and transforms the static KG into a query-adaptive navigation structure. We introduce a multi-faceted framework to steer the random walk: (1) Symbolic Anchoring, which injects weak entity constraints to regularize the random walk; (2) Query-Aware Dynamic Edge Weighting, which dynamically modulates graph structure, to prune irrelevant paths while amplifying those aligned with the query's intent; and (3) Key-Fact Passage Weight Enhancement, a cost-efficient bias that structurally anchors the random walk to likely evidence. Experiments across four multi-hop benchmarks demonstrate that CatRAG consistently outperforms state of the art baselines. Our analysis reveals that while standard Recall metrics show modest gains, CatRAG achieves substantial improvements in reasoning completeness, the capacity to recover the entire evidence path without gaps. These results reveal that our approach effectively bridges the gap between retrieving partial context and enabling fully grounded reasoning. Resources are available at https://github.com/kwunhang/CatRAG.
☆ From Code-Centric to Concept-Centric: Teaching NLP with LLM-Assisted "Vibe Coding" EACL2026
The rapid advancement of Large Language Models (LLMs) presents both challenges and opportunities for Natural Language Processing (NLP) education. This paper introduces ``Vibe Coding,'' a pedagogical approach that leverages LLMs as coding assistants while maintaining focus on conceptual understanding and critical thinking. We describe the implementation of this approach in a senior-level undergraduate NLP course, where students completed seven labs using LLMs for code generation while being assessed primarily on conceptual understanding through critical reflection questions. Analysis of end-of-course feedback from 19 students reveals high satisfaction (mean scores 4.4-4.6/5.0) across engagement, conceptual learning, and assessment fairness. Students particularly valued the reduced cognitive load from debugging, enabling deeper focus on NLP concepts. However, challenges emerged around time constraints, LLM output verification, and the need for clearer task specifications. Our findings suggest that when properly structured with mandatory prompt logging and reflection-based assessment, LLM-assisted learning can shift focus from syntactic fluency to conceptual mastery, preparing students for an AI-augmented professional landscape.
comment: Accepted in The Seventh Workshop on Teaching Natural Language Processing (Teaching NLP @ EACL2026)
☆ GuideWeb: A Benchmark for Automatic In-App Guide Generation on Real-World Web UIs
Digital Adoption Platform (DAP) provide web-based overlays that deliver operation guidance and contextual hints to help users navigate complex websites. Although modern DAP tools enable non-experts to author such guidance, maintaining these guides remains labor-intensive because website layouts and functionalities evolve continuously, which requires repeated manual updates and re-annotation. In this work, we introduce \textbf{GuideWeb}, a new benchmark for automatic in-app guide generation on real-world web UIs. GuideWeb formulates the task as producing page-level guidance by selecting \textbf{guide target elements} grounded in the webpage and generating concise guide text aligned with user intent. We also propose a comprehensive evaluation suite that jointly measures the accuracy of guide target element selection and the quality of generated intents and guide texts. Experiments show that our proposed \textbf{GuideWeb Agent} achieves \textbf{30.79\%} accuracy in guide target element prediction, while obtaining BLEU scores of \textbf{44.94} for intent generation and \textbf{21.34} for guide-text generation. Existing baselines perform substantially worse, which highlights that automatic guide generation remains challenging and that further advances are necessary before such systems can be reliably deployed in real-world settings.
☆ ES-MemEval: Benchmarking Conversational Agents on Personalized Long-Term Emotional Support WWW
Large Language Models (LLMs) have shown strong potential as conversational agents. Yet, their effectiveness remains limited by deficiencies in robust long-term memory, particularly in complex, long-term web-based services such as online emotional support. However, existing long-term dialogue benchmarks primarily focus on static and explicit fact retrieval, failing to evaluate agents in critical scenarios where user information is dispersed, implicit, and continuously evolving. To address this gap, we introduce ES-MemEval, a comprehensive benchmark that systematically evaluates five core memory capabilities: information extraction, temporal reasoning, conflict detection, abstention, and user modeling, in long-term emotional support settings, covering question answering, summarization, and dialogue generation tasks. To support the benchmark, we also propose EvoEmo, a multi-session dataset for personalized long-term emotional support that captures fragmented, implicit user disclosures and evolving user states. Extensive experiments on open-source long-context, commercial, and retrieval-augmented (RAG) LLMs show that explicit long-term memory is essential for reducing hallucinations and enabling effective personalization. At the same time, RAG improves factual consistency but struggles with temporal dynamics and evolving user states. These findings highlight both the potential and limitations of current paradigms and motivate more robust integration of memory and retrieval for long-term personalized dialogue systems.
comment: 12 pages, 7 figures. Accepted to The Web Conference (WWW) 2026
PretrainRL: Alleviating Factuality Hallucination of Large Language Models at the Beginning
Large language models (LLMs), despite their powerful capabilities, suffer from factual hallucinations where they generate verifiable falsehoods. We identify a root of this issue: the imbalanced data distribution in the pretraining corpus, which leads to a state of "low-probability truth" and "high-probability falsehood". Recent approaches, such as teaching models to say "I don't know" or post-hoc knowledge editing, either evade the problem or face catastrophic forgetting. To address this issue from its root, we propose \textbf{PretrainRL}, a novel framework that integrates reinforcement learning into the pretraining phase to consolidate factual knowledge. The core principle of PretrainRL is "\textbf{debiasing then learning}." It actively reshapes the model's probability distribution by down-weighting high-probability falsehoods, thereby making "room" for low-probability truths to be learned effectively. To enable this, we design an efficient negative sampling strategy to discover these high-probability falsehoods and introduce novel metrics to evaluate the model's probabilistic state concerning factual knowledge. Extensive experiments on three public benchmarks demonstrate that PretrainRL significantly alleviates factual hallucinations and outperforms state-of-the-art methods.
☆ Read As Human: Compressing Context via Parallelizable Close Reading and Skimming
Large Language Models (LLMs) demonstrate exceptional capability across diverse tasks. However, their deployment in long-context scenarios is hindered by two challenges: computational inefficiency and redundant information. We propose RAM (Read As HuMan), a context compression framework that adopts an adaptive hybrid reading strategy, to address these challenges. Inspired by human reading behavior (i.e., close reading important content while skimming less relevant content), RAM partitions the context into segments and encodes them with the input query in parallel. High-relevance segments are fully retained (close reading), while low-relevance ones are query-guided compressed into compact summary vectors (skimming). Both explicit textual segments and implicit summary vectors are concatenated and fed into decoder to achieve both superior performance and natural language format interpretability. To refine the decision boundary between close reading and skimming, we further introduce a contrastive learning objective based on positive and negative query-segment pairs. Experiments demonstrate that RAM outperforms existing baselines on multiple question answering and summarization benchmarks across two backbones, while delivering up to a 12x end-to-end speedup on long inputs (average length 16K; maximum length 32K).
comment: 13 pages,5 figures
☆ AXE: Low-Cost Cross-Domain Web Structured Information Extraction
Extracting structured data from the web is often a trade-off between the brittle nature of manual heuristics and the prohibitive cost of Large Language Models. We introduce AXE (Adaptive X-Path Extractor), a pipeline that rethinks this process by treating the HTML DOM as a tree that needs pruning rather than just a wall of text to be read. AXE uses a specialized "pruning" mechanism to strip away boilerplate and irrelevant nodes, leaving behind a distilled, high-density context that allows a tiny 0.6B LLM to generate precise, structured outputs. To keep the model honest, we implement Grounded XPath Resolution (GXR), ensuring every extraction is physically traceable to a source node. Despite its low footprint, AXE achieves state-of-the-art zero-shot performance, outperforming several much larger, fully-trained alternatives with an F1 score of 88.1% on the SWDE dataset. By releasing our specialized adaptors, we aim to provide a practical, cost-effective path for large-scale web information extraction.
☆ Sentence Curve Language Models
Language models (LMs) are a central component of modern AI systems, and diffusion-based language models (DLMs) have recently emerged as a competitive alternative. Both paradigms rely on word embeddings not only to represent the input sentence, but also to represent the target sentence that backbone models are trained to predict. We argue that such static embedding of the target word is insensitive to neighboring words, encouraging locally accurate word prediction while neglecting global structure across the target sentence. To address this limitation, we propose a continuous sentence representation, termed sentence curve, defined as a spline curve whose control points affect multiple words in the sentence. Based on this representation, we introduce sentence curve language model (SCLM), which extends DLMs to predict sentence curves instead of the static word embeddings. We theoretically show that sentence curve prediction induces a regularization effect that promotes global structure modeling, and characterize how different sentence curve types affect this behavior. Empirically, SCLM achieves SOTA performance among DLMs on IWSLT14 and WMT14, shows stable training without burdensome knowledge distillation, and demonstrates promising potential compared to discrete DLMs on LM1B.
☆ CodeOCR: On the Effectiveness of Vision Language Models in Code Understanding
Large Language Models (LLMs) have achieved remarkable success in source code understanding, yet as software systems grow in scale, computational efficiency has become a critical bottleneck. Currently, these models rely on a text-based paradigm that treats source code as a linear sequence of tokens, which leads to a linear increase in context length and associated computational costs. The rapid advancement of Multimodal LLMs (MLLMs) introduces an opportunity to optimize efficiency by representing source code as rendered images. Unlike text, which is difficult to compress without losing semantic meaning, the image modality is inherently suitable for compression. By adjusting resolution, images can be scaled to a fraction of their original token cost while remaining recognizable to vision-capable models. To explore the feasibility of this approach, we conduct the first systematic study on the effectiveness of MLLMs for code understanding. Our experiments reveal that: (1) MLLMs can effectively understand code with substantial token reduction, achieving up to 8x compression; (2) MLLMs can effectively leverage visual cues such as syntax highlighting, improving code completion performance under 4x compression; and (3) Code-understanding tasks like clone detection exhibit exceptional resilience to visual compression, with some compression ratios even slightly outperforming raw text inputs. Our findings highlight both the potential and current limitations of MLLMs in code understanding, which points out a shift toward image-modality code representation as a pathway to more efficient inference.
comment: Code and data are available at https://github.com/YerbaPage/CodeOCR
☆ Data Distribution Matters: A Data-Centric Perspective on Context Compression for Large Language Model
The deployment of Large Language Models (LLMs) in long-context scenarios is hindered by computational inefficiency and significant information redundancy. Although recent advancements have widely adopted context compression to address these challenges, existing research only focus on model-side improvements, the impact of the data distribution itself on context compression remains largely unexplored. To bridge this gap, we are the first to adopt a data-centric perspective to systematically investigate how data distribution impacts compression quality, including two dimensions: input data and intrinsic data (i.e., the model's internal pretrained knowledge). We evaluate the semantic integrity of compressed representations using an autoencoder-based framework to systematically investigate it. Our experimental results reveal that: (1) encoder-measured input entropy negatively correlates with compression quality, while decoder-measured entropy shows no significant relationship under a frozen-decoder setting; and (2) the gap between intrinsic data of the encoder and decoder significantly diminishes compression gains, which is hard to mitigate. Based on these findings, we further present practical guidelines to optimize compression gains.
comment: 15 pages,6 figures
: One LLM Token for Explicit Graph Structural Understanding
Large language models show great potential in unstructured data understanding, but still face significant challenges with graphs due to their structural hallucination. Existing approaches mainly either verbalize graphs into natural language, which leads to excessive token consumption and scattered attention, or transform graphs into trainable continuous embeddings (i.e., soft prompt), but exhibit severe misalignment with original text tokens. To solve this problem, we propose to incorporate one special token to fully represent the Structure Of Graph within a unified token space, facilitating explicit topology input and structural information sharing. Specifically, we propose a topology-aware structural tokenizer that maps each graph topology into a highly selective single token. Afterwards, we construct a set of hybrid structure Question-Answering corpora to align new structural tokens with existing text tokens. With this approach, empowers LLMs to understand, generate, and reason in a concise and accurate manner. Extensive experiments on five graph-level benchmarks demonstrate the superiority of our method, achieving a performance improvement of 9.9% to 41.4% compared to the baselines while exhibiting interpretability and consistency. Furthermore, our method provides a flexible extension to node-level tasks, enabling both global and local structural understanding. The codebase is publicly available at https://github.com/Jingyao-Wu/SOG.
☆ PRISM: Parametrically Refactoring Inference for Speculative Sampling Draft Models
Large Language Models (LLMs), constrained by their auto-regressive nature, suffer from slow decoding. Speculative decoding methods have emerged as a promising solution to accelerate LLM decoding, attracting attention from both systems and AI research communities. Recently, the pursuit of better draft quality has driven a trend toward parametrically larger draft models, which inevitably introduces substantial computational overhead. While existing work attempts to balance the trade-off between prediction accuracy and compute latency, we address this fundamental dilemma through architectural innovation. We propose PRISM, which disaggregates the computation of each predictive step across different parameter sets, refactoring the computational pathways of draft models to successfully decouple model capacity from inference cost. Through extensive experiments, we demonstrate that PRISM outperforms all existing draft architectures, achieving exceptional acceptance lengths while maintaining minimal draft latency for superior end-to-end speedup. We also re-examine scaling laws with PRISM, revealing that PRISM scales more effectively with expanding data volumes than other draft architectures. Through rigorous and fair comparison, we show that PRISM boosts the decoding throughput of an already highly optimized inference engine by more than 2.6x.
☆ Zero2Text: Zero-Training Cross-Domain Inversion Attacks on Textual Embeddings
The proliferation of retrieval-augmented generation (RAG) has established vector databases as critical infrastructure, yet they introduce severe privacy risks via embedding inversion attacks. Existing paradigms face a fundamental trade-off: optimization-based methods require computationally prohibitive queries, while alignment-based approaches hinge on the unrealistic assumption of accessible in-domain training data. These constraints render them ineffective in strict black-box and cross-domain settings. To dismantle these barriers, we introduce Zero2Text, a novel training-free framework based on recursive online alignment. Unlike methods relying on static datasets, Zero2Text synergizes LLM priors with a dynamic ridge regression mechanism to iteratively align generation to the target embedding on-the-fly. We further demonstrate that standard defenses, such as differential privacy, fail to effectively mitigate this adaptive threat. Extensive experiments across diverse benchmarks validate Zero2Text; notably, on MS MARCO against the OpenAI victim model, it achieves 1.8x higher ROUGE-L and 6.4x higher BLEU-2 scores compared to baselines, recovering sentences from unknown domains without a single leaked data pair.
comment: 10 pages
☆ WorldCup Sampling for Multi-bit LLM Watermarking
As large language models (LLMs) generate increasingly human-like text, watermarking offers a promising solution for reliable attribution beyond mere detection. While multi-bit watermarking enables richer provenance encoding, existing methods largely extend zero-bit schemes through seed-driven steering, leading to indirect information flow, limited effective capacity, and suboptimal decoding. In this paper, we propose WorldCup, a multi-bit watermarking framework for LLMs that treats sampling as a natural communication channel and embeds message bits directly into token selection via a hierarchical competition mechanism guided by complementary signals. Moreover, WorldCup further adopts entropy-aware modulation to preserve generation quality and supports robust message recovery through confidence-aware decoding. Comprehensive experiments show that WorldCup achieves a strong balance across capacity, detectability, robustness, text quality, and decoding efficiency, consistently outperforming prior baselines and laying a solid foundation for future LLM watermarking studies.
☆ Enhancing Automated Essay Scoring with Three Techniques: Two-Stage Fine-Tuning, Score Alignment, and Self-Training
Automated Essay Scoring (AES) plays a crucial role in education by providing scalable and efficient assessment tools. However, in real-world settings, the extreme scarcity of labeled data severely limits the development and practical adoption of robust AES systems. This study proposes a novel approach to enhance AES performance in both limited-data and full-data settings by introducing three key techniques. First, we introduce a Two-Stage fine-tuning strategy that leverages low-rank adaptations to better adapt an AES model to target prompt essays. Second, we introduce a Score Alignment technique to improve consistency between predicted and true score distributions. Third, we employ uncertainty-aware self-training using unlabeled data, effectively expanding the training set with pseudo-labeled samples while mitigating label noise propagation. We implement above three key techniques on DualBERT. We conduct extensive experiments on the ASAP++ dataset. As a result, in the 32-data setting, all three key techniques improve performance, and their integration achieves 91.2% of the full-data performance trained on approximately 1,000 labeled samples. In addition, the proposed Score Alignment technique consistently improves performance in both limited-data and full-data settings: e.g., it achieves state-of-the-art results in the full-data setting when integrated into DualBERT.
comment: 22 pages, 4 figures
☆ SafePred: A Predictive Guardrail for Computer-Using Agents via World Models
With the widespread deployment of Computer-using Agents (CUAs) in complex real-world environments, prevalent long-term risks often lead to severe and irreversible consequences. Most existing guardrails for CUAs adopt a reactive approach, constraining agent behavior only within the current observation space. While these guardrails can prevent immediate short-term risks (e.g., clicking on a phishing link), they cannot proactively avoid long-term risks: seemingly reasonable actions can lead to high-risk consequences that emerge with a delay (e.g., cleaning logs leads to future audits being untraceable), which reactive guardrails cannot identify within the current observation space. To address these limitations, we propose a predictive guardrail approach, with the core idea of aligning predicted future risks with current decisions. Based on this approach, we present SafePred, a predictive guardrail framework for CUAs that establishes a risk-to-decision loop to ensure safe agent behavior. SafePred supports two key abilities: (1) Short- and long-term risk prediction: by using safety policies as the basis for risk prediction, SafePred leverages the prediction capability of the world model to generate semantic representations of both short-term and long-term risks, thereby identifying and pruning actions that lead to high-risk states; (2) Decision optimization: translating predicted risks into actionable safe decision guidances through step-level interventions and task-level re-planning. Extensive experiments show that SafePred significantly reduces high-risk behaviors, achieving over 97.6% safety performance and improving task utility by up to 21.4% compared with reactive baselines.
☆ COMI: Coarse-to-fine Context Compression via Marginal Information Gain ICLR 2026
Large Language Models (LLMs) have demonstrated exceptional capabilities across diverse tasks. However, their deployment in long context scenarios remains hindered by computational inefficiency and information redundancy. Context compression methods address these challenges by significantly reducing input length and eliminating redundancy. We propose COMI, a coarse-to-fine adaptive context compression framework that jointly optimizes for semantic relevance and diversity under high compression rates. We introduce Marginal Information Gain (MIG), a metric defined as the relevance of a unit to the input query minus its semantic redundancy with other units, guiding the compression process to prioritize information that is both relevant and low redundant. The framework operates in two stages: (1) Coarse-Grained Group Reallocation, where the context is partitioned into groups and dynamically assigned compression rates based on inter-group MIG, ensuring compression budgets align with information value distribution; and (2) Fine-Grained Token Merging, where tokens within each group are fused via an intra-group MIG-based weighting mechanism, thereby preserving key semantics while avoiding the accumulation of redundancy. Extensive experiments across question-answering (e.g., NaturalQuestions, 2WikiMQA, HotpotQA and NarrativeQA), summarization (e.g., MultiNews) with various backbones (e.g., LLaMA-2-7B, Qwen2-7B) show that COMI outperforms existing baselines by a large margin, e.g., approximately 25-point Exact Match (EM) improvement under 32x compression constraint with Qwen2-7B on NaturalQuestions.
comment: Accepted at ICLR 2026
☆ BBPE16: UTF-16-based byte-level byte-pair encoding for improved multilingual speech recognition ICASSP 2026
Multilingual automatic speech recognition (ASR) requires tokenization that efficiently covers many writing systems. Byte-level BPE (BBPE) using UTF-8 is widely adopted for its language-agnostic design and full Unicode coverage, but its variable-length encoding inflates token sequences for non-Latin scripts, such as Chinese, Japanese, and Korean (CJK). Longer sequences increase computational load and memory use. We propose BBPE16, a UTF-16-based BBPE tokenizer that represents most modern scripts with a uniform 2-byte code unit. BBPE16 preserves BBPE's language-agnostic properties while substantially improving cross-lingual token sharing. Across monolingual, bilingual, and trilingual ASR, and in a multilingual continual-learning setup, BBPE16 attains comparable or better accuracy; for Chinese, it reduces token counts by up to 10.4% and lowers decoding iterations by up to 10.3%. These reductions speed up fine-tuning and inference and decrease memory usage, making BBPE16 a practical tokenization choice for multilingual ASR.
comment: accepted to ICASSP 2026
☆ Mechanistic Indicators of Steering Effectiveness in Large Language Models
Activation-based steering enables Large Language Models (LLMs) to exhibit targeted behaviors by intervening on intermediate activations without retraining. Despite its widespread use, the mechanistic factors that govern when steering succeeds or fails remain poorly understood, as prior work has relied primarily on black-box outputs or LLM-based judges. In this study, we investigate whether the reliability of steering can be diagnosed using internal model signals. We focus on two information-theoretic measures: the entropy-derived Normalized Branching Factor (NBF), and the Kullback-Leibler (KL) divergence between steered activations and targeted concepts in the vocabulary space. We hypothesize that effective steering corresponds to structured entropy preservation and coherent KL alignment across decoding steps. Building on a reliability study demonstrating high inter-judge agreement between two architecturally distinct LLMs, we use LLM-generated annotations as ground truth and show that these mechanistic signals provide meaningful predictive power for identifying successful steering and estimating failure probability. We further introduce a stronger evaluation baseline for Contrastive Activation Addition (CAA) and Sparse Autoencoder-based steering, the two most widely adopted activation-steering methods.
☆ MedAraBench: Large-Scale Arabic Medical Question Answering Dataset and Benchmark
Arabic remains one of the most underrepresented languages in natural language processing research, particularly in medical applications, due to the limited availability of open-source data and benchmarks. The lack of resources hinders efforts to evaluate and advance the multilingual capabilities of Large Language Models (LLMs). In this paper, we introduce MedAraBench, a large-scale dataset consisting of Arabic multiple-choice question-answer pairs across various medical specialties. We constructed the dataset by manually digitizing a large repository of academic materials created by medical professionals in the Arabic-speaking region. We then conducted extensive preprocessing and split the dataset into training and test sets to support future research efforts in the area. To assess the quality of the data, we adopted two frameworks, namely expert human evaluation and LLM-as-a-judge. Our dataset is diverse and of high quality, spanning 19 specialties and five difficulty levels. For benchmarking purposes, we assessed the performance of eight state-of-the-art open-source and proprietary models, such as GPT-5, Gemini 2.0 Flash, and Claude 4-Sonnet. Our findings highlight the need for further domain-specific enhancements. We release the dataset and evaluation scripts to broaden the diversity of medical data benchmarks, expand the scope of evaluation suites for LLMs, and enhance the multilingual capabilities of models for deployment in clinical settings.
☆ ARTIS: Agentic Risk-Aware Test-Time Scaling via Iterative Simulation
Current test-time scaling (TTS) techniques enhance large language model (LLM) performance by allocating additional computation at inference time, yet they remain insufficient for agentic settings, where actions directly interact with external environments and their effects can be irreversible and costly. We propose \emph{\name}, \emph{\underline{A}gentic \underline{R}isk-Aware \underline{T}est-Time Scaling via \underline{I}terative \underline{S}imulation}, a framework that decouples exploration from commitment by enabling test-time exploration through simulated interactions prior to real-world execution. This design allows extending inference-time computation to improve action-level reliability and robustness without incurring environmental risk. We further show that naive LLM-based simulators struggle to capture rare but high-impact failure modes, substantially limiting their effectiveness for agentic decision making. To address this limitation, we introduce a \emph{risk-aware tool simulator} that emphasizes fidelity on failure-inducing actions via targeted data generation and rebalanced training. Experiments on multi-turn and multi-step agentic benchmarks demonstrate that iterative simulation substantially improves agent reliability, and that risk-aware simulation is essential for consistently realizing these gains across models and tasks.
☆ Game of Thought: Robust Information Seeking with Large Language Models Using Game Theory ICML 2026
Large Language Models (LLMs) are increasingly deployed in real-world scenarios where they may lack sufficient information to complete a given task. In such settings, the ability to actively seek out missing information becomes a critical capability. Existing approaches to enhancing this ability often rely on simplifying assumptions that degrade \textit{worst-case} performance. This is an issue with serious implications in high-stakes applications. In this work, we use the game of Twenty Questions to evaluate the information-seeking ability of LLMs. We introduce and formalize its adversarial counterpart, the Strategic Language Search (SLS) problem along with its variants as a two-player zero-sum extensive form game. We propose Game of Thought (GoT), a framework that applies game-theoretic techniques to approximate a Nash equilibrium (NE) strategy for the restricted variant of the game. Empirical results demonstrate that our approach consistently improves worst-case performance compared to (1) direct prompting-based methods and (2) heuristic-guided search methods across all tested settings.
comment: 23 pages, 10 figures, under review at ICML 2026
♻ ☆ DESIGNER: Design-Logic-Guided Multidisciplinary Data Synthesis for LLM Reasoning ICLR 2026
Large language models (LLMs) perform strongly on many language tasks but still struggle with complex multi-step reasoning across disciplines. Existing reasoning datasets often lack disciplinary breadth, reasoning depth, and diversity, as well as guiding principles for question synthesis. We propose DESIGNER: a DESIGN-logic-guidEd Reasoning data synthesis pipeline that leverages naturally available, extensive raw documents to generate multidisciplinary questions. The central insight is the notion of Design Logic, a form of reusable meta-knowledge that encapsulates the structured process human experts use to transform knowledge into complex exam questions, enabling LLMs to generate new questions with the same complex reasoning patterns from entirely different source texts with explicit control over difficulty, diversity, and question types. We use LLMs to reverse-engineer and abstract over 120,000 Design Logics from existing questions across various disciplines. By designing a two-stage retrieve-and-generate mechanism to match these Design Logics with raw corpus, we synthesized two large-scale reasoning datasets that span 75 disciplines: DLR-Book (3.04 million questions from the book corpus) and DLR-Web (1.66 million questions from the web corpus). Data analysis indicates that the questions synthesized by our method exhibit greater difficulty and diversity compared to those in the baseline datasets. Supervised fine-tuning (SFT) on Qwen3 and Llama3 with our data substantially improves multidisciplinary reasoning and outperforms baseline datasets. Notably, by applying SFT on the base versions of these models using only our data, we even surpass their official final models that have undergone the full post-training.
comment: Accepted to ICLR 2026. Project page: https://attention-is-all-i-need.github.io/Design-Logic-Reasoning
♻ ☆ Which Reasoning Trajectories Teach Students to Reason Better? A Simple Metric of Informative Alignment
Long chain-of-thought (CoT) trajectories provide rich supervision signals for distilling reasoning from teacher to student LLMs. However, both prior work and our experiments show that trajectories from stronger teachers do not necessarily yield better students, highlighting the importance of data-student suitability in distillation. Existing methods assess suitability primarily through student likelihood, favoring trajectories that align closely with the student model's current behavior but overlooking more informative ones. Addressing this, we propose Rank-Surprisal Ratio (RSR), a simple metric that captures both alignment and informativeness to assess the suitability of a reasoning trajectory. RSR is motivated by the observation that effective trajectories typically balance learning signal strength and behavioral alignment by combining low absolute probability with relatively high-ranked tokens under the student model. Concretely, RSR is defined as the ratio of a trajectory's average token-wise rank to its average negative log-likelihood, and is straightforward to compute and interpret. Across five student models and reasoning trajectories from 11 diverse teachers, RSR strongly correlates with post-training reasoning performance (average Spearman 0.86), consistently outperforming existing metrics. We further demonstrate its practical utility in both trajectory selection and teacher selection.
comment: 27 pages. Project page: https://github.com/UmeanNever/RankSurprisalRatio
♻ ☆ How to Train Your Advisor: Steering Black-Box LLMs with Advisor Models
Frontier language models are deployed as black-box services, where model weights cannot be modified and customization is limited to prompting. We introduce Advisor Models, a method to train small open-weight models to generate dynamic, per-instance natural language advice that improves the capabilities of black-box frontier models. Advisor Models improve GPT-5's performance on RuleArena (Taxes) by 71%, reduce Gemini 3 Pro's steps taken in SWE agent tasks by 24.6%, and outperform static prompt optimizers in personalizing GPT-5 to user preferences (85-100% vs. 40-60%). We also find that advisors are transferable: an advisor trained with a low-cost student model still transfers improvements to a frontier model. Moreover, Advisor Models are robust: we observe no degradation on other benchmarks than the pipeline is trained on. Our method shows how to perform parametric optimization for black-box frontier models in a practical and cost-effective way.
♻ ☆ Uncertainty-Aware Knowledge Tracing Models
The main focus of research on Knowledge Tracing (KT) models is on model developments with the aim of improving predictive accuracy. Most of these models make the most incorrect predictions when students choose a distractor, leading to student errors going undetected. We present an approach to add new capabilities to KT models by capturing predictive uncertainty and demonstrate that a larger predictive uncertainty aligns with model incorrect predictions. We show that uncertainty in KT models is informative and that this signal would be pedagogically useful for application in an educational learning platform that can be used in a limited resource setting where understanding student ability is necessary.
comment: 10 pages, 7 figures. Joshua Mitton and Prarthana Bhattacharyya contributed equally to this paper
♻ ☆ FS-DFM: Fast and Accurate Long Text Generation with Few-Step Diffusion Language Models ICLR 2026
Autoregressive language models (ARMs) deliver strong likelihoods, but are inherently serial: they generate one token per forward pass, which limits throughput and inflates latency for long sequences. Diffusion Language Models (DLMs) parallelize across positions and thus appear promising for language generation, yet standard discrete diffusion typically needs hundreds to thousands of model evaluations to reach high quality, trading serial depth for iterative breadth. We introduce FS-DFM, Few-Step Discrete Flow-Matching. A discrete flow-matching model designed for speed without sacrificing quality. The core idea is simple: make the number of sampling steps an explicit parameter and train the model to be consistent across step budgets, so one big move lands where many small moves would. We pair this with a reliable update rule that moves probability in the right direction without overshooting, and with strong teacher guidance distilled from long-run trajectories. Together, these choices make few-step sampling stable, accurate, and easy to control. On language modeling benchmarks, FS-DFM with 8 sampling steps achieves perplexity parity with a 1,024-step discrete-flow baseline for generating 1,024 tokens using a similar-size model, delivering up to 128 times faster sampling and corresponding latency/throughput gains.
comment: Accepted to ICLR 2026
♻ ☆ Reverse Engineering Human Preferences with Reinforcement Learning NeurIPS 2025
The capabilities of Large Language Models (LLMs) are routinely evaluated by other LLMs trained to predict human preferences. This framework--known as LLM-as-a-judge--is highly scalable and relatively low cost. However, it is also vulnerable to malicious exploitation, as LLM responses can be tuned to overfit the preferences of the judge. Previous work shows that the answers generated by a candidate-LLM can be edited post hoc to maximise the score assigned to them by a judge-LLM. In this study, we adopt a different approach and use the signal provided by judge-LLMs as a reward to adversarially tune models that generate text preambles designed to boost downstream performance. We find that frozen LLMs pipelined with these models attain higher LLM-evaluation scores than existing frameworks. Crucially, unlike other frameworks which intervene directly on the model's response, our method is virtually undetectable. We also demonstrate that the effectiveness of the tuned preamble generator transfers when the candidate-LLM and the judge-LLM are replaced with models that are not used during training. These findings raise important questions about the design of more reliable LLM-as-a-judge evaluation settings. They also demonstrate that human preferences can be reverse engineered effectively, by pipelining LLMs to optimise upstream preambles via reinforcement learning--an approach that could find future applications in diverse tasks and domains beyond adversarial attacks.
comment: NeurIPS 2025 (Spotlight)
♻ ☆ Language Family Matters: Evaluating LLM-Based ASR Across Linguistic Boundaries EACL'26
Large Language Model (LLM)-powered Automatic Speech Recognition (ASR) systems achieve strong performance with limited resources by linking a frozen speech encoder to a pretrained LLM via a lightweight connector. Prior work trains a separate connector per language, overlooking linguistic relatedness. We propose an efficient and novel connector-sharing strategy based on linguistic family membership, enabling one connector per family, and empirically validate its effectiveness across two multilingual LLMs and two real-world corpora spanning curated and crowd-sourced speech. Our results show that family-based connectors reduce parameter count while improving generalization across domains, offering a practical and scalable strategy for multilingual ASR deployment.
comment: Accepted by EACL'26 main
♻ ☆ Generalization or Hallucination? Understanding Out-of-Context Reasoning in Transformers NeurIPS 2025
Large language models (LLMs) can acquire new knowledge through fine-tuning, but this process exhibits a puzzling duality: models can generalize remarkably from new facts, yet are also prone to hallucinating incorrect information. However, the reasons for this phenomenon remain poorly understood. In this work, we argue that both behaviors stem from a single mechanism known as out-of-context reasoning (OCR): the ability to deduce implications by associating concepts, even those without a causal link. Our experiments across five prominent LLMs confirm that OCR indeed drives both generalization and hallucination, depending on whether the associated concepts are causally related. To build a rigorous theoretical understanding of this phenomenon, we then formalize OCR as a synthetic factual recall task. We empirically show that a one-layer single-head attention-only transformer with factorized output and value matrices can learn to solve this task, while a model with combined weights cannot, highlighting the crucial role of matrix factorization. Our theoretical analysis shows that the OCR capability can be attributed to the implicit bias of gradient descent, which favors solutions that minimize the nuclear norm of the combined output-value matrix. This mathematical structure explains why the model learns to associate facts and implications with high sample efficiency, regardless of whether the correlation is causal or merely spurious. Ultimately, our work provides a theoretical foundation for understanding the OCR phenomenon, offering a new lens for analyzing and mitigating undesirable behaviors from knowledge injection.
comment: NeurIPS 2025, first three authors contributed equally
♻ ☆ CUS-QA: Local-Knowledge-Oriented Open-Ended Question Answering Dataset
We introduce CUS-QA, a benchmark for evaluation of open-ended regional question answering that encompasses both textual and visual modalities. We also provide strong baselines using state-of-the-art large language models (LLMs). Our dataset consists of manually curated questions and answers grounded in Wikipedia, created by native speakers from Czechia, Slovakia, and Ukraine, with accompanying English translations. It includes both purely textual questions and those requiring visual understanding. We evaluate state-of-the-art LLMs through prompting and add human judgments of answer correctness. Using these human evaluations, we analyze the reliability of existing automatic evaluation metrics. Our baseline results show that even the best open-weight LLMs achieve only over 40% accuracy on textual questions and below 30% on visual questions. LLM-based evaluation metrics show strong correlation with human judgment, while traditional string-overlap metrics perform surprisingly well due to the prevalence of named entities in answers.
♻ ☆ LIFT: A Novel Framework for Enhancing Long-Context Understanding of LLMs via Long Input Fine-Tuning
Long context understanding remains challenging for large language models due to their limited context windows. This paper introduces Long Input Fine-Tuning (LIFT), a novel framework for long-context modeling that can enhance the long-context performance of arbitrary short-context LLMs by dynamically adapting their parameters to the given long input. Importantly, rather than endlessly extending the context window size to accommodate increasingly longer inputs in context, LIFT stores and absorbs the long input in parameters. By fine-tuning the long input into model parameters, LIFT allows short-context LLMs to answer questions even when the required information is not provided in the context during inference, avoiding the quadratic complexity w.r.t. input length of a normal long context model. Furthermore, LIFT does not simply perform continued pretraining on new, long contexts, but leverages carefully designed LLM-generated synthetic tasks to enhance the comprehension of long contexts, moving beyond mere memorization. To accommodate the additional cost of fine-tuning, we design a highly optimized pipeline that reduces the Time to First Token (TTFT) to less than 10 seconds for 8k context. We further provide a comprehensive analysis of LIFT's strengths and limitations in long-context understanding, discuss its feasibility for large-scale real-world deployment, and highlight valuable directions for future research.
comment: 8 pages, 6 figures, preprint
♻ ☆ MEMOIR: Lifelong Model Editing with Minimal Overwrite and Informed Retention for LLMs NeurIPS 2025
Language models deployed in real-world systems often require post-hoc updates to incorporate new or corrected knowledge. However, editing such models efficiently and reliably-without retraining or forgetting previous information-remains a major challenge. Existing methods for lifelong model editing either compromise generalization, interfere with past edits, or fail to scale to long editing sequences. We propose MEMOIR, a novel scalable framework that injects knowledge through a residual memory, i.e., a dedicated parameter module, while preserving the core capabilities of the pre-trained model. By sparsifying input activations through sample-dependent masks, MEMOIR confines each edit to a distinct subset of the memory parameters, minimizing interference among edits. At inference, it identifies relevant edits by comparing the sparse activation patterns of new queries to those stored during editing. This enables generalization to rephrased queries by activating only the relevant knowledge while suppressing unnecessary memory activation for unrelated prompts. Experiments on question answering, hallucination correction, and out-of-distribution generalization benchmarks for LLaMA-3 and Mistral backbones demonstrate that MEMOIR achieves state-of-the-art performance across reliability, generalization, and locality metrics, scaling to thousands of sequential edits with minimal forgetting.
comment: The first two authors contributed equally to this work; Accepted to NeurIPS 2025
♻ ☆ Midtraining Bridges Pretraining and Posttraining Distributions
Midtraining, the practice of mixing specialized data with more general pretraining data in an intermediate training phase, has become widespread in language model development, yet there is little understanding of what makes it effective. We propose that midtraining functions as distributional bridging by providing better initialization for posttraining. We conduct controlled pretraining experiments, and find that midtraining benefits are largest for domains distant from general pretraining data, such as code and math, and scale with the proximity advantage the midtraining data provides toward the target distribution. In these domains, midtraining consistently outperforms continued pretraining on specialized data alone both in-domain and in terms of mitigating forgetting. We further conduct an investigation on the starting time and mixture weight of midtraining data, using code as a case study, and find that time of introduction and mixture weight interact strongly such that early introduction of specialized data is amenable to high mixture weights, while late introduction requires lower ones. This suggests that late introduction of specialized data outside a plasticity window cannot be compensated for by increasing data mixtures later in training. Beyond midtraining itself, this suggests that distributional transitions between any training phases may benefit from similar bridging strategies.
♻ ☆ Adaptive Testing for LLM Evaluation: A Psychometric Alternative to Static Benchmarks
Evaluating large language models (LLMs) typically requires thousands of benchmark items, making the process expensive, slow, and increasingly impractical at scale. Existing evaluation protocols rely on average accuracy over fixed item sets, treating all items as equally informative despite substantial variation in difficulty and discrimination. We introduce ATLAS, an adaptive testing framework based on Item Response Theory (IRT) that estimates model ability using Fisher information-guided item selection. ATLAS reduces the number of required items by up to 90% while maintaining measurement precision. For instance, it matches whole-bank ability estimates using only 41 items (0.157 MAE) on HellaSwag (5,600 items). We further reconstruct accuracy from ATLAS's ability estimates and find that reconstructed accuracies closely match raw accuracies across all five benchmarks, indicating that ability $θ$ preserves the global performance structure. At the same time, $θ$ provides finer discrimination within accuracy-equivalent models: among more than 3,000 evaluated models, 23-31% shift by more than 10 rank positions, and models with identical accuracies receive meaningfully different ability estimates. Code and calibrated item banks are available at https://github.com/Peiyu-Georgia-Li/ATLAS.git.
comment: Code and calibrated item banks are available at https://github.com/Peiyu-Georgia-Li/ATLAS.git
♻ ☆ Enabling Approximate Joint Sampling in Diffusion LMs
In autoregressive language models, each token is sampled by conditioning on all the past tokens; the overall string has thus been sampled from the correct underlying joint distribution represented by the model. In contrast, masked diffusion language models generate text by unmasking tokens out of order and potentially in parallel. Generating an overall string sampled from the correct underlying joint distribution would (again) require exactly one token unmasking in every full-model forward pass. The more tokens unmasked in parallel, the further away the string is from the true joint; this can be seen in the resulting drop in accuracy (but, increase in speed). In this paper we devise a way to {\em approximately} sample multiple tokens from the joint distribution in a single full-model forward pass; we do so by developing a new lightweight single-layer ``sampler" on top of an existing large diffusion LM. One forward pass of the full model can now be followed by multiple forward passes of only this sampler layer, to yield multiple unmasked tokens. Our sampler is trained to mimic exact joint sampling from the (frozen) full model. We show the effectiveness of our approximate joint sampling for both pretrained-only (Dream-7B-Base, Llada-7B-Base) and instruction-tuned (Dream-7B-Instruct, Dream-7B-Coder) models on language modeling and math \& coding tasks. When four tokens are unmasked for each full-model denoising step, our sampling algorithm achieves a MAUVE score of 0.87 (vs marginal baseline of 0.31) with respect to the true joint distribution.
♻ ☆ Language as a Wave Phenomenon: Semantic Phase Locking and Interference in Neural Networks
In standard Transformer architectures, semantic importance is often conflated with activation magnitude, obscuring the geometric structure of latent representations. To disentangle these factors, we introduce PRISM, a complex-valued architecture designed to isolate the computational role of phase. By enforcing a strict unit-norm constraint (|z| = 1) and replacing attention with gated harmonic convolutions, the model is compelled to utilize subtractive interference in the frequency domain to suppress noise, rather than relying on magnitude-based gating. We utilize this constrained regime to demonstrate that a hybrid architecture - fusing phase-based routing with standard attention - achieves superior parameter efficiency and representation quality compared to unconstrained baselines. Mechanistically, we identify geometric phase clustering, where tokens naturally self-organize to resolve semantic ambiguities. This establishes an O(N log N) reasoning framework based on spectral interference, providing an algorithmic existence proof that subtractive logic is a sufficient primitive for deep reasoning.
comment: 14 pages, 7 figures; Revised title; Added new experiments on encoder-only models using WikiText-103
♻ ☆ The Language You Ask In: Language-Conditioned Ideological Divergence in LLM Analysis of Contested Political Documents
Large language models (LLMs) are increasingly deployed as analytical tools across multilingual contexts, yet their outputs may carry systematic biases conditioned by the language of the prompt. This study presents an experimental comparison of LLM-generated political analyses of a Ukrainian civil society document, using semantically equivalent prompts in Russian and Ukrainian. Despite identical source material and parallel query structures, the resulting analyses varied substantially in rhetorical positioning, ideological orientation, and interpretive conclusions. The Russian-language output echoed narratives common in Russian state discourse, characterizing civil society actors as illegitimate elites undermining democratic mandates. The Ukrainian-language output adopted vocabulary characteristic of Western liberal-democratic political science, treating the same actors as legitimate stakeholders within democratic contestation. These findings demonstrate that prompt language alone can produce systematically different ideological orientations from identical models analyzing identical content, with significant implications for AI deployment in polarized information environments, cross-lingual research applications, and the governance of AI systems in multilingual societies.
♻ ☆ STAC: When Innocent Tools Form Dangerous Chains to Jailbreak LLM Agents
As LLMs advance into autonomous agents with tool-use capabilities, they introduce security challenges that extend beyond traditional content-based LLM safety concerns. This paper introduces Sequential Tool Attack Chaining (STAC), a novel multi-turn attack framework that exploits agent tool use. STAC chains together tool calls that each appear harmless in isolation but, when combined, collectively enable harmful operations that only become apparent at the final execution step. We apply our framework to automatically generate and systematically evaluate 483 STAC cases, featuring 1,352 sets of user-agent-environment interactions and spanning diverse domains, tasks, agent types, and 10 failure modes. Our evaluations show that state-of-the-art LLM agents, including GPT-4.1, are highly vulnerable to STAC, with attack success rates (ASR) exceeding 90% in most cases. The core design of STAC's automated framework is a closed-loop pipeline that synthesizes executable multi-step tool chains, validates them through in-environment execution, and reverse-engineers stealthy multi-turn prompts that reliably induce agents to execute the verified malicious sequence. We further perform defense analysis against STAC and find that existing prompt-based defenses provide limited protection. To address this gap, we propose a new reasoning-driven defense prompt that achieves far stronger protection, cutting ASR by up to 28.8%. These results highlight a crucial gap: defending tool-enabled agents requires reasoning over entire action sequences and their cumulative effects, rather than evaluating isolated prompts or responses.
♻ ☆ A Proof of Learning Rate Transfer under $μ$P
We provide the first proof of learning rate transfer with width in a linear multi-layer perceptron (MLP) parametrized with $μ$P, a neural network parameterization designed to ``maximize'' feature learning in the infinite-width limit. We show that under $μP$, the optimal learning rate converges to a \emph{non-zero constant} as width goes to infinity, providing a theoretical explanation to learning rate transfer. In contrast, we show that this property fails to hold under alternative parametrizations such as Standard Parametrization (SP) and Neural Tangent Parametrization (NTP). We provide intuitive proofs and support the theoretical findings with extensive empirical results.
comment: 21 pages
♻ ☆ SNAP-UQ: Self-supervised Next-Activation Prediction for Single-Pass Uncertainty in TinyML ICLR 2026
This paper proposes a novel and practical method, SNAP-UQ, for single-pass, label-free uncertainty estimation based on depth-wise next-activation prediction. SNAP-UQ taps a small set of backbone layers and uses tiny int8 heads to predict the mean and scale of the next activation from a low-rank projection of the previous one; the resulting standardized prediction error forms a depth-wise surprisal signal that is aggregated and mapped through a lightweight monotone calibrator into an actionable uncertainty score. The design introduces no temporal buffers or auxiliary exits and preserves state-free inference, while increasing deployment footprint by only a few tens of kilobytes. Across vision and audio backbones, SNAP-UQ reduces flash and latency relative to early-exit and deep-ensemble baselines (typically $\sim$40--60% smaller and $\sim$25--35% faster), with several competing methods at similar accuracy often exceeding MCU memory limits. On corrupted streams, it improves accuracy-drop event detection by multiple AUPRC points and maintains strong failure detection (AUROC $\approx 0.9$) in a single forward pass. By grounding uncertainty in layer-to-layer dynamics rather than solely in output confidence, SNAP-UQ offers a novel, resource-efficient basis for robust TinyML monitoring.
comment: Accepted at ICLR 2026
♻ ☆ Surfacing Subtle Stereotypes: A Multilingual, Debate-Oriented Evaluation of Modern LLMs
Large language models (LLMs) are widely deployed for open-ended communication, yet most bias evaluations still rely on English, classification-style tasks. We introduce DebateBias-8K, a new multilingual, debate-style benchmark designed to reveal how narrative bias appears in realistic generative settings. Our dataset includes 8,400 structured debate prompts spanning four sensitive domains: women's rights, socioeconomic development, terrorism, and religion, across seven languages ranging from high-resource (English, Chinese) to low-resource (Swahili, Nigerian Pidgin). Using four flagship models (GPT-4o, Claude 3, DeepSeek, and LLaMA 3), we generate and automatically classify over 100,000 responses. Results show that all models reproduce entrenched stereotypes despite safety alignment: Arabs are overwhelmingly linked to terrorism and religion (>=95%), Africans to socioeconomic "backwardness" (up to <=77%), and Western groups are consistently framed as modern or progressive. Biases grow sharply in lower-resource languages, revealing that alignment trained primarily in English does not generalize globally. Our findings highlight a persistent divide in multilingual fairness: current alignment methods reduce explicit toxicity but fail to prevent biased outputs in open-ended contexts. We release our DebateBias-8K benchmark and analysis framework to support the next generation of multilingual bias evaluation and safer, culturally inclusive model alignment.
♻ ☆ Watch and Listen: Understanding Audio-Visual-Speech Moments with Multimodal LLM NeurIPS 2025
Humans naturally understand moments in a video by integrating visual and auditory cues. For example, localizing a scene in the video like "A scientist passionately speaks on wildlife conservation as dramatic orchestral music plays, with the audience nodding and applauding" requires simultaneous processing of visual, audio, and speech signals. However, existing models often struggle to effectively fuse and interpret audio information, limiting their capacity for comprehensive video temporal understanding. To address this, we present TriSense, a triple-modality large language model designed for holistic video temporal understanding through the integration of visual, audio, and speech modalities. Central to TriSense is a Query-Based Connector that adaptively reweights modality contributions based on the input query, enabling robust performance under modality dropout and allowing flexible combinations of available inputs. To support TriSense's multimodal capabilities, we introduce TriSense-2M, a high-quality dataset of over 2 million curated samples generated via an automated pipeline powered by fine-tuned LLMs. TriSense-2M includes long-form videos and diverse modality combinations, facilitating broad generalization. Extensive experiments across multiple benchmarks demonstrate the effectiveness of TriSense and its potential to advance multimodal video analysis. Code and dataset will be publicly released.
comment: Accepted by NeurIPS 2025
♻ ☆ Game-Time: Evaluating Temporal Dynamics in Spoken Language Models ICASSP 2026
Conversational Spoken Language Models (SLMs) are emerging as a promising paradigm for real-time speech interaction. However, their capacity of temporal dynamics, including the ability to manage timing, tempo and simultaneous speaking, remains a critical and unevaluated challenge for conversational fluency. To address this gap, we introduce the Game-Time Benchmark, a framework to systematically assess these temporal capabilities. Inspired by how humans learn a language through language activities, Game-Time consists of basic instruction-following tasks and advanced tasks with temporal constraints, such as tempo adherence and synchronized responses. Our evaluation of diverse SLM architectures reveals a clear performance disparity: while state-of-the-art models handle basic tasks well, many contemporary systems still struggle with fundamental instruction-following. More critically, nearly all models degrade substantially under temporal constraints, exposing persistent weaknesses in time awareness and full-duplex interaction. The Game-Time Benchmark provides a foundation for guiding future research toward more temporally-aware conversational AI. Demos and datasets are available on our project website https://ga642381.github.io/Game-Time.
comment: Accepted to ICASSP 2026
♻ ☆ LLMs as Span Annotators: A Comparative Study of LLMs and Humans EACL 2026
Span annotation - annotating specific text features at the span level - can be used to evaluate texts where single-score metrics fail to provide actionable feedback. Until recently, span annotation was done by human annotators or fine-tuned models. In this paper, we study whether large language models (LLMs) can serve as an alternative to human annotators. We compare the abilities of LLMs to skilled human annotators on three span annotation tasks: evaluating data-to-text generation, identifying translation errors, and detecting propaganda techniques. We show that overall, LLMs have only moderate inter-annotator agreement (IAA) with human annotators. However, we demonstrate that LLMs make errors at a similar rate as skilled crowdworkers. LLMs also produce annotations at a fraction of the cost per output annotation. We release the dataset of over 40k model and human span annotations for further research.
comment: Accepted to the MME workshop @ EACL 2026
♻ ☆ Large Multimodal Models for Low-Resource Languages: A Survey
In this survey, we systematically analyze techniques used to adapt large multimodal models (LMMs) for low-resource (LR) languages, examining approaches ranging from visual enhancement and data creation to cross-modal transfer and fusion strategies. Through a comprehensive analysis of 117 studies across 96 LR languages, we identify key patterns in how researchers tackle the challenges of limited data and computational resources. We categorize works into resource-oriented and method-oriented contributions, further dividing contributions into relevant sub-categories. We compare method-oriented contributions in terms of performance and efficiency, discussing benefits and limitations of representative studies. We find that visual information often serves as a crucial bridge for improving model performance in LR settings, though significant challenges remain in areas such as hallucination mitigation and computational efficiency. In summary, we provide researchers with a clear understanding of current approaches and remaining challenges in making LMMs more accessible to speakers of LR (understudied) languages. We complement our survey with an open-source repository available at: https://github.com/marianlupascu/LMM4LRL-Survey.
comment: Accepted in Information Fusion
♻ ☆ BiasGym: A Simple and Generalizable Framework for Analyzing and Removing Biases through Elicitation
Understanding biases and stereotypes encoded in the weights of Large Language Models (LLMs) is crucial for developing effective mitigation strategies. However, biased behaviour is often subtle and non-trivial to isolate, even when deliberately elicited, making systematic analysis and debiasing particularly challenging. To address this, we introduce \texttt{BiasGym}, a simple, cost-effective, and generalizable framework for reliably and safely injecting, analyzing, and mitigating conceptual associations of biases within LLMs. \texttt{BiasGym} consists of two components: \texttt{BiasInject}, which safely injects specific biases into the model via token-based fine-tuning while keeping the model frozen, and \texttt{BiasScope}, which leverages these injected signals to identify and reliably steer the components responsible for biased behavior. Our method enables consistent bias elicitation for mechanistic analysis, supports targeted debiasing without degrading performance on downstream tasks, and generalizes to biases unseen during fine-tuning. We demonstrate the effectiveness of BiasGym in reducing real-world stereotypes (e.g., people from Italy being `reckless drivers'), showing its utility for both safety interventions and interpretability research.
comment: Under review. Title updated
♻ ☆ Fair-GPTQ: Bias-Aware Quantization for Large Language Models
High memory demands of generative language models have drawn attention to quantization, which reduces computational cost, memory usage, and latency by mapping model weights to lower-precision integers. Approaches such as GPTQ effectively minimize input-weight product errors during quantization; however, recent empirical studies show that they can increase biased outputs and degrade performance on fairness benchmarks, and it remains unclear which specific weights cause this issue. In this work, we draw new links between quantization and model fairness by adding explicit group-fairness constraints to the quantization objective and introduce Fair-GPTQ, the first quantization method explicitly designed to reduce unfairness in large language models. The added constraints guide the learning of the rounding operation toward less-biased text generation for protected groups. Specifically, we focus on stereotype generation involving occupational bias and discriminatory language spanning gender, race, and religion. Fair-GPTQ has minimal impact on performance, preserving at least 90% of baseline accuracy on zero-shot benchmarks, reduces unfairness relative to a half-precision model, and retains the memory and speed benefits of 4-bit quantization. We also compare the performance of Fair-GPTQ with existing debiasing methods and find that it achieves performance on par with the iterative null-space projection debiasing approach on racial-stereotype benchmarks. Overall, the results validate our theoretical solution to the quantization problem with a group-bias term, highlight its applicability for reducing group bias at quantization time in generative models, and demonstrate that our approach can further be used to analyze channel- and weight-level contributions to fairness during quantization.
♻ ☆ CAARMA: Class Augmentation with Adversarial Mixup Regularization EMNLP 2025
Speaker verification is a typical zero-shot learning task, where inference of unseen classes is performed by comparing embeddings of test instances to known examples. The models performing inference must hence naturally generate embeddings that cluster same-class instances compactly, while maintaining separation across classes. In order to learn to do so, they are typically trained on a large number of classes (speakers), often using specialized losses. However real-world speaker datasets often lack the class diversity needed to effectively learn this in a generalizable manner. We introduce CAARMA, a class augmentation framework that addresses this problem by generating synthetic classes through data mixing in the embedding space, expanding the number of training classes. To ensure the authenticity of the synthetic classes we adopt a novel adversarial refinement mechanism that minimizes categorical distinctions between synthetic and real classes. We evaluate CAARMA on multiple speaker verification tasks, as well as other representative zero-shot comparison-based speech analysis tasks and obtain consistent improvements: our framework demonstrates a significant improvement of 8\% over all baseline models. The code is available at: https://github.com/massabaali7/CAARMA/
comment: Accepted to EMNLP 2025 Findings
♻ ☆ Training a Utility-based Retriever Through Shared Context Attribution for Retrieval-Augmented Language Models EMNLP 2025
Retrieval-Augmented Language Models boost task performance, owing to the retriever that provides external knowledge. Although crucial, the retriever primarily focuses on semantics relevance, which may not always be effective for generation. Thus, utility-based retrieval has emerged as a promising topic, prioritizing passages that provide valid benefits for downstream tasks. However, due to insufficient understanding, capturing passage utility accurately remains unexplored. This work proposes SCARLet, a framework for training utility-based retrievers in RALMs, which incorporates two key factors, multi-task generalization and inter-passage interaction. First, SCARLet constructs shared context on which training data for various tasks is synthesized. This mitigates semantic bias from context differences, allowing retrievers to focus on learning task-specific utility and generalize across tasks. Next, SCARLet uses a perturbation-based attribution method to estimate passage-level utility for shared context, which reflects interactions between passages and provides more accurate feedback. We evaluate our approach on ten datasets across various tasks, both in-domain and out-of-domain, showing that retrievers trained by SCARLet consistently improve the overall performance of RALMs.
comment: EMNLP 2025 Main Conference (Long paper)
♻ ☆ Probe and Skip: Self-Predictive Token Skipping for Efficient Long-Context LLM Inference
Long-context inference enhances the reasoning capability of Large Language Models (LLMs), but incurs significant computational overhead. Token-oriented methods, such as pruning and skipping, have shown great promise in reducing inference latency, yet still suffer from inherently insufficient structure optimization, outdated selection criteria, and redundancy interference, resulting in suboptimal speed-accuracy trade-off. To address these issues, we propose a novel training-free framework dubbed Self-Predictive Token Skipping (SPTS), for efficient long-context LLM inference. Specifically, motivated by probing the influence of target layers prior to skipping, we design two selective token skipping strategies for typical structures, including Partial Attention Probing (PAP) for multi-head attention and Low-rank Transformation Probing (LTP) for feed forward network. The former selects informative tokens via partial forward attention computation, while the latter constructs a low-rank proxy network to predict token transformations. In addition, a Multi-Stage Delayed Pruning (MSDP) strategy reallocates skipping budgets and progressively removes redundant tokens across layers. Extensive experiments display the effectiveness of our method, achieving up to 2.46$\times$ and 2.29$\times$ speedups for prefilling and end-to-end generation, respectively, while maintaining state-of-the-art accuracy. We will release the source code upon acceptance.
♻ ☆ CCF: A Context Compression Framework for Efficient Long-Sequence Language Modeling
Scaling language models to longer contexts is essential for capturing rich dependencies across extended discourse. However, naïve context extension imposes significant computational and memory burdens, often resulting in inefficiencies during both training and inference. In this work, we propose CCF, a novel context compression framework designed to enable efficient long-context modeling by learning hierarchical latent representations that preserve global semantics while aggressively reducing input redundancy. CCF integrates segment-wise semantic aggregation with key-value memory encoding, forming compact representations that support accurate reconstruction and long-range understanding. To further enhance scalability, we introduce a training-efficient optimization strategy that couples incremental segment decoding with sparse reservoir sampling, substantially reducing memory overhead without degrading performance. Empirical results on multiple long-context language modeling benchmarks demonstrate that CCF achieves competitive perplexity under high compression ratios, and significantly improves throughput and memory efficiency compared to existing approaches. These findings highlight the potential of structured compression for scalable and effective long-context language modeling.
comment: The quality of this paper is low
♻ ☆ ALiiCE: Evaluating Positional Fine-grained Citation Generation NAACL 2025
Large Language Model (LLM) can enhance its credibility and verifiability by generating text with citations. However, existing research on citation generation is predominantly limited to sentence-level statements, neglecting the significance of positional fine-grained citations that can appear anywhere within sentences. To facilitate further exploration of the positional fine-grained citation generation, we propose ALiiCE, the first automatic evaluation framework for this task. Our method employs a dependency tree based approach to parse the sentence-level claim into atomic claims. Then ALiiCE evaluates citation quality using three metrics, including positional fine-grained citation recall, precision, and coefficient of variation of citation positions. We evaluate the positional fine-grained citation generation performance of several LLMs on long-form QA datasets. Our experiments and analyses demonstrate the effectiveness and reasonableness of ALiiCE. We offer our insights into the current advancements and future directions for the positional fine-grained citation generation task.
comment: NAACL 2025 Main Conference (Long paper)
♻ ☆ Less Noise, More Voice: Reinforcement Learning for Reasoning via Instruction Purification
Reinforcement Learning with Verifiable Rewards (RLVR) has advanced LLM reasoning, but remains constrained by inefficient exploration under limited rollout budgets, leading to low sampling success and unstable training in complex tasks. We find that many exploration failures arise not from problem difficulty, but from a small number of prompt tokens that introduce interference. Building on this insight, we propose the Less Noise Sampling Framework (LENS), which first prompts by identifying and removing interference tokens. then transfers successful rollouts from the purification process to supervise policy optimization on the original noisy prompts, enabling the model to learn to ignore interference in the real-world, noisy prompting settings. Experimental results show that LENS significantly outperforms GRPO, delivering higher performance and faster convergence, with a 3.88% average gain and over 1.6$\times$ speedup. Our work highlights the critical role of pruning interference tokens in improving rollout efficiency, offering a new perspective for RLVR research.
comment: Work in progress
♻ ☆ MaiBERT: A Pre-training Corpus and Language Model for Low-Resourced Maithili Language EACL
Natural Language Understanding (NLU) for low-resource languages remains a major challenge in NLP due to the scarcity of high-quality data and language-specific models. Maithili, despite being spoken by millions, lacks adequate computational resources, limiting its inclusion in digital and AI-driven applications. To address this gap, we introducemaiBERT, a BERT-based language model pre-trained specifically for Maithili using the Masked Language Modeling (MLM) technique. Our model is trained on a newly constructed Maithili corpus and evaluated through a news classification task. In our experiments, maiBERT achieved an accuracy of 87.02%, outperforming existing regional models like NepBERTa and HindiBERT, with a 0.13% overall accuracy gain and 5-7% improvement across various classes. We have open-sourced maiBERT on Hugging Face enabling further fine-tuning for downstream tasks such as sentiment analysis and Named Entity Recognition (NER).
comment: Accepted at EACL LoResLM 2026
♻ ☆ Free Access to World News: Reconstructing Full-Text Articles from GDELT
News data have become essential resources across various disciplines. Still, access to full-text news corpora remains challenging due to high costs and the limited availability of free alternatives. This paper presents a novel Python package (gdeltnews) that reconstructs full-text newspaper articles at near-zero cost by leveraging the Global Database of Events, Language, and Tone (GDELT) Web News NGrams 3.0 dataset. Our method merges overlapping n-grams extracted from global online news to rebuild complete articles. We validate the approach on a benchmark set of 2211 articles from major U.S. news outlets, achieving up to 95% text similarity against original articles based on Levenshtein and SequenceMatcher metrics. Our tool facilitates economic forecasting, computational social science, information science, and natural language processing applications by enabling free and large-scale access to full-text news data.
♻ ☆ FinCoT: Grounding Chain-of-Thought in Expert Financial Reasoning EMNLP
This paper presents FinCoT, a structured chain-of-thought (CoT) prompting framework that embeds domain-specific expert financial reasoning blueprints to guide large language models' behaviors. We identify three main prompting styles in financial NLP (FinNLP): (1) standard prompting (zero-shot), (2) unstructured CoT (free-form reasoning), and (3) structured CoT (with explicitly structured reasoning steps). Prior work has mainly focused on the first two, while structured CoT remains underexplored and lacks domain expertise incorporation. Therefore, we evaluate all three prompting approaches across ten CFA-style financial domains and introduce FinCoT as the first structured finance-specific prompting approach incorporating blueprints from domain experts. FinCoT improves the accuracy of a general-purpose model, Qwen3-8B-Base, from 63.2% to 80.5%, and boosts Fin-R1 (7B), a finance-specific model, from 65.7% to 75.7%, while reducing output length by up to 8.9x and 1.16x compared to structured CoT methods, respectively. We find that FinCoT proves most effective for models lacking financial post-training. Our findings show that FinCoT does not only improve performance and reduce inference costs but also yields more interpretable and expert-aligned reasoning traces.
comment: Accepted at FinNLP-2025, EMNLP (Oral Presentation)
♻ ☆ Stream: Scaling up Mechanistic Interpretability to Long Context in LLMs via Sparse Attention
As Large Language Models (LLMs) scale to million-token contexts, traditional Mechanistic Interpretability techniques for analyzing attention scale quadratically with context length, demanding terabytes of memory beyond 100,000 tokens. We introduce Sparse Tracing, a novel technique that leverages dynamic sparse attention to efficiently analyze long context attention patterns. We present Stream, a compilable hierarchical pruning algorithm that estimates per-head sparse attention masks in near-linear time $O(T \log T)$ and linear space $O(T)$, enabling one-pass interpretability at scale. Stream performs a binary-search-style refinement to retain only the top-$k$ key blocks per query while preserving the model's next-token behavior. We apply Stream to long chain-of-thought reasoning traces and identify thought anchors while pruning 97-99\% of token interactions. On the RULER benchmark, Stream preserves critical retrieval paths while discarding 90-96\% of interactions and exposes layer-wise routes from the needle to output. Our method offers a practical drop-in tool for analyzing attention patterns and tracing information flow without terabytes of caches. By making long context interpretability feasible on consumer GPUs, Sparse Tracing helps democratize chain-of-thought monitoring. Code is available at https://anonymous.4open.science/r/stream-03B8/.
♻ ☆ Code-Mixed Phonetic Perturbations for Red-Teaming LLMs
Large language models (LLMs) continue to be demonstrably unsafe despite sophisticated safety alignment techniques and multilingual red-teaming. However, recent red-teaming work has focused on incremental gains in attack success over identifying underlying architectural vulnerabilities in models. In this work, we present \textbf{CMP-RT}, a novel red-teaming probe that combines code-mixing with phonetic perturbations (CMP), exposing a tokenizer-level safety vulnerability in transformers. Combining realistic elements from digital communication such as code-mixing and textese, CMP-RT preserves phonetics while perturbing safety-critical tokens, allowing harmful prompts to bypass alignment mechanisms while maintaining high prompt interpretability, exposing a gap between pre-training and safety alignment. Our results demonstrate robustness against standard defenses, attack scalability, and generalization of the vulnerability across modalities and to SOTA models like Gemini-3-Pro, establishing CMP-RT as a major threat model and highlighting tokenization as an under-examined vulnerability in current safety pipelines.
♻ ☆ p-less Sampling: A Robust Hyperparameter-Free Approach for LLM Decoding
Obtaining high-quality outputs from Large Language Models (LLMs) often depends upon the choice of a sampling-based decoding strategy to probabilistically choose the next token at each generation step. While a variety of such sampling methods have been proposed, their performance can be sensitive to the selection of hyperparameters which may require different settings depending upon the generation task and temperature configuration. In this work, we introduce $p$-less sampling: an information-theoretic approach to sampling which dynamically sets a truncation threshold at each decoding step based on the entire token probability distribution. Unlike existing methods, $p$-less sampling has no hyperparameters and consistently produces high-quality outputs as temperature increases. We provide theoretical perspectives on $p$-less sampling to ground our proposed method and conduct experiments to empirically validate its effectiveness across a range of math, logical reasoning, and creative writing tasks. Our results demonstrate how $p$-less sampling consistently outperforms existing sampling approaches while exhibiting much less degradation in text quality at higher temperature values. We further show how $p$-less achieves greater inference-time efficiency than alternative methods through lower average token sampling times and shorter generation lengths, without sacrificing accuracy. Finally, we provide analyses to highlight the benefits of $p$-less through qualitative examples, case studies, and diversity assessments. The code is available at https://github.com/ryttry/p-less .
♻ ☆ Standard-to-Dialect Transfer Trends Differ across Text and Speech: A Case Study on Intent and Topic Classification in German Dialects
Research on cross-dialectal transfer from a standard to a non-standard dialect variety has typically focused on text data. However, dialects are primarily spoken, and non-standard spellings cause issues in text processing. We compare standard-to-dialect transfer in three settings: text models, speech models, and cascaded systems where speech first gets automatically transcribed and then further processed by a text model. We focus on German dialects in the context of written and spoken intent classification -- releasing the first dialectal audio intent classification dataset -- with supporting experiments on topic classification. The speech-only setup provides the best results on the dialect data while the text-only setup works best on the standard data. While the cascaded systems lag behind the text-only models for German, they perform relatively well on the dialectal data if the transcription system generates normalized, standard-like output.
♻ ☆ Your Latent Reasoning is Secretly Policy Improvement Operator
Recently, small models with latent recursion have obtained promising results on complex reasoning tasks. These results are typically explained by the theory that such recursion increases a networks depth, allowing it to compactly emulate the capacity of larger models. However, the performance of recursively added layers remains behind the capabilities of one pass models with the same feed forward depth. This means that in the looped version, not every recursive step effectively contributes to depth. This raises the question: when and why does latent reasoning improve performance, and when does it result in dead compute? In our work, we analyze the algorithms that latent reasoning provides answer to this question. We show that latent reasoning can be formalized as a classifier free guidance and policy improvement algorithm. Building on these insights, we propose to use a training schemes from reinforcement learning and diffusion methods for latent reasoning models. Using the Tiny Recursive Model as our testbed, we show that with our modifications we can avoid dead compute steps and reduce the total number of forward passes by 18x while maintaining performance. Broadly speaking, we show how a policy improvement perspective on recursive steps can explain model behavior and provide insights for further improvements.
♻ ☆ Bottom-up Policy Optimization: Your Language Model Policy Secretly Contains Internal Policies
Existing reinforcement learning (RL) approaches treat large language models (LLMs) as a unified policy, overlooking their internal mechanisms. In this paper, we decompose the LLM-based policy into Internal Layer Policies and Internal Modular Policies via Transformer's residual stream. Our entropy analysis on internal policy reveals distinct patterns: (1) universally, policies evolve from high-entropy exploration in early layers to deterministic refinement in top layers; and (2) Qwen exhibits a progressive, human-like reasoning structure, contrasting with the abrupt final-layer convergence in Llama. Furthermore, we discover that optimizing internal layers induces feature refinement, forcing lower layers to capture high-level reasoning representations early. Motivated by these findings, we propose Bottom-up Policy Optimization (BuPO), a novel RL paradigm that reconstructs the LLM's reasoning foundation from the bottom up by optimizing internal layers in early stages. Extensive experiments on complex reasoning benchmarks demonstrate the effectiveness of BuPO. Our code is available at https://github.com/Trae1ounG/BuPO.
comment: Preprint. Our code is available at https://github.com/Trae1ounG/BuPO
♻ ☆ Code over Words: Overcoming Semantic Inertia via Code-Grounded Reasoning
LLMs struggle with Semantic Inertia: the inability to inhibit pre-trained priors (e.g., "Lava is Dangerous") when dynamic, in-context rules contradict them. We probe this phenomenon using Baba Is You, where physical laws are mutable text rules, enabling precise evaluation of models' ability to override learned priors when rules change. We quantatively observe that larger models can exhibit inverse scaling: they perform worse than smaller models when natural language reasoning requires suppressing pre-trained associations (e.g., accepting "Lava is Safe"). Our analysis attributes this to natural language encoding, which entangles descriptive semantics and logical rules, leading to persistent hallucinations of familiar physics despite explicit contradictory rules. Here we show that representing dynamics as executable code, rather than descriptive text, reverses this trend and enables effective prior inhibition. We introduce Code-Grounded Vistas (LCV), which fine-tunes models on counterfactual pairs and identifies states with contradictory rules, thereby forcing attention to logical constraints rather than visual semantics. This training-time approach outperforms expensive inference-time search methods in both efficiency and accuracy. Our results demonstrate that representation fundamentally determines whether scaling improves or impairs contextual reasoning. This challenges the assumption that larger models are universally better, with implications for domains that require dynamic overriding of learned priors.
♻ ☆ Beyond Marginal Distributions: A Framework to Evaluate the Representativeness of Demographic-Aligned LLMs
Large language models are increasingly used to represent human opinions, values, or beliefs, and their steerability towards these ideals is an active area of research. Existing work focuses predominantly on aligning marginal response distributions, treating each survey item independently. While essential, this may overlook deeper latent structures that characterise real populations and underpin cultural values theories. We propose a framework for evaluating the representativeness of aligned models through multivariate correlation patterns in addition to marginal distributions. We show the value of our evaluation scheme by comparing two model steering techniques (persona prompting and demographic fine-tuning) and evaluating them against human responses from the World Values Survey. While the demographically fine-tuned model better approximates marginal response distributions than persona prompting, both techniques fail to fully capture the gold standard correlation patterns. We conclude that representativeness is a distinct aspect of value alignment and an evaluation focused on marginals can mask structural failures, leading to overly optimistic conclusions about model capabilities.
♻ ☆ SAPO: Self-Adaptive Process Optimization Makes Small Reasoners Stronger AAAI 2026
Existing self-evolution methods overlook the influence of fine-grained reasoning steps, which leads to the reasoner-verifier gap. The computational inefficiency of Monte Carlo (MC) process supervision further exacerbates the difficulty in mitigating the gap. Motivated by the Error-Related Negativity (ERN), which the reasoner can localize error following incorrect decisions, guiding rapid adjustments, we propose a Self-Adaptive Process Optimization (SAPO) method for self-improvement in Small Language Models (SLMs). SAPO adaptively and efficiently introduces process supervision signals by actively minimizing the reasoner-verifier gap rather than relying on inefficient MC estimations. Extensive experiments demonstrate that the proposed method outperforms most existing self-evolution methods on two challenging task types: mathematics and code. Additionally, to further investigate SAPO's impact on verifier performance, this work introduces two new benchmarks for process reward models in both mathematical and coding tasks.
comment: Accepted by AAAI 2026
♻ ☆ How Much Do LLMs Hallucinate across Languages? On Realistic Multilingual Estimation of LLM Hallucination EMNLP 2025
In the age of misinformation, hallucination - the tendency of Large Language Models (LLMs) to generate non-factual or unfaithful responses - represents the main risk for their global utility. Despite LLMs becoming increasingly multilingual, the vast majority of research on detecting and quantifying LLM hallucination are (a) English-centric and (b) focus on machine translation (MT) and summarization, tasks that are less common in realistic settings than open information seeking. In contrast, we aim to quantify the extent of LLM hallucination across languages in knowledge-intensive long-form question answering (LFQA). To this end, we train a multilingual hallucination detection model and conduct a large-scale study across 30 languages and 6 open-source LLM families. We start from an English hallucination detection dataset and rely on MT to translate-train a detection model. We also manually annotate gold data for five high-resource languages; we then demonstrate, for these languages, that the estimates of hallucination rates are similar between silver (LLM-generated) and gold test sets, validating the use of silver data for estimating hallucination rates for other languages. For the final rates estimation, we build open-domain QA dataset for 30 languages with LLM-generated prompts and Wikipedia articles as references. Our analysis shows that LLMs, in absolute terms, hallucinate more tokens in high-resource languages due to longer responses, but that the actual hallucination rates (i.e., normalized for length) seems uncorrelated with the sizes of languages' digital footprints. We also find that smaller LLMs hallucinate more, and significantly, LLMs with broader language support display higher hallucination rates.
comment: EMNLP 2025
♻ ☆ CASE -- Condition-Aware Sentence Embeddings for Conditional Semantic Textual Similarity Measurement EACL2026
The meaning conveyed by a sentence often depends on the context in which it appears. Despite the progress of sentence embedding methods, it remains unclear as how to best modify a sentence embedding conditioned on its context. To address this problem, we propose Condition-Aware Sentence Embeddings (CASE), an efficient and accurate method to create an embedding for a sentence under a given condition. First, CASE creates an embedding for the condition using a Large Language Model (LLM) encoder, where the sentence influences the attention scores computed for the tokens in the condition during pooling. Next, a supervised method is learnt to align the LLM-based text embeddings with the Conditional Semantic Textual Similarity (C-STS) task. We find that subtracting the condition embedding consistently improves the C-STS performance of LLM-based text embeddings by improving the isotropy of the embedding space. Moreover, our supervised projection method significantly improves the performance of LLM-based embeddings despite requiring a small number of embedding dimensions.
comment: Accepted to EACL2026
♻ ☆ Dimensional Collapse in Transformer Attention Outputs: A Challenge for Sparse Dictionary Learning
Transformer architectures, and their attention mechanisms in particular, form the foundation of modern large language models. While transformer models are widely believed to operate in high-dimensional hidden spaces, we show that attention outputs are in fact confined to a surprisingly low-dimensional subspace, with an effective dimensionality of only about $60\%$ of the full space. In contrast, MLP outputs and residual streams remain much closer to full-rank, exhibiting effective ranks around $90\%$. This striking dimensional discrepancy is consistently observed across diverse model families and datasets, and is strongly shaped by the attention output projection matrix. Critically, we find this low-rank structure as a key factor of the prevalent dead feature problem in sparse dictionary learning, where it creates a mismatch between randomly initialized features and the intrinsic geometry of the activation space. Building on this insight, we propose a subspace-constrained training method for sparse autoencoders (SAEs), initializing feature directions into the active subspace of activations. Our approach reduces dead features from 87\% to below 1\% in Attention Output SAEs with 1M features, and can further extend to other sparse dictionary learning methods. Our findings provide both new insights into the geometry of attention and practical tools for improving sparse dictionary learning in large language models.
comment: 27 pages, 16 figures
♻ ☆ MemBuilder: Reinforcing LLMs for Long-Term Memory Construction via Attributed Dense Rewards
Maintaining consistency in long-term dialogues remains a fundamental challenge for LLMs, as standard retrieval mechanisms often fail to capture the temporal evolution of historical states. While memory-augmented frameworks offer a structured alternative, current systems rely on static prompting of closed-source models or suffer from ineffective training paradigms with sparse rewards. We introduce MemBuilder, a reinforcement learning framework that trains models to orchestrate multi-dimensional memory construction with attributed dense rewards. MemBuilder addresses two key challenges: (1) Sparse Trajectory-Level Rewards: we employ synthetic session-level question generation to provide dense intermediate rewards across extended trajectories; and (2) Multi-Dimensional Memory Attribution: we introduce contribution-aware gradient weighting that scales policy updates based on each component's downstream impact. Experimental results show that MemBuilder enables a 4B-parameter model to outperform state-of-the-art closed-source baselines, exhibiting strong generalization across long-term dialogue benchmarks.
comment: 19 pages (9 main + 10 appendix), 7 figures, 3 tables
♻ ☆ A.X K1 Technical Report
We introduce A.X K1, a 519B-parameter Mixture-of-Experts (MoE) language model trained from scratch. Our design leverages scaling laws to optimize training configurations and vocabulary size under fixed computational budgets. A.X K1 is pre-trained on a corpus of approximately 10T tokens, curated by a multi-stage data processing pipeline. Designed to bridge the gap between reasoning capability and inference efficiency, A.X K1 supports explicitly controllable reasoning to facilitate scalable deployment across diverse real-world scenarios. We propose a simple yet effective Think-Fusion training recipe, enabling user-controlled switching between thinking and non-thinking modes within a single unified model. Extensive evaluations demonstrate that A.X K1 achieves performance competitive with leading open-source models, while establishing a distinctive advantage in Korean-language benchmarks.
comment: This paper is withdrawn pending additional internal review of the methodology and analysis
♻ ☆ Semantic Leakage from Image Embeddings
Image embeddings are generally assumed to pose limited privacy risk. We challenge this assumption by formalizing semantic leakage as the ability to recover semantic structures from compressed image embeddings. Surprisingly, we show that semantic leakage does not require exact reconstruction of the original image. Preserving local semantic neighborhoods under embedding alignment is sufficient to expose the intrinsic vulnerability of image embeddings. Crucially, this preserved neighborhood structure allows semantic information to propagate through a sequence of lossy mappings. Based on this conjecture, we propose Semantic Leakage from Image Embeddings (SLImE), a lightweight inference framework that reveals semantic information from standalone compressed image embeddings, incorporating a locally trained semantic retriever with off-the-shelf models, without training task-specific decoders. We thoroughly validate each step of the framework empirically, from aligned embeddings to retrieved tags, symbolic representations, and grammatical and coherent descriptions. We evaluate SLImE across a range of open and closed embedding models, including GEMINI, COHERE, NOMIC, and CLIP, and demonstrate consistent recovery of semantic information across diverse inference tasks. Our results reveal a fundamental vulnerability in image embeddings, whereby the preservation of semantic neighborhoods under alignment enables semantic leakage, highlighting challenges for privacy preservation.1
comment: 20 pages, 19 figures
♻ ☆ Reassessing Active Learning Adoption in Contemporary NLP: A Community Survey EACL 2026
Supervised learning relies on data annotation which usually is time-consuming and therefore expensive. A longstanding strategy to reduce annotation costs is active learning, an iterative process, in which a human annotates only data instances deemed informative by a model. Research in active learning has made considerable progress, especially with the rise of large language models (LLMs). However, we still know little about how these remarkable advances have translated into real-world applications, or contributed to removing key barriers to active learning adoption. To fill in this gap, we conduct an online survey in the NLP community to collect previously intangible insights on current implementation practices, common obstacles in application, and future prospects in active learning. We also reassess the perceived relevance of data annotation and active learning as fundamental assumptions. Our findings show that data annotation is expected to remain important and active learning to stay relevant while benefiting from LLMs. Consistent with a community survey from over 15 years ago, three key challenges yet persist -- setup complexity, uncertain cost reduction, and tooling -- for which we propose alleviation strategies. We publish an anonymized version of the dataset.
comment: EACL 2026 Main Conference
♻ ☆ Learning to Evolve: Bayesian-Guided Continual Knowledge Graph Embedding
As social media and the World Wide Web become hubs for information dissemination, effectively organizing and understanding the vast amounts of dynamically evolving Web content is crucial. Knowledge graphs (KGs) provide a powerful framework for structuring this information. However, the rapid emergence of new hot topics, user relationships, and events in social media renders traditional static knowledge graph embedding (KGE) models rapidly outdated. Continual Knowledge Graph Embedding (CKGE) aims to address this issue, but existing methods commonly suffer from catastrophic forgetting, whereby older, but still valuable, information is lost when learning new knowledge (such as new memes or trending events). This means the model cannot effectively learn the evolution of the data. We propose a novel CKGE framework, BAKE. Unlike existing methods, BAKE formulates CKGE as a sequential Bayesian inference problem and utilizes the Bayesian posterior update principle as a natural continual learning strategy. This principle is insensitive to data order and provides theoretical guarantees to preserve prior knowledge as much as possible. Specifically, we treat each batch of new data as a Bayesian update to the model's prior. By maintaining the posterior distribution, the model effectively preserves earlier knowledge even as it evolves over multiple snapshots. Furthermore, to constrain the evolution of knowledge across snapshots, we introduce a continual clustering method that maintains the compact cluster structure of entity embeddings through a regularization term, ensuring semantic consistency while allowing controlled adaptation to new knowledge. We conduct extensive experiments on multiple CKGE benchmarks, which demonstrate that BAKE achieves the top performance in the vast majority of cases compared to existing approaches.
♻ ☆ A Foundational individual Mobility Prediction Model based on Open-Source Large Language Models
Large Language Models (LLMs) are widely applied to domain-specific tasks due to their massive general knowledge and remarkable inference capacities. Current studies on LLMs have shown immense potential in applying LLMs to model individual mobility prediction problems. However, most LLM-based mobility prediction models only train on specific datasets or use single well-designed prompts, leading to difficulty in adapting to different cities and users with diverse contexts. To fill these gaps, this paper proposes a unified fine-tuning framework to train a foundational open source LLM-based mobility prediction model. We conducted extensive experiments on six real-world mobility datasets to validate the proposed model. The results showed that the proposed model achieved the best performance in prediction accuracy and transferability over state-of-the-art models based on deep learning and LLMs.
♻ ☆ Bridging the gap: A comparative exploration of Speech-LLM and end-to-end architecture for multilingual conversational ASR ICASSP2026
The INTERSPEECH 2025 Challenge on Multilingual Conversational Speech Language Models (MLC-SLM) promotes multilingual conversational ASR with large language models (LLMs). Our previous SHNU-mASR system adopted a competitive parallel-speech-encoder architecture that integrated Whisper and mHuBERT with an LLM. However, it faced two challenges: simple feature concatenation may not fully exploit complementary information, and the performance gap between LLM-based ASR and end-to-end(E2E) encoder-decoder ASR remained unexplored. In this work, we present an enhanced LLM-based ASR framework that combines fine-tuned Whisper and mHuBERT encoders with an LLM to enrich speech representations. We first evaluate E2E Whisper models with LoRA and full fine-tuning on the MLC-SLM ASR task, and then propose cross-attention-based fusion mechanisms for the parallel-speech-encoder. On the official evaluation set of the MLC-SLM Challenge, our system achieves a CER/WER of 10.69%, ranking on par with the top-ranked Track 1 systems, even though it uses only 1,500 hours of baseline training data compared with their large-scale training sets. Nonetheless, we find that our final LLM-based ASR still does not match the performance of a fine-tuned E2E Whisper model, providing valuable empirical guidance for future Speech-LLM design. Our code is publicly available at https://github.com/1535176727/MLC-SLM.
comment: Accepted by ICASSP2026
♻ ☆ SWE-Exp: Experience-Driven Software Issue Resolution
Recent advances in large language model (LLM) agents have shown remarkable progress in software issue resolution, leveraging advanced techniques such as multi-agent collaboration and Monte Carlo Tree Search (MCTS). However, current agents act as memoryless explorers - treating each problem separately without retaining or reusing knowledge from previous repair experiences. This leads to redundant exploration of failed trajectories and missed chances to adapt successful issue resolution methods to similar problems. To address this problem, we introduce SWE-Exp, an experience-enhanced approach that distills concise and actionable experience from prior agent trajectories, enabling continuous learning across issues. Our method introduces a multi-faceted experience bank that captures both successful and failed repair attempts. Specifically, it extracts reusable issue resolution knowledge at different levels - from high-level problem comprehension to specific code changes. Experiments show that SWE-Exp achieves a Pass@1 resolution rate of 73.0% on SWE-Bench Verified using the state-of-the-art LLM Claude 4 Sonnet, significantly outperforming prior results under other agent frameworks. Our approach establishes a new paradigm in which automated software engineering agents systematically accumulate and leverage repair expertise, fundamentally shifting from trial-and-error exploration to strategic, experience-driven issue resolution.
comment: Our code and data are available at https://github.com/YerbaPage/SWE-Exp
♻ ☆ AI-generated data contamination erodes pathological variability and diagnostic reliability
Generative artificial intelligence (AI) is rapidly populating medical records with synthetic content, creating a feedback loop where future models are increasingly at risk of training on uncurated AI-generated data. However, the clinical consequences of this AI-generated data contamination remain unexplored. Here, we show that in the absence of mandatory human verification, this self-referential cycle drives a rapid erosion of pathological variability and diagnostic reliability. By analysing more than 800,000 synthetic data points across clinical text generation, vision-language reporting, and medical image synthesis, we find that models progressively converge toward generic phenotypes regardless of the model architecture. Specifically, rare but critical findings, including pneumothorax and effusions, vanish from the synthetic content generated by AI models, while demographic representations skew heavily toward middle-aged male phenotypes. Crucially, this degradation is masked by false diagnostic confidence; models continue to issue reassuring reports while failing to detect life-threatening pathology, with false reassurance rates tripling to 40%. Blinded physician evaluation confirms that this decoupling of confidence and accuracy renders AI-generated documentation clinically useless after just two generations. We systematically evaluate three mitigation strategies, finding that while synthetic volume scaling fails to prevent collapse, mixing real data with quality-aware filtering effectively preserves diversity. Ultimately, our results suggest that without policy-mandated human oversight, the deployment of generative AI threatens to degrade the very healthcare data ecosystems it relies upon.
comment: *Corresponding author: Dianbo Liu (dianbo@nus.edu.sg)
♻ ☆ Draft-based Approximate Inference for LLMs ICLR 2026
Optimizing inference for long-context large language models (LLMs) is increasingly important due to the quadratic compute and linear memory cost of Transformers. Existing approximate inference methods, including key-value (KV) cache dropping, sparse attention, and prompt compression, typically rely on coarse predictions of token or KV pair importance. We unify and extend recent work by introducing a framework for approximate LLM inference that leverages small draft models to more accurately predict token and KV pair importance. We provide novel theoretical and empirical analyses justifying lookahead-based importance estimation techniques. Within this framework, we present: (i) SpecKV, the first method to use lookahead with a small draft model to enable precise KV cache dropping; (ii) SpecPC, which leverages draft model attention activations to identify and discard less important prompt tokens; and (iii) SpecKV-PC, a cascaded compression strategy combining both techniques. Extensive experiments on long-context benchmarks demonstrate that our methods consistently achieve higher accuracy than existing baselines while retaining the same efficiency gains in memory usage, latency, and throughput.
comment: Accepted to ICLR 2026
♻ ☆ Sparse Autoencoder Features for Classifications and Transferability
Sparse Autoencoders (SAEs) provide potentials for uncovering structured, human-interpretable representations in Large Language Models (LLMs), making them a crucial tool for transparent and controllable AI systems. We systematically analyze SAE for interpretable feature extraction from LLMs in safety-critical classification tasks. Our framework evaluates (1) model-layer selection and scaling properties, (2) SAE architectural configurations, including width and pooling strategies, and (3) the effect of binarizing continuous SAE activations. SAE-derived features achieve macro F1 > 0.8, outperforming hidden-state and BoW baselines while demonstrating cross-model transfer from Gemma 2 2B to 9B-IT models. These features generalize in a zero-shot manner to cross-lingual toxicity detection and visual classification tasks. Our analysis highlights the significant impact of pooling strategies and binarization thresholds, showing that binarization offers an efficient alternative to traditional feature selection while maintaining or improving performance. These findings establish new best practices for SAE-based interpretability and enable scalable, transparent deployment of LLMs in real-world applications. Full repo: https://github.com/shan23chen/MOSAIC.
♻ ☆ R-Stitch: Dynamic Trajectory Stitching for Efficient Reasoning
Chain-of-thought (CoT) enhances the problem-solving ability of large language models (LLMs) but incurs substantial inference cost due to long autoregressive trajectories. Existing acceleration strategies either shorten traces via early stopping or compression, or adopt speculative decoding with a smaller model. However, speculative decoding provides limited gains when model agreement is low and rigidly enforces token-level consistency, overlooking the observation that some smaller models, when correct, produce significantly more concise reasoning traces that could reduce inference length. We introduce R-Stitch, a training-free hybrid decoding framework that leverages token-level entropy as an uncertainty proxy to delegate computation between a small language model (SLM) and an LLM. Our analysis shows that high-entropy tokens are more likely to induce errors, motivating an entropy-guided routing strategy that lets the SLM efficiently handle low-entropy tokens while delegating uncertain ones to the LLM, thereby avoiding full rollbacks and preserving answer quality. We further extend this design with R-Stitch$^{+}$, which learns an adaptive routing policy to adjust the token budget dynamically beyond fixed thresholds. By jointly reducing per-token decoding complexity and the number of generated tokens, our method achieves substantial acceleration with negligible accuracy loss. Concretely, it attains peak speedups of 3.00$\times$ on DeepSeek-R1-Distill-Qwen-7B, 3.85$\times$ on 14B, and 4.10$\times$ on QWQ-32B while maintaining accuracy comparable to full LLM decoding. Moreover, it naturally enables adaptive efficiency--accuracy trade-offs that can be tailored to diverse computational budgets without retraining.
♻ ☆ RePPL: Recalibrating Perplexity by Uncertainty in Semantic Propagation and Language Generation for Explainable QA Hallucination Detection
Large Language Models (LLMs) have become powerful, but hallucinations remain a vital obstacle to their trustworthy use. Previous works improved the capability of hallucination detection by measuring uncertainty. But they can not explain the provenance behind why hallucinations occur, particularly in identifying which part of the inputs tends to trigger hallucinations. Recent works on the prompt attack indicate that uncertainty exists in semantic propagation, where attention mechanisms gradually fuse local token information into high-level semantics across layers. Meanwhile, uncertainty also emerges in language generation, due to its probability-based selection of high-level semantics for sampled generations. Based on that, we propose RePPL to recalibrate uncertainty measurement by these two aspects, which dispatches explainable uncertainty scores to each token and aggregates in Perplexity-style Log-Average form as a total score. Experiments show that it achieves the best comprehensive detection performance across various QA datasets on advanced models (average AUC of 0.833), and it is capable of producing token-level uncertainty scores as explanations of hallucination.
♻ ☆ SpatialViz-Bench: A Cognitively-Grounded Benchmark for Diagnosing Spatial Visualization in MLLMs
Humans can imagine and manipulate visual images mentally, a capability known as spatial visualization. While many multi-modal benchmarks assess reasoning on visible visual information, the ability to infer unseen relationships through spatial visualization remains insufficiently evaluated as a spatial skill. This reliance on publicly sourced problems from IQ tests or math competitions risks data contamination and compromises assessment reliability. To this end, we introduce SpatialViz-Bench, a comprehensive multi-modal benchmark for spatial visualization with 12 tasks across 4 sub-abilities, comprising 1,180 programmatically generated problems, a scalable framework that allows for expansion to ensure fair and continuously reliable evaluations. Our evaluation of 27 Multi-modal Large Language Models (MLLMs) reveals wide performance variations, demonstrates the benchmark's strong discriminative power, and uncovers counter-intuitive findings: Chain-of-Thought (CoT) prompting paradoxically degrades accuracy on open-source models. Through statistical and qualitative analysis of error types, SpatialViz-Bench demonstrates that state-of-the-art MLLMs exhibit deficiencies in spatial visualization tasks, thereby addressing a significant lacuna in the field. The benchmark data and evaluation code are publicly available.
♻ ☆ Mobile-Bench-v2: A More Realistic and Comprehensive Benchmark for VLM-based Mobile Agents
VLM-based mobile agents are increasingly popular due to their capabilities to interact with smartphone GUIs and XML-structured texts and to complete daily tasks. However, existing online benchmarks struggle with obtaining stable reward signals due to dynamic environmental changes. Offline benchmarks evaluate the agents through single-path trajectories, which stands in contrast to the inherently multi-solution characteristics of GUI tasks. Additionally, both types of benchmarks fail to assess whether mobile agents can handle noise or engage in proactive interactions due to a lack of noisy apps or overly full instructions during the evaluation process. To address these limitations, we use a slot-based instruction generation method to construct a more realistic and comprehensive benchmark named Mobile-Bench-v2. Mobile-Bench-v2 includes a common task split, with offline multi-path evaluation to assess the agent's ability to obtain step rewards during task execution. It contains a noisy split based on pop-ups and ads apps, and a contaminated split named AITZ-Noise to formulate a real noisy environment. Furthermore, an ambiguous instruction split with preset Q\&A interactions is released to evaluate the agent's proactive interaction capabilities. We conduct evaluations on these splits using the single-agent framework AppAgent-v1, the multi-agent framework Mobile-Agent-v2, as well as other mobile agents such as UI-Tars and OS-Atlas. Code and data are available at https://huggingface.co/datasets/xwk123/MobileBench-v2.
Computer Vision and Pattern Recognition 150
☆ PixelGen: Pixel Diffusion Beats Latent Diffusion with Perceptual Loss
Pixel diffusion generates images directly in pixel space in an end-to-end manner, avoiding the artifacts and bottlenecks introduced by VAEs in two-stage latent diffusion. However, it is challenging to optimize high-dimensional pixel manifolds that contain many perceptually irrelevant signals, leaving existing pixel diffusion methods lagging behind latent diffusion models. We propose PixelGen, a simple pixel diffusion framework with perceptual supervision. Instead of modeling the full image manifold, PixelGen introduces two complementary perceptual losses to guide diffusion model towards learning a more meaningful perceptual manifold. An LPIPS loss facilitates learning better local patterns, while a DINO-based perceptual loss strengthens global semantics. With perceptual supervision, PixelGen surpasses strong latent diffusion baselines. It achieves an FID of 5.11 on ImageNet-256 without classifier-free guidance using only 80 training epochs, and demonstrates favorable scaling performance on large-scale text-to-image generation with a GenEval score of 0.79. PixelGen requires no VAEs, no latent representations, and no auxiliary stages, providing a simpler yet more powerful generative paradigm. Codes are publicly available at https://github.com/Zehong-Ma/PixelGen.
comment: Project Pages: https://zehong-ma.github.io/PixelGen/
☆ Multi-head automated segmentation by incorporating detection head into the contextual layer neural network
Deep learning based auto segmentation is increasingly used in radiotherapy, but conventional models often produce anatomically implausible false positives, or hallucinations, in slices lacking target structures. We propose a gated multi-head Transformer architecture based on Swin U-Net, augmented with inter-slice context integration and a parallel detection head, which jointly performs slice-level structure detection via a multi-layer perceptron and pixel-level segmentation through a context-enhanced stream. Detection outputs gate the segmentation predictions to suppress false positives in anatomically invalid slices, and training uses slice-wise Tversky loss to address class imbalance. Experiments on the Prostate-Anatomical-Edge-Cases dataset from The Cancer Imaging Archive demonstrate that the gated model substantially outperforms a non-gated segmentation-only baseline, achieving a mean Dice loss of $0.013 \pm 0.036$ versus $0.732 \pm 0.314$, with detection probabilities strongly correlated with anatomical presence, effectively eliminating spurious segmentations. In contrast, the non-gated model exhibited higher variability and persistent false positives across all slices. These results indicate that detection-based gating enhances robustness and anatomical plausibility in automated segmentation applications, reducing hallucinated predictions without compromising segmentation quality in valid slices, and offers a promising approach for improving the reliability of clinical radiotherapy auto-contouring workflows.
comment: 8 pages, 3 figures, 1 table
☆ MentisOculi: Revealing the Limits of Reasoning with Mental Imagery
Frontier models are transitioning from multimodal large language models (MLLMs) that merely ingest visual information to unified multimodal models (UMMs) capable of native interleaved generation. This shift has sparked interest in using intermediate visualizations as a reasoning aid, akin to human mental imagery. Central to this idea is the ability to form, maintain, and manipulate visual representations in a goal-oriented manner. To evaluate and probe this capability, we develop MentisOculi, a procedural, stratified suite of multi-step reasoning problems amenable to visual solution, tuned to challenge frontier models. Evaluating visual strategies ranging from latent tokens to explicit generated imagery, we find they generally fail to improve performance. Analysis of UMMs specifically exposes a critical limitation: While they possess the textual reasoning capacity to solve a task and can sometimes generate correct visuals, they suffer from compounding generation errors and fail to leverage even ground-truth visualizations. Our findings suggest that despite their inherent appeal, visual thoughts do not yet benefit model reasoning. MentisOculi establishes the necessary foundation to analyze and close this gap across diverse model families.
comment: 9 pages, 8 figures
☆ RANKVIDEO: Reasoning Reranking for Text-to-Video Retrieval
Reranking is a critical component of modern retrieval systems, which typically pair an efficient first-stage retriever with a more expressive model to refine results. While large reasoning models have driven rapid progress in text-centric reranking, reasoning-based reranking for video retrieval remains underexplored. To address this gap, we introduce RANKVIDEO, a reasoning-based reranker for video retrieval that explicitly reasons over query-video pairs using video content to assess relevance. RANKVIDEO is trained using a two-stage curriculum consisting of perception-grounded supervised fine-tuning followed by reranking training that combines pointwise, pairwise, and teacher confidence distillation objectives, and is supported by a data synthesis pipeline for constructing reasoning-intensive query-video pairs. Experiments on the large-scale MultiVENT 2.0 benchmark demonstrate that RANKVIDEO consistently improves retrieval performance within a two-stage framework, yielding an average improvement of 31% on nDCG@10 and outperforming text-only and vision-language reranking alternatives, while more efficient.
☆ UniReason 1.0: A Unified Reasoning Framework for World Knowledge Aligned Image Generation and Editing
Unified multimodal models often struggle with complex synthesis tasks that demand deep reasoning, and typically treat text-to-image generation and image editing as isolated capabilities rather than interconnected reasoning steps. To address this, we propose UniReason, a unified framework that harmonizes these two tasks through a dual reasoning paradigm. We formulate generation as world knowledge-enhanced planning to inject implicit constraints, and leverage editing capabilities for fine-grained visual refinement to further correct visual errors via self-reflection. This approach unifies generation and editing within a shared representation, mirroring the human cognitive process of planning followed by refinement. We support this framework by systematically constructing a large-scale reasoning-centric dataset (~300k samples) covering five major knowledge domains (e.g., cultural commonsense, physics, etc.) for planning, alongside an agent-generated corpus for visual self-correction. Extensive experiments demonstrate that UniReason achieves advanced performance on reasoning-intensive benchmarks such as WISE, KrisBench and UniREditBench, while maintaining superior general synthesis capabilities.
☆ SelvaMask: Segmenting Trees in Tropical Forests and Beyond
Tropical forests harbor most of the planet's tree biodiversity and are critical to global ecological balance. Canopy trees in particular play a disproportionate role in carbon storage and functioning of these ecosystems. Studying canopy trees at scale requires accurate delineation of individual tree crowns, typically performed using high-resolution aerial imagery. Despite advances in transformer-based models for individual tree crown segmentation, performance remains low in most forests, especially tropical ones. To this end, we introduce SelvaMask, a new tropical dataset containing over 8,800 manually delineated tree crowns across three Neotropical forest sites in Panama, Brazil, and Ecuador. SelvaMask features comprehensive annotations, including an inter-annotator agreement evaluation, capturing the dense structure of tropical forests and highlighting the difficulty of the task. Leveraging this benchmark, we propose a modular detection-segmentation pipeline that adapts vision foundation models (VFMs), using domain-specific detection-prompter. Our approach reaches state-of-the-art performance, outperforming both zero-shot generalist models and fully supervised end-to-end methods in dense tropical forests. We validate these gains on external tropical and temperate datasets, demonstrating that SelvaMask serves as both a challenging benchmark and a key enabler for generalized forest monitoring. Our code and dataset will be released publicly.
comment: 22 pages, 8 figures
☆ Catalyst: Out-of-Distribution Detection via Elastic Scaling
Out-of-distribution (OOD) detection is critical for the safe deployment of deep neural networks. State-of-the-art post-hoc methods typically derive OOD scores from the output logits or penultimate feature vector obtained via global average pooling (GAP). We contend that this exclusive reliance on the logit or feature vector discards a rich, complementary signal: the raw channel-wise statistics of the pre-pooling feature map lost in GAP. In this paper, we introduce Catalyst, a post-hoc framework that exploits these under-explored signals. Catalyst computes an input-dependent scaling factor ($γ$) on-the-fly from these raw statistics (e.g., mean, standard deviation, and maximum activation). This $γ$ is then fused with the existing baseline score, multiplicatively modulating it -- an ``elastic scaling'' -- to push the ID and OOD distributions further apart. We demonstrate Catalyst is a generalizable framework: it seamlessly integrates with logit-based methods (e.g., Energy, ReAct, SCALE) and also provides a significant boost to distance-based detectors like KNN. As a result, Catalyst achieves substantial and consistent performance gains, reducing the average False Positive Rate by 32.87 on CIFAR-10 (ResNet-18), 27.94% on CIFAR-100 (ResNet-18), and 22.25% on ImageNet (ResNet-50). Our results highlight the untapped potential of pre-pooling statistics and demonstrate that Catalyst is complementary to existing OOD detection approaches.
☆ ReasonEdit: Editing Vision-Language Models using Human Reasoning
Model editing aims to correct errors in large, pretrained models without altering unrelated behaviors. While some recent works have edited vision-language models (VLMs), no existing editors tackle reasoning-heavy tasks, which typically require humans and models to reason about images.We therefore propose ReasonEdit, the first VLM editor to let users explain their reasoning during editing, introducing a new, practical model editing setup. ReasonEdit continuously stores human reasoning in a codebook, and retrieves only relevant facts during inference using a novel topology-balanced multimodal embedding method inspired by network science. Across four VLMs on multiple rationale-based visual question answering datasets, ReasonEdit achieves state-of-the-art editing performance, ultimately showing that using human reasoning during editing greatly improves edit generalization.
☆ SoMA: A Real-to-Sim Neural Simulator for Robotic Soft-body Manipulation
Simulating deformable objects under rich interactions remains a fundamental challenge for real-to-sim robot manipulation, with dynamics jointly driven by environmental effects and robot actions. Existing simulators rely on predefined physics or data-driven dynamics without robot-conditioned control, limiting accuracy, stability, and generalization. This paper presents SoMA, a 3D Gaussian Splat simulator for soft-body manipulation. SoMA couples deformable dynamics, environmental forces, and robot joint actions in a unified latent neural space for end-to-end real-to-sim simulation. Modeling interactions over learned Gaussian splats enables controllable, stable long-horizon manipulation and generalization beyond observed trajectories without predefined physical models. SoMA improves resimulation accuracy and generalization on real-world robot manipulation by 20%, enabling stable simulation of complex tasks such as long-horizon cloth folding.
comment: Project page: https://city-super.github.io/SoMA/
☆ Superman: Unifying Skeleton and Vision for Human Motion Perception and Generation
Human motion analysis tasks, such as temporal 3D pose estimation, motion prediction, and motion in-betweening, play an essential role in computer vision. However, current paradigms suffer from severe fragmentation. First, the field is split between ``perception'' models that understand motion from video but only output text, and ``generation'' models that cannot perceive from raw visual input. Second, generative MLLMs are often limited to single-frame, static poses using dense, parametric SMPL models, failing to handle temporal motion. Third, existing motion vocabularies are built from skeleton data alone, severing the link to the visual domain. To address these challenges, we introduce Superman, a unified framework that bridges visual perception with temporal, skeleton-based motion generation. Our solution is twofold. First, to overcome the modality disconnect, we propose a Vision-Guided Motion Tokenizer. Leveraging the natural geometric alignment between 3D skeletons and visual data, this module pioneers robust joint learning from both modalities, creating a unified, cross-modal motion vocabulary. Second, grounded in this motion language, a single, unified MLLM architecture is trained to handle all tasks. This module flexibly processes diverse, temporal inputs, unifying 3D skeleton pose estimation from video (perception) with skeleton-based motion prediction and in-betweening (generation). Extensive experiments on standard benchmarks, including Human3.6M, demonstrate that our unified method achieves state-of-the-art or competitive performance across all motion tasks. This showcases a more efficient and scalable path for generative motion analysis using skeletons.
☆ Infinite-World: Scaling Interactive World Models to 1000-Frame Horizons via Pose-Free Hierarchical Memory
We propose Infinite-World, a robust interactive world model capable of maintaining coherent visual memory over 1000+ frames in complex real-world environments. While existing world models can be efficiently optimized on synthetic data with perfect ground-truth, they lack an effective training paradigm for real-world videos due to noisy pose estimations and the scarcity of viewpoint revisits. To bridge this gap, we first introduce a Hierarchical Pose-free Memory Compressor (HPMC) that recursively distills historical latents into a fixed-budget representation. By jointly optimizing the compressor with the generative backbone, HPMC enables the model to autonomously anchor generations in the distant past with bounded computational cost, eliminating the need for explicit geometric priors. Second, we propose an Uncertainty-aware Action Labeling module that discretizes continuous motion into a tri-state logic. This strategy maximizes the utilization of raw video data while shielding the deterministic action space from being corrupted by noisy trajectories, ensuring robust action-response learning. Furthermore, guided by insights from a pilot toy study, we employ a Revisit-Dense Finetuning Strategy using a compact, 30-minute dataset to efficiently activate the model's long-range loop-closure capabilities. Extensive experiments, including objective metrics and user studies, demonstrate that Infinite-World achieves superior performance in visual quality, action controllability, and spatial consistency.
comment: 14 pages, 8 figures
☆ Personalized Image Generation via Human-in-the-loop Bayesian Optimization
Imagine Alice has a specific image $x^\ast$ in her mind, say, the view of the street in which she grew up during her childhood. To generate that exact image, she guides a generative model with multiple rounds of prompting and arrives at an image $x^{p*}$. Although $x^{p*}$ is reasonably close to $x^\ast$, Alice finds it difficult to close that gap using language prompts. This paper aims to narrow this gap by observing that even after language has reached its limits, humans can still tell when a new image $x^+$ is closer to $x^\ast$ than $x^{p*}$. Leveraging this observation, we develop MultiBO (Multi-Choice Preferential Bayesian Optimization) that carefully generates $K$ new images as a function of $x^{p*}$, gets preferential feedback from the user, uses the feedback to guide the diffusion model, and ultimately generates a new set of $K$ images. We show that within $B$ rounds of user feedback, it is possible to arrive much closer to $x^\ast$, even though the generative model has no information about $x^\ast$. Qualitative scores from $30$ users, combined with quantitative metrics compared across $5$ baselines, show promising results, suggesting that multi-choice feedback from humans can be effectively harnessed for personalized image generation.
☆ Unified Personalized Reward Model for Vision Generation
Recent advancements in multimodal reward models (RMs) have significantly propelled the development of visual generation. Existing frameworks typically adopt Bradley-Terry-style preference modeling or leverage generative VLMs as judges, and subsequently optimize visual generation models via reinforcement learning. However, current RMs suffer from inherent limitations: they often follow a one-size-fits-all paradigm that assumes a monolithic preference distribution or relies on fixed evaluation rubrics. As a result, they are insensitive to content-specific visual cues, leading to systematic misalignment with subjective and context-dependent human preferences. To this end, inspired by human assessment, we propose UnifiedReward-Flex, a unified personalized reward model for vision generation that couples reward modeling with flexible and context-adaptive reasoning. Specifically, given a prompt and the generated visual content, it first interprets the semantic intent and grounds on visual evidence, then dynamically constructs a hierarchical assessment by instantiating fine-grained criteria under both predefined and self-generated high-level dimensions. Our training pipeline follows a two-stage process: (1) we first distill structured, high-quality reasoning traces from advanced closed-source VLMs to bootstrap SFT, equipping the model with flexible and context-adaptive reasoning behaviors; (2) we then perform direct preference optimization (DPO) on carefully curated preference pairs to further strengthen reasoning fidelity and discriminative alignment. To validate the effectiveness, we integrate UnifiedReward-Flex into the GRPO framework for image and video synthesis, and extensive results demonstrate its superiority.
comment: Website: https://codegoat24.github.io/UnifiedReward/flex
☆ Uncertainty-Aware Image Classification In Biomedical Imaging Using Spectral-normalized Neural Gaussian Processes
Accurate histopathologic interpretation is key for clinical decision-making; however, current deep learning models for digital pathology are often overconfident and poorly calibrated in out-of-distribution (OOD) settings, which limit trust and clinical adoption. Safety-critical medical imaging workflows benefit from intrinsic uncertainty-aware properties that can accurately reject OOD input. We implement the Spectral-normalized Neural Gaussian Process (SNGP), a set of lightweight modifications that apply spectral normalization and replace the final dense layer with a Gaussian process layer to improve single-model uncertainty estimation and OOD detection. We evaluate SNGP vs. deterministic and MonteCarlo dropout on six datasets across three biomedical classification tasks: white blood cells, amyloid plaques, and colorectal histopathology. SNGP has comparable in-distribution performance while significantly improving uncertainty estimation and OOD detection. Thus, SNGP or related models offer a useful framework for uncertainty-aware classification in digital pathology, supporting safe deployment and building trust with pathologists.
comment: Accepted for publication at the IEEE International Symposium on Biomedical Imaging (ISBI) 2026
☆ NAB: Neural Adaptive Binning for Sparse-View CT reconstruction
Computed Tomography (CT) plays a vital role in inspecting the internal structures of industrial objects. Furthermore, achieving high-quality CT reconstruction from sparse views is essential for reducing production costs. While classic implicit neural networks have shown promising results for sparse reconstruction, they are unable to leverage shape priors of objects. Motivated by the observation that numerous industrial objects exhibit rectangular structures, we propose a novel \textbf{N}eural \textbf{A}daptive \textbf{B}inning (\textbf{NAB}) method that effectively integrates rectangular priors into the reconstruction process. Specifically, our approach first maps coordinate space into a binned vector space. This mapping relies on an innovative binning mechanism based on differences between shifted hyperbolic tangent functions, with our extension enabling rotations around the input-plane normal vector. The resulting representations are then processed by a neural network to predict CT attenuation coefficients. This design enables end-to-end optimization of the encoding parameters -- including position, size, steepness, and rotation -- via gradient flow from the projection data, thus enhancing reconstruction accuracy. By adjusting the smoothness of the binning function, NAB can generalize to objects with more complex geometries. This research provides a new perspective on integrating shape priors into neural network-based reconstruction. Extensive experiments demonstrate that NAB achieves superior performance on two industrial datasets. It also maintains robust on medical datasets when the binning function is extended to more general expression. The code will be made available.
☆ Implicit neural representation of textures
Implicit neural representation (INR) has proven to be accurate and efficient in various domains. In this work, we explore how different neural networks can be designed as a new texture INR, which operates in a continuous manner rather than a discrete one over the input UV coordinate space. Through thorough experiments, we demonstrate that these INRs perform well in terms of image quality, with considerable memory usage and rendering inference time. We analyze the balance between these objectives. In addition, we investigate various related applications in real-time rendering and down-stream tasks, e.g. mipmap fitting and INR-space generation.
comment: Albert Kwok and Zheyuan Hu contributed equally to this work
☆ Why Steering Works: Toward a Unified View of Language Model Parameter Dynamics
Methods for controlling large language models (LLMs), including local weight fine-tuning, LoRA-based adaptation, and activation-based interventions, are often studied in isolation, obscuring their connections and making comparison difficult. In this work, we present a unified view that frames these interventions as dynamic weight updates induced by a control signal, placing them within a single conceptual framework. Building on this view, we propose a unified preference-utility analysis that separates control effects into preference, defined as the tendency toward a target concept, and utility, defined as coherent and task-valid generation, and measures both on a shared log-odds scale using polarity-paired contrastive examples. Across methods, we observe a consistent trade-off between preference and utility: stronger control increases preference while predictably reducing utility. We further explain this behavior through an activation manifold perspective, in which control shifts representations along target-concept directions to enhance preference, while utility declines primarily when interventions push representations off the model's valid-generation manifold. Finally, we introduce a new steering approach SPLIT guided by this analysis that improves preference while better preserving utility. Code is available at https://github.com/zjunlp/EasyEdit/blob/main/examples/SPLIT.md.
comment: Work in progress
☆ LongVPO: From Anchored Cues to Self-Reasoning for Long-Form Video Preference Optimization NeurIPS 2025
We present LongVPO, a novel two-stage Direct Preference Optimization framework that enables short-context vision-language models to robustly understand ultra-long videos without any long-video annotations. In Stage 1, we synthesize preference triples by anchoring questions to individual short clips, interleaving them with distractors, and applying visual-similarity and question-specificity filtering to mitigate positional bias and ensure unambiguous supervision. We also approximate the reference model's scoring over long contexts by evaluating only the anchor clip, reducing computational overhead. In Stage 2, we employ a recursive captioning pipeline on long videos to generate scene-level metadata, then use a large language model to craft multi-segment reasoning queries and dispreferred responses, aligning the model's preferences through multi-segment reasoning tasks. With only 16K synthetic examples and no costly human labels, LongVPO outperforms the state-of-the-art open-source models on multiple long-video benchmarks, while maintaining strong short-video performance (e.g., on MVBench), offering a scalable paradigm for efficient long-form video understanding.
comment: NeurIPS 2025
☆ VQ-Style: Disentangling Style and Content in Motion with Residual Quantized Representations
Human motion data is inherently rich and complex, containing both semantic content and subtle stylistic features that are challenging to model. We propose a novel method for effective disentanglement of the style and content in human motion data to facilitate style transfer. Our approach is guided by the insight that content corresponds to coarse motion attributes while style captures the finer, expressive details. To model this hierarchy, we employ Residual Vector Quantized Variational Autoencoders (RVQ-VAEs) to learn a coarse-to-fine representation of motion. We further enhance the disentanglement by integrating contrastive learning and a novel information leakage loss with codebook learning to organize the content and the style across different codebooks. We harness this disentangled representation using our simple and effective inference-time technique Quantized Code Swapping, which enables motion style transfer without requiring any fine-tuning for unseen styles. Our framework demonstrates strong versatility across multiple inference applications, including style transfer, style removal, and motion blending.
☆ Enhancing Indoor Occupancy Prediction via Sparse Query-Based Multi-Level Consistent Knowledge Distillation
Occupancy prediction provides critical geometric and semantic understanding for robotics but faces efficiency-accuracy trade-offs. Current dense methods suffer computational waste on empty voxels, while sparse query-based approaches lack robustness in diverse and complex indoor scenes. In this paper, we propose DiScene, a novel sparse query-based framework that leverages multi-level distillation to achieve efficient and robust occupancy prediction. In particular, our method incorporates two key innovations: (1) a Multi-level Consistent Knowledge Distillation strategy, which transfers hierarchical representations from large teacher models to lightweight students through coordinated alignment across four levels, including encoder-level feature alignment, query-level feature matching, prior-level spatial guidance, and anchor-level high-confidence knowledge transfer and (2) a Teacher-Guided Initialization policy, employing optimized parameter warm-up to accelerate model convergence. Validated on the Occ-Scannet benchmark, DiScene achieves 23.2 FPS without depth priors while outperforming our baseline method, OPUS, by 36.1% and even better than the depth-enhanced version, OPUS†. With depth integration, DiScene† attains new SOTA performance, surpassing EmbodiedOcc by 3.7% with 1.62$\times$ faster inference speed. Furthermore, experiments on the Occ3D-nuScenes benchmark and in-the-wild scenarios demonstrate the versatility of our approach in various environments. Code and models can be accessed at https://github.com/getterupper/DiScene.
comment: Accepted by RA-L
☆ Segment to Focus: Guiding Latent Action Models in the Presence of Distractors
Latent Action Models (LAMs) learn to extract action-relevant representations solely from raw observations, enabling reinforcement learning from unlabelled videos and significantly scaling available training data. However, LAMs face a critical challenge in disentangling action-relevant features from action-correlated noise (e.g., background motion). Failing to filter these distractors causes LAMs to capture spurious correlations and build sub-optimal latent action spaces. In this paper, we introduce MaskLAM -- a lightweight modification to LAM training to mitigate this issue by incorporating visual agent segmentation. MaskLAM utilises segmentation masks from pretrained foundation models to weight the LAM reconstruction loss, thereby prioritising salient information over background elements while requiring no architectural modifications. We demonstrate the effectiveness of our method on continuous-control MuJoCo tasks, modified with action-correlated background noise. Our approach yields up to a 4x increase in accrued rewards compared to standard baselines and a 3x improvement in the latent action quality, as evidenced by linear probe evaluation.
☆ LiFlow: Flow Matching for 3D LiDAR Scene Completion
In autonomous driving scenarios, the collected LiDAR point clouds can be challenged by occlusion and long-range sparsity, limiting the perception of autonomous driving systems. Scene completion methods can infer the missing parts of incomplete 3D LiDAR scenes. Recent methods adopt local point-level denoising diffusion probabilistic models, which require predicting Gaussian noise, leading to a mismatch between training and inference initial distributions. This paper introduces the first flow matching framework for 3D LiDAR scene completion, improving upon diffusion-based methods by ensuring consistent initial distributions between training and inference. The model employs a nearest neighbor flow matching loss and a Chamfer distance loss to enhance both local structure and global coverage in the alignment of point clouds. LiFlow achieves state-of-the-art performance across multiple metrics. Code: https://github.com/matteandre/LiFlow.
☆ Show, Don't Tell: Morphing Latent Reasoning into Image Generation
Text-to-image (T2I) generation has achieved remarkable progress, yet existing methods often lack the ability to dynamically reason and refine during generation--a hallmark of human creativity. Current reasoning-augmented paradigms most rely on explicit thought processes, where intermediate reasoning is decoded into discrete text at fixed steps with frequent image decoding and re-encoding, leading to inefficiencies, information loss, and cognitive mismatches. To bridge this gap, we introduce LatentMorph, a novel framework that seamlessly integrates implicit latent reasoning into the T2I generation process. At its core, LatentMorph introduces four lightweight components: (i) a condenser for summarizing intermediate generation states into compact visual memory, (ii) a translator for converting latent thoughts into actionable guidance, (iii) a shaper for dynamically steering next image token predictions, and (iv) an RL-trained invoker for adaptively determining when to invoke reasoning. By performing reasoning entirely in continuous latent spaces, LatentMorph avoids the bottlenecks of explicit reasoning and enables more adaptive self-refinement. Extensive experiments demonstrate that LatentMorph (I) enhances the base model Janus-Pro by $16\%$ on GenEval and $25\%$ on T2I-CompBench; (II) outperforms explicit paradigms (e.g., TwiG) by $15\%$ and $11\%$ on abstract reasoning tasks like WISE and IPV-Txt, (III) while reducing inference time by $44\%$ and token consumption by $51\%$; and (IV) exhibits $71\%$ cognitive alignment with human intuition on reasoning invocation.
comment: Code: https://github.com/EnVision-Research/LatentMorph
☆ Evaluating OCR Performance for Assistive Technology: Effects of Walking Speed, Camera Placement, and Camera Type
Optical character recognition (OCR), which converts printed or handwritten text into machine-readable form, is widely used in assistive technology for people with blindness and low vision. Yet, most evaluations rely on static datasets that do not reflect the challenges of mobile use. In this study, we systematically evaluated OCR performance under both static and dynamic conditions. Static tests measured detection range across distances of 1-7 meters and viewing angles of 0-75 degrees horizontally. Dynamic tests examined the impact of motion by varying walking speed from slow (0.8 m/s) to very fast (1.8 m/s) and comparing three camera mounting positions: head-mounted, shoulder-mounted, and hand-held. We evaluated both a smartphone and smart glasses, using the phone's main and ultra-wide cameras. Four OCR engines were benchmarked to assess accuracy at different distances and viewing angles: Google Vision, PaddleOCR 3.0, EasyOCR, and Tesseract. PaddleOCR 3.0 was then used to evaluate accuracy at different walking speeds. Accuracy was computed at the character level using the Levenshtein ratio against manually defined ground truth. Results showed that recognition accuracy declined with increased walking speed and wider viewing angles. Google Vision achieved the highest overall accuracy, with PaddleOCR close behind as the strongest open-source alternative. Across devices, the phone's main camera achieved the highest accuracy, and a shoulder-mounted placement yielded the highest average among body positions; however, differences among shoulder, head, and hand were not statistically significant.
☆ MIRROR: Manifold Ideal Reference ReconstructOR for Generalizable AI-Generated Image Detection
High-fidelity generative models have narrowed the perceptual gap between synthetic and real images, posing serious threats to media security. Most existing AI-generated image (AIGI) detectors rely on artifact-based classification and struggle to generalize to evolving generative traces. In contrast, human judgment relies on stable real-world regularities, with deviations from the human cognitive manifold serving as a more generalizable signal of forgery. Motivated by this insight, we reformulate AIGI detection as a Reference-Comparison problem that verifies consistency with the real-image manifold rather than fitting specific forgery cues. We propose MIRROR (Manifold Ideal Reference ReconstructOR), a framework that explicitly encodes reality priors using a learnable discrete memory bank. MIRROR projects an input into a manifold-consistent ideal reference via sparse linear combination, and uses the resulting residuals as robust detection signals. To evaluate whether detectors reach the "superhuman crossover" required to replace human experts, we introduce the Human-AIGI benchmark, featuring a psychophysically curated human-imperceptible subset. Across 14 benchmarks, MIRROR consistently outperforms prior methods, achieving gains of 2.1% on six standard benchmarks and 8.1% on seven in-the-wild benchmarks. On Human-AIGI, MIRROR reaches 89.6% accuracy across 27 generators, surpassing both lay users and visual experts, and further approaching the human perceptual limit as pretrained backbones scale. The code is publicly available at: https://github.com/349793927/MIRROR
☆ LangMap: A Hierarchical Benchmark for Open-Vocabulary Goal Navigation
The relationships between objects and language are fundamental to meaningful communication between humans and AI, and to practically useful embodied intelligence. We introduce HieraNav, a multi-granularity, open-vocabulary goal navigation task where agents interpret natural language instructions to reach targets at four semantic levels: scene, room, region, and instance. To this end, we present Language as a Map (LangMap), a large-scale benchmark built on real-world 3D indoor scans with comprehensive human-verified annotations and tasks spanning these levels. LangMap provides region labels, discriminative region descriptions, discriminative instance descriptions covering 414 object categories, and over 18K navigation tasks. Each target features both concise and detailed descriptions, enabling evaluation across different instruction styles. LangMap achieves superior annotation quality, outperforming GOAT-Bench by 23.8% in discriminative accuracy using four times fewer words. Comprehensive evaluations of zero-shot and supervised models on LangMap reveal that richer context and memory improve success, while long-tailed, small, context-dependent, and distant goals, as well as multi-goal completion, remain challenging. HieraNav and LangMap establish a rigorous testbed for advancing language-driven embodied navigation. Project: https://bo-miao.github.io/LangMap
☆ Causal Forcing: Autoregressive Diffusion Distillation Done Right for High-Quality Real-Time Interactive Video Generation
To achieve real-time interactive video generation, current methods distill pretrained bidirectional video diffusion models into few-step autoregressive (AR) models, facing an architectural gap when full attention is replaced by causal attention. However, existing approaches do not bridge this gap theoretically. They initialize the AR student via ODE distillation, which requires frame-level injectivity, where each noisy frame must map to a unique clean frame under the PF-ODE of an AR teacher. Distilling an AR student from a bidirectional teacher violates this condition, preventing recovery of the teacher's flow map and instead inducing a conditional-expectation solution, which degrades performance. To address this issue, we propose Causal Forcing that uses an AR teacher for ODE initialization, thereby bridging the architectural gap. Empirical results show that our method outperforms all baselines across all metrics, surpassing the SOTA Self Forcing by 19.3\% in Dynamic Degree, 8.7\% in VisionReward, and 16.7\% in Instruction Following. Project page and the code: \href{https://thu-ml.github.io/CausalForcing.github.io/}{https://thu-ml.github.io/CausalForcing.github.io/}
comment: Project page and the code: \href{https://thu-ml.github.io/CausalForcing.github.io/}{https://thu-ml.github.io/CausalForcing.github.io/}
☆ MAIN-VLA: Modeling Abstraction of Intention and eNvironment for Vision-Language-Action Models
Despite significant progress in Visual-Language-Action (VLA), in highly complex and dynamic environments that involve real-time unpredictable interactions (such as 3D open worlds and large-scale PvP games), existing approaches remain inefficient at extracting action-critical signals from redundant sensor streams. To tackle this, we introduce MAIN-VLA, a framework that explicitly Models the Abstraction of Intention and eNvironment to ground decision-making in deep semantic alignment rather than superficial pattern matching. Specifically, our Intention Abstraction (IA) extracts verbose linguistic instructions and their associated reasoning into compact, explicit semantic primitives, while the Environment Semantics Abstraction (ESA) projects overwhelming visual streams into a structured, topological affordance representation. Furthermore, aligning these two abstract modalities induces an emergent attention-concentration effect, enabling a parameter-free token-pruning strategy that filters out perceptual redundancy without degrading performance. Extensive experiments in open-world Minecraft and large-scale PvP environments (Game for Peace and Valorant) demonstrate that MAIN-VLA sets a new state-of-the-art, which achieves superior decision quality, stronger generalization, and cutting-edge inference efficiency.
☆ SSI-DM: Singularity Skipping Inversion of Diffusion Models
Inverting real images into the noise space is essential for editing tasks using diffusion models, yet existing methods produce non-Gaussian noise with poor editability due to the inaccuracy in early noising steps. We identify the root cause: a mathematical singularity that renders inversion fundamentally ill-posed. We propose Singularity Skipping Inversion of Diffusion Models (SSI-DM), which bypasses this singular region by adding small noise before standard inversion. This simple approach produces inverted noise with natural Gaussian properties while maintaining reconstruction fidelity. As a plug-and-play technique compatible with general diffusion models, our method achieves superior performance on public image datasets for reconstruction and interpolation tasks, providing a principled and efficient solution to diffusion model inversion.
☆ Learning Topology-Aware Implicit Field for Unified Pulmonary Tree Modeling with Incomplete Topological Supervision
Pulmonary trees extracted from CT images frequently exhibit topological incompleteness, such as missing or disconnected branches, which substantially degrades downstream anatomical analysis and limits the applicability of existing pulmonary tree modeling pipelines. Current approaches typically rely on dense volumetric processing or explicit graph reasoning, leading to limited efficiency and reduced robustness under realistic structural corruption. We propose TopoField, a topology-aware implicit modeling framework that treats topology repair as a first-class modeling problem and enables unified multi-task inference for pulmonary tree analysis. TopoField represents pulmonary anatomy using sparse surface and skeleton point clouds and learns a continuous implicit field that supports topology repair without relying on complete or explicit disconnection annotations, by training on synthetically introduced structural disruptions over \textit{already} incomplete trees. Building upon the repaired implicit representation, anatomical labeling and lung segment reconstruction are jointly inferred through task-specific implicit functions within a single forward pass.Extensive experiments on the Lung3D+ dataset demonstrate that TopoField consistently improves topological completeness and achieves accurate anatomical labeling and lung segment reconstruction under challenging incomplete scenarios. Owing to its implicit formulation, TopoField attains high computational efficiency, completing all tasks in just over one second per case, highlighting its practicality for large-scale and time-sensitive clinical applications. Code and data will be available at https://github.com/HINTLab/TopoField.
comment: 18 pages, 7 figures
☆ Vision-DeepResearch Benchmark: Rethinking Visual and Textual Search for Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have advanced VQA and now support Vision-DeepResearch systems that use search engines for complex visual-textual fact-finding. However, evaluating these visual and textual search abilities is still difficult, and existing benchmarks have two major limitations. First, existing benchmarks are not visual search-centric: answers that should require visual search are often leaked through cross-textual cues in the text questions or can be inferred from the prior world knowledge in current MLLMs. Second, overly idealized evaluation scenario: On the image-search side, the required information can often be obtained via near-exact matching against the full image, while the text-search side is overly direct and insufficiently challenging. To address these issues, we construct the Vision-DeepResearch benchmark (VDR-Bench) comprising 2,000 VQA instances. All questions are created via a careful, multi-stage curation pipeline and rigorous expert review, designed to assess the behavior of Vision-DeepResearch systems under realistic real-world conditions. Moreover, to address the insufficient visual retrieval capabilities of current MLLMs, we propose a simple multi-round cropped-search workflow. This strategy is shown to effectively improve model performance in realistic visual retrieval scenarios. Overall, our results provide practical guidance for the design of future multimodal deep-research systems. The code will be released in https://github.com/Osilly/Vision-DeepResearch.
☆ CIEC: Coupling Implicit and Explicit Cues for Multimodal Weakly Supervised Manipulation Localization
To mitigate the threat of misinformation, multimodal manipulation localization has garnered growing attention. Consider that current methods rely on costly and time-consuming fine-grained annotations, such as patch/token-level annotations. This paper proposes a novel framework named Coupling Implicit and Explicit Cues (CIEC), which aims to achieve multimodal weakly-supervised manipulation localization for image-text pairs utilizing only coarse-grained image/sentence-level annotations. It comprises two branches, image-based and text-based weakly-supervised localization. For the former, we devise the Textual-guidance Refine Patch Selection (TRPS) module. It integrates forgery cues from both visual and textual perspectives to lock onto suspicious regions aided by spatial priors. Followed by the background silencing and spatial contrast constraints to suppress interference from irrelevant areas. For the latter, we devise the Visual-deviation Calibrated Token Grounding (VCTG) module. It focuses on meaningful content words and leverages relative visual bias to assist token localization. Followed by the asymmetric sparse and semantic consistency constraints to mitigate label noise and ensure reliability. Extensive experiments demonstrate the effectiveness of our CIEC, yielding results comparable to fully supervised methods on several evaluation metrics.
☆ Lung Nodule Image Synthesis Driven by Two-Stage Generative Adversarial Networks
The limited sample size and insufficient diversity of lung nodule CT datasets severely restrict the performance and generalization ability of detection models. Existing methods generate images with insufficient diversity and controllability, suffering from issues such as monotonous texture features and distorted anatomical structures. Therefore, we propose a two-stage generative adversarial network (TSGAN) to enhance the diversity and spatial controllability of synthetic data by decoupling the morphological structure and texture features of lung nodules. In the first stage, StyleGAN is used to generate semantic segmentation mask images, encoding lung nodules and tissue backgrounds to control the anatomical structure of lung nodule images; The second stage uses the DL-Pix2Pix model to translate the mask map into CT images, employing local importance attention to capture local features, while utilizing dynamic weight multi-head window attention to enhance the modeling capability of lung nodule texture and background. Compared to the original dataset, the accuracy improved by 4.6% and mAP by 4% on the LUNA16 dataset. Experimental results demonstrate that TSGAN can enhance the quality of synthetic images and the performance of detection models.
☆ Real-Time 2D LiDAR Object Detection Using Three-Frame RGB Scan Encoding
Indoor service robots need perception that is robust, more privacy-friendly than RGB video, and feasible on embedded hardware. We present a camera-free 2D LiDAR object detection pipeline that encodes short-term temporal context by stacking three consecutive scans as RGB channels, yielding a compact YOLOv8n input without occupancy-grid construction while preserving angular structure and motion cues. Evaluated in Webots across 160 randomized indoor scenarios with strict scenario-level holdout, the method achieves 98.4% mAP@0.5 (0.778 mAP@0.5:0.95) with 94.9% precision and 94.7% recall on four object classes. On a Raspberry Pi 5, it runs in real time with a mean post-warm-up end-to-end latency of 47.8ms per frame, including scan encoding and postprocessing. Relative to a closely related occupancy-grid LiDAR-YOLO pipeline reported on the same platform, the proposed representation is associated with substantially lower reported end-to-end latency. Although results are simulation-based, they suggest that lightweight temporal encoding can enable accurate and real-time LiDAR-only detection for embedded indoor robotics without capturing RGB appearance.
comment: 6 pages, 6 figures, submitted to IEEE SAS 2026
☆ Reg4Pru: Regularisation Through Random Token Routing for Token Pruning
Transformers are widely adopted in modern vision models due to their strong ability to scale with dataset size and generalisability. However, this comes with a major drawback: computation scales quadratically to the total number of tokens. Numerous methods have been proposed to mitigate this. For example, we consider token pruning with reactivating tokens from preserved representations, but the increased computational efficiency of this method results in decreased stability from the preserved representations, leading to poorer dense prediction performance at deeper layers. In this work, we introduce Reg4Pru, a training regularisation technique that mitigates token-pruning performance loss for segmentation. We compare our models on the FIVES blood vessel segmentation dataset and find that Reg4Pru improves average precision by an absolute 46% compared to the same model trained without routing. This increase is observed using a configuration that achieves a 29% relative speedup in wall-clock time compared to the non-pruned baseline. These findings indicate that Reg4Pru is a valuable regulariser for token reduction strategies.
comment: 11 pages, 7 figures
☆ LoopViT: Scaling Visual ARC with Looped Transformers
Recent advances in visual reasoning have leveraged vision transformers to tackle the ARC-AGI benchmark. However, we argue that the feed-forward architecture, where computational depth is strictly bound to parameter size, falls short of capturing the iterative, algorithmic nature of human induction. In this work, we propose a recursive architecture called Loop-ViT, which decouples reasoning depth from model capacity through weight-tied recurrence. Loop-ViT iterates a weight-tied Hybrid Block, combining local convolutions and global attention, to form a latent chain of thought. Crucially, we introduce a parameter-free Dynamic Exit mechanism based on predictive entropy: the model halts inference when its internal state ``crystallizes" into a low-uncertainty attractor. Empirical results on the ARC-AGI-1 benchmark validate this perspective: our 18M model achieves 65.8% accuracy, outperforming massive 73M-parameter ensembles. These findings demonstrate that adaptive iterative computation offers a far more efficient scaling axis for visual reasoning than simply increasing network width. The code is available at https://github.com/WenjieShu/LoopViT.
comment: 8 pages, 11 figures
☆ Deep learning enables urban change profiling through alignment of historical maps
Prior to modern Earth observation technologies, historical maps provide a unique record of long-term urban transformation and offer a lens on the evolving identity of cities. However, extracting consistent and fine-grained change information from historical map series remains challenging due to spatial misalignment, cartographic variation, and degrading document quality, limiting most analyses to small-scale or qualitative approaches. We propose a fully automated, deep learning-based framework for fine-grained urban change analysis from large collections of historical maps, built on a modular design that integrates dense map alignment, multi-temporal object detection, and change profiling. This framework shifts the analysis of historical maps from ad hoc visual comparison toward systematic, quantitative characterization of urban change. Experiments demonstrate the robust performance of the proposed alignment and object detection methods. Applied to Paris between 1868 and 1937, the framework reveals the spatial and temporal heterogeneity in urban transformation, highlighting its relevance for research in the social sciences and humanities. The modular design of our framework further supports adaptation to diverse cartographic contexts and downstream applications.
comment: 40 pages
☆ FD-VLA: Force-Distilled Vision-Language-Action Model for Contact-Rich Manipulation
Force sensing is a crucial modality for Vision-Language-Action (VLA) frameworks, as it enables fine-grained perception and dexterous manipulation in contact-rich tasks. We present Force-Distilled VLA (FD-VLA), a novel framework that integrates force awareness into contact-rich manipulation without relying on physical force sensors. The core of our approach is a Force Distillation Module (FDM), which distills force by mapping a learnable query token, conditioned on visual observations and robot states, into a predicted force token aligned with the latent representation of actual force signals. During inference, this distilled force token is injected into the pretrained VLM, enabling force-aware reasoning while preserving the integrity of its vision-language semantics. This design provides two key benefits: first, it allows practical deployment across a wide range of robots that lack expensive or fragile force-torque sensors, thereby reducing hardware cost and complexity; second, the FDM introduces an additional force-vision-state fusion prior to the VLM, which improves cross-modal alignment and enhances perception-action robustness in contact-rich scenarios. Surprisingly, our physical experiments show that the distilled force token outperforms direct sensor force measurements as well as other baselines, which highlights the effectiveness of this force-distilled VLA approach.
☆ Eliminating Registration Bias in Synthetic CT Generation: A Physics-Based Simulation Framework
Supervised synthetic CT generation from CBCT requires registered training pairs, yet perfect registration between separately acquired scans remains unattainable. This registration bias propagates into trained models and corrupts standard evaluation metrics. This may suggest that superior benchmark performance indicates better reproduction of registration artifacts rather than anatomical fidelity. We propose physics-based CBCT simulation to provide geometrically aligned training pairs by construction, combined with evaluation using geometric alignment metrics against input CBCT rather than biased ground truth. On two independent pelvic datasets, models trained on synthetic data achieved superior geometric alignment (Normalized Mutual Information: 0.31 vs 0.22) despite lower conventional intensity scores. Intensity metrics showed inverted correlations with clinical assessment for deformably registered data, while Normalized Mutual Information consistently predicted observer preference across registration methodologies (rho = 0.31, p < 0.001). Clinical observers preferred synthetic-trained outputs in 87% of cases, demonstrating that geometric fidelity, not intensity agreement with biased ground truth, aligns with clinical requirements.
☆ Toxicity Assessment in Preclinical Histopathology via Class-Aware Mahalanobis Distance for Known and Novel Anomalies
Drug-induced toxicity remains a leading cause of failure in preclinical development and early clinical trials. Detecting adverse effects at an early stage is critical to reduce attrition and accelerate the development of safe medicines. Histopathological evaluation remains the gold standard for toxicity assessment, but it relies heavily on expert pathologists, creating a bottleneck for large-scale screening. To address this challenge, we introduce an AI-based anomaly detection framework for histopathological whole-slide images (WSIs) in rodent livers from toxicology studies. The system identifies healthy tissue and known pathologies (anomalies) for which training data is available. In addition, it can detect rare pathologies without training data as out-of-distribution (OOD) findings. We generate a novel dataset of pixelwise annotations of healthy tissue and known pathologies and use this data to fine-tune a pre-trained Vision Transformer (DINOv2) via Low-Rank Adaptation (LoRA) in order to do tissue segmentation. Finally, we extract features for OOD detection using the Mahalanobis distance. To better account for class-dependent variability in histological data, we propose the use of class-specific thresholds. We optimize the thresholds using the mean of the false negative and false positive rates, resulting in only 0.16\% of pathological tissue classified as healthy and 0.35\% of healthy tissue classified as pathological. Applied to mouse liver WSIs with known toxicological findings, the framework accurately detects anomalies, including rare OOD morphologies. This work demonstrates the potential of AI-driven histopathology to support preclinical workflows, reduce late-stage failures, and improve efficiency in drug development.
☆ MLV-Edit: Towards Consistent and Highly Efficient Editing for Minute-Level Videos
We propose MLV-Edit, a training-free, flow-based framework that address the unique challenges of minute-level video editing. While existing techniques excel in short-form video manipulation, scaling them to long-duration videos remains challenging due to prohibitive computational overhead and the difficulty of maintaining global temporal consistency across thousands of frames. To address this, MLV-Edit employs a divide-and-conquer strategy for segment-wise editing, facilitated by two core modules: Velocity Blend rectifies motion inconsistencies at segment boundaries by aligning the flow fields of adjacent chunks, eliminating flickering and boundary artifacts commonly observed in fragmented video processing; and Attention Sink anchors local segment features to global reference frames, effectively suppressing cumulative structural drift. Extensive quantitative and qualitative experiments demonstrate that MLV-Edit consistently outperforms state-of-the-art methods in terms of temporal stability and semantic fidelity.
☆ Enhancing Diffusion-Based Quantitatively Controllable Image Generation via Matrix-Form EDM and Adaptive Vicinal Training
Continuous Conditional Diffusion Model (CCDM) is a diffusion-based framework designed to generate high-quality images conditioned on continuous regression labels. Although CCDM has demonstrated clear advantages over prior approaches across a range of datasets, it still exhibits notable limitations and has recently been surpassed by a GAN-based method, namely CcGAN-AVAR. These limitations mainly arise from its reliance on an outdated diffusion framework and its low sampling efficiency due to long sampling trajectories. To address these issues, we propose an improved CCDM framework, termed iCCDM, which incorporates the more advanced \textit{Elucidated Diffusion Model} (EDM) framework with substantial modifications to improve both generation quality and sampling efficiency. Specifically, iCCDM introduces a novel matrix-form EDM formulation together with an adaptive vicinal training strategy. Extensive experiments on four benchmark datasets, spanning image resolutions from $64\times64$ to $256\times256$, demonstrate that iCCDM consistently outperforms existing methods, including state-of-the-art large-scale text-to-image diffusion models (e.g., Stable Diffusion 3, FLUX.1, and Qwen-Image), achieving higher generation quality while significantly reducing sampling cost.
☆ An Empirical Study of World Model Quantization
World models learn an internal representation of environment dynamics, enabling agents to simulate and reason about future states within a compact latent space for tasks such as planning, prediction, and inference. However, running world models rely on hevay computational cost and memory footprint, making model quantization essential for efficient deployment. To date, the effects of post-training quantization (PTQ) on world models remain largely unexamined. In this work, we present a systematic empirical study of world model quantization using DINO-WM as a representative case, evaluating diverse PTQ methods under both weight-only and joint weight-activation settings. We conduct extensive experiments on different visual planning tasks across a wide range of bit-widths, quantization granularities, and planning horizons up to 50 iterations. Our results show that quantization effects in world models extend beyond standard accuracy and bit-width trade-offs: group-wise weight quantization can stabilize low-bit rollouts, activation quantization granularity yields inconsistent benefits, and quantization sensitivity is highly asymmetric between encoder and predictor modules. Moreover, aggressive low-bit quantization significantly degrades the alignment between the planning objective and task success, leading to failures that cannot be remedied by additional optimization. These findings reveal distinct quantization-induced failure modes in world model-based planning and provide practical guidance for deploying quantized world models under strict computational constraints. The code will be available at https://github.com/huawei-noah/noah-research/tree/master/QuantWM.
☆ Teacher-Guided Student Self-Knowledge Distillation Using Diffusion Model
Existing Knowledge Distillation (KD) methods often align feature information between teacher and student by exploring meaningful feature processing and loss functions. However, due to the difference in feature distributions between the teacher and student, the student model may learn incompatible information from the teacher. To address this problem, we propose teacher-guided student Diffusion Self-KD, dubbed as DSKD. Instead of the direct teacher-student alignment, we leverage the teacher classifier to guide the sampling process of denoising student features through a light-weight diffusion model. We then propose a novel locality-sensitive hashing (LSH)-guided feature distillation method between the original and denoised student features. The denoised student features encapsulate teacher knowledge and could be regarded as a teacher role. In this way, our DSKD method could eliminate discrepancies in mapping manners and feature distributions between the teacher and student, while learning meaningful knowledge from the teacher. Experiments on visual recognition tasks demonstrate that DSKD significantly outperforms existing KD methods across various models and datasets. Our code is attached in supplementary material.
☆ FSVideo: Fast Speed Video Diffusion Model in a Highly-Compressed Latent Space
We introduce FSVideo, a fast speed transformer-based image-to-video (I2V) diffusion framework. We build our framework on the following key components: 1.) a new video autoencoder with highly-compressed latent space ($64\times64\times4$ spatial-temporal downsampling ratio), achieving competitive reconstruction quality; 2.) a diffusion transformer (DIT) architecture with a new layer memory design to enhance inter-layer information flow and context reuse within DIT, and 3.) a multi-resolution generation strategy via a few-step DIT upsampler to increase video fidelity. Our final model, which contains a 14B DIT base model and a 14B DIT upsampler, achieves competitive performance against other popular open-source models, while being an order of magnitude faster. We discuss our model design as well as training strategies in this report.
comment: Project Page: https://kingofprank.github.io/fsvideo/
☆ UrbanGS: A Scalable and Efficient Architecture for Geometrically Accurate Large-Scene Reconstruction ICLR 2026
While 3D Gaussian Splatting (3DGS) enables high-quality, real-time rendering for bounded scenes, its extension to large-scale urban environments gives rise to critical challenges in terms of geometric consistency, memory efficiency, and computational scalability. To address these issues, we present UrbanGS, a scalable reconstruction framework that effectively tackles these challenges for city-scale applications. First, we propose a Depth-Consistent D-Normal Regularization module. Unlike existing approaches that rely solely on monocular normal estimators, which can effectively update rotation parameters yet struggle to update position parameters, our method integrates D-Normal constraints with external depth supervision. This allows for comprehensive updates of all geometric parameters. By further incorporating an adaptive confidence weighting mechanism based on gradient consistency and inverse depth deviation, our approach significantly enhances multi-view depth alignment and geometric coherence, which effectively resolves the issue of geometric accuracy in complex large-scale scenes. To improve scalability, we introduce a Spatially Adaptive Gaussian Pruning (SAGP) strategy, which dynamically adjusts Gaussian density based on local geometric complexity and visibility to reduce redundancy. Additionally, a unified partitioning and view assignment scheme is designed to eliminate boundary artifacts and optimize computational load. Extensive experiments on multiple urban datasets demonstrate that UrbanGS achieves superior performance in rendering quality, geometric accuracy, and memory efficiency, providing a systematic solution for high-fidelity large-scale scene reconstruction.
comment: ICLR 2026
☆ Multi-View Stenosis Classification Leveraging Transformer-Based Multiple-Instance Learning Using Real-World Clinical Data
Coronary artery stenosis is a leading cause of cardiovascular disease, diagnosed by analyzing the coronary arteries from multiple angiography views. Although numerous deep-learning models have been proposed for stenosis detection from a single angiography view, their performance heavily relies on expensive view-level annotations, which are often not readily available in hospital systems. Moreover, these models fail to capture the temporal dynamics and dependencies among multiple views, which are crucial for clinical diagnosis. To address this, we propose SegmentMIL, a transformer-based multi-view multiple-instance learning framework for patient-level stenosis classification. Trained on a real-world clinical dataset, using patient-level supervision and without any view-level annotations, SegmentMIL jointly predicts the presence of stenosis and localizes the affected anatomical region, distinguishing between the right and left coronary arteries and their respective segments. SegmentMIL obtains high performance on internal and external evaluations and outperforms both view-level models and classical MIL baselines, underscoring its potential as a clinically viable and scalable solution for coronary stenosis diagnosis. Our code is available at https://github.com/NikolaCenic/mil-stenosis.
☆ Auto-Comp: An Automated Pipeline for Scalable Compositional Probing of Contrastive Vision-Language Models
Modern Vision-Language Models (VLMs) exhibit a critical flaw in compositional reasoning, often confusing "a red cube and a blue sphere" with "a blue cube and a red sphere". Disentangling the visual and linguistic roots of these failures is a fundamental challenge for robust evaluation. To enable fine-grained, controllable analysis, we introduce Auto-Comp, a fully automated and synthetic pipeline for generating scalable benchmarks. Its controllable nature is key to dissecting and isolating different reasoning skills. Auto-Comp generates paired images from Minimal (e.g., "a monitor to the left of a bicycle on a white background") and LLM-generated Contextual captions (e.g., "In a brightly lit photography studio, a monitor is positioned to the left of a bicycle"), allowing a controlled A/B test to disentangle core binding ability from visio-linguistic complexity. Our evaluation of 20 VLMs on novel benchmarks for color binding and spatial relations reveals universal compositional failures in both CLIP and SigLIP model families. Crucially, our novel "Confusion Benchmark" reveals a deeper flaw beyond simple attribute swaps: models are highly susceptible to low-entropy distractors (e.g., repeated objects or colors), demonstrating their compositional failures extend beyond known bag-of-words limitations. we uncover a surprising trade-off: visio-linguistic context, which provides global scene cues, aids spatial reasoning but simultaneously hinders local attribute binding by introducing visual clutter. We release the Auto-Comp pipeline to facilitate future benchmark creation, alongside all our generated benchmarks (https://huggingface.co/AutoComp).
☆ One Size, Many Fits: Aligning Diverse Group-Wise Click Preferences in Large-Scale Advertising Image Generation
Advertising image generation has increasingly focused on online metrics like Click-Through Rate (CTR), yet existing approaches adopt a ``one-size-fits-all" strategy that optimizes for overall CTR while neglecting preference diversity among user groups. This leads to suboptimal performance for specific groups, limiting targeted marketing effectiveness. To bridge this gap, we present \textit{One Size, Many Fits} (OSMF), a unified framework that aligns diverse group-wise click preferences in large-scale advertising image generation. OSMF begins with product-aware adaptive grouping, which dynamically organizes users based on their attributes and product characteristics, representing each group with rich collective preference features. Building on these groups, preference-conditioned image generation employs a Group-aware Multimodal Large Language Model (G-MLLM) to generate tailored images for each group. The G-MLLM is pre-trained to simultaneously comprehend group features and generate advertising images. Subsequently, we fine-tune the G-MLLM using our proposed Group-DPO for group-wise preference alignment, which effectively enhances each group's CTR on the generated images. To further advance this field, we introduce the Grouped Advertising Image Preference Dataset (GAIP), the first large-scale public dataset of group-wise image preferences, including around 600K groups built from 40M users. Extensive experiments demonstrate that our framework achieves the state-of-the-art performance in both offline and online settings. Our code and datasets will be released at https://github.com/JD-GenX/OSMF.
☆ Rethinking Genomic Modeling Through Optical Character Recognition
Recent genomic foundation models largely adopt large language model architectures that treat DNA as a one-dimensional token sequence. However, exhaustive sequential reading is structurally misaligned with sparse and discontinuous genomic semantics, leading to wasted computation on low-information background and preventing understanding-driven compression for long contexts. Here, we present OpticalDNA, a vision-based framework that reframes genomic modeling as Optical Character Recognition (OCR)-style document understanding. OpticalDNA renders DNA into structured visual layouts and trains an OCR-capable vision--language model with a \emph{visual DNA encoder} and a \emph{document decoder}, where the encoder produces compact, reconstructible visual tokens for high-fidelity compression. Building on this representation, OpticalDNA defines prompt-conditioned objectives over core genomic primitives-reading, region grounding, subsequence retrieval, and masked span completion-thereby learning layout-aware DNA representations that retain fine-grained genomic information under a reduced effective token budget. Across diverse genomic benchmarks, OpticalDNA consistently outperforms recent baselines; on sequences up to 450k bases, it achieves the best overall performance with nearly $20\times$ fewer effective tokens, and surpasses models with up to $985\times$ more activated parameters while tuning only 256k \emph{trainable} parameters.
☆ ClueTracer: Question-to-Vision Clue Tracing for Training-Free Hallucination Suppression in Multimodal Reasoning
Large multimodal reasoning models solve challenging visual problems via explicit long-chain inference: they gather visual clues from images and decode clues into textual tokens. Yet this capability also increases hallucinations, where the model generates content that is not supported by the input image or the question. To understand this failure mode, we identify \emph{reasoning drift}: during clue gathering, the model over-focuses on question-irrelevant entities, diluting focus on task-relevant cues and gradually decoupling the reasoning trace from visual grounding. As a consequence, many inference-time localization or intervention methods developed for non-reasoning models fail to pinpoint the true clues in reasoning settings. Motivated by these insights, we introduce ClueRecall, a metric for assessing visual clue retrieval, and present ClueTracer, a training-free, parameter-free, and architecture-agnostic plugin for hallucination suppression. ClueTracer starts from the question and traces how key clues propagate along the model's reasoning pathway (question $\rightarrow$ outputs $\rightarrow$ visual tokens), thereby localizing task-relevant patches while suppressing spurious attention to irrelevant regions. Remarkably, \textbf{without any additional training}, ClueTracer improves all \textbf{reasoning} architectures (including \texttt{R1-OneVision}, \texttt{Ocean-R1}, \texttt{MM-Eureka}, \emph{etc}.) by $\mathbf{1.21\times}$ on reasoning benchmarks. When transferred to \textbf{non-reasoning} settings, it yields a $\mathbf{1.14\times}$ gain.
comment: 20 pages, 7 figures
☆ UniDriveDreamer: A Single-Stage Multimodal World Model for Autonomous Driving
World models have demonstrated significant promise for data synthesis in autonomous driving. However, existing methods predominantly concentrate on single-modality generation, typically focusing on either multi-camera video or LiDAR sequence synthesis. In this paper, we propose UniDriveDreamer, a single-stage unified multimodal world model for autonomous driving, which directly generates multimodal future observations without relying on intermediate representations or cascaded modules. Our framework introduces a LiDAR-specific variational autoencoder (VAE) designed to encode input LiDAR sequences, alongside a video VAE for multi-camera images. To ensure cross-modal compatibility and training stability, we propose Unified Latent Anchoring (ULA), which explicitly aligns the latent distributions of the two modalities. The aligned features are fused and processed by a diffusion transformer that jointly models their geometric correspondence and temporal evolution. Additionally, structured scene layout information is projected per modality as a conditioning signal to guide the synthesis. Extensive experiments demonstrate that UniDriveDreamer outperforms previous state-of-the-art methods in both video and LiDAR generation, while also yielding measurable improvements in downstream
comment: 16 pages, 7 figures
☆ SurfSplat: Conquering Feedforward 2D Gaussian Splatting with Surface Continuity Priors ICLR 2026
Reconstructing 3D scenes from sparse images remains a challenging task due to the difficulty of recovering accurate geometry and texture without optimization. Recent approaches leverage generalizable models to generate 3D scenes using 3D Gaussian Splatting (3DGS) primitive. However, they often fail to produce continuous surfaces and instead yield discrete, color-biased point clouds that appear plausible at normal resolution but reveal severe artifacts under close-up views. To address this issue, we present SurfSplat, a feedforward framework based on 2D Gaussian Splatting (2DGS) primitive, which provides stronger anisotropy and higher geometric precision. By incorporating a surface continuity prior and a forced alpha blending strategy, SurfSplat reconstructs coherent geometry together with faithful textures. Furthermore, we introduce High-Resolution Rendering Consistency (HRRC), a new evaluation metric designed to evaluate high-resolution reconstruction quality. Extensive experiments on RealEstate10K, DL3DV, and ScanNet demonstrate that SurfSplat consistently outperforms prior methods on both standard metrics and HRRC, establishing a robust solution for high-fidelity 3D reconstruction from sparse inputs. Project page: https://hebing-sjtu.github.io/SurfSplat-website/
comment: ICLR 2026
☆ Leveraging Latent Vector Prediction for Localized Control in Image Generation via Diffusion Models
Diffusion models emerged as a leading approach in text-to-image generation, producing high-quality images from textual descriptions. However, attempting to achieve detailed control to get a desired image solely through text remains a laborious trial-and-error endeavor. Recent methods have introduced image-level controls alongside with text prompts, using prior images to extract conditional information such as edges, segmentation and depth maps. While effective, these methods apply conditions uniformly across the entire image, limiting localized control. In this paper, we propose a novel methodology to enable precise local control over user-defined regions of an image, while leaving to the diffusion model the task of autonomously generating the remaining areas according to the original prompt. Our approach introduces a new training framework that incorporates masking features and an additional loss term, which leverages the prediction of the initial latent vector at any diffusion step to enhance the correspondence between the current step and the final sample in the latent space. Extensive experiments demonstrate that our method effectively synthesizes high-quality images with controlled local conditions.
☆ Enhancing Multi-Image Understanding through Delimiter Token Scaling ICLR 2026
Large Vision-Language Models (LVLMs) achieve strong performance on single-image tasks, but their performance declines when multiple images are provided as input. One major reason is the cross-image information leakage, where the model struggles to distinguish information across different images. Existing LVLMs already employ delimiter tokens to mark the start and end of each image, yet our analysis reveals that these tokens fail to effectively block cross-image information leakage. To enhance their effectiveness, we propose a method that scales the hidden states of delimiter tokens. This enhances the model's ability to preserve image-specific information by reinforcing intra-image interaction and limiting undesired cross-image interactions. Consequently, the model is better able to distinguish between images and reason over them more accurately. Experiments show performance gains on multi-image benchmarks such as Mantis, MuirBench, MIRB, and QBench2. We further evaluate our method on text-only tasks that require clear distinction. The method improves performance on multi-document and multi-table understanding benchmarks, including TQABench, MultiNews, and WCEP-10. Notably, our method requires no additional training or inference cost.
comment: Accepted at ICLR 2026
☆ FlyPrompt: Brain-Inspired Random-Expanded Routing with Temporal-Ensemble Experts for General Continual Learning ICLR 2026
General continual learning (GCL) challenges intelligent systems to learn from single-pass, non-stationary data streams without clear task boundaries. While recent advances in continual parameter-efficient tuning (PET) of pretrained models show promise, they typically rely on multiple training epochs and explicit task cues, limiting their effectiveness in GCL scenarios. Moreover, existing methods often lack targeted design and fail to address two fundamental challenges in continual PET: how to allocate expert parameters to evolving data distributions, and how to improve their representational capacity under limited supervision. Inspired by the fruit fly's hierarchical memory system characterized by sparse expansion and modular ensembles, we propose FlyPrompt, a brain-inspired framework that decomposes GCL into two subproblems: expert routing and expert competence improvement. FlyPrompt introduces a randomly expanded analytic router for instance-level expert activation and a temporal ensemble of output heads to dynamically adapt decision boundaries over time. Extensive theoretical and empirical evaluations demonstrate FlyPrompt's superior performance, achieving up to 11.23%, 12.43%, and 7.62% gains over state-of-the-art baselines on CIFAR-100, ImageNet-R, and CUB-200, respectively. Our source code is available at https://github.com/AnAppleCore/FlyGCL.
comment: 33 pages. Accepted by ICLR 2026
☆ Your AI-Generated Image Detector Can Secretly Achieve SOTA Accuracy, If Calibrated AAAI 2026
Despite being trained on balanced datasets, existing AI-generated image detectors often exhibit systematic bias at test time, frequently misclassifying fake images as real. We hypothesize that this behavior stems from distributional shift in fake samples and implicit priors learned during training. Specifically, models tend to overfit to superficial artifacts that do not generalize well across different generation methods, leading to a misaligned decision threshold when faced with test-time distribution shift. To address this, we propose a theoretically grounded post-hoc calibration framework based on Bayesian decision theory. In particular, we introduce a learnable scalar correction to the model's logits, optimized on a small validation set from the target distribution while keeping the backbone frozen. This parametric adjustment compensates for distributional shift in model output, realigning the decision boundary even without requiring ground-truth labels. Experiments on challenging benchmarks show that our approach significantly improves robustness without retraining, offering a lightweight and principled solution for reliable and adaptive AI-generated image detection in the open world. Code is available at https://github.com/muliyangm/AIGI-Det-Calib.
comment: AAAI 2026. Code: https://github.com/muliyangm/AIGI-Det-Calib
☆ Beyond Open Vocabulary: Multimodal Prompting for Object Detection in Remote Sensing Images
Open-vocabulary object detection in remote sensing commonly relies on text-only prompting to specify target categories, implicitly assuming that inference-time category queries can be reliably grounded through pretraining-induced text-visual alignment. In practice, this assumption often breaks down in remote sensing scenarios due to task- and application-specific category semantics, resulting in unstable category specification under open-vocabulary settings. To address this limitation, we propose RS-MPOD, a multimodal open-vocabulary detection framework that reformulates category specification beyond text-only prompting by incorporating instance-grounded visual prompts, textual prompts, and their multimodal integration. RS-MPOD introduces a visual prompt encoder to extract appearance-based category cues from exemplar instances, enabling text-free category specification, and a multimodal fusion module to integrate visual and textual information when both modalities are available. Extensive experiments on standard, cross-dataset, and fine-grained remote sensing benchmarks show that visual prompting yields more reliable category specification under semantic ambiguity and distribution shifts, while multimodal prompting provides a flexible alternative that remains competitive when textual semantics are well aligned.
☆ Enabling Progressive Whole-slide Image Analysis with Multi-scale Pyramidal Network
Multiple-instance Learning (MIL) is commonly used to undertake computational pathology (CPath) tasks, and the use of multi-scale patches allows diverse features across scales to be learned. Previous studies using multi-scale features in clinical applications rely on multiple inputs across magnifications with late feature fusion, which does not retain the link between features across scales while the inputs are dependent on arbitrary, manufacturer-defined magnifications, being inflexible and computationally expensive. In this paper, we propose the Multi-scale Pyramidal Network (MSPN), which is plug-and-play over attention-based MIL that introduces progressive multi-scale analysis on WSI. Our MSPN consists of (1) grid-based remapping that uses high magnification features to derive coarse features and (2) the coarse guidance network (CGN) that learns coarse contexts. We benchmark MSPN as an add-on module to 4 attention-based frameworks using 4 clinically relevant tasks across 3 types of foundation model, as well as the pre-trained MIL framework. We show that MSPN consistently improves MIL across the compared configurations and tasks, while being lightweight and easy-to-use.
☆ Boundary-Constrained Diffusion Models for Floorplan Generation: Balancing Realism and Diversity
Diffusion models have become widely popular for automated floorplan generation, producing highly realistic layouts conditioned on user-defined constraints. However, optimizing for perceptual metrics such as the Fréchet Inception Distance (FID) causes limited design diversity. To address this, we propose the Diversity Score (DS), a metric that quantifies layout diversity under fixed constraints. Moreover, to improve geometric consistency, we introduce a Boundary Cross-Attention (BCA) module that enables conditioning on building boundaries. Our experiments show that BCA significantly improves boundary adherence, while prolonged training drives diversity collapse undiagnosed by FID, revealing a critical trade-off between realism and diversity. Out-Of-Distribution evaluations further demonstrate the models' reliance on dataset priors, emphasizing the need for generative systems that explicitly balance fidelity, diversity, and generalization in architectural design tasks.
comment: Accepted at ESANN 2026
☆ LIEREx: Language-Image Embeddings for Robotic Exploration
Semantic maps allow a robot to reason about its surroundings to fulfill tasks such as navigating known environments, finding specific objects, and exploring unmapped areas. Traditional mapping approaches provide accurate geometric representations but are often constrained by pre-designed symbolic vocabularies. The reliance on fixed object classes makes it impractical to handle out-of-distribution knowledge not defined at design time. Recent advances in Vision-Language Foundation Models, such as CLIP, enable open-set mapping, where objects are encoded as high-dimensional embeddings rather than fixed labels. In LIEREx, we integrate these VLFMs with established 3D Semantic Scene Graphs to enable target-directed exploration by an autonomous agent in partially unknown environments.
comment: This preprint has not undergone peer review or any post-submission improvements or corrections. The Version of Record of this article is published in KI - Künstliche Intelligenz, and is available online at https://doi.org/10.1007/s13218-026-00902-6
☆ DSXFormer: Dual-Pooling Spectral Squeeze-Expansion and Dynamic Context Attention Transformer for Hyperspectral Image Classification
Hyperspectral image classification (HSIC) is a challenging task due to high spectral dimensionality, complex spectral-spatial correlations, and limited labeled training samples. Although transformer-based models have shown strong potential for HSIC, existing approaches often struggle to achieve sufficient spectral discriminability while maintaining computational efficiency. To address these limitations, we propose a novel DSXFormer, a novel dual-pooling spectral squeeze-expansion transformer with Dynamic Context Attention for HSIC. The proposed DSXFormer introduces a Dual-Pooling Spectral Squeeze-Expansion (DSX) block, which exploits complementary global average and max pooling to adaptively recalibrate spectral feature channels, thereby enhancing spectral discriminability and inter-band dependency modeling. In addition, DSXFormer incorporates a Dynamic Context Attention (DCA) mechanism within a window-based transformer architecture to dynamically capture local spectral-spatial relationships while significantly reducing computational overhead. The joint integration of spectral dual-pooling squeeze-expansion and DCA enables DSXFormer to achieve an effective balance between spectral emphasis and spatial contextual representation. Furthermore, patch extraction, embedding, and patch merging strategies are employed to facilitate efficient multi-scale feature learning. Extensive experiments conducted on four widely used hyperspectral benchmark datasets, including Salinas (SA), Indian Pines (IP), Pavia University (PU), and Kennedy Space Center (KSC), demonstrate that DSXFormer consistently outperforms state-of-the-art methods, achieving classification accuracies of 99.95%, 98.91%, 99.85%, and 98.52%, respectively.
☆ Learning Sparse Visual Representations via Spatial-Semantic Factorization
Self-supervised learning (SSL) faces a fundamental conflict between semantic understanding and image reconstruction. High-level semantic SSL (e.g., DINO) relies on global tokens that are forced to be location-invariant for augmentation alignment, a process that inherently discards the spatial coordinates required for reconstruction. Conversely, generative SSL (e.g., MAE) preserves dense feature grids for reconstruction but fails to produce high-level abstractions. We introduce STELLAR, a framework that resolves this tension by factorizing visual features into a low-rank product of semantic concepts and their spatial distributions. This disentanglement allows us to perform DINO-style augmentation alignment on the semantic tokens while maintaining the precise spatial mapping in the localization matrix necessary for pixel-level reconstruction. We demonstrate that as few as 16 sparse tokens under this factorized form are sufficient to simultaneously support high-quality reconstruction (2.60 FID) and match the semantic performance of dense backbones (79.10% ImageNet accuracy). Our results highlight STELLAR as a versatile sparse representation that bridges the gap between discriminative and generative vision by strategically separating semantic identity from spatial geometry. Code available at https://aka.ms/stellar.
☆ Q Cache: Visual Attention is Valuable in Less than Half of Decode Layers for Multimodal Large Language Model AAAI26
Multimodal large language models (MLLMs) are plagued by exorbitant inference costs attributable to the profusion of visual tokens within the vision encoder. The redundant visual tokens engenders a substantial computational load and key-value (KV) cache footprint bottleneck. Existing approaches focus on token-wise optimization, leveraging diverse intricate token pruning techniques to eliminate non-crucial visual tokens. Nevertheless, these methods often unavoidably undermine the integrity of the KV cache, resulting in failures in long-text generation tasks. To this end, we conduct an in-depth investigation towards the attention mechanism of the model from a new perspective, and discern that attention within more than half of all decode layers are semantic similar. Upon this finding, we contend that the attention in certain layers can be streamlined by inheriting the attention from their preceding layers. Consequently, we propose Lazy Attention, an efficient attention mechanism that enables cross-layer sharing of similar attention patterns. It ingeniously reduces layer-wise redundant computation in attention. In Lazy Attention, we develop a novel layer-shared cache, Q Cache, tailored for MLLMs, which facilitates the reuse of queries across adjacent layers. In particular, Q Cache is lightweight and fully compatible with existing inference frameworks, including Flash Attention and KV cache. Additionally, our method is highly flexible as it is orthogonal to existing token-wise techniques and can be deployed independently or combined with token pruning approaches. Empirical evaluations on multiple benchmarks demonstrate that our method can reduce KV cache usage by over 35% and achieve 1.5x throughput improvement, while sacrificing only approximately 1% of performance on various MLLMs. Compared with SOTA token-wise methods, our technique achieves superior accuracy preservation.
comment: Accepted by AAAI26
☆ Multi-Task Learning for Robot Perception with Imbalanced Data
Multi-task problem solving has been shown to improve the accuracy of the individual tasks, which is an important feature for robots, as they have a limited resource. However, when the number of labels for each task is not equal, namely imbalanced data exist, a problem may arise due to insufficient number of samples, and labeling is not very easy for mobile robots in every environment. We propose a method that can learn tasks even in the absence of the ground truth labels for some of the tasks. We also provide a detailed analysis of the proposed method. An interesting finding is related to the interaction of the tasks. We show a methodology to find out which tasks can improve the performance of other tasks. We investigate this by training the teacher network with the task outputs such as depth as inputs. We further provide empirical evidence when trained with a small amount of data. We use semantic segmentation and depth estimation tasks on different datasets, NYUDv2 and Cityscapes.
comment: 16 pages
☆ ProxyImg: Towards Highly-Controllable Image Representation via Hierarchical Disentangled Proxy Embedding
Prevailing image representation methods, including explicit representations such as raster images and Gaussian primitives, as well as implicit representations such as latent images, either suffer from representation redundancy that leads to heavy manual editing effort, or lack a direct mapping from latent variables to semantic instances or parts, making fine-grained manipulation difficult. These limitations hinder efficient and controllable image and video editing. To address these issues, we propose a hierarchical proxy-based parametric image representation that disentangles semantic, geometric, and textural attributes into independent and manipulable parameter spaces. Based on a semantic-aware decomposition of the input image, our representation constructs hierarchical proxy geometries through adaptive Bezier fitting and iterative internal region subdivision and meshing. Multi-scale implicit texture parameters are embedded into the resulting geometry-aware distributed proxy nodes, enabling continuous high-fidelity reconstruction in the pixel domain and instance- or part-independent semantic editing. In addition, we introduce a locality-adaptive feature indexing mechanism to ensure spatial texture coherence, which further supports high-quality background completion without relying on generative models. Extensive experiments on image reconstruction and editing benchmarks, including ImageNet, OIR-Bench, and HumanEdit, demonstrate that our method achieves state-of-the-art rendering fidelity with significantly fewer parameters, while enabling intuitive, interactive, and physically plausible manipulation. Moreover, by integrating proxy nodes with Position-Based Dynamics, our framework supports real-time physics-driven animation using lightweight implicit rendering, achieving superior temporal consistency and visual realism compared with generative approaches.
☆ Trust but Verify: Adaptive Conditioning for Reference-Based Diffusion Super-Resolution via Implicit Reference Correlation Modeling ICLR 2026
Recent works have explored reference-based super-resolution (RefSR) to mitigate hallucinations in diffusion-based image restoration. A key challenge is that real-world degradations make correspondences between low-quality (LQ) inputs and reference (Ref) images unreliable, requiring adaptive control of reference usage. Existing methods either ignore LQ-Ref correlations or rely on brittle explicit matching, leading to over-reliance on misleading references or under-utilization of valuable cues. To address this, we propose Ada-RefSR, a single-step diffusion framework guided by a "Trust but Verify" principle: reference information is leveraged when reliable and suppressed otherwise. Its core component, Adaptive Implicit Correlation Gating (AICG), employs learnable summary tokens to distill dominant reference patterns and capture implicit correlations with LQ features. Integrated into the attention backbone, AICG provides lightweight, adaptive regulation of reference guidance, serving as a built-in safeguard against erroneous fusion. Experiments on multiple datasets demonstrate that Ada-RefSR achieves a strong balance of fidelity, naturalness, and efficiency, while remaining robust under varying reference alignment.
comment: 26 pages, 19 figures. Accepted to ICLR 2026
☆ Fact or Fake? Assessing the Role of Deepfake Detectors in Multimodal Misinformation Detection
In multimodal misinformation, deception usually arises not just from pixel-level manipulations in an image, but from the semantic and contextual claim jointly expressed by the image-text pair. Yet most deepfake detectors, engineered to detect pixel-level forgeries, do not account for claim-level meaning, despite their growing integration in automated fact-checking (AFC) pipelines. This raises a central scientific and practical question: Do pixel-level detectors contribute useful signal for verifying image-text claims, or do they instead introduce misleading authenticity priors that undermine evidence-based reasoning? We provide the first systematic analysis of deepfake detectors in the context of multimodal misinformation detection. Using two complementary benchmarks, MMFakeBench and DGM4, we evaluate: (1) state-of-the-art image-only deepfake detectors, (2) an evidence-driven fact-checking system that performs tool-guided retrieval via Monte Carlo Tree Search (MCTS) and engages in deliberative inference through Multi-Agent Debate (MAD), and (3) a hybrid fact-checking system that injects detector outputs as auxiliary evidence. Results across both benchmark datasets show that deepfake detectors offer limited standalone value, achieving F1 scores in the range of 0.26-0.53 on MMFakeBench and 0.33-0.49 on DGM4, and that incorporating their predictions into fact-checking pipelines consistently reduces performance by 0.04-0.08 F1 due to non-causal authenticity assumptions. In contrast, the evidence-centric fact-checking system achieves the highest performance, reaching F1 scores of approximately 0.81 on MMFakeBench and 0.55 on DGM4. Overall, our findings demonstrate that multimodal claim verification is driven primarily by semantic understanding and external evidence, and that pixel-level artifact signals do not reliably enhance reasoning over real-world image-text misinformation.
☆ How Well Do Models Follow Visual Instructions? VIBE: A Systematic Benchmark for Visual Instruction-Driven Image Editing
Recent generative models have achieved remarkable progress in image editing. However, existing systems and benchmarks remain largely text-guided. In contrast, human communication is inherently multimodal, where visual instructions such as sketches efficiently convey spatial and structural intent. To address this gap, we introduce VIBE, the Visual Instruction Benchmark for Image Editing with a three-level interaction hierarchy that captures deictic grounding, morphological manipulation, and causal reasoning. Across these levels, we curate high-quality and diverse test cases that reflect progressively increasing complexity in visual instruction following. We further propose a robust LMM-as-a-judge evaluation framework with task-specific metrics to enable scalable and fine-grained assessment. Through a comprehensive evaluation of 17 representative open-source and proprietary image editing models, we find that proprietary models exhibit early-stage visual instruction-following capabilities and consistently outperform open-source models. However, performance degrades markedly with increasing task difficulty even for the strongest systems, highlighting promising directions for future research.
comment: https://vibe-benchmark.github.io/
☆ WS-IMUBench: Can Weakly Supervised Methods from Audio, Image, and Video Be Adapted for IMU-based Temporal Action Localization?
IMU-based Human Activity Recognition (HAR) has enabled a wide range of ubiquitous computing applications, yet its dominant clip classification paradigm cannot capture the rich temporal structure of real-world behaviors. This motivates a shift toward IMU Temporal Action Localization (IMU-TAL), which predicts both action categories and their start/end times in continuous streams. However, current progress is strongly bottlenecked by the need for dense, frame-level boundary annotations, which are costly and difficult to scale. To address this bottleneck, we introduce WS-IMUBench, a systematic benchmark study of weakly supervised IMU-TAL (WS-IMU-TAL) under only sequence-level labels. Rather than proposing a new localization algorithm, we evaluate how well established weakly supervised localization paradigms from audio, image, and video transfer to IMU-TAL under only sequence-level labels. We benchmark seven representative weakly supervised methods on seven public IMU datasets, resulting in over 3,540 model training runs and 7,080 inference evaluations. Guided by three research questions on transferability, effectiveness, and insights, our findings show that (i) transfer is modality-dependent, with temporal-domain methods generally more stable than image-derived proposal-based approaches; (ii) weak supervision can be competitive on favorable datasets (e.g., with longer actions and higher-dimensional sensing); and (iii) dominant failure modes arise from short actions, temporal ambiguity, and proposal quality. Finally, we outline concrete directions for advancing WS-IMU-TAL (e.g., IMU-specific proposal generation, boundary-aware objectives, and stronger temporal reasoning). Beyond individual results, WS-IMUBench establishes a reproducible benchmarking template, datasets, protocols, and analyses, to accelerate community-wide progress toward scalable WS-IMU-TAL.
comment: Under Review. 28 pages, 9 figures, 6 tables
☆ CloDS: Visual-Only Unsupervised Cloth Dynamics Learning in Unknown Conditions ICLR 2026
Deep learning has demonstrated remarkable capabilities in simulating complex dynamic systems. However, existing methods require known physical properties as supervision or inputs, limiting their applicability under unknown conditions. To explore this challenge, we introduce Cloth Dynamics Grounding (CDG), a novel scenario for unsupervised learning of cloth dynamics from multi-view visual observations. We further propose Cloth Dynamics Splatting (CloDS), an unsupervised dynamic learning framework designed for CDG. CloDS adopts a three-stage pipeline that first performs video-to-geometry grounding and then trains a dynamics model on the grounded meshes. To cope with large non-linear deformations and severe self-occlusions during grounding, we introduce a dual-position opacity modulation that supports bidirectional mapping between 2D observations and 3D geometry via mesh-based Gaussian splatting in video-to-geometry grounding stage. It jointly considers the absolute and relative position of Gaussian components. Comprehensive experimental evaluations demonstrate that CloDS effectively learns cloth dynamics from visual data while maintaining strong generalization capabilities for unseen configurations. Our code is available at https://github.com/whynot-zyl/CloDS. Visualization results are available at https://github.com/whynot-zyl/CloDS_video}.%\footnote{As in this example.
comment: ICLR 2026
☆ SPIRIT: Adapting Vision Foundation Models for Unified Single- and Multi-Frame Infrared Small Target Detection
Infrared small target detection (IRSTD) is crucial for surveillance and early-warning, with deployments spanning both single-frame analysis and video-mode tracking. A practical solution should leverage vision foundation models (VFMs) to mitigate infrared data scarcity, while adopting a memory-attention-based temporal propagation framework that unifies single- and multi-frame inference. However, infrared small targets exhibit weak radiometric signals and limited semantic cues, which differ markedly from visible-spectrum imagery. This modality gap makes direct use of semantics-oriented VFMs and appearance-driven cross-frame association unreliable for IRSTD: hierarchical feature aggregation can submerge localized target peaks, and appearance-only memory attention becomes ambiguous, leading to spurious clutter associations. To address these challenges, we propose SPIRIT, a unified and VFM-compatible framework that adapts VFMs to IRSTD via lightweight physics-informed plug-ins. Spatially, PIFR refines features by approximating rank-sparsity decomposition to suppress structured background components and enhance sparse target-like signals. Temporally, PGMA injects history-derived soft spatial priors into memory cross-attention to constrain cross-frame association, enabling robust video detection while naturally reverting to single-frame inference when temporal context is absent. Experiments on multiple IRSTD benchmarks show consistent gains over VFM-based baselines and SOTA performance.
☆ Efficient Cross-Country Data Acquisition Strategy for ADAS via Street-View Imagery
Deploying ADAS and ADS across countries remains challenging due to differences in legislation, traffic infrastructure, and visual conventions, which introduce domain shifts that degrade perception performance. Traditional cross-country data collection relies on extensive on-road driving, making it costly and inefficient to identify representative locations. To address this, we propose a street-view-guided data acquisition strategy that leverages publicly available imagery to identify places of interest (POI). Two POI scoring methods are introduced: a KNN-based feature distance approach using a vision foundation model, and a visual-attribution approach using a vision-language model. To enable repeatable evaluation, we adopt a collect-detect protocol and construct a co-located dataset by pairing the Zenseact Open Dataset with Mapillary street-view images. Experiments on traffic sign detection, a task particularly sensitive to cross-country variations in sign appearance, show that our approach achieves performance comparable to random sampling while using only half of the target-domain data. We further provide cost estimations for full-country analysis, demonstrating that large-scale street-view processing remains economically feasible. These results highlight the potential of street-view-guided data acquisition for efficient and cost-effective cross-country model adaptation.
☆ Seeing Is Believing? A Benchmark for Multimodal Large Language Models on Visual Illusions and Anomalies
Multimodal Large Language Models (MLLMs) have shown remarkable proficiency on general-purpose vision-language benchmarks, reaching or even exceeding human-level performance. However, these evaluations typically rely on standard in-distribution data, leaving the robustness of MLLMs largely unexamined when faced with scenarios that defy common-sense priors. To address this gap, we introduce VIA-Bench, a challenging benchmark designed to probe model performance on visual illusions and anomalies. It includes six core categories: color illusions, motion illusions, gestalt illusions, geometric and spatial illusions, general visual illusions, and visual anomalies. Through careful human-in-the-loop review, we construct over 1K high-quality question-answer pairs that require nuanced visual reasoning. Extensive evaluation of over 20 state-of-the-art MLLMs, including proprietary, open-source, and reasoning-enhanced models, uncovers significant vulnerabilities. Notably, we find that Chain-of-Thought (CoT) reasoning offers negligible robustness, often yielding ``brittle mirages'' where the model's logic collapses under illusory stimuli. Our findings reveal a fundamental divergence between machine and human perception, suggesting that resolving such perceptual bottlenecks is critical for the advancement of artificial general intelligence. The benchmark data and code will be released.
☆ GPD: Guided Progressive Distillation for Fast and High-Quality Video Generation
Diffusion models have achieved remarkable success in video generation; however, the high computational cost of the denoising process remains a major bottleneck. Existing approaches have shown promise in reducing the number of diffusion steps, but they often suffer from significant quality degradation when applied to video generation. We propose Guided Progressive Distillation (GPD), a framework that accelerates the diffusion process for fast and high-quality video generation. GPD introduces a novel training strategy in which a teacher model progressively guides a student model to operate with larger step sizes. The framework consists of two key components: (1) an online-generated training target that reduces optimization difficulty while improving computational efficiency, and (2) frequency-domain constraints in the latent space that promote the preservation of fine-grained details and temporal dynamics. Applied to the Wan2.1 model, GPD reduces the number of sampling steps from 48 to 6 while maintaining competitive visual quality on VBench. Compared with existing distillation methods, GPD demonstrates clear advantages in both pipeline simplicity and quality preservation.
☆ LDRNet: Large Deformation Registration Model for Chest CT Registration
Most of the deep learning based medical image registration algorithms focus on brain image registration tasks.Compared with brain registration, the chest CT registration has larger deformation, more complex background and region over-lap. In this paper, we propose a fast unsupervised deep learning method, LDRNet, for large deformation image registration of chest CT images. We first predict a coarse resolution registration field, then refine it from coarse to fine. We propose two innovative technical components: 1) a refine block that is used to refine the registration field in different resolutions, 2) a rigid block that is used to learn transformation matrix from high-level features. We train and evaluate our model on the private dataset and public dataset SegTHOR. We compare our performance with state-of-the-art traditional registration methods as well as deep learning registration models VoxelMorph, RCN, and LapIRN. The results demonstrate that our model achieves state-of-the-art performance for large deformation images registration and is much faster.
☆ FlowBypass: Rectified Flow Trajectory Bypass for Training-Free Image Editing
Training-free image editing has attracted increasing attention for its efficiency and independence from training data. However, existing approaches predominantly rely on inversion-reconstruction trajectories, which impose an inherent trade-off: longer trajectories accumulate errors and compromise fidelity, while shorter ones fail to ensure sufficient alignment with the edit prompt. Previous attempts to address this issue typically employ backbone-specific feature manipulations, limiting general applicability. To address these challenges, we propose FlowBypass, a novel and analytical framework grounded in Rectified Flow that constructs a bypass directly connecting inversion and reconstruction trajectories, thereby mitigating error accumulation without relying on feature manipulations. We provide a formal derivation of two trajectories, from which we obtain an approximate bypass formulation and its numerical solution, enabling seamless trajectory transitions. Extensive experiments demonstrate that FlowBypass consistently outperforms state-of-the-art image editing methods, achieving stronger prompt alignment while preserving high-fidelity details in irrelevant regions.
☆ Fast Autoregressive Video Diffusion and World Models with Temporal Cache Compression and Sparse Attention
Autoregressive video diffusion models enable streaming generation, opening the door to long-form synthesis, video world models, and interactive neural game engines. However, their core attention layers become a major bottleneck at inference time: as generation progresses, the KV cache grows, causing both increasing latency and escalating GPU memory, which in turn restricts usable temporal context and harms long-range consistency. In this work, we study redundancy in autoregressive video diffusion and identify three persistent sources: near-duplicate cached keys across frames, slowly evolving (largely semantic) queries/keys that make many attention computations redundant, and cross-attention over long prompts where only a small subset of tokens matters per frame. Building on these observations, we propose a unified, training-free attention framework for autoregressive diffusion: TempCache compresses the KV cache via temporal correspondence to bound cache growth; AnnCA accelerates cross-attention by selecting frame-relevant prompt tokens using fast approximate nearest neighbor (ANN) matching; and AnnSA sparsifies self-attention by restricting each query to semantically matched keys, also using a lightweight ANN. Together, these modules reduce attention, compute, and memory and are compatible with existing autoregressive diffusion backbones and world models. Experiments demonstrate up to x5--x10 end-to-end speedups while preserving near-identical visual quality and, crucially, maintaining stable throughput and nearly constant peak GPU memory usage over long rollouts, where prior methods progressively slow down and suffer from increasing memory usage.
comment: Project Page: https://dvirsamuel.github.io/fast-auto-regressive-video/
☆ Spatio-Temporal Transformers for Long-Term NDVI Forecasting
Long-term satellite image time series (SITS) analysis in heterogeneous landscapes faces significant challenges, particularly in Mediterranean regions where complex spatial patterns, seasonal variations, and multi-decade environmental changes interact across different scales. This paper presents the Spatio-Temporal Transformer for Long Term Forecasting (STT-LTF ), an extended framework that advances beyond purely temporal analysis to integrate spatial context modeling with temporal sequence prediction. STT-LTF processes multi-scale spatial patches alongside temporal sequences (up to 20 years) through a unified transformer architecture, capturing both local neighborhood relationships and regional climate influences. The framework employs comprehensive self-supervised learning with spatial masking, temporal masking, and horizon sampling strategies, enabling robust model training from 40 years of unlabeled Landsat imagery. Unlike autoregressive approaches, STT-LTF directly predicts arbitrary future time points without error accumulation, incorporating spatial patch embeddings, cyclical temporal encoding, and geographic coordinates to learn complex dependencies across heterogeneous Mediterranean ecosystems. Experimental evaluation on Landsat data (1984-2024) demonstrates that STT-LTF achieves a Mean Absolute Error (MAE) of 0.0328 and R^2 of 0.8412 for next-year predictions, outperforming traditional statistical methods, CNN-based approaches, LSTM networks, and standard transformers. The framework's ability to handle irregular temporal sampling and variable prediction horizons makes it particularly suitable for analysis of heterogeneous landscapes experiencing rapid ecological transitions.
☆ Automated Discontinuity Set Characterisation in Enclosed Rock Face Point Clouds Using Single-Shot Filtering and Cyclic Orientation Transformation
Characterisation of structural discontinuity sets in exposed rock faces of underground mine cavities is essential for assessing rock-mass stability, excavation safety, and operational efficiency. UAV and other mobile laser-scanning techniques provide efficient means of collecting point clouds from rock faces. However, the development of a robust and efficient approach for automatic characterisation of discontinuity sets in real-world scenarios, like fully enclosed rock faces in cavities, remains an open research problem. In this study, a new approach is proposed for automatic discontinuity set characterisation that uses a single-shot filtering strategy, an innovative cyclic orientation transformation scheme and a hierarchical clustering technique. The single-shot filtering step isolates planar regions while robustly suppressing noise and high-curvature artefacts in one pass using a signal-processing technique. To address the limitations of Cartesian clustering on polar orientation data, a cyclic orientation transformation scheme is developed, enabling accurate representation of dip angle and dip direction in Cartesian space. The transformed orientations are then characterised into sets using a hierarchical clustering technique, which handles varying density distributions and identifies clusters without requiring user-defined set numbers. The accuracy of the method is validated on real-world mine stope and against ground truth obtained using manually handpicked discontinuity planes identified with the Virtual Compass tool, as well as widely used automated structure mapping techniques. The proposed approach outperforms the other techniques by exhibiting the lowest mean absolute error in estimating discontinuity set orientations in real-world stope data with errors of 1.95° and 2.20° in nominal dip angle and dip direction, respectively, and dispersion errors lying below 3°.
☆ DDP-WM: Disentangled Dynamics Prediction for Efficient World Models
World models are essential for autonomous robotic planning. However, the substantial computational overhead of existing dense Transformerbased models significantly hinders real-time deployment. To address this efficiency-performance bottleneck, we introduce DDP-WM, a novel world model centered on the principle of Disentangled Dynamics Prediction (DDP). We hypothesize that latent state evolution in observed scenes is heterogeneous and can be decomposed into sparse primary dynamics driven by physical interactions and secondary context-driven background updates. DDP-WM realizes this decomposition through an architecture that integrates efficient historical processing with dynamic localization to isolate primary dynamics. By employing a crossattention mechanism for background updates, the framework optimizes resource allocation and provides a smooth optimization landscape for planners. Extensive experiments demonstrate that DDP-WM achieves significant efficiency and performance across diverse tasks, including navigation, precise tabletop manipulation, and complex deformable or multi-body interactions. Specifically, on the challenging Push-T task, DDP-WM achieves an approximately 9 times inference speedup and improves the MPC success rate from 90% to98% compared to state-of-the-art dense models. The results establish a promising path for developing efficient, high-fidelity world models. Codes will be available at https://github.com/HCPLabSYSU/DDP-WM.
comment: Codes will be available at https://github.com/HCPLabSYSU/DDP-WM
☆ GDPR-Compliant Person Recognition in Industrial Environments Using MEMS-LiDAR and Hybrid Data
The reliable detection of unauthorized individuals in safety-critical industrial indoor spaces is crucial to avoid plant shutdowns, property damage, and personal hazards. Conventional vision-based methods that use deep-learning approaches for person recognition provide image information but are sensitive to lighting and visibility conditions and often violate privacy regulations, such as the General Data Protection Regulation (GDPR) in the European Union. Typically, detection systems based on deep learning require annotated data for training. Collecting and annotating such data, however, is highly time-consuming and due to manual treatments not necessarily error free. Therefore, this paper presents a privacy-compliant approach based on Micro-Electro-Mechanical Systems LiDAR (MEMS-LiDAR), which exclusively captures anonymized 3D point clouds and avoids personal identification features. To compensate for the large amount of time required to record real LiDAR data and for post-processing and annotation, real recordings are augmented with synthetically generated scenes from the CARLA simulation framework. The results demonstrate that the hybrid data improves the average precision by 44 percentage points compared to a model trained exclusively with real data while reducing the manual annotation effort by 50 %. Thus, the proposed approach provides a scalable, cost-efficient alternative to purely real-data-based methods and systematically shows how synthetic LiDAR data can combine high performance in person detection with GDPR compliance in an industrial environment.
comment: Accepted at 19th CIRP Conference on Intelligent Computation in Manufacturing Engineering
☆ MagicFuse: Single Image Fusion for Visual and Semantic Reinforcement
This paper focuses on a highly practical scenario: how to continue benefiting from the advantages of multi-modal image fusion under harsh conditions when only visible imaging sensors are available. To achieve this goal, we propose a novel concept of single-image fusion, which extends conventional data-level fusion to the knowledge level. Specifically, we develop MagicFuse, a novel single image fusion framework capable of deriving a comprehensive cross-spectral scene representation from a single low-quality visible image. MagicFuse first introduces an intra-spectral knowledge reinforcement branch and a cross-spectral knowledge generation branch based on the diffusion models. They mine scene information obscured in the visible spectrum and learn thermal radiation distribution patterns transferred to the infrared spectrum, respectively. Building on them, we design a multi-domain knowledge fusion branch that integrates the probabilistic noise from the diffusion streams of these two branches, from which a cross-spectral scene representation can be obtained through successive sampling. Then, we impose both visual and semantic constraints to ensure that this scene representation can satisfy human observation while supporting downstream semantic decision-making. Extensive experiments show that our MagicFuse achieves visual and semantic representation performance comparable to or even better than state-of-the-art fusion methods with multi-modal inputs, despite relying solely on a single degraded visible image.
☆ Mind-Brush: Integrating Agentic Cognitive Search and Reasoning into Image Generation
While text-to-image generation has achieved unprecedented fidelity, the vast majority of existing models function fundamentally as static text-to-pixel decoders. Consequently, they often fail to grasp implicit user intentions. Although emerging unified understanding-generation models have improved intent comprehension, they still struggle to accomplish tasks involving complex knowledge reasoning within a single model. Moreover, constrained by static internal priors, these models remain unable to adapt to the evolving dynamics of the real world. To bridge these gaps, we introduce Mind-Brush, a unified agentic framework that transforms generation into a dynamic, knowledge-driven workflow. Simulating a human-like 'think-research-create' paradigm, Mind-Brush actively retrieves multimodal evidence to ground out-of-distribution concepts and employs reasoning tools to resolve implicit visual constraints. To rigorously evaluate these capabilities, we propose Mind-Bench, a comprehensive benchmark comprising 500 distinct samples spanning real-time news, emerging concepts, and domains such as mathematical and Geo-Reasoning. Extensive experiments demonstrate that Mind-Brush significantly enhances the capabilities of unified models, realizing a zero-to-one capability leap for the Qwen-Image baseline on Mind-Bench, while achieving superior results on established benchmarks like WISE and RISE.
comment: 36 pages, 24 figures
☆ Spot-Wise Smart Parking: An Edge-Enabled Architecture with YOLOv11 and Digital Twin Integration
Smart parking systems help reduce congestion and minimize users' search time, thereby contributing to smart city adoption and enhancing urban mobility. In previous works, we presented a system developed on a university campus to monitor parking availability by estimating the number of free spaces from vehicle counts within a region of interest. Although this approach achieved good accuracy, it restricted the system's ability to provide spot-level insights and support more advanced applications. To overcome this limitation, we extend the system with a spot-wise monitoring strategy based on a distance-aware matching method with spatial tolerance, enhanced through an Adaptive Bounding Box Partitioning method for challenging spaces. The proposed approach achieves a balanced accuracy of 98.80% while maintaining an inference time of 8 seconds on a resource-constrained edge device, enhancing the capabilities of YOLOv11m, a model that has a size of 40.5 MB. In addition, two new components were introduced: (i) a Digital Shadow that visually represents parking lot entities as a base to evolve to a full Digital Twin, and (ii) an application support server based on a repurposed TV box. The latter not only enables scalable communication among cloud services, the parking totem, and a bot that provides detailed spot occupancy statistics, but also promotes hardware reuse as a step towards greater sustainability.
comment: Submitted to Journal of Internet Services and Applications, 27 pages, 20 figures, 3 tables
☆ ObjEmbed: Towards Universal Multimodal Object Embeddings
Aligning objects with corresponding textual descriptions is a fundamental challenge and a realistic requirement in vision-language understanding. While recent multimodal embedding models excel at global image-text alignment, they often struggle with fine-grained alignment between image regions and specific phrases. In this work, we present ObjEmbed, a novel MLLM embedding model that decomposes the input image into multiple regional embeddings, each corresponding to an individual object, along with global embeddings. It supports a wide range of visual understanding tasks like visual grounding, local image retrieval, and global image retrieval. ObjEmbed enjoys three key properties: (1) Object-Oriented Representation: It captures both semantic and spatial aspects of objects by generating two complementary embeddings for each region: an object embedding for semantic matching and an IoU embedding that predicts localization quality. The final object matching score combines semantic similarity with the predicted IoU, enabling more accurate retrieval. (2) Versatility: It seamlessly handles both region-level and image-level tasks. (3) Efficient Encoding: All objects in an image, along with the full image, are encoded in a single forward pass for high efficiency. Superior performance on 18 diverse benchmarks demonstrates its strong semantic discrimination.
☆ Tail-Aware Post-Training Quantization for 3D Geometry Models
The burgeoning complexity and scale of 3D geometry models pose significant challenges for deployment on resource-constrained platforms. While Post-Training Quantization (PTQ) enables efficient inference without retraining, conventional methods, primarily optimized for 2D Vision Transformers, fail to transfer effectively to 3D models due to intricate feature distributions and prohibitive calibration overhead. To address these challenges, we propose TAPTQ, a Tail-Aware Post-Training Quantization pipeline specifically engineered for 3D geometric learning. Our contribution is threefold: (1) To overcome the data-scale bottleneck in 3D datasets, we develop a progressive coarse-to-fine calibration construction strategy that constructs a highly compact subset to achieve both statistical purity and geometric representativeness. (2) We reformulate the quantization interval search as an optimization problem and introduce a ternary-search-based solver, reducing the computational complexity from $\mathcal{O}(N)$ to $\mathcal{O}(\log N)$ for accelerated deployment. (3) To mitigate quantization error accumulation, we propose TRE-Guided Module-wise Compensation, which utilizes a Tail Relative Error (TRE) metric to adaptively identify and rectify distortions in modules sensitive to long-tailed activation outliers. Extensive experiments on the VGGT and Pi3 benchmarks demonstrate that TAPTQ consistently outperforms state-of-the-art PTQ methods in accuracy while significantly reducing calibration time. The code will be released soon.
☆ MACD: Model-Aware Contrastive Decoding via Counterfactual Data
Video language models (Video-LLMs) are prone to hallucinations, often generating plausible but ungrounded content when visual evidence is weak, ambiguous, or biased. Existing decoding methods, such as contrastive decoding (CD), rely on random perturbations to construct contrastive data for mitigating hallucination patterns. However, such a way is hard to control the visual cues that drive hallucination or well align with model weaknesses. We propose Model-aware Counterfactual Data based Contrastive Decoding (MACD), a new inference strategy that combines model-guided counterfactual construction with decoding. Our approach uses the Video-LLM's own feedback to identify object regions most responsible for hallucination, generating targeted counterfactual inputs at the object level rather than arbitrary frame or temporal modifications. These model-aware counterfactual data is then integrated into CD to enforce evidence-grounded token selection during decoding. Experiments on EventHallusion, MVBench, Perception-test and Video-MME show that MACD consistently reduces hallucination while maintaining or improving task accuracy across diverse Video-LLMs, including Qwen and InternVL families. The method is especially effective in challenging scenarios involving small, occluded, or co-occurring objects. Our code and data will be publicly released.
☆ Simplicity Prevails: The Emergence of Generalizable AIGI Detection in Visual Foundation Models
While specialized detectors for AI-Generated Images (AIGI) achieve near-perfect accuracy on curated benchmarks, they suffer from a dramatic performance collapse in realistic, in-the-wild scenarios. In this work, we demonstrate that simplicity prevails over complex architectural designs. A simple linear classifier trained on the frozen features of modern Vision Foundation Models , including Perception Encoder, MetaCLIP 2, and DINOv3, establishes a new state-of-the-art. Through a comprehensive evaluation spanning traditional benchmarks, unseen generators, and challenging in-the-wild distributions, we show that this baseline not only matches specialized detectors on standard benchmarks but also decisively outperforms them on in-the-wild datasets, boosting accuracy by striking margins of over 30\%. We posit that this superior capability is an emergent property driven by the massive scale of pre-training data containing synthetic content. We trace the source of this capability to two distinct manifestations of data exposure: Vision-Language Models internalize an explicit semantic concept of forgery, while Self-Supervised Learning models implicitly acquire discriminative forensic features from the pretraining data. However, we also reveal persistent limitations: these models suffer from performance degradation under recapture and transmission, remain blind to VAE reconstruction and localized editing. We conclude by advocating for a paradigm shift in AI forensics, moving from overfitting on static benchmarks to harnessing the evolving world knowledge of foundation models for real-world reliability.
♻ ☆ Helios 2.0: A Robust, Ultra-Low Power Gesture Recognition System Optimised for Event-Sensor based Wearables
We present an advance in wearable technology: a mobile-optimized, real-time, ultra-low-power event camera system that enables natural hand gesture control for smart glasses, dramatically improving user experience. While hand gesture recognition in computer vision has advanced significantly, critical challenges remain in creating systems that are intuitive, adaptable across diverse users and environments, and energy-efficient enough for practical wearable applications. Our approach tackles these challenges through carefully selected microgestures: lateral thumb swipes across the index finger (in both directions) and a double pinch between thumb and index fingertips. These human-centered interactions leverage natural hand movements, ensuring intuitive usability without requiring users to learn complex command sequences. To overcome variability in users and environments, we developed a novel simulation methodology that enables comprehensive domain sampling without extensive real-world data collection. Our power-optimised architecture maintains exceptional performance, achieving F1 scores above 80\% on benchmark datasets featuring diverse users and environments. The resulting models operate at just 6-8 mW when exploiting the Qualcomm Snapdragon Hexagon DSP, with our 2-channel implementation exceeding 70\% F1 accuracy and our 6-channel model surpassing 80\% F1 accuracy across all gesture classes in user studies. These results were achieved using only synthetic training data. This improves on the state-of-the-art for F1 accuracy by 20\% with a power reduction 25x when using DSP. This advancement brings deploying ultra-low-power vision systems in wearable devices closer and opens new possibilities for seamless human-computer interaction.
comment: 24 pages, 14 figures. Prarthana Bhattacharyya, Joshua Mitton, Ryan Page, Owen Morgan, and Oliver Powell contributed equally to this paper
♻ ☆ CoT-RVS: Zero-Shot Chain-of-Thought Reasoning Segmentation for Videos ICLR 2026
Reasoning Video Object Segmentation is a challenging task, aiming at generating a mask sequence from an input video given a complex and implicit text query. While existing works finetune Multimodal Large Language Models (MLLM) for the task, they still fail in video inputs given complex temporally-sensitive queries, indicating their lack of temporal and spatial integration in complex scenarios. In this paper, we propose CoT-RVS, a novel framework employing the zero-shot Chain-of-Thought (CoT) capability of MLLM to address these complex challenges by temporal-semantic reasoning: CoT-RVS analyzes the visible objects within a given frame that possibly match the language query (semantic), and chooses a corresponding keyframe for each object that can be observed effortlessly among all frames (temporal). Notably, the CoT-RVS framework is training-free and compatible with closed-source MLLMs, which can be applied to Reasoning Video Instance Segmentation. Our framework's training-free feature further allows its extension to process online video streams, where the CoT is used at test time to update the object of interest when a better target starts to emerge and becomes visible. We conduct extensive experiments on video object segmentation with explicit and implicit queries. The results show that CoT-RVS significantly outperforms previous works in both cases, qualitatively and quantitatively.
comment: Accepted to ICLR 2026. Project page: https://danielshkao.github.io/cot-rvs.html. Code: https://github.com/DanielSHKao/CoT-RVS
♻ ☆ Future frame prediction in chest and liver cine MRI using the PCA respiratory motion model: comparing transformers and dynamically trained recurrent neural networks
Respiratory motion complicates accurate irradiation of thoraco-abdominal tumors in radiotherapy, as treatment-system latency entails target-location uncertainties. This work addresses frame forecasting in chest and liver cine MRI to compensate for such delays. We investigate RNNs trained with online learning algorithms, enabling adaptation to changing respiratory patterns via on-the-fly parameter updates, and transformers, increasingly common in time series forecasting for their ability to capture long-term dependencies. Experiments were conducted using 12 sagittal thoracic and upper-abdominal cine-MRI sequences from ETH Zürich and OvGU. PCA decomposes the Lucas-Kanade optical-flow field into static deformations and low-dimensional time-dependent weights. We compare various methods forecasting the latter: linear filters, population and sequence-specific encoder-only transformers, and RNNs trained with real-time recurrent learning (RTRL), unbiased online recurrent optimization, decoupled neural interfaces, and sparse one-step approximation (SnAp-1). Predicted displacements were used to warp the reference frame and generate future images. Prediction accuracy decreased with the horizon h. Linear regression performed best at short horizons (1.3mm geometrical error at h=0.32s, ETH Zürich data), while RTRL and SnAp-1 outperformed the other algorithms at medium-to-long horizons, with geometrical errors below 1.4mm and 2.8mm on the sequences from ETH Zürich and OvGU (the latter featuring higher motion variability, noise, and lower contrast), respectively. The sequence-specific transformer was competitive for low-to-medium horizons, but transformers remained overall limited by data scarcity and domain shift between datasets. Predicted frames visually resembled the ground truth, with notable errors occurring near the diaphragm at end-inspiration and regions affected by out-of-plane motion.
comment: 43 pages, 19 figures, revised version (including transformer experiments, evaluation on liver MRI data, statistical analysis...)
♻ ☆ HunyuanImage 3.0 Technical Report
We present HunyuanImage 3.0, a native multimodal model that unifies multimodal understanding and generation within an autoregressive framework, with its image generation module publicly available. The achievement of HunyuanImage 3.0 relies on several key components, including meticulous data curation, advanced architecture design, a native Chain-of-Thoughts schema, progressive model pre-training, aggressive model post-training, and an efficient infrastructure that enables large-scale training and inference. With these advancements, we successfully trained a Mixture-of-Experts (MoE) model comprising over 80 billion parameters in total, with 13 billion parameters activated per token during inference, making it the largest and most powerful open-source image generative model to date. We conducted extensive experiments and the results of automatic and human evaluation of text-image alignment and visual quality demonstrate that HunyuanImage 3.0 rivals previous state-of-the-art models. By releasing the code and weights of HunyuanImage 3.0, we aim to enable the community to explore new ideas with a state-of-the-art foundation model, fostering a dynamic and vibrant multimodal ecosystem. All open source assets are publicly available at https://github.com/Tencent-Hunyuan/HunyuanImage-3.0
♻ ☆ HI-SLAM2: Geometry-Aware Gaussian SLAM for Fast Monocular Scene Reconstruction
We present HI-SLAM2, a geometry-aware Gaussian SLAM system that achieves fast and accurate monocular scene reconstruction using only RGB input. Existing Neural SLAM or 3DGS-based SLAM methods often trade off between rendering quality and geometry accuracy, our research demonstrates that both can be achieved simultaneously with RGB input alone. The key idea of our approach is to enhance the ability for geometry estimation by combining easy-to-obtain monocular priors with learning-based dense SLAM, and then using 3D Gaussian splatting as our core map representation to efficiently model the scene. Upon loop closure, our method ensures on-the-fly global consistency through efficient pose graph bundle adjustment and instant map updates by explicitly deforming the 3D Gaussian units based on anchored keyframe updates. Furthermore, we introduce a grid-based scale alignment strategy to maintain improved scale consistency in prior depths for finer depth details. Through extensive experiments on Replica, ScanNet, and ScanNet++, we demonstrate significant improvements over existing Neural SLAM methods and even surpass RGB-D-based methods in both reconstruction and rendering quality. The project page and source code will be made available at https://hi-slam2.github.io/.
♻ ☆ No time to train! Training-Free Reference-Based Instance Segmentation
The performance of image segmentation models has historically been constrained by the high cost of collecting large-scale annotated data. The Segment Anything Model (SAM) alleviates this original problem through a promptable, semantics-agnostic, segmentation paradigm and yet still requires manual visual-prompts or complex domain-dependent prompt-generation rules to process a new image. Towards reducing this new burden, our work investigates the task of object segmentation when provided with, alternatively, only a small set of reference images. Our key insight is to leverage strong semantic priors, as learned by foundation models, to identify corresponding regions between a reference and a target image. We find that correspondences enable automatic generation of instance-level segmentation masks for downstream tasks and instantiate our ideas via a multi-stage, training-free method incorporating (1) memory bank construction; (2) representation aggregation and (3) semantic-aware feature matching. Our experiments show significant improvements on segmentation metrics, leading to state-of-the-art performance on COCO FSOD (36.8% nAP), PASCAL VOC Few-Shot (71.2% nAP50) and outperforming existing training-free approaches on the Cross-Domain FSOD benchmark (22.4% nAP).
comment: Preprint
♻ ☆ DyStream: Streaming Dyadic Talking Heads Generation via Flow Matching-based Autoregressive Model
Generating realistic, dyadic talking head video requires ultra-low latency. Existing chunk-based methods require full non-causal context windows, introducing significant delays. This high latency critically prevents the immediate, non-verbal feedback required for a realistic listener. To address this, we present DyStream, a flow matching-based autoregressive model that could generate video in real-time from both speaker and listener audio. Our method contains two key designs: (1) we adopt a stream-friendly autoregressive framework with flow-matching heads for probabilistic modeling, and (2) We propose a causal encoder enhanced by a lookahead module to incorporate short future context (e.g., 60 ms) to improve quality while maintaining low latency. Our analysis shows this simple-and-effective method significantly surpass alternative causal strategies, including distillation and generative encoder. Extensive experiments show that DyStream could generate video within 34 ms per frame, guaranteeing the entire system latency remains under 100 ms. Besides, it achieves state-of-the-art lip-sync quality, with offline and online LipSync Confidence scores of 8.13 and 7.61 on HDTF, respectively. The model, weights and codes are available.
comment: Project Page: https://robinwitch.github.io/DyStream-Page
♻ ☆ Hospital-Specific Bias in Patch-Based Pathology Models
Pathology foundation models (PFMs) achieve strong performance on diverse histopathology tasks, but their sensitivity to hospital-specific domain shifts remains underexplored. We systematically evaluate state-of-the-art PFMs on TCGA patch-level datasets and introduce a lightweight adversarial adaptor to remove hospital-related domain information from latent representations. Experiments show that, while disease classification accuracy is largely maintained, the adaptor effectively reduces hospital-specific bias, as confirmed by t-SNE visualizations. Our study establishes a benchmark for assessing cross-hospital robustness in PFMs and provides a practical strategy for enhancing generalization under heterogeneous clinical settings. Our code is available at https://github.com/MengRes/pfm_domain_bias.
comment: 4 pages,3 figures
♻ ☆ Data-Driven Loss Functions for Inference-Time Optimization in Text-to-Image
Text-to-image diffusion models can generate stunning visuals, yet they often fail at tasks children find trivial--like placing a dog to the right of a teddy bear rather than to the left. When combinations get more unusual--a giraffe above an airplane--these failures become even more pronounced. Existing methods attempt to fix these spatial reasoning failures through model fine-tuning or test-time optimization with handcrafted losses that are suboptimal. Rather than imposing our assumptions about spatial encoding, we propose learning these objectives directly from the model's internal representations. We introduce Learn-to-Steer, a novel framework that learns data-driven objectives for test-time optimization rather than handcrafting them. Our key insight is to train a lightweight classifier that decodes spatial relationships from the diffusion model's cross-attention maps, then deploy this classifier as a learned loss function during inference. Training such classifiers poses a surprising challenge: they can take shortcuts by detecting linguistic traces in the cross-attention maps, rather than learning true spatial patterns. We solve this by augmenting our training data with samples generated using prompts with incorrect relation words, which encourages the classifier to avoid linguistic shortcuts and learn spatial patterns from the attention maps. Our method dramatically improves spatial accuracy: from 20% to 61% on FLUX.1-dev and from 7% to 54% on SD2.1 across standard benchmarks. It also generalizes to multiple relations with significantly improved accuracy.
comment: Project page is at https://learn-to-steer-paper.github.io/
♻ ☆ What does really matter in image goal navigation?
Image goal navigation requires two different skills: firstly, core navigation skills, including the detection of free space and obstacles, and taking decisions based on an internal representation; and secondly, computing directional information by comparing visual observations to the goal image. Current state-of-the-art methods either rely on dedicated image-matching, or pre-training of computer vision modules on relative pose estimation. In this paper, we study whether this task can be efficiently solved with end-to-end training of full agents with RL, as has been claimed by recent work. A positive answer would have impact beyond Embodied AI and allow training of relative pose estimation from reward for navigation alone. In this large experimental study we investigate the effect of architectural choices like late fusion, channel stacking, space-to-depth projections and cross-attention, and their role in the emergence of relative pose estimators from navigation training. We show that the success of recent methods is influenced up to a certain extent by simulator settings, leading to shortcuts in simulation. However, we also show that these capabilities can be transferred to more realistic setting, up to some extent. We also find evidence for correlations between navigation performance and probed (emerging) relative pose estimation performance, an important sub skill.
♻ ☆ SCAIL: Towards Studio-Grade Character Animation via In-Context Learning of 3D-Consistent Pose Representations
Achieving character animation that meets studio-grade production standards remains challenging despite recent progress. Existing approaches can transfer motion from a driving video to a reference image, but often fail to preserve structural fidelity and temporal consistency in wild scenarios involving complex motion and cross-identity animations. In this work, we present \textbf{SCAIL} (a framework toward \textbf{S}tudio-grade \textbf{C}haracter \textbf{A}nimation via \textbf{I}n-context \textbf{L}earning), a framework designed to address these challenges from two key innovations. First, we propose a novel 3D pose representation, providing a more robust and flexible motion signal. Second, we introduce a full-context pose injection mechanism within a diffusion-transformer architecture, enabling effective spatio-temporal reasoning over full motion sequences. To align with studio-level requirements, we develop a curated data pipeline ensuring both diversity and quality, and establish a comprehensive benchmark for systematic evaluation. Experiments show that \textbf{SCAIL} achieves state-of-the-art performance and advances character animation toward studio-grade reliability and realism.
♻ ☆ Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity ICLR 2022
The success of deep ensembles on improving predictive performance, uncertainty estimation, and out-of-distribution robustness has been extensively studied in the machine learning literature. Albeit the promising results, naively training multiple deep neural networks and combining their predictions at inference leads to prohibitive computational costs and memory requirements. Recently proposed efficient ensemble approaches reach the performance of the traditional deep ensembles with significantly lower costs. However, the training resources required by these approaches are still at least the same as training a single dense model. In this work, we draw a unique connection between sparse neural network training and deep ensembles, yielding a novel efficient ensemble learning framework called FreeTickets. Instead of training multiple dense networks and averaging them, we directly train sparse subnetworks from scratch and extract diverse yet accurate subnetworks during this efficient, sparse-to-sparse training. Our framework, FreeTickets, is defined as the ensemble of these relatively cheap sparse subnetworks. Despite being an ensemble method, FreeTickets has even fewer parameters and training FLOPs than a single dense model. This seemingly counter-intuitive outcome is due to the ultra training/inference efficiency of dynamic sparse training. FreeTickets surpasses the dense baseline in all the following criteria: prediction accuracy, uncertainty estimation, out-of-distribution (OoD) robustness, as well as efficiency for both training and inference. Impressively, FreeTickets outperforms the naive deep ensemble with ResNet50 on ImageNet using around only 1/5 of the training FLOPs required by the latter. We have released our source code at https://github.com/VITA-Group/FreeTickets.
comment: published in International Conference on Learning Representations (ICLR 2022)
♻ ☆ DiffInk: Glyph- and Style-Aware Latent Diffusion Transformer for Text to Online Handwriting Generation ICLR 2026
Deep generative models have advanced text-to-online handwriting generation (TOHG), which aims to synthesize realistic pen trajectories conditioned on textual input and style references. However, most existing methods still primarily focus on character- or word-level generation, resulting in inefficiency and a lack of holistic structural modeling when applied to full text lines. To address these issues, we propose DiffInk, the first latent diffusion Transformer framework for full-line handwriting generation. We first introduce InkVAE, a novel sequential variational autoencoder enhanced with two complementary latent-space regularization losses: (1) an OCR-based loss enforcing glyph-level accuracy, and (2) a style-classification loss preserving writing style. This dual regularization yields a semantically structured latent space where character content and writer styles are effectively disentangled. We then introduce InkDiT, a novel latent diffusion Transformer that integrates target text and reference styles to generate coherent pen trajectories. Experimental results demonstrate that DiffInk outperforms existing state-of-the-art (SOTA) methods in both glyph accuracy and style fidelity, while significantly improving generation efficiency.
comment: Accepted by ICLR 2026
♻ ☆ Efficient Deep Demosaicing with Spatially Downsampled Isotropic Networks WACV
In digital imaging, image demosaicing is a crucial first step which recovers the RGB information from a color filter array (CFA). Oftentimes, deep learning is utilized to perform image demosaicing. Given that most modern digital imaging applications occur on mobile platforms, applying deep learning to demosaicing requires lightweight and efficient networks. Isotropic networks, also known as residual-in-residual networks, have been often employed for image demosaicing and joint-demosaicing-and-denoising (JDD). Most demosaicing isotropic networks avoid spatial downsampling entirely, and thus are often prohibitively expensive computationally for mobile applications. Contrary to previous isotropic network designs, this paper claims that spatial downsampling to a signficant degree can improve the efficiency and performance of isotropic networks. To validate this claim, we design simple fully convolutional networks with and without downsampling using a mathematical architecture design technique adapted from DeepMAD, and find that downsampling improves empirical performance. Additionally, empirical testing of the downsampled variant, JD3Net, of our fully convolutional networks reveals strong empirical performance on a variety of image demosaicing and JDD tasks.
comment: To be published at WVAQ Workshop at WACV. Code @ github.com/cory-fan/jd3net
♻ ☆ Aesthetics as Structural Harm: Algorithmic Lookism Across Text-to-Image Generation and Classification
This paper examines algorithmic lookism-the systematic preferential treatment based on physical appearance-in text-to-image (T2I) generative AI and a downstream gender classification task. Through the analysis of 26,400 synthetic faces created with Stable Diffusion 2.1 and 3.5 Medium, we demonstrate how generative AI models systematically associate facial attractiveness with positive attributes and vice-versa, mirroring socially constructed biases rather than evidence-based correlations. Furthermore, we find significant gender bias in three gender classification algorithms depending on the attributes of the input faces. Our findings reveal three critical harms: (1) the systematic encoding of attractiveness-positive attribute associations in T2I models; (2) gender disparities in classification systems, where women's faces, particularly those generated with negative attributes, suffer substantially higher misclassification rates than men's; and (3) intensifying aesthetic constraints in newer models through age homogenization, gendered exposure patterns, and geographic reductionism. These convergent patterns reveal algorithmic lookism as systematic infrastructure operating across AI vision systems, compounding existing inequalities through both representation and recognition. Disclaimer: This work includes visual and textual content that reflects stereotypical associations between physical appearance and socially constructed attributes, including gender, race, and traits associated with social desirability. Any such associations found in this study emerge from the biases embedded in generative AI systems-not from empirical truths or the authors' views.
comment: 22 pages, 15 figures; v2 - fix typo
♻ ☆ Learning Robust Intervention Representations with Delta Embeddings
Causal representation learning has attracted significant research interest during the past few years, as a means for improving model generalization and robustness. Causal representations of interventional image pairs (also called ``actionable counterfactuals'' in the literature), have the property that only variables corresponding to scene elements affected by the intervention / action are changed between the start state and the end state. While most work in this area has focused on identifying and representing the variables of the scene under a causal model, fewer efforts have focused on representations of the interventions themselves. In this work, we show that an effective strategy for improving out of distribution (OOD) robustness is to focus on the representation of actionable counterfactuals in the latent space. Specifically, we propose that an intervention can be represented by a Causal Delta Embedding that is invariant to the visual scene and sparse in terms of the causal variables it affects. Leveraging this insight, we propose a method for learning causal representations from image pairs, without any additional supervision. Experiments in the Causal Triplet challenge demonstrate that Causal Delta Embeddings are highly effective in OOD settings, significantly exceeding baseline performance in both synthetic and real-world benchmarks.
♻ ☆ Scaling Sequence-to-Sequence Generative Neural Rendering ICLR 2026
We present Kaleido, a family of generative models designed for photorealistic, unified object- and scene-level neural rendering. Kaleido operates on the principle that 3D can be regarded as a specialised sub-domain of video, expressed purely as a sequence-to-sequence image synthesis task. Through a systemic study of scaling sequence-to-sequence generative neural rendering, we introduce key architectural innovations that enable our model to: i) perform generative view synthesis without explicit 3D representations; ii) generate any number of 6-DoF target views conditioned on any number of reference views via a masked autoregressive framework; and iii) seamlessly unify 3D and video modelling within a single decoder-only rectified flow transformer. Within this unified framework, Kaleido leverages large-scale video data for pre-training, which significantly improves spatial consistency and reduces reliance on scarce, camera-labelled 3D datasets -- all without any architectural modifications. Kaleido sets a new state-of-the-art on a range of view synthesis benchmarks. Its zero-shot performance substantially outperforms other generative methods in few-view settings, and, for the first time, matches the quality of per-scene optimisation methods in many-view settings.
comment: Published at ICLR 2026. Project Page: https://shikun.io/projects/kaleido
♻ ☆ Reinforcement Learning Meets Masked Generative Models: Mask-GRPO for Text-to-Image Generation
Reinforcement learning (RL) has garnered increasing attention in text-to-image (T2I) generation. However, most existing RL approaches are tailored to either diffusion models or autoregressive models, overlooking an important alternative: masked generative models. In this work, we propose Mask-GRPO, the first method to incorporate Group Relative Policy Optimization (GRPO)-based RL into this overlooked paradigm. Our core insight is to redefine the transition probability, which is different from current approaches, and formulate the unmasking process as a multi-step decision-making problem. To further enhance our method, we explore several useful strategies, including removing the KL constraint, applying the reduction strategy, and filtering out low-quality samples. Using Mask-GRPO, we improve a base model, Show-o, with substantial improvements on standard T2I benchmarks and preference alignment, outperforming existing state-of-the-art approaches. The code is available on https://github.com/xingzhejun/Mask-GRPO
♻ ☆ Staircase Cascaded Fusion of Lightweight Local Pattern Recognition and Long-Range Dependencies for Structural Crack Segmentation
Accurately segmenting structural cracks at the pixel level remains a major hurdle, as existing methods fail to integrate local textures with pixel dependencies, often leading to fragmented and incomplete predictions. Moreover, their high parameter counts and substantial computational demands hinder practical deployment on resource-constrained edge devices. To address these challenges, we propose CrackSCF, a Lightweight Cascaded Fusion Crack Segmentation Network designed to achieve robust crack segmentation with exceptional computational efficiency. We design a lightweight convolutional block (LRDS) to replace all standard convolutions. This approach efficiently captures local patterns while operating with a minimal computational footprint. For a holistic perception of crack structures, a lightweight Long-range Dependency Extractor (LDE) captures global dependencies. These are then intelligently unified with local patterns by our Staircase Cascaded Fusion Module (SCFM), ensuring the final segmentation maps are both seamless in continuity and rich in fine-grained detail. To comprehensively evaluate our method, this paper created the challenging TUT benchmark dataset and evaluated it alongside five other public datasets. The experimental results show that the CrackSCF method consistently outperforms the existing methods, and it demonstrates greater robustness in dealing with complex background noise. On the TUT dataset, CrackSCF achieved 0.8382 on F1 score and 0.8473 on mIoU, and it only required 4.79M parameters.
comment: This paper is currently under review
♻ ☆ Entropy-Lens: Uncovering Decision Strategies in LLMs
In large language models (LLMs), each block operates on the residual stream to map input token sequences to output token distributions. However, most of the interpretability literature focuses on internal latent representations, leaving token-space dynamics underexplored. The high dimensionality and categoricity of token distributions hinder their analysis, as standard statistical descriptors are not suitable. We show that the entropy of logit-lens predictions overcomes these issues. In doing so, it provides a per-layer scalar, permutation-invariant metric. We introduce Entropy-Lens to distill the token-space dynamics of the residual stream into a low-dimensional signal. We call this signal the entropy profile. We apply our method to a variety of model sizes and families, showing that (i) entropy profiles uncover token prediction dynamics driven by expansion and pruning strategies; (ii) these dynamics are family-specific and invariant under depth rescaling; (iii) they are characteristic of task type and output format; (iv) these strategies have unequal impact on downstream performance, with the expansion strategy usually being more critical. Ultimately, our findings further enhance our understanding of the residual stream, enabling a granular assessment of how information is processed across model depth.
♻ ☆ RDDM: Practicing RAW Domain Diffusion Model for Real-world Image Restoration
We present the RAW domain diffusion model (RDDM), an end-to-end diffusion model that restores photo-realistic images directly from the sensor RAW data. While recent sRGB-domain diffusion methods achieve impressive results, they are caught in a dilemma between high fidelity and image generation. These models process lossy sRGB inputs and neglect the accessibility of the sensor RAW images in many scenarios, e.g., in image and video capturing in edge devices, resulting in sub-optimal performance. RDDM obviates this limitation by directly restoring images in the RAW domain, replacing the conventional two-stage image signal processing (ISP)->Image Restoration (IR) pipeline. However, a simple adaptation of pre-trained diffusion models to the RAW domain confronts many challenges. To this end, we propose: (1) a RAW-domain VAE (RVAE), encoding sensor RAW and decoding it into an enhanced linear domain image, to solve the out-of-distribution (OOD) issues between the different domain distributions; (2) a configurable multi-bayer (CMB) LoRA module, adapting diverse RAW Bayer patterns such as RGGB, BGGR, etc. To compensate for the deficiency in the dataset, we develop a scalable data synthesis pipeline synthesizing RAW LQ-HQ pairs from existing sRGB datasets for large-scale training. Extensive experiments demonstrate RDDM's superiority over state-of-the-art sRGB diffusion methods, yielding higher fidelity results with fewer artifacts. Codes will be publicly available at https://github.com/YanCHEN-fr/RDDM.
♻ ☆ Attention in Geometry: Scalable Spatial Modeling via Adaptive Density Fields and FAISS-Accelerated Kernels
This work introduces Adaptive Density Fields (ADF), a geometric attention framework that formulates spatial aggregation as a query-conditioned, metric-induced attention operator in continuous space. By reinterpreting spatial influence as geometry-preserving attention grounded in physical distance, ADF bridges concepts from adaptive kernel methods and attention mechanisms. Scalability is achieved via FAISS-accelerated inverted file indices, treating approximate nearest-neighbor search as an intrinsic component of the attention mechanism. We demonstrate the framework through a case study on aircraft trajectory analysis in the Chengdu region, extracting trajectory-conditioned Zones of Influence (ZOI) to reveal recurrent airspace structures and localized deviations.
comment: Indepented Study. 31 pages, 3 figures. Includes full mathematical derivation of Adaptive Density Fields (ADF), implementation of FAISS-accelerated kernels, and a physics-informed trajectory POI detection pipeline
♻ ☆ Enhanced Detection of Tiny Objects in Aerial Images
While one-stage detectors like YOLOv8 offer fast training speed, they often under-perform on detecting small objects as a trade-off. This becomes even more critical when detecting tiny objects in aerial imagery due to low-resolution targets and cluttered backgrounds. To address this, we introduce four enhancement strategies-input image resolution adjustment, data augmentation, attention mechanisms, and an alternative gating function for attention modules-that can be easily implemented on YOLOv8. We demonstrate that image size enlargement and the proper use of augmentation can lead to enhancement. Additionally, we designed a Mixture of Orthogonal Neural-modules Network (MoonNet) pipeline which consists of multiple attention-module-augmented CNNs. Two well-known attention modules, Squeeze-and-Excitation (SE) Block and Convolutional Block Attention Module (CBAM), were integrated into the backbone of YOLOv8 to form the MoonNet design, and the MoonNet backbone obtained improved detection accuracy compared to the original YOLOv8 backbone and single-type attention-module-augmented backbones. MoonNet further proved its adaptability and potential by achieving state-of-the-art performance on a tiny-object benchmark when integrated with the YOLC model. Our code is available at: https://github.com/Kihyun11/MoonNet
♻ ☆ MineInsight: A Multi-sensor Dataset for Humanitarian Demining Robotics in Off-Road Environments
The use of robotics in humanitarian demining increasingly involves computer vision techniques to improve landmine detection capabilities. However, in the absence of diverse and realistic datasets, the reliable validation of algorithms remains a challenge for the research community. In this paper, we introduce MineInsight, a publicly available multi-sensor, multi-spectral dataset designed for off-road landmine detection. The dataset features 35 different targets (15 landmines and 20 commonly found objects) distributed along three distinct tracks, providing a diverse and realistic testing environment. MineInsight is, to the best of our knowledge, the first dataset to integrate dual-view sensor scans from both an Unmanned Ground Vehicle and its robotic arm, offering multiple viewpoints to mitigate occlusions and improve spatial awareness. It features two LiDARs, as well as images captured at diverse spectral ranges, including visible (RGB, monochrome), visible short-wave infrared (VIS-SWIR), and long-wave infrared (LWIR). Additionally, the dataset provides bounding boxes generated by an automated pipeline and refined with human supervision. We recorded approximately one hour of data in both daylight and nighttime conditions, resulting in around 38,000 RGB frames, 53,000 VIS-SWIR frames, and 108,000 LWIR frames. MineInsight serves as a benchmark for developing and evaluating landmine detection algorithms. Our dataset is available at https://github.com/mariomlz99/MineInsight.
♻ ☆ Past- and Future-Informed KV Cache Policy with Salience Estimation in Autoregressive Video Diffusion
Video generation is pivotal to digital media creation, and recent advances in autoregressive video generation have markedly enhanced the efficiency of real-time video synthesis. However, existing approaches generally rely on heuristic KV Cache policies, which ignore differences in token importance in long-term video generation. This leads to the loss of critical spatiotemporal information and the accumulation of redundant, invalid cache, thereby degrading video generation quality and efficiency. To address this limitation, we first observe that token contributions to video generation are highly time-heterogeneous and accordingly propose a novel Past- and Future-Informed KV Cache Policy (PaFu-KV). Specifically, PaFu-KV introduces a lightweight Salience Estimation Head distilled from a bidirectional teacher to estimate salience scores, allowing the KV cache to retain informative tokens while discarding less relevant ones. This policy yields a better quality-efficiency trade-off by shrinking KV cache capacity and reducing memory footprint at inference time. Extensive experiments on benchmarks demonstrate that our method preserves high-fidelity video generation quality while enables accelerated inference, thereby enabling more efficient long-horizon video generation. Our code will be released upon paper acceptance.
♻ ☆ VQAThinker: Exploring Generalizable and Explainable Video Quality Assessment via Reinforcement Learning AAAI2026
Video quality assessment (VQA) aims to objectively quantify perceptual quality degradation in alignment with human visual perception. Despite recent advances, existing VQA models still suffer from two critical limitations: \textit{poor generalization to out-of-distribution (OOD) videos} and \textit{limited explainability}, which restrict their applicability in real-world scenarios. To address these challenges, we propose \textbf{VQAThinker}, a reasoning-based VQA framework that leverages large multimodal models (LMMs) with reinforcement learning to jointly model video quality understanding and scoring, emulating human perceptual decision-making. Specifically, we adopt group relative policy optimization (GRPO), a rule-guided reinforcement learning algorithm that enables reasoning over video quality under score-level supervision, and introduce three VQA-specific rewards: (1) a \textbf{bell-shaped regression reward} that increases rapidly as the prediction error decreases and becomes progressively less sensitive near the ground truth; (2) a \textbf{pairwise ranking reward} that guides the model to correctly determine the relative quality between video pairs; and (3) a \textbf{temporal consistency reward} that encourages the model to prefer temporally coherent videos over their perturbed counterparts. Extensive experiments demonstrate that VQAThinker achieves state-of-the-art performance on both in-domain and OOD VQA benchmarks, showing strong generalization for video quality scoring. Furthermore, evaluations on video quality understanding tasks validate its superiority in distortion attribution and quality description compared to existing explainable VQA models and LMMs. These findings demonstrate that reinforcement learning offers an effective pathway toward building generalizable and explainable VQA models solely with score-level supervision.
comment: Accepted by AAAI2026
♻ ☆ Beyond Global Alignment: Fine-Grained Motion-Language Retrieval via Pyramidal Shapley-Taylor Learning
As a foundational task in human-centric cross-modal intelligence, motion-language retrieval aims to bridge the semantic gap between natural language and human motion, enabling intuitive motion analysis, yet existing approaches predominantly focus on aligning entire motion sequences with global textual representations. This global-centric paradigm overlooks fine-grained interactions between local motion segments and individual body joints and text tokens, inevitably leading to suboptimal retrieval performance. To address this limitation, we draw inspiration from the pyramidal process of human motion perception (from joint dynamics to segment coherence, and finally to holistic comprehension) and propose a novel Pyramidal Shapley-Taylor (PST) learning framework for fine-grained motion-language retrieval. Specifically, the framework decomposes human motion into temporal segments and spatial body joints, and learns cross-modal correspondences through progressive joint-wise and segment-wise alignment in a pyramidal fashion, effectively capturing both local semantic details and hierarchical structural relationships. Extensive experiments on multiple public benchmark datasets demonstrate that our approach significantly outperforms state-of-the-art methods, achieving precise alignment between motion segments and body joints and their corresponding text tokens. The code of this work will be released upon acceptance.
♻ ☆ Adaptive Domain Shift in Diffusion Models for Cross-Modality Image Translation ICLR 2026
Cross-modal image translation remains brittle and inefficient. Standard diffusion approaches often rely on a single, global linear transfer between domains. We find that this shortcut forces the sampler to traverse off-manifold, high-cost regions, inflating the correction burden and inviting semantic drift. We refer to this shared failure mode as fixed-schedule domain transfer. In this paper, we embed domain-shift dynamics directly into the generative process. Our model predicts a spatially varying mixing field at every reverse step and injects an explicit, target-consistent restoration term into the drift. This in-step guidance keeps large updates on-manifold and shifts the model's role from global alignment to local residual correction. We provide a continuous-time formulation with an exact solution form and derive a practical first-order sampler that preserves marginal consistency. Empirically, across translation tasks in medical imaging, remote sensing, and electroluminescence semantic mapping, our framework improves structural fidelity and semantic consistency while converging in fewer denoising steps.
comment: Paper accepted as a conference paper at ICLR 2026
♻ ☆ Transferring Visual Explainability of Self-Explaining Models to Prediction-Only Models without Additional Training
In image classification scenarios where both prediction and explanation efficiency are required, self-explaining models that perform both tasks in a single inference are effective. However, for users who already have prediction-only models, training a new self-explaining model from scratch imposes significant costs in terms of both labeling and computation. This study proposes a method to transfer the visual explanation capability of self-explaining models learned in a source domain to prediction-only models in a target domain based on a task arithmetic framework. Our self-explaining model comprises an architecture that extends Vision Transformer-based prediction-only models, enabling the proposed method to endow explanation capability to many trained prediction-only models without additional training. Experiments on various image classification datasets demonstrate that, except for transfers between less-related domains, the transfer of visual explanation capability from source to target domains is successful, and explanation quality in the target domain improves without substantially sacrificing classification accuracy.
♻ ☆ U2-BENCH: Benchmarking Large Vision-Language Models on Ultrasound Understanding
Ultrasound is a widely-used imaging modality critical to global healthcare, yet its interpretation remains challenging due to its varying image quality on operators, noises, and anatomical structures. Although large vision-language models (LVLMs) have demonstrated impressive multimodal capabilities across natural and medical domains, their performance on ultrasound remains largely unexplored. We introduce U2-BENCH, the first comprehensive benchmark to evaluate LVLMs on ultrasound understanding across classification, detection, regression, and text generation tasks. U2-BENCH aggregates 7,241 cases spanning 15 anatomical regions and defines 8 clinically inspired tasks, such as diagnosis, view recognition, lesion localization, clinical value estimation, and report generation, across 50 ultrasound application scenarios. We evaluate 23 state-of-the-art LVLMs, both open- and closed-source, general-purpose and medical-specific. Our results reveal strong performance on image-level classification, but persistent challenges in spatial reasoning and clinical language generation. U2-BENCH establishes a rigorous and unified testbed to assess and accelerate LVLM research in the uniquely multimodal domain of medical ultrasound imaging.
♻ ☆ SciTextures: Collecting and Connecting Visual Patterns, Models, and Code Across Science and Art
The ability to connect visual patterns with the processes that form them represents one of the deepest forms of visual understanding. Textures of clouds and waves, the growth of cities and forests, or the formation of materials and landscapes are all examples of patterns emerging from underlying mechanisms. We present the SciTextures dataset, a large-scale collection of textures and visual patterns from all domains of science, tech, and art, along with the models and code that generate these images. Covering over 1,270 different models and 100,000 images of patterns and textures from physics, chemistry, biology, sociology, technology, mathematics, and art, this dataset offers a way to explore the deep connection between the visual patterns that shape our world and the mechanisms that produce them. Built through an agentic AI pipeline that autonomously collects, implements, and standardizes scientific and generative models. This AI pipeline is also used to autonomously invent and implement novel methods for generating visual patterns and textures. SciTextures enables systematic evaluation of vision language models (VLM's) ability to link visual patterns to the models and code that generate them, and to identify different patterns that emerge from the same underlying process. We also test VLMs ability to infer and recreate the mechanisms behind visual patterns by providing a natural image of a real-world phenomenon and asking the AI to identify and code a model of the process that formed it, then run this code to generate a simulated image that is compared to the reference image. These benchmarks reveal that VLM's can understand and simulate physical systems beyond visual patterns at multiple levels of abstraction. The dataset and code are available at: https://zenodo.org/records/17485502
VL-JEPA: Joint Embedding Predictive Architecture for Vision-language
We introduce VL-JEPA, a vision-language model built on a Joint Embedding Predictive Architecture (JEPA). Instead of autoregressively generating tokens as in classical VLMs, VL-JEPA predicts continuous embeddings of the target texts. By learning in an abstract representation space, the model focuses on task-relevant semantics while abstracting away surface-level linguistic variability. In a strictly controlled comparison against standard token-space VLM training with the same vision encoder and training data, VL-JEPA achieves stronger performance while having 50% fewer trainable parameters. At inference time, a lightweight text decoder is invoked only when needed to translate VL-JEPA predicted embeddings into text. We show that VL-JEPA natively supports selective decoding that reduces the number of decoding operations by 2.85x while maintaining similar performance compared to non-adaptive uniform decoding. Beyond generation, the VL-JEPA's embedding space naturally supports open-vocabulary classification, text-to-video retrieval, and discriminative VQA without any architecture modification. On eight video classification and eight video retrieval datasets, the average performance VL-JEPA surpasses that of CLIP, SigLIP2, and Perception Encoder. At the same time, the model achieves comparable performance as classical VLMs (InstructBLIP, QwenVL) on four VQA datasets: GQA, TallyQA, POPE and POPEv2, despite only having 1.6B parameters.
♻ ☆ SeNeDiF-OOD: Semantic Nested Dichotomy Fusion for Out-of-Distribution Detection Methodology in Open-World Classification. A Case Study on Monument Style Classification
Out-of-distribution (OOD) detection is a fundamental requirement for the reliable deployment of artificial intelligence applications in open-world environments. However, addressing the heterogeneous nature of OOD data, ranging from low-level corruption to semantic shifts, remains a complex challenge that single-stage detectors often fail to resolve. To address this issue, we propose SeNeDiF-OOD, a novel methodology based on Semantic Nested Dichotomy Fusion. This framework decomposes the detection task into a hierarchical structure of binary fusion nodes, where each layer is designed to integrate decision boundaries aligned with specific levels of semantic abstraction. To validate the proposed framework, we present a comprehensive case study using MonuMAI, a real-world architectural style recognition system exposed to an open environment. This application faces a diverse range of inputs, including non-monument images, unknown architectural styles, and adversarial attacks, making it an ideal testbed for our proposal. Through extensive experimental evaluation in this domain, results demonstrate that our hierarchical fusion methodology significantly outperforms traditional baselines, effectively filtering these diverse OOD categories while preserving in-distribution performance.
comment: 28 pages
♻ ☆ OS-Marathon: Benchmarking Computer-Use Agents on Long-Horizon Repetitive Tasks
Long-horizon, repetitive workflows are common in professional settings, such as processing expense reports from receipts and entering student grades from exam papers. These tasks are often tedious for humans since they can extend to extreme lengths proportional to the size of the data to process. However, they are ideal for Computer-Use Agents (CUAs) due to their structured, recurring sub-workflows with logic that can be systematically learned. Identifying the absence of an evaluation benchmark as a primary bottleneck, we establish OS-Marathon, comprising 242 long-horizon, repetitive tasks across 2 domains to evaluate state-of-the-art (SOTA) agents. We then introduce a cost-effective method to construct a condensed demonstration using only few-shot examples to teach agents the underlying workflow logic, enabling them to execute similar workflows effectively on larger, unseen data collections. Extensive experiments demonstrate both the inherent challenges of these tasks and the effectiveness of our proposed method. Project website: https://os-marathon.github.io/.
comment: 22 Pages, Project Page: https://os-marathon.github.io/
♻ ☆ A Survey on Efficient Vision-Language-Action Models
Vision-Language-Action models (VLAs) represent a significant frontier in embodied intelligence, aiming to bridge digital knowledge with physical-world interaction. Despite their remarkable performance, foundational VLAs are hindered by the prohibitive computational and data demands inherent to their large-scale architectures. While a surge of recent research has focused on enhancing VLA efficiency, the field lacks a unified framework to consolidate these disparate advancements. To bridge this gap, this survey presents the first comprehensive review of Efficient Vision-Language-Action models (Efficient VLAs) across the entire model-training-data pipeline. Specifically, we introduce a unified taxonomy to systematically organize the disparate efforts in this domain, categorizing current techniques into three core pillars: (1) Efficient Model Design, focusing on efficient architectures and model compression; (2) Efficient Training, which reduces computational burdens during model learning; and (3) Efficient Data Collection, which addresses the bottlenecks in acquiring and utilizing robotic data. Through a critical review of state-of-the-art methods within this framework, this survey not only establishes a foundational reference for the community but also summarizes representative applications, delineates key challenges, and charts a roadmap for future research. We maintain a continuously updated project page to track our latest developments: https://evla-survey.github.io/.
comment: 28 pages, 8 figures
♻ ☆ Attention Isn't All You Need for Emotion Recognition:Domain Features Outperform Transformers on the EAV Dataset
We present a systematic study of multimodal emotion recognition using the EAV dataset, investigating whether complex attention mechanisms improve performance on small datasets. We implement three model categories: baseline transformers (M1), novel factorized attention mechanisms (M2), and improved CNN baselines (M3). Our experiments show that sophisticated attention mechanisms consistently underperform on small datasets. M2 models achieved 5 to 13 percentage points below baselines due to overfitting and destruction of pretrained features. In contrast, simple domain-appropriate modifications proved effective: adding delta MFCCs to the audio CNN improved accuracy from 61.9% to 65.56% (+3.66pp), while frequency-domain features for EEG achieved 67.62% (+7.62pp over the paper baseline). Our vision transformer baseline (M1) reached 75.30%, exceeding the paper's ViViT result (74.5%) through domain-specific pretraining, and vision delta features achieved 72.68% (+1.28pp over the paper CNN). These findings demonstrate that for small-scale emotion recognition, domain knowledge and proper implementation outperform architectural complexity.
comment: 2 figures, 10 Pages
♻ ☆ 3D Dynamics-Aware Manipulation: Endowing Manipulation Policies with 3D Foresight ICRA 2026
The incorporation of world modeling into manipulation policy learning has pushed the boundary of manipulation performance. However, existing efforts simply model the 2D visual dynamics, which is insufficient for robust manipulation when target tasks involve prominent depth-wise movement. To address this, we present a 3D dynamics-aware manipulation framework that seamlessly integrates 3D world modeling and policy learning. Three self-supervised learning tasks (current depth estimation, future RGB-D prediction, 3D flow prediction) are introduced within our framework, which complement each other and endow the policy model with 3D foresight. Extensive experiments on simulation and the real world show that 3D foresight can greatly boost the performance of manipulation policies without sacrificing inference speed. Code is available at https://github.com/Stardust-hyx/3D-Foresight.
comment: ICRA 2026
♻ ☆ Hybrid Lie semi-group and cascade structures for the generalized Gaussian derivative model for visual receptive fields
Because of the variabilities of real-world image structures under the natural image transformations that arise when observing similar objects or spatio-temporal events under different viewing conditions, the receptive field responses computed in the earliest layers of the visual hierarchy may be strongly influenced by such geometric image transformations. One way of handling this variability is by basing the vision system on covariant receptive field families, which expand the receptive field shapes over the degrees of freedom in the image transformations. This paper addresses the problem of deriving relationships between spatial and spatio-temporal receptive field responses obtained for different values of the shape parameters in the resulting multi-parameter families of receptive fields. For this purpose, we derive both (i) infinitesimal relationships, roughly corresponding to a combination of notions from semi-groups and Lie groups, as well as (ii) macroscopic cascade smoothing properties, which describe how receptive field responses at coarser spatial and temporal scales can be computed by applying smaller support incremental filters to the output from corresponding receptive fields at finer spatial and temporal scales, structurally related to the notion of Lie algebras, although with directional preferences. The presented results provide (i) a deeper understanding of the relationships between spatial and spatio-temporal receptive field responses for different values of the filter parameters, which can be used for both (ii) designing more efficient schemes for computing receptive field responses over populations of multi-parameter families of receptive fields, as well as (iii)~formulating idealized theoretical models of the computations of simple cells in biological vision.
comment: 27 pages, 9 figures
♻ ☆ UM-Text: A Unified Multimodal Model for Image Understanding and Visual Text Editing
With the rapid advancement of image generation, visual text editing using natural language instructions has received increasing attention. The main challenge of this task is to fully understand the instruction and reference image, and thus generate visual text that is style-consistent with the image. Previous methods often involve complex steps of specifying the text content and attributes, such as font size, color, and layout, without considering the stylistic consistency with the reference image. To address this, we propose UM-Text, a unified multimodal model for context understanding and visual text editing by natural language instructions. Specifically, we introduce a Visual Language Model (VLM) to process the instruction and reference image, so that the text content and layout can be elaborately designed according to the context information. To generate an accurate and harmonious visual text image, we further propose the UM-Encoder to combine the embeddings of various condition information, where the combination is automatically configured by VLM according to the input instruction. During training, we propose a regional consistency loss to offer more effective supervision for glyph generation on both latent and RGB space, and design a tailored three-stage training strategy to further enhance model performance. In addition, we contribute the UM-DATA-200K, a large-scale visual text image dataset on diverse scenes for model training. Extensive qualitative and quantitative results on multiple public benchmarks demonstrate that our method achieves state-of-the-art performance.
♻ ☆ DA-Occ: Direction-Aware 2D Convolution for Efficient and Geometry-Preserving 3D Occupancy Prediction in Autonomous Driving
Efficient and high-accuracy 3D occupancy prediction is vital for the performance of autonomous driving systems. However, existing methods struggle to balance precision and efficiency: high-accuracy approaches are often hindered by heavy computational overhead, leading to slow inference speeds, while others leverage pure bird's-eye-view (BEV) representations to gain speed at the cost of losing vertical spatial cues and compromising geometric integrity. To overcome these limitations, we build on the efficient Lift-Splat-Shoot (LSS) paradigm and propose a pure 2D framework, DA-Occ, for 3D occupancy prediction that preserves fine-grained geometry. Standard LSS-based methods lift 2D features into 3D space solely based on depth scores, making it difficult to fully capture vertical structure. To improve upon this, DA-Occ augments depth-based lifting with a complementary height-score projection that explicitly encodes vertical geometric information. We further employ direction-aware convolution to extract geometric features along both vertical and horizontal orientations, effectively balancing accuracy and computational efficiency. On the Occ3D-nuScenes, the proposed method achieves an mIoU of 39.3% and an inference speed of 27.7 FPS, effectively balancing accuracy and efficiency. In simulations on edge devices, the inference speed reaches 14.8 FPS, further demonstrating the method's applicability for real-time deployment in resource-constrained environments.
♻ ☆ AI-Based Stroke Rehabilitation Domiciliary Assessment System with ST_GCN Attention
Effective stroke recovery requires continuous rehabilitation integrated with daily living. To support this need, we propose a home-based rehabilitation exercise and feedback system. The system consists of (1) hardware setup with RGB-D camera and wearable sensors to capture stroke movements, (2) a mobile application for exercise guidance, and (3) an AI server for assessment and feedback. When a stroke user exercises following the application guidance, the system records skeleton sequences, which are then assessed by the deep learning model, RAST-G@ (Rehabilitation Assessment Spatio-Temporal Graph ATtention). The model employs a spatio-temporal graph convolutional network to extract skeletal features and integrates transformer-based temporal attention to figure out action quality. For system implementation, we constructed the NRC dataset, include 10 upper-limb activities of daily living (ADL) and 5 range-of-motion (ROM) collected from stroke and non-disabled participants, with Score annotations provided by licensed physiotherapists. Results on the KIMORE and NRC datasets show that RAST-G@ improves over baseline in terms of MAD, RMSE, and MAPE. Furthermore, the system provides user feedback that combines patient-centered assessment and monitoring. The results demonstrate that the proposed system offers a scalable approach for quantitative and consistent domiciliary rehabilitation assessment.
comment: 9 pages(except references), 7 figures 6 Tables
♻ ☆ Towards Faithful Reasoning in Remote Sensing: A Perceptually-Grounded GeoSpatial Chain-of-Thought for Vision-Language Models
Vision-Language Models (VLMs) in remote sensing often fail at complex analytical tasks, a limitation stemming from their end-to-end training paradigm that bypasses crucial reasoning steps and leads to unverifiable outputs. To address this limitation, we introduce the Perceptually-Grounded Geospatial Chain-of-Thought (Geo-CoT), a framework that models remote sensing analysis as a verifiable, multi-step process. We instill this analytical process through a two-stage alignment strategy, leveraging Geo-CoT380k, the first large-scale dataset of structured Geo-CoT rationales. This strategy first employs supervised fine-tuning (SFT) to instill the foundational cognitive architecture, then leverages Group Reward Policy Optimization (GRPO) to refine the model's reasoning policy towards factual correctness. The resulting model, RSThinker, outputs both a final answer and its justifying, verifiable analytical trace. This capability yields dominant performance, significantly outperforming state-of-the-art models across a comprehensive range of tasks. The public release of our Geo-CoT380k dataset and RSThinker model upon publication serves as a concrete pathway from opaque perception towards structured, verifiable reasoning for Earth Observation.
♻ ☆ GenTrack2: An Improved Hybrid Approach for Visual Multi-Object Tracking
This paper proposes a visual multi-object tracking method that jointly employs stochastic and deterministic mechanisms to ensure identifier consistency for unknown and time-varying target numbers under nonlinear dynamics. A stochastic particle filter addresses nonlinear dynamics and non-Gaussian noise, with support from particle swarm optimization (PSO) to guide particles toward state distribution modes and mitigate divergence through proposed fitness measures incorporating motion consistency, appearance similarity, and social-interaction cues with neighboring targets. Deterministic association further enforces identifier consistency via a proposed cost matrix incorporating spatial consistency between particles and current detections, detection confidences, and track penalties. Subsequently, a novel scheme is proposed for the smooth updating of target states while preserving their identities, particularly for weak tracks during interactions with other targets and prolonged occlusions. Moreover, velocity regression over past states provides trend-seed velocities, enhancing particle sampling and state updates. The proposed tracker is designed to operate flexibly for both pre-recorded videos and camera live streams, where future frames are unavailable. Experimental results confirm superior performance compared to state-of-the-art trackers. The source-code reference implementations of both the proposed method and compared-trackers are provided on GitHub: https://github.com/SDU-VelKoTek/GenTrack2
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ AVERY: Adaptive VLM Split Computing through Embodied Self-Awareness for Efficient Disaster Response Systems
Unmanned Aerial Vehicles (UAVs) in disaster response require complex, queryable intelligence that on-board CNNs cannot provide. While Vision-Language Models (VLMs) offer this semantic reasoning, their high resource demands make on-device deployment infeasible, and naive cloud offloading fails under the low-bandwidth networks common in disaster zones. We present AVERY, a framework that enables VLM deployment through adaptive split computing. We advance the split computing paradigm beyond traditional depth-wise partitioning by introducing a functional, cognitive-inspired dual-stream split that separates the VLM into a high-frequency, low-resolution "context stream" for real-time awareness and a low-frequency, high-fidelity "insight stream" for deep analysis. A lightweight, self-aware on-board controller manages this architecture, monitoring network conditions and operator intent to dynamically select from pre-trained compression models, navigating the fundamental accuracy-throughput trade-off. Evaluated using the VLM LISA-7B across an edge-cloud scenario under fluctuating network conditions, AVERY consistently outperforms static configurations, achieving 11.2% higher accuracy than raw image compression and 93.98% lower energy consumption compared to full-edge execution, thereby enhancing mission efficiency and enabling real-time, queryable intelligence on resource-constrained platforms in dynamic environments.
comment: 8 pages, 5 figures. Paper is currently under review. Authors' version posted for personal use and not for redistribution
♻ ☆ Diffusion-based Layer-wise Semantic Reconstruction for Unsupervised Out-of-Distribution Detection
Unsupervised out-of-distribution (OOD) detection aims to identify out-of-domain data by learning only from unlabeled In-Distribution (ID) training samples, which is crucial for developing a safe real-world machine learning system. Current reconstruction-based methods provide a good alternative approach by measuring the reconstruction error between the input and its corresponding generative counterpart in the pixel/feature space. However, such generative methods face a key dilemma: improving the reconstruction power of the generative model while keeping a compact representation of the ID data. To address this issue, we propose the diffusion-based layer-wise semantic reconstruction approach for unsupervised OOD detection. The innovation of our approach is that we leverage the diffusion model's intrinsic data reconstruction ability to distinguish ID samples from OOD samples in the latent feature space. Moreover, to set up a comprehensive and discriminative feature representation, we devise a multi-layer semantic feature extraction strategy. By distorting the extracted features with Gaussian noise and applying the diffusion model for feature reconstruction, the separation of ID and OOD samples is implemented according to the reconstruction errors. Extensive experimental results on multiple benchmarks built upon various datasets demonstrate that our method achieves state-of-the-art performance in terms of detection accuracy and speed. Code is available at .
comment: 26 pages, 23 figures, published to Neurlps2024
♻ ☆ VisionTrim: Unified Vision Token Compression for Training-Free MLLM Acceleration ICLR2026
Multimodal large language models (MLLMs) suffer from high computational costs due to excessive visual tokens, particularly in high-resolution and video-based scenarios. Existing token reduction methods typically focus on isolated pipeline components and often neglect textual alignment, leading to performance degradation. In this paper, we propose VisionTrim, a unified framework for training-free MLLM acceleration, integrating two effective plug-and-play modules: 1) the Dominant Vision Token Selection (DVTS) module, which preserves essential visual tokens via a global-local view, and 2) the Text-Guided Vision Complement (TGVC) module, which facilitates context-aware token merging guided by textual cues. Extensive experiments across diverse image and video multimodal benchmarks demonstrate the performance superiority of our VisionTrim, advancing practical MLLM deployment in real-world applications. The code is available at: https://github.com/hanxunyu/VisionTrim.
comment: ICLR2026, Code Link: https://github.com/hanxunyu/VisionTrim
♻ ☆ Semantic Leakage from Image Embeddings
Image embeddings are generally assumed to pose limited privacy risk. We challenge this assumption by formalizing semantic leakage as the ability to recover semantic structures from compressed image embeddings. Surprisingly, we show that semantic leakage does not require exact reconstruction of the original image. Preserving local semantic neighborhoods under embedding alignment is sufficient to expose the intrinsic vulnerability of image embeddings. Crucially, this preserved neighborhood structure allows semantic information to propagate through a sequence of lossy mappings. Based on this conjecture, we propose Semantic Leakage from Image Embeddings (SLImE), a lightweight inference framework that reveals semantic information from standalone compressed image embeddings, incorporating a locally trained semantic retriever with off-the-shelf models, without training task-specific decoders. We thoroughly validate each step of the framework empirically, from aligned embeddings to retrieved tags, symbolic representations, and grammatical and coherent descriptions. We evaluate SLImE across a range of open and closed embedding models, including GEMINI, COHERE, NOMIC, and CLIP, and demonstrate consistent recovery of semantic information across diverse inference tasks. Our results reveal a fundamental vulnerability in image embeddings, whereby the preservation of semantic neighborhoods under alignment enables semantic leakage, highlighting challenges for privacy preservation.1
comment: 20 pages, 19 figures
♻ ☆ Feat2GS: Probing Visual Foundation Models with Gaussian Splatting
Given that visual foundation models (VFMs) are trained on extensive datasets but often limited to 2D images, a natural question arises: how well do they understand the 3D world? With the differences in architecture and training protocols (i.e., objectives, proxy tasks), a unified framework to fairly and comprehensively probe their 3D awareness is urgently needed. Existing works on 3D probing suggest single-view 2.5D estimation (e.g., depth and normal) or two-view sparse 2D correspondence (e.g., matching and tracking). Unfortunately, these tasks ignore texture awareness, and require 3D data as ground-truth, which limits the scale and diversity of their evaluation set. To address these issues, we introduce Feat2GS, which readout 3D Gaussians attributes from VFM features extracted from unposed images. This allows us to probe 3D awareness for geometry and texture via novel view synthesis, without requiring 3D data. Additionally, the disentanglement of 3DGS parameters - geometry ($\boldsymbol{x}$, $α$, $Σ$) and texture ($\boldsymbol{c}$) - enables separate analysis of texture and geometry awareness. Under Feat2GS, we conduct extensive experiments to probe the 3D awareness of several VFMs, and investigate the ingredients that lead to a 3D aware VFM. Building on these findings, we develop several variants that achieve state-of-the-art across diverse datasets. This makes Feat2GS useful for probing VFMs, and as a simple-yet-effective baseline for novel-view synthesis. Code and data are available at https://fanegg.github.io/Feat2GS/.
comment: Project Page: https://fanegg.github.io/Feat2GS/
♻ ☆ Object-Centric Representation Learning for Enhanced 3D Scene Graph Prediction NeurIPS 2025
3D Semantic Scene Graph Prediction aims to detect objects and their semantic relationships in 3D scenes, and has emerged as a crucial technology for robotics and AR/VR applications. While previous research has addressed dataset limitations and explored various approaches including Open-Vocabulary settings, they frequently fail to optimize the representational capacity of object and relationship features, showing excessive reliance on Graph Neural Networks despite insufficient discriminative capability. In this work, we demonstrate through extensive analysis that the quality of object features plays a critical role in determining overall scene graph accuracy. To address this challenge, we design a highly discriminative object feature encoder and employ a contrastive pretraining strategy that decouples object representation learning from the scene graph prediction. This design not only enhances object classification accuracy but also yields direct improvements in relationship prediction. Notably, when plugging in our pretrained encoder into existing frameworks, we observe substantial performance improvements across all evaluation metrics. Additionally, whereas existing approaches have not fully exploited the integration of relationship information, we effectively combine both geometric and semantic features to achieve superior relationship prediction. Comprehensive experiments on the 3DSSG dataset demonstrate that our approach significantly outperforms previous state-of-the-art methods. Our code is publicly available at https://github.com/VisualScienceLab-KHU/OCRL-3DSSG-Codes.
comment: Accepted by NeurIPS 2025. Code: https://github.com/VisualScienceLab-KHU/OCRL-3DSSG-Codes
♻ ☆ From Slices to Structures: Unsupervised 3D Reconstruction of Female Pelvic Anatomy from Freehand Transvaginal Ultrasound
Volumetric ultrasound has the potential to significantly improve diagnostic accuracy and clinical decision-making, yet its widespread adoption remains limited by dependence on specialized hardware and restrictive acquisition protocols. In this work, we present a novel unsupervised framework for reconstructing 3D anatomical structures from freehand 2D transvaginal ultrasound sweeps, without requiring external tracking or learned pose estimators. Our method, TVGS, adapts the principles of Gaussian Splatting to the domain of ultrasound, introducing a slice-aware, differentiable rasterizer tailored to the unique physics and geometry of ultrasound imaging. We model anatomy as a collection of anisotropic 3D Gaussians and optimize their parameters directly from image-level supervision. To ensure robustness against irregular probe motion, we introduce a joint optimization scheme that refines slice poses alongside anatomical structure. The result is a compact, flexible, and memory-efficient volumetric representation that captures anatomical detail with high spatial fidelity. This work demonstrates that accurate 3D reconstruction from 2D ultrasound images can be achieved through purely computational means, offering a scalable alternative to conventional 3D systems and enabling new opportunities for AI-assisted analysis and diagnosis.
♻ ☆ AI-generated data contamination erodes pathological variability and diagnostic reliability
Generative artificial intelligence (AI) is rapidly populating medical records with synthetic content, creating a feedback loop where future models are increasingly at risk of training on uncurated AI-generated data. However, the clinical consequences of this AI-generated data contamination remain unexplored. Here, we show that in the absence of mandatory human verification, this self-referential cycle drives a rapid erosion of pathological variability and diagnostic reliability. By analysing more than 800,000 synthetic data points across clinical text generation, vision-language reporting, and medical image synthesis, we find that models progressively converge toward generic phenotypes regardless of the model architecture. Specifically, rare but critical findings, including pneumothorax and effusions, vanish from the synthetic content generated by AI models, while demographic representations skew heavily toward middle-aged male phenotypes. Crucially, this degradation is masked by false diagnostic confidence; models continue to issue reassuring reports while failing to detect life-threatening pathology, with false reassurance rates tripling to 40%. Blinded physician evaluation confirms that this decoupling of confidence and accuracy renders AI-generated documentation clinically useless after just two generations. We systematically evaluate three mitigation strategies, finding that while synthetic volume scaling fails to prevent collapse, mixing real data with quality-aware filtering effectively preserves diversity. Ultimately, our results suggest that without policy-mandated human oversight, the deployment of generative AI threatens to degrade the very healthcare data ecosystems it relies upon.
comment: *Corresponding author: Dianbo Liu (dianbo@nus.edu.sg)
♻ ☆ Glance and Focus Reinforcement for Pan-cancer Screening ICLR 2026
Pan-cancer screening in large-scale CT scans remains challenging for existing AI methods, primarily due to the difficulty of localizing diverse types of tiny lesions in large CT volumes. The extreme foreground-background imbalance significantly hinders models from focusing on diseased regions, while redundant focus on healthy regions not only decreases the efficiency but also increases false positives. Inspired by radiologists' glance and focus diagnostic strategy, we introduce GF-Screen, a Glance and Focus reinforcement learning framework for pan-cancer screening. GF-Screen employs a Glance model to localize the diseased regions and a Focus model to precisely segment the lesions, where segmentation results of the Focus model are leveraged to reward the Glance model via Reinforcement Learning (RL). Specifically, the Glance model crops a group of sub-volumes from the entire CT volume and learns to select the sub-volumes with lesions for the Focus model to segment. Given that the selecting operation is non-differentiable for segmentation training, we propose to employ the segmentation results to reward the Glance model. To optimize the Glance model, we introduce a novel group relative learning paradigm, which employs group relative comparison to prioritize high-advantage predictions and discard low-advantage predictions within sub-volume groups, not only improving efficiency but also reducing false positives. In this way, for the first time, we effectively extend cutting-edge RL techniques to tackle the specific challenges in pan-cancer screening. Extensive experiments on 16 internal and 7 external datasets across 9 lesion types demonstrated the effectiveness of GF-Screen. Notably, GF-Screen leads the public validation leaderboard of MICCAI FLARE25 pan-cancer challenge, surpassing the FLARE24 champion solution by a large margin (+25.6% DSC and +28.2% NSD).
comment: Accepted by ICLR 2026. Code is available at https://github.com/Luffy03/GF-Screen
♻ ☆ Seeing through Light and Darkness: Sensor-Physics Grounded Deblurring HDR NeRF from Single-Exposure Images and Events
Novel view synthesis from low dynamic range (LDR) blurry images, which are common in the wild, struggles to recover high dynamic range (HDR) and sharp 3D representations in extreme lighting conditions. Although existing methods employ event data to address this issue, they ignore the sensor-physics mismatches between the camera output and physical world radiance, resulting in suboptimal HDR and deblurring results. To cope with this problem, we propose a unified sensor-physics grounded NeRF framework for sharp HDR novel view synthesis from single-exposure blurry LDR images and corresponding events. We employ NeRF to directly represent the actual radiance of the 3D scene in the HDR domain and model raw HDR scene rays hitting the sensor pixels as in the physical world. A pixel-wise RGB mapping field is introduced to align the above rendered pixel values with the sensor-recorded LDR pixel values of the input images. A novel event mapping field is also designed to bridge the physical scene dynamics and actual event sensor output. The two mapping fields are jointly optimized with the NeRF network, leveraging the spatial and temporal dynamic information in events to enhance the sharp HDR 3D representation learning. Experiments on the collected and public datasets demonstrate that our method can achieve state-of-the-art deblurring HDR novel view synthesis results with single-exposure blurry LDR images and corresponding events.
♻ ☆ EgoFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving ICRA2026
Current End-to-End Autonomous Driving (E2E-AD) methods resort to unifying modular designs for various tasks (e.g. perception, prediction and planning). Although optimized with a fully differentiable framework in a planning-oriented manner, existing end-to-end driving systems lacking ego-centric designs still suffer from unsatisfactory performance and inferior efficiency, due to rasterized scene representation learning and redundant information transmission. In this paper, we propose an ego-centric fully sparse paradigm, named EgoFSD, for end-to-end self-driving. Specifically, EgoFSD consists of sparse perception, hierarchical interaction and iterative motion planner. The sparse perception module performs detection and online mapping based on sparse representation of the driving scene. The hierarchical interaction module aims to select the Closest In-Path Vehicle / Stationary (CIPV / CIPS) from coarse to fine, benefiting from an additional geometric prior. As for the iterative motion planner, both selected interactive agents and ego-vehicle are considered for joint motion prediction, where the output multi-modal ego-trajectories are optimized in an iterative fashion. In addition, position-level motion diffusion and trajectory-level planning denoising are introduced for uncertainty modeling, thereby enhancing the training stability and convergence speed. Extensive experiments are conducted on nuScenes and Bench2Drive datasets, which significantly reduces the average L2 error by 59% and collision rate by 92% than UniAD while achieves 6.9x faster running efficiency.
comment: Accepted to ICRA2026
♻ ☆ GEO-Bench-2: From Performance to Capability, Rethinking Evaluation in Geospatial AI
Geospatial Foundation Models (GeoFMs) are transforming Earth Observation (EO), but evaluation lacks standardized protocols. GEO-Bench-2 addresses this with a comprehensive framework spanning classification, segmentation, regression, object detection, and instance segmentation across 19 permissively-licensed datasets. We introduce ''capability'' groups to rank models on datasets that share common characteristics (e.g., resolution, bands, temporality). This enables users to identify which models excel in each capability and determine which areas need improvement in future work. To support both fair comparison and methodological innovation, we define a prescriptive yet flexible evaluation protocol. This not only ensures consistency in benchmarking but also facilitates research into model adaptation strategies, a key and open challenge in advancing GeoFMs for downstream tasks. Our experiments show that no single model dominates across all tasks, confirming the specificity of the choices made during architecture design and pretraining. While models pretrained on natural images (ConvNext ImageNet, DINO V3) excel on high-resolution tasks, EO-specific models (TerraMind, Prithvi, and Clay) outperform them on multispectral applications such as agriculture and disaster response. These findings demonstrate that optimal model choice depends on task requirements, data modalities, and constraints. This shows that the goal of a single GeoFM model that performs well across all tasks remains open for future research. GEO-Bench-2 enables informed, reproducible GeoFM evaluation tailored to specific use cases. Code, data, and leaderboard for GEO-Bench-2 are publicly released under a permissive license.
♻ ☆ UniCalli: A Unified Diffusion Framework for Column-Level Generation and Recognition of Chinese Calligraphy
Computational replication of Chinese calligraphy remains challenging. Existing methods falter, either creating high-quality isolated characters while ignoring page-level aesthetics like ligatures and spacing, or attempting page synthesis at the expense of calligraphic correctness. We introduce \textbf{UniCalli}, a unified diffusion framework for column-level recognition and generation. Training both tasks jointly is deliberate: recognition constrains the generator to preserve character structure, while generation provides style and layout priors. This synergy fosters concept-level abstractions that improve both tasks, especially in limited-data regimes. We curated a dataset of over 8,000 digitized pieces, with ~4,000 densely annotated. UniCalli employs asymmetric noising and a rasterized box map for spatial priors, trained on a mix of synthetic, labeled, and unlabeled data. The model achieves state-of-the-art generative quality with superior ligature continuity and layout fidelity, alongside stronger recognition. The framework successfully extends to other ancient scripts, including Oracle bone inscriptions and Egyptian hieroglyphs. Code and data can be viewed in \href{https://github.com/EnVision-Research/UniCalli}{this URL}.
comment: Page: https://envision-research.github.io/UniCalli/
♻ ☆ UrbanIng-V2X: A Large-Scale Multi-Vehicle, Multi-Infrastructure Dataset Across Multiple Intersections for Cooperative Perception NeurIPS 2025
Recent cooperative perception datasets have played a crucial role in advancing smart mobility applications by enabling information exchange between intelligent agents, helping to overcome challenges such as occlusions and improving overall scene understanding. While some existing real-world datasets incorporate both vehicle-to-vehicle and vehicle-to-infrastructure interactions, they are typically limited to a single intersection or a single vehicle. A comprehensive perception dataset featuring multiple connected vehicles and infrastructure sensors across several intersections remains unavailable, limiting the benchmarking of algorithms in diverse traffic environments. Consequently, overfitting can occur, and models may demonstrate misleadingly high performance due to similar intersection layouts and traffic participant behavior. To address this gap, we introduce UrbanIng-V2X, the first large-scale, multi-modal dataset supporting cooperative perception involving vehicles and infrastructure sensors deployed across three urban intersections in Ingolstadt, Germany. UrbanIng-V2X consists of 34 temporally aligned and spatially calibrated sensor sequences, each lasting 20 seconds. All sequences contain recordings from one of three intersections, involving two vehicles and up to three infrastructure-mounted sensor poles operating in coordinated scenarios. In total, UrbanIng-V2X provides data from 12 vehicle-mounted RGB cameras, 2 vehicle LiDARs, 17 infrastructure thermal cameras, and 12 infrastructure LiDARs. All sequences are annotated at a frequency of 10 Hz with 3D bounding boxes spanning 13 object classes, resulting in approximately 712k annotated instances across the dataset. We provide comprehensive evaluations using state-of-the-art cooperative perception methods and publicly release the codebase, dataset, HD map, and a digital twin of the complete data collection environment.
comment: Accepted to NeurIPS 2025. Including supplemental material. For code and dataset, see https://github.com/thi-ad/UrbanIng-V2X
♻ ☆ SpatialViz-Bench: A Cognitively-Grounded Benchmark for Diagnosing Spatial Visualization in MLLMs
Humans can imagine and manipulate visual images mentally, a capability known as spatial visualization. While many multi-modal benchmarks assess reasoning on visible visual information, the ability to infer unseen relationships through spatial visualization remains insufficiently evaluated as a spatial skill. This reliance on publicly sourced problems from IQ tests or math competitions risks data contamination and compromises assessment reliability. To this end, we introduce SpatialViz-Bench, a comprehensive multi-modal benchmark for spatial visualization with 12 tasks across 4 sub-abilities, comprising 1,180 programmatically generated problems, a scalable framework that allows for expansion to ensure fair and continuously reliable evaluations. Our evaluation of 27 Multi-modal Large Language Models (MLLMs) reveals wide performance variations, demonstrates the benchmark's strong discriminative power, and uncovers counter-intuitive findings: Chain-of-Thought (CoT) prompting paradoxically degrades accuracy on open-source models. Through statistical and qualitative analysis of error types, SpatialViz-Bench demonstrates that state-of-the-art MLLMs exhibit deficiencies in spatial visualization tasks, thereby addressing a significant lacuna in the field. The benchmark data and evaluation code are publicly available.
♻ ☆ Under-Canopy Terrain Reconstruction in Dense Forests Using RGB Imaging and Neural 3D Reconstruction WACV 2026
Mapping the terrain and understory hidden beneath dense forest canopies is of great interest for numerous applications such as search and rescue, trail mapping, forest inventory tasks, and more. Existing solutions rely on specialized sensors: either heavy, costly airborne LiDAR, or Airborne Optical Sectioning (AOS), which uses thermal synthetic aperture photography and is tailored for person detection. We introduce a novel approach for the reconstruction of canopy-free, photorealistic ground views using only conventional RGB images. Our solution is based on the celebrated Neural Radiance Fields (NeRF), a recent 3D reconstruction method. Additionally, we include specific image capture considerations, which dictate the needed illumination to successfully expose the scene beneath the canopy. To better cope with the poorly lit understory, we employ a low light loss. Finally, we propose two complementary approaches to remove occluding canopy elements by controlling per-ray integration procedure. To validate the value of our approach, we present two possible downstream tasks. For the task of search and rescue (SAR), we demonstrate that our method enables person detection which achieves promising results compared to thermal AOS (using only RGB images). Additionally, we show the potential of our approach for forest inventory tasks like tree counting. These results position our approach as a cost-effective, high-resolution alternative to specialized sensors for SAR, trail mapping, and forest-inventory tasks.
comment: WACV 2026 CV4EO
♻ ☆ Physics-Based Benchmarking Metrics for Multimodal Synthetic Images
Current state of the art measures like BLEU, CIDEr, VQA score, SigLIP-2 and CLIPScore are often unable to capture semantic or structural accuracy, especially for domain-specific or context-dependent scenarios. For this, this paper proposes a Physics-Constrained Multimodal Data Evaluation (PCMDE) metric combining large language models with reasoning, knowledge based mapping and vision-language models to overcome these limitations. The architecture is comprised of three main stages: (1) feature extraction of spatial and semantic information with multimodal features through object detection and VLMs; (2) Confidence-Weighted Component Fusion for adaptive component-level validation; and (3) physics-guided reasoning using large language models for structural and relational constraints (e.g., alignment, position, consistency) enforcement.
♻ ☆ MPF-Net: Exposing High-Fidelity AI-Generated Video Forgeries via Hierarchical Manifold Deviation and Micro-Temporal Fluctuations
With the rapid advancement of video generation models such as Veo and Wan, the visual quality of synthetic content has reached a level where macro-level semantic errors and temporal inconsistencies are no longer prominent. However, this does not imply that the distinction between real and cutting-edge high-fidelity fake is untraceable. We argue that AI-generated videos are essentially products of a manifold-fitting process rather than a physical recording. Consequently, the pixel composition logic of consecutive adjacent frames residual in AI videos exhibits a structured and homogenous characteristic. We term this phenomenon `Manifold Projection Fluctuations' (MPF). Driven by this insight, we propose a hierarchical dual-path framework that operates as a sequential filtering process. The first, the Static Manifold Deviation Branch, leverages the refined perceptual boundaries of Large-Scale Vision Foundation Models (VFMs) to capture residual spatial anomalies or physical violations that deviate from the natural real-world manifold (off-manifold). For the remaining high-fidelity videos that successfully reside on-manifold and evade spatial detection, we introduce the Micro-Temporal Fluctuation Branch as a secondary, fine-grained filter. By analyzing the structured MPF that persists even in visually perfect sequences, our framework ensures that forgeries are exposed regardless of whether they manifest as global real-world manifold deviations or subtle computational fingerprints.
Artificial Intelligence 150
☆ Reward-free Alignment for Conflicting Objectives
Direct alignment methods are increasingly used to align large language models (LLMs) with human preferences. However, many real-world alignment problems involve multiple conflicting objectives, where naive aggregation of preferences can lead to unstable training and poor trade-offs. In particular, weighted loss methods may fail to identify update directions that simultaneously improve all objectives, and existing multi-objective approaches often rely on explicit reward models, introducing additional complexity and distorting user-specified preferences. The contributions of this paper are two-fold. First, we propose a Reward-free Alignment framework for Conflicted Objectives (RACO) that directly leverages pairwise preference data and resolves gradient conflicts via a novel clipped variant of conflict-averse gradient descent. We provide convergence guarantees to Pareto-critical points that respect user-specified objective weights, and further show that clipping can strictly improve convergence rate in the two-objective setting. Second, we improve our method using some heuristics and conduct experiments to demonstrate the compatibility of the proposed framework for LLM alignment. Both qualitative and quantitative evaluations on multi-objective summarization and safety alignment tasks across multiple LLM families (Qwen 3, Llama 3, Gemma 3) show that our method consistently achieves better Pareto trade-offs compared to existing multi-objective alignment baselines.
comment: 27 pages
☆ PixelGen: Pixel Diffusion Beats Latent Diffusion with Perceptual Loss
Pixel diffusion generates images directly in pixel space in an end-to-end manner, avoiding the artifacts and bottlenecks introduced by VAEs in two-stage latent diffusion. However, it is challenging to optimize high-dimensional pixel manifolds that contain many perceptually irrelevant signals, leaving existing pixel diffusion methods lagging behind latent diffusion models. We propose PixelGen, a simple pixel diffusion framework with perceptual supervision. Instead of modeling the full image manifold, PixelGen introduces two complementary perceptual losses to guide diffusion model towards learning a more meaningful perceptual manifold. An LPIPS loss facilitates learning better local patterns, while a DINO-based perceptual loss strengthens global semantics. With perceptual supervision, PixelGen surpasses strong latent diffusion baselines. It achieves an FID of 5.11 on ImageNet-256 without classifier-free guidance using only 80 training epochs, and demonstrates favorable scaling performance on large-scale text-to-image generation with a GenEval score of 0.79. PixelGen requires no VAEs, no latent representations, and no auxiliary stages, providing a simpler yet more powerful generative paradigm. Codes are publicly available at https://github.com/Zehong-Ma/PixelGen.
comment: Project Pages: https://zehong-ma.github.io/PixelGen/
☆ RE-TRAC: REcursive TRAjectory Compression for Deep Search Agents
LLM-based deep research agents are largely built on the ReAct framework. This linear design makes it difficult to revisit earlier states, branch into alternative search directions, or maintain global awareness under long contexts, often leading to local optima, redundant exploration, and inefficient search. We propose Re-TRAC, an agentic framework that performs cross-trajectory exploration by generating a structured state representation after each trajectory to summarize evidence, uncertainties, failures, and future plans, and conditioning subsequent trajectories on this state representation. This enables iterative reflection and globally informed planning, reframing research as a progressive process. Empirical results show that Re-TRAC consistently outperforms ReAct by 15-20% on BrowseComp with frontier LLMs. For smaller models, we introduce Re-TRAC-aware supervised fine-tuning, achieving state-of-the-art performance at comparable scales. Notably, Re-TRAC shows a monotonic reduction in tool calls and token usage across rounds, indicating progressively targeted exploration driven by cross-trajectory reflection rather than redundant search.
☆ Flow Policy Gradients for Robot Control
Likelihood-based policy gradient methods are the dominant approach for training robot control policies from rewards. These methods rely on differentiable action likelihoods, which constrain policy outputs to simple distributions like Gaussians. In this work, we show how flow matching policy gradients -- a recent framework that bypasses likelihood computation -- can be made effective for training and fine-tuning more expressive policies in challenging robot control settings. We introduce an improved objective that enables success in legged locomotion, humanoid motion tracking, and manipulation tasks, as well as robust sim-to-real transfer on two humanoid robots. We then present ablations and analysis on training dynamics. Results show how policies can exploit the flow representation for exploration when training from scratch, as well as improved fine-tuning robustness over baselines.
comment: Project webpage: https://hongsukchoi.github.io/fpo-control
☆ AgentRx: Diagnosing AI Agent Failures from Execution Trajectories
AI agents often fail in ways that are difficult to localize because executions are probabilistic, long-horizon, multi-agent, and mediated by noisy tool outputs. We address this gap by manually annotating failed agent runs and release a novel benchmark of 115 failed trajectories spanning structured API workflows, incident management, and open-ended web/file tasks. Each trajectory is annotated with a critical failure step and a category from a grounded-theory derived, cross-domain failure taxonomy. To mitigate the human cost of failure attribution, we present AGENTRX, an automated domain-agnostic diagnostic framework that pinpoints the critical failure step in a failed agent trajectory. It synthesizes constraints, evaluates them step-by-step, and produces an auditable validation log of constraint violations with associated evidence; an LLM-based judge uses this log to localize the critical step and category. Our framework improves step localization and failure attribution over existing baselines across three domains.
☆ MemSkill: Learning and Evolving Memory Skills for Self-Evolving Agents
Most Large Language Model (LLM) agent memory systems rely on a small set of static, hand-designed operations for extracting memory. These fixed procedures hard-code human priors about what to store and how to revise memory, making them rigid under diverse interaction patterns and inefficient on long histories. To this end, we present \textbf{MemSkill}, which reframes these operations as learnable and evolvable memory skills, structured and reusable routines for extracting, consolidating, and pruning information from interaction traces. Inspired by the design philosophy of agent skills, MemSkill employs a \emph{controller} that learns to select a small set of relevant skills, paired with an LLM-based \emph{executor} that produces skill-guided memories. Beyond learning skill selection, MemSkill introduces a \emph{designer} that periodically reviews hard cases where selected skills yield incorrect or incomplete memories, and evolves the skill set by proposing refinements and new skills. Together, MemSkill forms a closed-loop procedure that improves both the skill-selection policy and the skill set itself. Experiments on LoCoMo, LongMemEval, HotpotQA, and ALFWorld demonstrate that MemSkill improves task performance over strong baselines and generalizes well across settings. Further analyses shed light on how skills evolve, offering insights toward more adaptive, self-evolving memory management for LLM agents.
comment: Code is available at https://github.com/ViktorAxelsen/MemSkill
☆ Multi-head automated segmentation by incorporating detection head into the contextual layer neural network
Deep learning based auto segmentation is increasingly used in radiotherapy, but conventional models often produce anatomically implausible false positives, or hallucinations, in slices lacking target structures. We propose a gated multi-head Transformer architecture based on Swin U-Net, augmented with inter-slice context integration and a parallel detection head, which jointly performs slice-level structure detection via a multi-layer perceptron and pixel-level segmentation through a context-enhanced stream. Detection outputs gate the segmentation predictions to suppress false positives in anatomically invalid slices, and training uses slice-wise Tversky loss to address class imbalance. Experiments on the Prostate-Anatomical-Edge-Cases dataset from The Cancer Imaging Archive demonstrate that the gated model substantially outperforms a non-gated segmentation-only baseline, achieving a mean Dice loss of $0.013 \pm 0.036$ versus $0.732 \pm 0.314$, with detection probabilities strongly correlated with anatomical presence, effectively eliminating spurious segmentations. In contrast, the non-gated model exhibited higher variability and persistent false positives across all slices. These results indicate that detection-based gating enhances robustness and anatomical plausibility in automated segmentation applications, reducing hallucinated predictions without compromising segmentation quality in valid slices, and offers a promising approach for improving the reliability of clinical radiotherapy auto-contouring workflows.
comment: 8 pages, 3 figures, 1 table
☆ Breaking the Reversal Curse in Autoregressive Language Models via Identity Bridge
Autoregressive large language models (LLMs) have achieved remarkable success in many complex tasks, yet they can still fail in very simple logical reasoning such as the "reversal curse" -- when trained on forward knowledge data of the form "$A \rightarrow B$" (e.g., Alice's husband is Bob), the model is unable to deduce the reversal knowledge "$B \leftarrow A$" (e.g., Bob's wife is Alice) during test. Extensive prior research suggests that this failure is an inherent, fundamental limit of autoregressive causal LLMs, indicating that these models tend to memorize factual-level knowledge rather than capture higher-level rules. In this paper, we challenge this view by showing that this seemingly fundamental limit can be mitigated by slightly tweaking the training data with a simple regularization data recipe called the Identity Bridge of the form "$A \to A$" (e.g., The name of Alice is Alice). Theoretically, we prove that under this recipe, even a one-layer transformer can break the reversal curse by analyzing the implicit bias of gradient descent. Empirically, we show that a 1B pretrained language model finetuned with the proposed data recipe achieves a 40% success rate on reversal tasks, in stark contrast to a near-zero success rate when trained solely on forward-knowledge data. Our work provides a novel theoretical foundation for the reversal curse and offers a principled, low-cost path to encouraging LLMs to learn higher-level rules from data.
☆ Avenir-Web: Human-Experience-Imitating Multimodal Web Agents with Mixture of Grounding Experts
Despite advances in multimodal large language models, autonomous web agents still struggle to reliably execute long-horizon tasks on complex and dynamic web interfaces. Existing agents often suffer from inaccurate element grounding, the absence of site-specific procedural knowledge, and unstable long-term task tracking and memory, particularly when operating over complex Document Object Model structures. To address these limitations, we introduce Avenir-Web, a web agent that achieves a new open-source state of the art on the Online-Mind2Web benchmark in real-world deployment. Avenir-Web leverages a Mixture of Grounding Experts, Experience-Imitation Planning for incorporating procedural priors, and a task-tracking checklist combined with adaptive memory to enable robust and seamless interaction across diverse user interface paradigms. We evaluate Avenir-Web on Online-Mind2Web, a rigorous benchmark of live and user-centered web tasks. Our results demonstrate that Avenir-Web significantly surpasses prior open-source agents and attains performance parity with top-tier proprietary models, thereby establishing a new open-source state of the art for reliable web agents on live websites.
☆ MentisOculi: Revealing the Limits of Reasoning with Mental Imagery
Frontier models are transitioning from multimodal large language models (MLLMs) that merely ingest visual information to unified multimodal models (UMMs) capable of native interleaved generation. This shift has sparked interest in using intermediate visualizations as a reasoning aid, akin to human mental imagery. Central to this idea is the ability to form, maintain, and manipulate visual representations in a goal-oriented manner. To evaluate and probe this capability, we develop MentisOculi, a procedural, stratified suite of multi-step reasoning problems amenable to visual solution, tuned to challenge frontier models. Evaluating visual strategies ranging from latent tokens to explicit generated imagery, we find they generally fail to improve performance. Analysis of UMMs specifically exposes a critical limitation: While they possess the textual reasoning capacity to solve a task and can sometimes generate correct visuals, they suffer from compounding generation errors and fail to leverage even ground-truth visualizations. Our findings suggest that despite their inherent appeal, visual thoughts do not yet benefit model reasoning. MentisOculi establishes the necessary foundation to analyze and close this gap across diverse model families.
comment: 9 pages, 8 figures
☆ Abstract Activation Spaces for Content-Invariant Reasoning in Large Language Models
Large Language Models (LLMs) often struggle with deductive judgment in syllogistic reasoning, systematically conflating semantic plausibility with formal validity a phenomenon known as content effect. This bias persists even when models generate step-wise explanations, indicating that intermediate rationales may inherit the same semantic shortcuts that affect answers. Recent approaches propose mitigating this issue by increasing inference-time structural constraints, either by encouraging abstract intermediate representations or by intervening directly in the model's internal computations; however, reliably suppressing semantic interference remains an open challenge. To make formal deduction less sensitive to semantic content, we introduce a framework for abstraction-guided reasoning that explicitly separates structural inference from lexical semantics. We construct paired content-laden and abstract syllogisms and use the model's activations on abstract inputs to define an abstract reasoning space. We then learn lightweight Abstractors that, from content-conditioned residual-stream states, predict representations aligned with this space and integrate these predictions via multi-layer interventions during the forward pass. Using cross-lingual transfer as a test bed, we show that abstraction-aligned steering reduces content-driven errors and improves validity-sensitive performance. Our results position activation-level abstraction as a scalable mechanism for enhancing the robustness of formal reasoning in LLMs against semantic interference.
☆ Drift-Bench: Diagnosing Cooperative Breakdowns in LLM Agents under Input Faults via Multi-Turn Interaction
As Large Language Models transition to autonomous agents, user inputs frequently violate cooperative assumptions (e.g., implicit intent, missing parameters, false presuppositions, or ambiguous expressions), creating execution risks that text-only evaluations do not capture. Existing benchmarks typically assume well-specified instructions or restrict evaluation to text-only, single-turn clarification, and thus do not measure multi-turn disambiguation under grounded execution risk. We introduce \textbf{Drift-Bench}, the first diagnostic benchmark that evaluates agentic pragmatics under input faults through multi-turn clarification across state-oriented and service-oriented execution environments. Grounded in classical theories of communication, \textbf{Drift-Bench} provides a unified taxonomy of cooperative breakdowns and employs a persona-driven user simulator with the \textbf{Rise} evaluation protocol. Experiments show substantial performance drops under these faults, with clarification effectiveness varying across user personas and fault types. \MethodName bridges clarification research and agent safety evaluation, enabling systematic diagnosis of failures that can lead to unsafe executions.
comment: 65 pages, 40 figures
☆ World-Gymnast: Training Robots with Reinforcement Learning in a World Model
Robot learning from interacting with the physical world is fundamentally bottlenecked by the cost of physical interaction. The two alternatives, supervised finetuning (SFT) from expert demonstrations and reinforcement learning (RL) in a software-based simulator, are limited by the amount of expert data available and the sim-to-real gap for manipulation. With the recent emergence of world models learned from real-world video-action data, we ask the question of whether training a policy in a world model can be more effective than supervised learning or software simulation in achieving better real-robot performance. We propose World-Gymnast, which performs RL finetuning of a vision-language-action (VLA) policy by rolling out the policy in an action-conditioned video world model and rewarding the rollouts with a vision-language model (VLM). On the Bridge robot setup, World-Gymnast outperforms SFT by as much as 18x and outperforms software simulator by as much as 2x. More importantly, World-Gymnast demonstrates intriguing capabilities of RL with a world model, including training on diverse language instructions and novel scenes from the world model, test-time training in a novel scene, and online iterative world model and policy improvement. Our results suggest learning a world model and training robot policies in the cloud could be the key to bridging the gap between robots that work in demonstrations and robots that can work in anyone's household.
comment: https://world-gymnast.github.io/
☆ Thinking with Comics: Enhancing Multimodal Reasoning through Structured Visual Storytelling
Chain-of-Thought reasoning has driven large language models to extend from thinking with text to thinking with images and videos. However, different modalities still have clear limitations: static images struggle to represent temporal structure, while videos introduce substantial redundancy and computational cost. In this work, we propose Thinking with Comics, a visual reasoning paradigm that uses comics as a high information-density medium positioned between images and videos. Comics preserve temporal structure, embedded text, and narrative coherence while requiring significantly lower reasoning cost. We systematically study two reasoning paths based on comics and evaluate them on a range of reasoning tasks and long-context understanding tasks. Experimental results show that Thinking with Comics outperforms Thinking with Images on multi-step temporal and causal reasoning tasks, while remaining substantially more efficient than Thinking with Video. Further analysis indicates that different comic narrative structures and styles consistently affect performance across tasks, suggesting that comics serve as an effective intermediate visual representation for improving multimodal reasoning.
comment: Working paper
☆ Active Causal Experimentalist (ACE): Learning Intervention Strategies via Direct Preference Optimization
Discovering causal relationships requires controlled experiments, but experimentalists face a sequential decision problem: each intervention reveals information that should inform what to try next. Traditional approaches such as random sampling, greedy information maximization, and round-robin coverage treat each decision in isolation, unable to learn adaptive strategies from experience. We propose Active Causal Experimentalist (ACE), which learns experimental design as a sequential policy. Our key insight is that while absolute information gains diminish as knowledge accumulates (making value-based RL unstable), relative comparisons between candidate interventions remain meaningful throughout. ACE exploits this via Direct Preference Optimization, learning from pairwise intervention comparisons rather than non-stationary reward magnitudes. Across synthetic benchmarks, physics simulations, and economic data, ACE achieves 70-71% improvement over baselines at equal intervention budgets (p < 0.001, Cohen's d ~ 2). Notably, the learned policy autonomously discovers that collider mechanisms require concentrated interventions on parent variables, a theoretically-grounded strategy that emerges purely from experience. This suggests preference-based learning can recover principled experimental strategies, complementing theory with learned domain adaptation.
comment: 9 pages, 5 figures
☆ UniReason 1.0: A Unified Reasoning Framework for World Knowledge Aligned Image Generation and Editing
Unified multimodal models often struggle with complex synthesis tasks that demand deep reasoning, and typically treat text-to-image generation and image editing as isolated capabilities rather than interconnected reasoning steps. To address this, we propose UniReason, a unified framework that harmonizes these two tasks through a dual reasoning paradigm. We formulate generation as world knowledge-enhanced planning to inject implicit constraints, and leverage editing capabilities for fine-grained visual refinement to further correct visual errors via self-reflection. This approach unifies generation and editing within a shared representation, mirroring the human cognitive process of planning followed by refinement. We support this framework by systematically constructing a large-scale reasoning-centric dataset (~300k samples) covering five major knowledge domains (e.g., cultural commonsense, physics, etc.) for planning, alongside an agent-generated corpus for visual self-correction. Extensive experiments demonstrate that UniReason achieves advanced performance on reasoning-intensive benchmarks such as WISE, KrisBench and UniREditBench, while maintaining superior general synthesis capabilities.
☆ Poly-attention: a general scheme for higher-order self-attention
The self-attention mechanism, at the heart of the Transformer model, is able to effectively model pairwise interactions between tokens. However, numerous recent works have shown that it is unable to perform basic tasks involving detecting triples of correlated tokens, or compositional tasks where multiple input tokens need to be referenced to generate a result. Some higher-dimensional alternatives to self-attention have been proposed to address this, including higher-order attention and Strassen attention, which can perform some of these polyadic tasks in exchange for slower, superquadratic running times. In this work, we define a vast class of generalizations of self-attention, which we call poly-attention mechanisms. Our mechanisms can incorporate arbitrary higher-order (tensor) computations as well as arbitrary relationship structures between the input tokens, and they include the aforementioned alternatives as special cases. We then systematically study their computational complexity and representational strength, including giving new algorithms and matching complexity-theoretic lower bounds on the time complexity of computing the attention matrix exactly as well as approximately, and tightly determining which polyadic tasks they can each perform. Our results give interesting trade-offs between different desiderata for these mechanisms, including a tight relationship between how expressive a mechanism is, and how large the coefficients in the model may be so that the mechanism can be approximated in almost-linear time. Notably, we give a new attention mechanism which can be computed exactly in quadratic time, and which can perform function composition for any fixed number of functions. Prior mechanisms, even for just composing two functions, could only be computed in superquadratic time, and our new lower bounds show that faster algorithms for them are not possible.
☆ SafeGround: Know When to Trust GUI Grounding Models via Uncertainty Calibration
Graphical User Interface (GUI) grounding aims to translate natural language instructions into executable screen coordinates, enabling automated GUI interaction. Nevertheless, incorrect grounding can result in costly, hard-to-reverse actions (e.g., erroneous payment approvals), raising concerns about model reliability. In this paper, we introduce SafeGround, an uncertainty-aware framework for GUI grounding models that enables risk-aware predictions through calibrations before testing. SafeGround leverages a distribution-aware uncertainty quantification method to capture the spatial dispersion of stochastic samples from outputs of any given model. Then, through the calibration process, SafeGround derives a test-time decision threshold with statistically guaranteed false discovery rate (FDR) control. We apply SafeGround on multiple GUI grounding models for the challenging ScreenSpot-Pro benchmark. Experimental results show that our uncertainty measure consistently outperforms existing baselines in distinguishing correct from incorrect predictions, while the calibrated threshold reliably enables rigorous risk control and potentials of substantial system-level accuracy improvements. Across multiple GUI grounding models, SafeGround improves system-level accuracy by up to 5.38\% percentage points over Gemini-only inference.
☆ Structure Enables Effective Self-Localization of Errors in LLMs
Self-correction in language models remains elusive. In this work, we explore whether language models can explicitly localize errors in incorrect reasoning, as a path toward building AI systems that can effectively correct themselves. We introduce a prompting method that structures reasoning as discrete, semantically coherent thought steps, and show that models are able to reliably localize errors within this structure, while failing to do so in conventional, unstructured chain-of-thought reasoning. Motivated by how the human brain monitors errors at discrete decision points and resamples alternatives, we introduce Iterative Correction Sampling of Thoughts (Thought-ICS), a self-correction framework. Thought-ICS iteratively prompts the model to generate reasoning one discrete and complete thought at a time--where each thought represents a deliberate decision by the model--creating natural boundaries for precise error localization. Upon verification, the model localizes the first erroneous step, and the system backtracks to generate alternative reasoning from the last correct point. When asked to correct reasoning verified as incorrect by an oracle, Thought-ICS achieves 20-40% self-correction lift. In a completely autonomous setting without external verification, it outperforms contemporary self-correction baselines.
☆ ReasonEdit: Editing Vision-Language Models using Human Reasoning
Model editing aims to correct errors in large, pretrained models without altering unrelated behaviors. While some recent works have edited vision-language models (VLMs), no existing editors tackle reasoning-heavy tasks, which typically require humans and models to reason about images.We therefore propose ReasonEdit, the first VLM editor to let users explain their reasoning during editing, introducing a new, practical model editing setup. ReasonEdit continuously stores human reasoning in a codebook, and retrieves only relevant facts during inference using a novel topology-balanced multimodal embedding method inspired by network science. Across four VLMs on multiple rationale-based visual question answering datasets, ReasonEdit achieves state-of-the-art editing performance, ultimately showing that using human reasoning during editing greatly improves edit generalization.
☆ Didactic to Constructive: Turning Expert Solutions into Learnable Reasoning
Improving the reasoning capabilities of large language models (LLMs) typically relies either on the model's ability to sample a correct solution to be reinforced or on the existence of a stronger model able to solve the problem. However, many difficult problems remain intractable for even current frontier models, preventing the extraction of valid training signals. A promising alternative is to leverage high-quality expert human solutions, yet naive imitation of this data fails because it is fundamentally out of distribution: expert solutions are typically didactic, containing implicit reasoning gaps intended for human readers rather than computational models. Furthermore, high-quality expert solutions are expensive, necessitating generalizable sample-efficient training methods. We propose Distribution Aligned Imitation Learning (DAIL), a two-step method that bridges the distributional gap by first transforming expert solutions into detailed, in-distribution reasoning traces and then applying a contrastive objective to focus learning on expert insights and methodologies. We find that DAIL can leverage fewer than 1000 high-quality expert solutions to achieve 10-25% pass@k gains on Qwen2.5-Instruct and Qwen3 models, improve reasoning efficiency by 2x to 4x, and enable out-of-domain generalization.
☆ SoMA: A Real-to-Sim Neural Simulator for Robotic Soft-body Manipulation
Simulating deformable objects under rich interactions remains a fundamental challenge for real-to-sim robot manipulation, with dynamics jointly driven by environmental effects and robot actions. Existing simulators rely on predefined physics or data-driven dynamics without robot-conditioned control, limiting accuracy, stability, and generalization. This paper presents SoMA, a 3D Gaussian Splat simulator for soft-body manipulation. SoMA couples deformable dynamics, environmental forces, and robot joint actions in a unified latent neural space for end-to-end real-to-sim simulation. Modeling interactions over learned Gaussian splats enables controllable, stable long-horizon manipulation and generalization beyond observed trajectories without predefined physical models. SoMA improves resimulation accuracy and generalization on real-world robot manipulation by 20%, enabling stable simulation of complex tasks such as long-horizon cloth folding.
comment: Project page: https://city-super.github.io/SoMA/
☆ David vs. Goliath: Verifiable Agent-to-Agent Jailbreaking via Reinforcement Learning
The evolution of large language models into autonomous agents introduces adversarial failures that exploit legitimate tool privileges, transforming safety evaluation in tool-augmented environments from a subjective NLP task into an objective control problem. We formalize this threat model as Tag-Along Attacks: a scenario where a tool-less adversary "tags along" on the trusted privileges of a safety-aligned Operator to induce prohibited tool use through conversation alone. To validate this threat, we present Slingshot, a 'cold-start' reinforcement learning framework that autonomously discovers emergent attack vectors, revealing a critical insight: in our setting, learned attacks tend to converge to short, instruction-like syntactic patterns rather than multi-turn persuasion. On held-out extreme-difficulty tasks, Slingshot achieves a 67.0% success rate against a Qwen2.5-32B-Instruct-AWQ Operator (vs. 1.7% baseline), reducing the expected attempts to first success (on solved tasks) from 52.3 to 1.3. Crucially, Slingshot transfers zero-shot to several model families, including closed-source models like Gemini 2.5 Flash (56.0% attack success rate) and defensive-fine-tuned open-source models like Meta-SecAlign-8B (39.2% attack success rate). Our work establishes Tag-Along Attacks as a first-class, verifiable threat model and shows that effective agentic attacks can be elicited from off-the-shelf open-weight models through environment interaction alone.
comment: Under review. 8 main pages, 2 figures, 2 tables. Appendix included
☆ Infinite-World: Scaling Interactive World Models to 1000-Frame Horizons via Pose-Free Hierarchical Memory
We propose Infinite-World, a robust interactive world model capable of maintaining coherent visual memory over 1000+ frames in complex real-world environments. While existing world models can be efficiently optimized on synthetic data with perfect ground-truth, they lack an effective training paradigm for real-world videos due to noisy pose estimations and the scarcity of viewpoint revisits. To bridge this gap, we first introduce a Hierarchical Pose-free Memory Compressor (HPMC) that recursively distills historical latents into a fixed-budget representation. By jointly optimizing the compressor with the generative backbone, HPMC enables the model to autonomously anchor generations in the distant past with bounded computational cost, eliminating the need for explicit geometric priors. Second, we propose an Uncertainty-aware Action Labeling module that discretizes continuous motion into a tri-state logic. This strategy maximizes the utilization of raw video data while shielding the deterministic action space from being corrupted by noisy trajectories, ensuring robust action-response learning. Furthermore, guided by insights from a pilot toy study, we employ a Revisit-Dense Finetuning Strategy using a compact, 30-minute dataset to efficiently activate the model's long-range loop-closure capabilities. Extensive experiments, including objective metrics and user studies, demonstrate that Infinite-World achieves superior performance in visual quality, action controllability, and spatial consistency.
comment: 14 pages, 8 figures
☆ Trust by Design: Skill Profiles for Transparent, Cost-Aware LLM Routing
How should Large Language Model (LLM) practitioners select the right model for a task without wasting money? We introduce BELLA (Budget-Efficient LLM Selection via Automated skill-profiling), a framework that recommends optimal LLM selection for tasks through interpretable skill-based model selection. Standard benchmarks report aggregate metrics that obscure which specific capabilities a task requires and whether a cheaper model could suffice. BELLA addresses this gap through three stages: (1) decomposing LLM outputs and extract the granular skills required by using critic-based profiling, (2) clustering skills into structured capability matrices, and (3) multi-objective optimization to select the right models to maximize performance while respecting budget constraints. BELLA provides natural-language rationale for recommendations, providing transparency that current black-box routing systems lack. We describe the framework architecture, situate it within the landscape of LLM routing and evaluation, and discuss its application to financial reasoning as a representative domain exhibiting diverse skill requirements and cost-variation across models. Our framework enables practitioners to make principled and cost-performance trade-offs for deploying LLMs.
comment: Appeared at MLSys YPS 2025
☆ From Sycophancy to Sensemaking: Premise Governance for Human-AI Decision Making
As LLMs expand from assistance to decision support, a dangerous pattern emerges: fluent agreement without calibrated judgment. Low-friction assistants can become sycophantic, baking in implicit assumptions and pushing verification costs onto experts, while outcomes arrive too late to serve as reward signals. In deep-uncertainty decisions (where objectives are contested and reversals are costly), scaling fluent agreement amplifies poor commitments faster than it builds expertise. We argue reliable human-AI partnership requires a shift from answer generation to collaborative premise governance over a knowledge substrate, negotiating only what is decision-critical. A discrepancy-driven control loop operates over this substrate: detecting conflicts, localizing misalignment via typed discrepancies (teleological, epistemic, procedural), and triggering bounded negotiation through decision slices. Commitment gating blocks action on uncommitted load-bearing premises unless overridden under logged risk; value-gated challenge allocates probing under interaction cost. Trust then attaches to auditable premises and evidence standards, not conversational fluency. We illustrate with tutoring and propose falsifiable evaluation criteria.
☆ Live-Evo: Online Evolution of Agentic Memory from Continuous Feedback
Large language model (LLM) agents are increasingly equipped with memory, which are stored experience and reusable guidance that can improve task-solving performance. Recent \emph{self-evolving} systems update memory based on interaction outcomes, but most existing evolution pipelines are developed for static train/test splits and only approximate online learning by folding static benchmarks, making them brittle under true distribution shift and continuous feedback. We introduce \textsc{Live-Evo}, an online self-evolving memory system that learns from a stream of incoming data over time. \textsc{Live-Evo} decouples \emph{what happened} from \emph{how to use it} via an Experience Bank and a Meta-Guideline Bank, compiling task-adaptive guidelines from retrieved experiences for each task. To manage memory online, \textsc{Live-Evo} maintains experience weights and updates them from feedback: experiences that consistently help are reinforced and retrieved more often, while misleading or stale experiences are down-weighted and gradually forgotten, analogous to reinforcement and decay in human memory. On the live \textit{Prophet Arena} benchmark over a 10-week horizon, \textsc{Live-Evo} improves Brier score by 20.8\% and increases market returns by 12.9\%, while also transferring to deep-research benchmarks with consistent gains over strong baselines. Our code is available at https://github.com/ag2ai/Live-Evo.
comment: 13 pages
☆ ReasonCACHE: Teaching LLMs To Reason Without Weight Updates
Can Large language models (LLMs) learn to reason without any weight update and only through in-context learning (ICL)? ICL is strikingly sample-efficient, often learning from only a handful of demonstrations, but complex reasoning tasks typically demand many training examples to learn from. However, naively scaling ICL by adding more demonstrations breaks down at this scale: attention costs grow quadratically, performance saturates or degrades with longer contexts, and the approach remains a shallow form of learning. Due to these limitations, practitioners predominantly rely on in-weight learning (IWL) to induce reasoning. In this work, we show that by using Prefix Tuning, LLMs can learn to reason without overloading the context window and without any weight updates. We introduce $\textbf{ReasonCACHE}$, an instantiation of this mechanism that distills demonstrations into a fixed key-value cache. Empirically, across challenging reasoning benchmarks, including GPQA-Diamond, ReasonCACHE outperforms standard ICL and matches or surpasses IWL approaches. Further, it achieves this all while being more efficient across three key axes: data, inference cost, and trainable parameters. We also theoretically prove that ReasonCACHE can be strictly more expressive than low-rank weight update since the latter ties expressivity to input rank, whereas ReasonCACHE bypasses this constraint by directly injecting key-values into the attention mechanism. Together, our findings identify ReasonCACHE as a middle path between in-context and in-weight learning, providing a scalable algorithm for learning reasoning skills beyond the context window without modifying parameters. Our project page: https://reasoncache.github.io/
comment: 26 pages, 17 Figures
☆ SWE-Universe: Scale Real-World Verifiable Environments to Millions
We propose SWE-Universe, a scalable and efficient framework for automatically constructing real-world software engineering (SWE) verifiable environments from GitHub pull requests (PRs). To overcome the prevalent challenges of automatic building, such as low production yield, weak verifiers, and prohibitive cost, our framework utilizes a building agent powered by an efficient custom-trained model. This agent employs iterative self-verification and in-loop hacking detection to ensure the reliable generation of high-fidelity, verifiable tasks. Using this method, we scale the number of real-world multilingual SWE environments to a million scale (807,693). We demonstrate the profound value of our environments through large-scale agentic mid-training and reinforcement learning. Finally, we applied this technique to Qwen3-Max-Thinking and achieved a score of 75.3% on SWE-Bench Verified. Our work provides both a critical resource and a robust methodology to advance the next generation of coding agents.
comment: 13 pages
☆ Implicit neural representation of textures
Implicit neural representation (INR) has proven to be accurate and efficient in various domains. In this work, we explore how different neural networks can be designed as a new texture INR, which operates in a continuous manner rather than a discrete one over the input UV coordinate space. Through thorough experiments, we demonstrate that these INRs perform well in terms of image quality, with considerable memory usage and rendering inference time. We analyze the balance between these objectives. In addition, we investigate various related applications in real-time rendering and down-stream tasks, e.g. mipmap fitting and INR-space generation.
comment: Albert Kwok and Zheyuan Hu contributed equally to this work
☆ Artificial Intelligence and Symmetries: Learning, Encoding, and Discovering Structure in Physical Data
Symmetries play a central role in physics, organizing dynamics, constraining interactions, and determining the effective number of physical degrees of freedom. In parallel, modern artificial intelligence methods have demonstrated a remarkable ability to extract low-dimensional structure from high-dimensional data through representation learning. This review examines the interplay between these two perspectives, focusing on the extent to which symmetry-induced constraints can be identified, encoded, or diagnosed using machine learning techniques. Rather than emphasizing architectures that enforce known symmetries by construction, we concentrate on data-driven approaches and latent representation learning, with particular attention to variational autoencoders. We discuss how symmetries and conservation laws reduce the intrinsic dimensionality of physical datasets, and how this reduction may manifest itself through self-organization of latent spaces in generative models trained to balance reconstruction and compression. We review recent results, including case studies from simple geometric systems and particle physics processes, and analyze the theoretical and practical limitations of inferring symmetry structure without explicit inductive bias.
comment: 25 pages, 9 figures. This manuscript is an invited review at the International Journal of Modern Physics A
☆ Context Learning for Multi-Agent Discussion
Multi-Agent Discussion (MAD) has garnered increasing attention very recently, where multiple LLM instances collaboratively solve problems via structured discussion. However, we find that current MAD methods easily suffer from discussion inconsistency, LLMs fail to reach a coherent solution, due to the misalignment between their individual contexts.In this paper, we introduce a multi-LLM context learning method (M2CL) that learns a context generator for each agent, capable of dynamically generating context instructions per discussion round via automatic information organization and refinement. Specifically, inspired by our theoretical insights on the context instruction, M2CL train the generators to control context coherence and output discrepancies via a carefully crafted self-adaptive mechanism.It enables LLMs to avoid premature convergence on majority noise and progressively reach the correct consensus. We evaluate M2CL on challenging tasks, including academic reasoning, embodied tasks, and mobile control. The results show that the performance of M2CL significantly surpasses existing methods by 20%--50%, while enjoying favorable transferability and computational efficiency.
☆ Why Steering Works: Toward a Unified View of Language Model Parameter Dynamics
Methods for controlling large language models (LLMs), including local weight fine-tuning, LoRA-based adaptation, and activation-based interventions, are often studied in isolation, obscuring their connections and making comparison difficult. In this work, we present a unified view that frames these interventions as dynamic weight updates induced by a control signal, placing them within a single conceptual framework. Building on this view, we propose a unified preference-utility analysis that separates control effects into preference, defined as the tendency toward a target concept, and utility, defined as coherent and task-valid generation, and measures both on a shared log-odds scale using polarity-paired contrastive examples. Across methods, we observe a consistent trade-off between preference and utility: stronger control increases preference while predictably reducing utility. We further explain this behavior through an activation manifold perspective, in which control shifts representations along target-concept directions to enhance preference, while utility declines primarily when interventions push representations off the model's valid-generation manifold. Finally, we introduce a new steering approach SPLIT guided by this analysis that improves preference while better preserving utility. Code is available at https://github.com/zjunlp/EasyEdit/blob/main/examples/SPLIT.md.
comment: Work in progress
☆ Rethinking Generative Recommender Tokenizer: Recsys-Native Encoding and Semantic Quantization Beyond LLMs
Semantic ID (SID)-based recommendation is a promising paradigm for scaling sequential recommender systems, but existing methods largely follow a semantic-centric pipeline: item embeddings are learned from foundation models and discretized using generic quantization schemes. This design is misaligned with generative recommendation objectives: semantic embeddings are weakly coupled with collaborative prediction, and generic quantization is inefficient at reducing sequential uncertainty for autoregressive modeling. To address these, we propose ReSID, a recommendation-native, principled SID framework that rethinks representation learning and quantization from the perspective of information preservation and sequential predictability, without relying on LLMs. ReSID consists of two components: (i) Field-Aware Masked Auto-Encoding (FAMAE), which learns predictive-sufficient item representations from structured features, and (ii) Globally Aligned Orthogonal Quantization (GAOQ), which produces compact and predictable SID sequences by jointly reducing semantic ambiguity and prefix-conditional uncertainty. Theoretical analysis and extensive experiments across ten datasets show the effectiveness of ReSID. ReSID consistently outperforms strong sequential and SID-based generative baselines by an average of over 10%, while reducing tokenization cost by up to 122x. Code is available at https://github.com/FuCongResearchSquad/ReSID.
☆ Building a Correct-by-Design Lakehouse. Data Contracts, Versioning, and Transactional Pipelines for Humans and Agents
Lakehouses are the default cloud platform for analytics and AI, but they become unsafe when untrusted actors concurrently operate on production data: upstream-downstream mismatches surface only at runtime, and multi-table pipelines can leak partial effects. Inspired by software engineering, we design Bauplan, a code-first lakehouse that aims to make (most) illegal states unrepresentable using familiar abstractions. Bauplan acts along three axes: typed table contracts to make pipeline boundaries checkable, Git-like data versioning for review and reproducibility, and transactional runs that guarantee pipeline-level atomicity. We report early results from a lightweight formal transaction model and discuss future work motivated by counterexamples.
comment: Pre-print (PaPoC 2026)
☆ VQ-Style: Disentangling Style and Content in Motion with Residual Quantized Representations
Human motion data is inherently rich and complex, containing both semantic content and subtle stylistic features that are challenging to model. We propose a novel method for effective disentanglement of the style and content in human motion data to facilitate style transfer. Our approach is guided by the insight that content corresponds to coarse motion attributes while style captures the finer, expressive details. To model this hierarchy, we employ Residual Vector Quantized Variational Autoencoders (RVQ-VAEs) to learn a coarse-to-fine representation of motion. We further enhance the disentanglement by integrating contrastive learning and a novel information leakage loss with codebook learning to organize the content and the style across different codebooks. We harness this disentangled representation using our simple and effective inference-time technique Quantized Code Swapping, which enables motion style transfer without requiring any fine-tuning for unseen styles. Our framework demonstrates strong versatility across multiple inference applications, including style transfer, style removal, and motion blending.
☆ TTT-Parkour: Rapid Test-Time Training for Perceptive Robot Parkour
Achieving highly dynamic humanoid parkour on unseen, complex terrains remains a challenge in robotics. Although general locomotion policies demonstrate capabilities across broad terrain distributions, they often struggle with arbitrary and highly challenging environments. To overcome this limitation, we propose a real-to-sim-to-real framework that leverages rapid test-time training (TTT) on novel terrains, significantly enhancing the robot's capability to traverse extremely difficult geometries. We adopt a two-stage end-to-end learning paradigm: a policy is first pre-trained on diverse procedurally generated terrains, followed by rapid fine-tuning on high-fidelity meshes reconstructed from real-world captures. Specifically, we develop a feed-forward, efficient, and high-fidelity geometry reconstruction pipeline using RGB-D inputs, ensuring both speed and quality during test-time training. We demonstrate that TTT-Parkour empowers humanoid robots to master complex obstacles, including wedges, stakes, boxes, trapezoids, and narrow beams. The whole pipeline of capturing, reconstructing, and test-time training requires less than 10 minutes on most tested terrains. Extensive experiments show that the policy after test-time training exhibits robust zero-shot sim-to-real transfer capability.
comment: Project Page: https://ttt-parkour.github.io/
☆ A Large-Scale Dataset for Molecular Structure-Language Description via a Rule-Regularized Method
Molecular function is largely determined by structure. Accurately aligning molecular structure with natural language is therefore essential for enabling large language models (LLMs) to reason about downstream chemical tasks. However, the substantial cost of human annotation makes it infeasible to construct large-scale, high-quality datasets of structure-grounded descriptions. In this work, we propose a fully automated annotation framework for generating precise molecular structure descriptions at scale. Our approach builds upon and extends a rule-based chemical nomenclature parser to interpret IUPAC names and construct enriched, structured XML metadata that explicitly encodes molecular structure. This metadata is then used to guide LLMs in producing accurate natural-language descriptions. Using this framework, we curate a large-scale dataset of approximately $163$k molecule-description pairs. A rigorous validation protocol combining LLM-based and expert human evaluation on a subset of $2,000$ molecules demonstrates a high description precision of $98.6\%$. The resulting dataset provides a reliable foundation for future molecule-language alignment, and the proposed annotation method is readily extensible to larger datasets and broader chemical tasks that rely on structural descriptions.
☆ Interpreting and Controlling LLM Reasoning through Integrated Policy Gradient
Large language models (LLMs) demonstrate strong reasoning abilities in solving complex real-world problems. Yet, the internal mechanisms driving these complex reasoning behaviors remain opaque. Existing interpretability approaches targeting reasoning either identify components (e.g., neurons) correlated with special textual patterns, or rely on human-annotated contrastive pairs to derive control vectors. Consequently, current methods struggle to precisely localize complex reasoning mechanisms or capture sequential influence from model internal workings to the reasoning outputs. In this paper, built on outcome-oriented and sequential-influence-aware principles, we focus on identifying components that have sequential contribution to reasoning behavior where outcomes are cumulated by long-range effects. We propose Integrated Policy Gradient (IPG), a novel framework that attributes reasoning behaviors to model's inner components by propagating compound outcome-based signals such as post reasoning accuracy backward through model inference trajectories. Empirical evaluations demonstrate that our approach achieves more precise localization and enables reliable modulation of reasoning behaviors (e.g., reasoning capability, reasoning strength) across diverse reasoning models.
☆ FragmentFlow: Scalable Transition State Generation for Large Molecules
Transition states (TSs) are central to understanding and quantitatively predicting chemical reactivity and reaction mechanisms. Although traditional TS generation methods are computationally expensive, recent generative modeling approaches have enabled chemically meaningful TS prediction for relatively small molecules. However, these methods fail to generalize to practically relevant reaction substrates because of distribution shifts induced by increasing molecular sizes. Furthermore, TS geometries for larger molecules are not available at scale, making it infeasible to train generative models from scratch on such molecules. To address these challenges, we introduce FragmentFlow: a divide-and-conquer approach that trains a generative model to predict TS geometries for the reactive core atoms, which define the reaction mechanism. The full TS structure is then reconstructed by re-attaching substituent fragments to the predicted core. By operating on reactive cores, whose size and composition remain relatively invariant across molecular contexts, FragmentFlow mitigates distribution shifts in generative modeling. Evaluated on a new curated dataset of reactions involving reactants with up to 33 heavy atoms, FragmentFlow correctly identifies 90% of TSs while requiring 30% fewer saddle-point optimization steps than classical initialization schemes. These results point toward scalable TS generation for high-throughput reactivity studies.
☆ Spark: Modular Spiking Neural Networks
Nowadays, neural networks act as a synonym for artificial intelligence. Present neural network models, although remarkably powerful, are inefficient both in terms of data and energy. Several alternative forms of neural networks have been proposed to address some of these problems. Specifically, spiking neural networks are suitable for efficient hardware implementations. However, effective learning algorithms for spiking networks remain elusive, although it is suspected that effective plasticity mechanisms could alleviate the problem of data efficiency. Here, we present a new framework for spiking neural networks - Spark - built upon the idea of modular design, from simple components to entire models. The aim of this framework is to provide an efficient and streamlined pipeline for spiking neural networks. We showcase this framework by solving the sparse-reward cartpole problem with simple plasticity mechanisms. We hope that a framework compatible with traditional ML pipelines may accelerate research in the area, specifically for continuous and unbatched learning, akin to the one animals exhibit.
☆ Position: Explaining Behavioral Shifts in Large Language Models Requires a Comparative Approach
Large-scale foundation models exhibit behavioral shifts: intervention-induced behavioral changes that appear after scaling, fine-tuning, reinforcement learning or in-context learning. While investigating these phenomena have recently received attention, explaining their appearance is still overlooked. Classic explainable AI (XAI) methods can surface failures at a single checkpoint of a model, but they are structurally ill-suited to justify what changed internally across different checkpoints and which explanatory claims are warranted about that change. We take the position that behavioral shifts should be explained comparatively: the core target should be the intervention-induced shift between a reference model and an intervened model, rather than any single model in isolation. To this aim we formulate a Comparative XAI ($Δ$-XAI) framework with a set of desiderata to be taken into account when designing proper explaining methods. To highlight how $Δ$-XAI methods work, we introduce a set of possible pipelines, relate them to the desiderata, and provide a concrete $Δ$-XAI experiment.
☆ Advancing General-Purpose Reasoning Models with Modular Gradient Surgery
Reinforcement learning (RL) has played a central role in recent advances in large reasoning models (LRMs), yielding strong gains in verifiable and open-ended reasoning. However, training a single general-purpose LRM across diverse domains remains challenging due to pronounced domain heterogeneity. Through a systematic study of two widely used strategies, Sequential RL and Mixed RL, we find that both incur substantial cross-domain interference at the behavioral and gradient levels, resulting in limited overall gains. To address these challenges, we introduce **M**odular **G**radient **S**urgery (**MGS**), which resolves gradient conflicts at the module level within the transformer. When applied to Llama and Qwen models, MGS achieves average improvements of 4.3 (16.6\%) and 4.5 (11.1\%) points, respectively, over standard multi-task RL across three representative domains (math, general chat, and instruction following). Further analysis demonstrates that MGS remains effective under prolonged training. Overall, our study clarifies the sources of interference in multi-domain RL and presents an effective solution for training general-purpose LRMs.
comment: Preprint; Code: https://github.com/StringNLPLAB/MGS; Website: https://modular-gradient-surgery.github.io
☆ Decoupling Generalizability and Membership Privacy Risks in Neural Networks
A deep learning model usually has to sacrifice some utilities when it acquires some other abilities or characteristics. Privacy preservation has such trade-off relationships with utilities. The loss disparity between various defense approaches implies the potential to decouple generalizability and privacy risks to maximize privacy gain. In this paper, we identify that the model's generalization and privacy risks exist in different regions in deep neural network architectures. Based on the observations that we investigate, we propose Privacy-Preserving Training Principle (PPTP) to protect model components from privacy risks while minimizing the loss in generalizability. Through extensive evaluations, our approach shows significantly better maintenance in model generalizability while enhancing privacy preservation.
☆ Hallucination or Creativity: How to Evaluate AI-Generated Scientific Stories?
Generative AI can turn scientific articles into narratives for diverse audiences, but evaluating these stories remains challenging. Storytelling demands abstraction, simplification, and pedagogical creativity-qualities that are not often well-captured by standard summarization metrics. Meanwhile, factual hallucinations are critical in scientific contexts, yet, detectors often misclassify legitimate narrative reformulations or prove unstable when creativity is involved. In this work, we propose StoryScore, a composite metric for evaluating AI-generated scientific stories. StoryScore integrates semantic alignment, lexical grounding, narrative control, structural fidelity, redundancy avoidance, and entity-level hallucination detection into a unified framework. Our analysis also reveals why many hallucination detection methods fail to distinguish pedagogical creativity from factual errors, highlighting a key limitation: while automatic metrics can effectively assess semantic similarity with original content, they struggle to evaluate how it is narrated and controlled.
☆ An Optimization Method for Autoregressive Time Series Forecasting
Current time-series forecasting models are primarily based on transformer-style neural networks. These models achieve long-term forecasting mainly by scaling up the model size rather than through genuinely autoregressive (AR) rollout. From the perspective of large language model training, the traditional training process for time-series forecasting models ignores temporal causality. In this paper, we propose a novel training method for time-series forecasting that enforces two key properties: (1) AR prediction errors should increase with the forecasting horizon. Any violation of this principle is considered random guessing and is explicitly penalized in the loss function, and (2) the method enables models to concatenate short-term AR predictions for forming flexible long-term forecasts. Empirical results demonstrate that our method establishes a new state-of-the-art across multiple benchmarks, achieving an MSE reduction of more than 10% compared to iTransformer and other recent strong baselines. Furthermore, it enables short-horizon forecasting models to perform reliable long-term predictions at horizons over 7.5 times longer. Code is available at https://github.com/LizhengMathAi/AROpt
comment: 10 pages, 2 figures, 2 tables
☆ DFKI-Speech System for WildSpoof Challenge: A robust framework for SASV In-the-Wild
This paper presents the DFKI-Speech system developed for the WildSpoof Challenge under the Spoofing aware Automatic Speaker Verification (SASV) track. We propose a robust SASV framework in which a spoofing detector and a speaker verification (SV) network operate in tandem. The spoofing detector employs a self-supervised speech embedding extractor as the frontend, combined with a state-of-the-art graph neural network backend. In addition, a top-3 layer based mixture-of-experts (MoE) is used to fuse high-level and low-level features for effective spoofed utterance detection. For speaker verification, we adapt a low-complexity convolutional neural network that fuses 2D and 1D features at multiple scales, trained with the SphereFace loss. Additionally, contrastive circle loss is applied to adaptively weight positive and negative pairs within each training batch, enabling the network to better distinguish between hard and easy sample pairs. Finally, fixed imposter cohort based AS Norm score normalization and model ensembling are used to further enhance the discriminative capability of the speaker verification system.
☆ Backpropagation as Physical Relaxation: Exact Gradients in Finite Time
Backpropagation, the foundational algorithm for training neural networks, is typically understood as a symbolic computation that recursively applies the chain rule. We show it emerges exactly as the finite-time relaxation of a physical dynamical system. By formulating feedforward inference as a continuous-time process and applying Lagrangian theory of non-conservative systems to handle asymmetric interactions, we derive a global energy functional on a doubled state space encoding both activations and sensitivities. The saddle-point dynamics of this energy perform inference and credit assignment simultaneously through local interactions. We term this framework ''Dyadic Backpropagation''. Crucially, we prove that unit-step Euler discretization, the natural timescale of layer transitions, recovers standard backpropagation exactly in precisely 2L steps for an L-layer network, with no approximations. Unlike prior energy-based methods requiring symmetric weights, asymptotic convergence, or vanishing perturbations, our framework guarantees exact gradients in finite time. This establishes backpropagation as the digitally optimized shadow of a continuous physical relaxation, providing a rigorous foundation for exact gradient computation in analog and neuromorphic substrates where continuous dynamics are native.
comment: 15 pages, 8 figures
☆ RACA: Representation-Aware Coverage Criteria for LLM Safety Testing
Recent advancements in LLMs have led to significant breakthroughs in various AI applications. However, their sophisticated capabilities also introduce severe safety concerns, particularly the generation of harmful content through jailbreak attacks. Current safety testing for LLMs often relies on static datasets and lacks systematic criteria to evaluate the quality and adequacy of these tests. While coverage criteria have been effective for smaller neural networks, they are not directly applicable to LLMs due to scalability issues and differing objectives. To address these challenges, this paper introduces RACA, a novel set of coverage criteria specifically designed for LLM safety testing. RACA leverages representation engineering to focus on safety-critical concepts within LLMs, thereby reducing dimensionality and filtering out irrelevant information. The framework operates in three stages: first, it identifies safety-critical representations using a small, expert-curated calibration set of jailbreak prompts. Second, it calculates conceptual activation scores for a given test suite based on these representations. Finally, it computes coverage results using six sub-criteria that assess both individual and compositional safety concepts. We conduct comprehensive experiments to validate RACA's effectiveness, applicability, and generalization, where the results demonstrate that RACA successfully identifies high-quality jailbreak prompts and is superior to traditional neuron-level criteria. We also showcase its practical application in real-world scenarios, such as test set prioritization and attack prompt sampling. Furthermore, our findings confirm RACA's generalization to various scenarios and its robustness across various configurations. Overall, RACA provides a new framework for evaluating the safety of LLMs, contributing a valuable technique to the field of testing for AI.
☆ Bridging the Sim-to-Real Gap with multipanda ros2: A Real-Time ROS2 Framework for Multimanual Systems
We present $multipanda\_ros2$, a novel open-source ROS2 architecture for multi-robot control of Franka Robotics robots. Leveraging ros2 control, this framework provides native ROS2 interfaces for controlling any number of robots from a single process. Our core contributions address key challenges in real-time torque control, including interaction control and robot-environment modeling. A central focus of this work is sustaining a 1kHz control frequency, a necessity for real-time control and a minimum frequency required by safety standards. Moreover, we introduce a controllet-feature design pattern that enables controller-switching delays of $\le 2$ ms, facilitating reproducible benchmarking and complex multi-robot interaction scenarios. To bridge the simulation-to-reality (sim2real) gap, we integrate a high-fidelity MuJoCo simulation with quantitative metrics for both kinematic accuracy and dynamic consistency (torques, forces, and control errors). Furthermore, we demonstrate that real-world inertial parameter identification can significantly improve force and torque accuracy, providing a methodology for iterative physics refinement. Our work extends approaches from soft robotics to rigid dual-arm, contact-rich tasks, showcasing a promising method to reduce the sim2real gap and providing a robust, reproducible platform for advanced robotics research.
comment: This work has been submitted to the IEEE for possible publication
☆ OpenSeal: Good, Fast, and Cheap Construction of an Open-Source Southeast Asian LLM via Parallel Data
Large language models (LLMs) have proven to be effective tools for a wide range of natural language processing (NLP) applications. Although many LLMs are multilingual, most remain English-centric and perform poorly on low-resource languages. Recently, several Southeast Asia-focused LLMs have been developed, but none are truly open source, as they do not publicly disclose their training data. Truly open-source models are important for transparency and for enabling a deeper and more precise understanding of LLM internals and development, including biases, generalization, and multilinguality. Motivated by recent advances demonstrating the effectiveness of parallel data in improving multilingual performance, we conduct controlled and comprehensive experiments to study the effectiveness of parallel data in continual pretraining of LLMs. Our findings show that using only parallel data is the most effective way to extend an LLM to new languages. Using just 34.7B tokens of parallel data and 180 hours on 8x NVIDIA H200 GPUs, we built OpenSeal, the first truly open Southeast Asian LLM that rivals the performance of existing models of similar size.
☆ Unsupervised Physics-Informed Operator Learning through Multi-Stage Curriculum Training
Solving partial differential equations remains a central challenge in scientific machine learning. Neural operators offer a promising route by learning mappings between function spaces and enabling resolution-independent inference, yet they typically require supervised data. Physics-informed neural networks address this limitation through unsupervised training with physical constraints but often suffer from unstable convergence and limited generalization capability. To overcome these issues, we introduce a multi-stage physics-informed training strategy that achieves convergence by progressively enforcing boundary conditions in the loss landscape and subsequently incorporating interior residuals. At each stage the optimizer is re-initialized, acting as a continuation mechanism that restores stability and prevents gradient stagnation. We further propose the Physics-Informed Spline Fourier Neural Operator (PhIS-FNO), combining Fourier layers with Hermite spline kernels for smooth residual evaluation. Across canonical benchmarks, PhIS-FNO attains a level of accuracy comparable to that of supervised learning, using labeled information only along a narrow boundary region, establishing staged, spline-based optimization as a robust paradigm for physics-informed operator learning.
comment: 51 pages, 15 figures, 6 tables
☆ OmniCode: A Benchmark for Evaluating Software Engineering Agents
LLM-powered coding agents are redefining how real-world software is developed. To drive the research towards better coding agents, we require challenging benchmarks that can rigorously evaluate the ability of such agents to perform various software engineering tasks. However, popular coding benchmarks such as HumanEval and SWE-Bench focus on narrowly scoped tasks such as competition programming and patch generation. In reality, software engineers have to handle a broader set of tasks for real-world software development. To address this gap, we propose OmniCode, a novel software engineering benchmark that contains a broader and more diverse set of task categories beyond code or patch generation. Overall, OmniCode contains 1794 tasks spanning three programming languages (Python, Java, and C++) and four key categories: bug fixing, test generation, code review fixing, and style fixing. In contrast to prior software engineering benchmarks, the tasks in OmniCode are (1) manually validated to eliminate ill-defined problems, and (2) synthetically crafted or recently curated to avoid data leakage issues, presenting a new framework for synthetically generating diverse software tasks from limited real-world data. We evaluate OmniCode with popular agent frameworks such as SWE-Agent and show that while they may perform well on bug fixing for Python, they fall short on tasks such as Test Generation and in languages such as C++ and Java. For instance, SWE-Agent achieves a maximum of 20.9% with DeepSeek-V3.1 on Java Test Generation tasks. OmniCode aims to serve as a robust benchmark and spur the development of agents that can perform well across different aspects of software development. Code and data are available at https://github.com/seal-research/OmniCode.
☆ Geometry- and Relation-Aware Diffusion for EEG Super-Resolution
Recent electroencephalography (EEG) spatial super-resolution (SR) methods, while showing improved quality by either directly predicting missing signals from visible channels or adapting latent diffusion-based generative modeling to temporal data, often lack awareness of physiological spatial structure, thereby constraining spatial generation performance. To address this issue, we introduce TopoDiff, a geometry- and relation-aware diffusion model for EEG spatial super-resolution. Inspired by how human experts interpret spatial EEG patterns, TopoDiff incorporates topology-aware image embeddings derived from EEG topographic representations to provide global geometric context for spatial generation, together with a dynamic channel-relation graph that encodes inter-electrode relationships and evolves with temporal dynamics. This design yields a spatially grounded EEG spatial super-resolution framework with consistent performance improvements. Across multiple EEG datasets spanning diverse applications, including SEED/SEED-IV for emotion recognition, PhysioNet motor imagery (MI/MM), and TUSZ for seizure detection, our method achieves substantial gains in generation fidelity and leads to notable improvements in downstream EEG task performance.
☆ SEDformer: Event-Synchronous Spiking Transformers for Irregular Telemetry Time Series Forecasting
Telemetry streams from large-scale Internet-connected systems (e.g., IoT deployments and online platforms) naturally form an irregular multivariate time series (IMTS) whose accurate forecasting is operationally vital. A closer examination reveals a defining Sparsity-Event Duality (SED) property of IMTS, i.e., long stretches with sparse or no observations are punctuated by short, dense bursts where most semantic events (observations) occur. However, existing Graph- and Transformer-based forecasters ignore SED: pre-alignment to uniform grids with heavy padding violates sparsity by inflating sequences and forcing computation at non-informative steps, while relational recasting weakens event semantics by disrupting local temporal continuity. These limitations motivate a more faithful and natural modeling paradigm for IMTS that aligns with its SED property. We find that Spiking Neural Networks meet this requirement, as they communicate via sparse binary spikes and update in an event-driven manner, aligning naturally with the SED nature of IMTS. Therefore, we present SEDformer, an SED-enhanced Spiking Transformer for telemetry IMTS forecasting that couples: (1) a SED-based Spike Encoder converts raw observations into event synchronous spikes using an Event-Aligned LIF neuron, (2) an Event-Preserving Temporal Downsampling module compresses long gaps while retaining salient firings and (3) a stack of SED-based Spike Transformer blocks enable intra-series dependency modeling with a membrane-based linear attention driven by EA-LIF spiking features. Experiments on public telemetry IMTS datasets show that SEDformer attains state-of-the-art forecasting accuracy while reducing energy and memory usage, providing a natural and efficient path for modeling IMTS.
comment: Under review
☆ Spectral Superposition: A Theory of Feature Geometry
Neural networks represent more features than they have dimensions via superposition, forcing features to share representational space. Current methods decompose activations into sparse linear features but discard geometric structure. We develop a theory for studying the geometric structre of features by analyzing the spectra (eigenvalues, eigenspaces, etc.) of weight derived matrices. In particular, we introduce the frame operator $F = WW^\top$, which gives us a spectral measure that describes how each feature allocates norm across eigenspaces. While previous tools could describe the pairwise interactions between features, spectral methods capture the global geometry (``how do all features interact?''). In toy models of superposition, we use this theory to prove that capacity saturation forces spectral localization: features collapse onto single eigenspaces, organize into tight frames, and admit discrete classification via association schemes, classifying all geometries from prior work (simplices, polygons, antiprisms). The spectral measure formalism applies to arbitrary weight matrices, enabling diagnosis of feature localization beyond toy settings. These results point toward a broader program: applying operator theory to interpretability.
☆ Generating Physically Sound Designs from Text and a Set of Physical Constraints NeurIPS 2025
We present TIDES, a text informed design approach for generating physically sound designs based on a textual description and a set of physical constraints. TIDES jointly optimizes structural (topology) and visual properties. A pre-trained text-image model is used to measure the design's visual alignment with a text prompt and a differentiable physics simulator is used to measure its physical performance. We evaluate TIDES on a series of structural optimization problems operating under different load and support conditions, at different resolutions, and experimentally in the lab by performing the 3-point bending test on 2D beam designs that are extruded and 3D printed. We find that it can jointly optimize the two objectives and return designs that satisfy engineering design requirements (compliance and density) while utilizing features specified by text.
comment: NeurIPS 2025
☆ Towards AI Evaluation in Domain-Specific RAG Systems: The AgriHubi Case Study
Large language models show promise for knowledge-intensive domains, yet their use in agriculture is constrained by weak grounding, English-centric training data, and limited real-world evaluation. These issues are amplified for low-resource languages, where high-quality domain documentation exists but remains difficult to access through general-purpose models. This paper presents AgriHubi, a domain-adapted retrieval-augmented generation (RAG) system for Finnish-language agricultural decision support. AgriHubi integrates Finnish agricultural documents with open PORO family models and combines explicit source grounding with user feedback to support iterative refinement. Developed over eight iterations and evaluated through two user studies, the system shows clear gains in answer completeness, linguistic accuracy, and perceived reliability. The results also reveal practical trade-offs between response quality and latency when deploying larger models. This study provides empirical guidance for designing and evaluating domain-specific RAG systems in low-resource language settings.
comment: 6 pages, 2 figures, submitted to MIPRO 2026
☆ Cardinality-Preserving Structured Sparse Graph Transformers for Molecular Property Prediction
Drug discovery motivates efficient molecular property prediction under limited labeled data. Chemical space is vast, often estimated at approximately 10^60 drug-like molecules, while only thousands of drugs have been approved. As a result, self-supervised pretraining on large unlabeled molecular corpora has become essential for data-efficient molecular representation learning. We introduce **CardinalGraphFormer**, a graph transformer that incorporates Graphormer-inspired structural biases, including shortest-path distance and centrality, as well as direct-bond edge bias, within a structured sparse attention regime limited to shortest-path distance <= 3. The model further augments this design with a cardinality-preserving unnormalized aggregation channel over the same support set. Pretraining combines contrastive graph-level alignment with masked attribute reconstruction. Under a fully matched evaluation protocol, CardinalGraphFormer improves mean performance across all 11 evaluated tasks and achieves statistically significant gains on 10 of 11 public benchmarks spanning MoleculeNet, OGB, and TDC ADMET tasks when compared to strong reproduced baselines.
☆ More Than a Quick Glance: Overcoming the Greedy Bias in KV-Cache Compression
While Large Language Models (LLMs) can theoretically support extensive context windows, their actual deployment is constrained by the linear growth of Key-Value (KV) cache memory. Prevailing compression strategies mitigate this through various pruning mechanisms, yet trade-off semantic recall for memory efficiency. In this work, we present LASER-KV (Layer Accumulated Selection with Exact-LSH Recall), a framework designed to test the limits of KV compression under a strict accumulative budgeting policy. We deviate from the standard fixed summary size approach by implementing a block-wise accumulation strategy governed by a protection divisor (n). This allows us to isolate the effects of compression from sliding window artifacts. Our experiments on the Babilong benchmark reveal performance degradation in previous compression methods by 15-30% on various long context tasks. LASER-KV maintains stable performance, achieving superior accuracies by a margin of upto 10% at 128k. These findings challenge the prevailing assumption that attention scores alone are a sufficient proxy for token utility.
☆ Hierarchical Adaptive Eviction for KV Cache Management in Multimodal Language Models
The integration of visual information into Large Language Models (LLMs) has enabled Multimodal LLMs (MLLMs), but the quadratic memory and computational costs of Transformer architectures remain a bottleneck. Existing KV cache eviction strategies fail to address the heterogeneous attention distributions between visual and text tokens, leading to suboptimal efficiency or degraded performance. In this paper, we propose Hierarchical Adaptive Eviction (HAE), a KV cache eviction framework that optimizes text-visual token interaction in MLLMs by implementing Dual-Attention Pruning during pre-filling (leveraging visual token sparsity and attention variance) and a Dynamic Decoding Eviction Strategy (inspired by OS Recycle Bins) during decoding. HAE minimizes KV cache usage across layers, reduces computational overhead via index broadcasting, and theoretically ensures superior information integrity and lower error bounds compared to greedy strategies, enhancing efficiency in both comprehension and generation tasks. Empirically, HAE reduces KV-Cache memory by 41\% with minimal accuracy loss (0.3\% drop) in image understanding tasks and accelerates story generation inference by 1.5x while maintaining output quality on Phi3.5-Vision-Instruct model.
comment: 10 oages, 3 figures
☆ TIDE: Trajectory-based Diagnostic Evaluation of Test-Time Improvement in LLM Agents
Recent advances in autonomous LLM agents demonstrate their ability to improve performance through iterative interaction with the environment. We define this paradigm as Test-Time Improvement (TTI). However, the mechanisms under how and why TTI succeed or fail remain poorly understood, and existing evaluation metrics fail to capture their task optimization efficiency, behavior adaptation after erroneous actions, and the specific utility of working memory for task completion. To address these gaps, we propose Test-time Improvement Diagnostic Evaluation (TIDE), an agent-agnostic and environment-agnostic framework that decomposes TTI into three comprehensive and interconnected dimensions. The framework measures (1) the overall temporal dynamics of task completion and (2) identifies whether performance is primarily constrained by recursive looping behaviors or (3) by burdensome accumulated memory. Through extensive experiments across diverse agents and environments, TIDE highlights that improving agent performance requires more than scaling internal reasoning, calling for explicitly optimizing the interaction dynamics between the agent and the environment.
comment: 29pages, 10 figures
☆ State Rank Dynamics in Linear Attention LLMs
Linear Attention Large Language Models (LLMs) offer a compelling recurrent formulation that compresses context into a fixed-size state matrix, enabling constant-time inference. However, the internal dynamics of this compressed state remain largely opaque. In this work, we present a comprehensive study on the runtime state dynamics of state-of-the-art Linear Attention models. We uncover a fundamental phenomenon termed State Rank Stratification, characterized by a distinct spectral bifurcation among linear attention heads: while one group maintains an effective rank oscillating near zero, the other exhibits rapid growth that converges to an upper bound. Extensive experiments across diverse inference contexts reveal that these dynamics remain strikingly consistent, indicating that the identity of a head,whether low-rank or high-rank,is an intrinsic structural property acquired during pre-training, rather than a transient state dependent on the input data. Furthermore, our diagnostic probes reveal a surprising functional divergence: low-rank heads are indispensable for model reasoning, whereas high-rank heads exhibit significant redundancy. Leveraging this insight, we propose Joint Rank-Norm Pruning, a zero-shot strategy that achieves a 38.9\% reduction in KV-cache overhead while largely maintaining model accuracy.
☆ Reasoning in a Combinatorial and Constrained World: Benchmarking LLMs on Natural-Language Combinatorial Optimization
While large language models (LLMs) have shown strong performance in math and logic reasoning, their ability to handle combinatorial optimization (CO) -- searching high-dimensional solution spaces under hard constraints -- remains underexplored. To bridge the gap, we introduce NLCO, a \textbf{N}atural \textbf{L}anguage \textbf{C}ombinatorial \textbf{O}ptimization benchmark that evaluates LLMs on end-to-end CO reasoning: given a language-described decision-making scenario, the model must output a discrete solution without writing code or calling external solvers. NLCO covers 43 CO problems and is organized using a four-layer taxonomy of variable types, constraint families, global patterns, and objective classes, enabling fine-grained evaluation. We provide solver-annotated solutions and comprehensively evaluate LLMs by feasibility, solution optimality, and reasoning efficiency. Experiments across a wide range of modern LLMs show that high-performing models achieve strong feasibility and solution quality on small instances, but both degrade as instance size grows, even if more tokens are used for reasoning. We also observe systematic effects across the taxonomy: set-based tasks are relatively easy, whereas graph-structured problems and bottleneck objectives lead to more frequent failures.
☆ Vision-DeepResearch Benchmark: Rethinking Visual and Textual Search for Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have advanced VQA and now support Vision-DeepResearch systems that use search engines for complex visual-textual fact-finding. However, evaluating these visual and textual search abilities is still difficult, and existing benchmarks have two major limitations. First, existing benchmarks are not visual search-centric: answers that should require visual search are often leaked through cross-textual cues in the text questions or can be inferred from the prior world knowledge in current MLLMs. Second, overly idealized evaluation scenario: On the image-search side, the required information can often be obtained via near-exact matching against the full image, while the text-search side is overly direct and insufficiently challenging. To address these issues, we construct the Vision-DeepResearch benchmark (VDR-Bench) comprising 2,000 VQA instances. All questions are created via a careful, multi-stage curation pipeline and rigorous expert review, designed to assess the behavior of Vision-DeepResearch systems under realistic real-world conditions. Moreover, to address the insufficient visual retrieval capabilities of current MLLMs, we propose a simple multi-round cropped-search workflow. This strategy is shown to effectively improve model performance in realistic visual retrieval scenarios. Overall, our results provide practical guidance for the design of future multimodal deep-research systems. The code will be released in https://github.com/Osilly/Vision-DeepResearch.
☆ Malware Detection Through Memory Analysis
This paper summarizes the research conducted for a malware detection project using the Canadian Institute for Cybersecurity's MalMemAnalysis-2022 dataset. The purpose of the project was to explore the effectiveness and efficiency of machine learning techniques for the task of binary classification (i.e., benign or malicious) as well as multi-class classification to further include three malware sub-types (i.e., benign, ransomware, spyware, or Trojan horse). The XGBoost model type was the final model selected for both tasks due to the trade-off between strong detection capability and fast inference speed. The binary classifier achieved a testing subset accuracy and F1 score of 99.98\%, while the multi-class version reached an accuracy of 87.54\% and an F1 score of 81.26\%, with an average F1 score over the malware sub-types of 75.03\%. In addition to the high modelling performance, XGBoost is also efficient in terms of classification speed. It takes about 37.3 milliseconds to classify 50 samples in sequential order in the binary setting and about 43.2 milliseconds in the multi-class setting. The results from this research project help advance the efforts made towards developing accurate and real-time obfuscated malware detectors for the goal of improving online privacy and safety. *This project was completed as part of ELEC 877 (AI for Cybersecurity) in the Winter 2024 term.
☆ SurvKAN: A Fully Parametric Survival Model Based on Kolmogorov-Arnold Networks
Accurate prediction of time-to-event outcomes is critical for clinical decision-making, treatment planning, and resource allocation in modern healthcare. While classical survival models such as Cox remain widely adopted in standard practice, they rely on restrictive assumptions, including linear covariate relationships and proportional hazards over time, that often fail to capture real-world clinical dynamics. Recent deep learning approaches like DeepSurv and DeepHit offer improved expressivity but sacrifice interpretability, limiting clinical adoption where trust and transparency are paramount. Hybrid models incorporating Kolmogorov-Arnold Networks (KANs), such as CoxKAN, have begun to address this trade-off but remain constrained by the semi-parametric Cox framework. In this work we introduce SurvKAN, a fully parametric, time-continuous survival model based on KAN architectures that eliminates the proportional hazards constraint. SurvKAN treats time as an explicit input to a KAN that directly predicts the log-hazard function, enabling end-to-end training on the full survival likelihood. Our architecture preserves interpretability through learnable univariate functions that indicate how individual features influence risk over time. Extensive experiments on standard survival benchmarks demonstrate that SurvKAN achieves competitive or superior performance compared to classical and state-of-the-art baselines across concordance and calibration metrics. Additionally, interpretability analyses reveal clinically meaningful patterns that align with medical domain knowledge.
☆ Self-Evolving Coordination Protocol in Multi-Agent AI Systems: An Exploratory Systems Feasibility Study
Contemporary multi-agent systems increasingly rely on internal coordination mechanisms to combine, arbitrate, or constrain the outputs of heterogeneous components. In safety-critical and regulated domains such as finance, these mechanisms must satisfy strict formal requirements, remain auditable, and operate within explicitly bounded limits. Coordination logic therefore functions as a governance layer rather than an optimization heuristic. This paper presents an exploratory systems feasibility study of Self-Evolving Coordination Protocols (SECP): coordination protocols that permit limited, externally validated self-modification while preserving fixed formal invariants. We study a controlled proof-of-concept setting in which six fixed Byzantine consensus protocol proposals are evaluated by six specialized decision modules. All coordination regimes operate under identical hard constraints, including Byzantine fault tolerance (f < n/3), O(n2) message complexity, complete non-statistical safety and liveness arguments, and bounded explainability. Four coordination regimes are compared in a single-shot design: unanimous hard veto, weighted scalar aggregation, SECP v1.0 (an agent-designed non-scalar protocol), and SECP v2.0 (the result of one governed modification). Outcomes are evaluated using a single metric, proposal coverage, defined as the number of proposals accepted. A single recursive modification increased coverage from two to three accepted proposals while preserving all declared invariants. The study makes no claims regarding statistical significance, optimality, convergence, or learning. Its contribution is architectural: it demonstrates that bounded self-modification of coordination protocols is technically implementable, auditable, and analyzable under explicit formal constraints, establishing a foundation for governed multi-agent systems.
☆ Traffic-Aware Navigation in Road Networks
This project compares three graph search approaches for the task of traffic-aware navigation in Kingston's road network. These approaches include a single-run multi-query preprocessing algorithm (Floyd-Warshall-Ingerman), continuous single-query real-time search (Dijkstra's and A*), and an algorithm combining both approaches to balance between their trade-offs by first finding the top K shortest paths then iterating over them in real time (Yen's). Dijkstra's and A* resulted in the most traffic-aware optimal solutions with minimal preprocessing required. Floyd-Warshall-Ingerman was the fastest in real time but provided distance based paths with no traffic awareness. Yen's algorithm required significant preprocessing but balanced between the other two approaches in terms of runtime speed and optimality. Each approach presents advantages and disadvantages that need to be weighed depending on the circumstances of specific deployment contexts to select the best custom solution. *This project was completed as part of ELEC 844 (Search and Planning Algorithms for Robotics) in the Fall 2025 term.
☆ ECHO: Entropy-Confidence Hybrid Optimization for Test-Time Reinforcement Learning
Test-time reinforcement learning generates multiple candidate answers via repeated rollouts and performs online updates using pseudo-labels constructed by majority voting. To reduce overhead and improve exploration, prior work introduces tree structured rollouts, which share reasoning prefixes and branch at key nodes to improve sampling efficiency. However, this paradigm still faces two challenges: (1) high entropy branching can trigger rollout collapse, where the branching budget concentrates on a few trajectories with consecutive high-entropy segments, rapidly reducing the number of effective branches; (2) early pseudo-labels are noisy and biased, which can induce self-reinforcing overfitting, causing the policy to sharpen prematurely and suppress exploration. To address these issues, we propose Entropy Confidence Hybrid Group Relative Policy Optimization (ECHO). During rollout, ECHO jointly leverages local entropy and group level confidence to adaptively control branch width, and further introduces online confidence-based pruning to terminate persistently low confidence branches, avoiding high entropy traps and mitigating collapse. During policy updates, ECHO employs confidence adaptive clipping and an entropy confidence hybrid advantage shaping approach to enhance training robustness and mitigate early stage bias. Experiments demonstrate that ECHO achieves consistent gains on multiple mathematical and visual reasoning benchmarks, and generalizes more effectively under a limited rollout budget.
comment: 19 ppages
☆ Back to the Future: Look-ahead Augmentation and Parallel Self-Refinement for Time Series Forecasting WWW
Long-term time series forecasting (LTSF) remains challenging due to the trade-off between parallel efficiency and sequential modeling of temporal coherence. Direct multi-step forecasting (DMS) methods enable fast, parallel prediction of all future horizons but often lose temporal consistency across steps, while iterative multi-step forecasting (IMS) preserves temporal dependencies at the cost of error accumulation and slow inference. To bridge this gap, we propose Back to the Future (BTTF), a simple yet effective framework that enhances forecasting stability through look-ahead augmentation and self-corrective refinement. Rather than relying on complex model architectures, BTTF revisits the fundamental forecasting process and refines a base model by ensembling the second-stage models augmented with their initial predictions. Despite its simplicity, our approach consistently improves long-horizon accuracy and mitigates the instability of linear forecasting models, achieving accuracy gains of up to 58% and demonstrating stable improvements even when the first-stage model is trained under suboptimal conditions. These results suggest that leveraging model-generated forecasts as augmentation can be a simple yet powerful way to enhance long-term prediction, even without complex architectures.
comment: 4 pages, Short paper accepted at The Web Conference (WWW) 2026
☆ Learning Generative Selection for Best-of-N
Scaling test-time compute via parallel sampling can substantially improve LLM reasoning, but is often limited by Best-of-N selection quality. Generative selection methods, such as GenSelect, address this bottleneck, yet strong selection performance remains largely limited to large models. We show that small reasoning models can acquire strong GenSelect capabilities through targeted reinforcement learning. To this end, we synthesize selection tasks from large-scale math and code instruction datasets by filtering to instances with both correct and incorrect candidate solutions, and train 1.7B-parameter models with DAPO to reward correct selections. Across math (AIME24, AIME25, HMMT25) and code (LiveCodeBench) reasoning benchmarks, our models consistently outperform prompting and majority-voting baselines, often approaching or exceeding much larger models. Moreover, these gains generalize to selecting outputs from stronger models despite training only on outputs from weaker models. Overall, our results establish reinforcement learning as a scalable way to unlock strong generative selection in small models, enabling efficient test-time scaling.
☆ EvoMU: Evolutionary Machine Unlearning
Machine unlearning aims to unlearn specified training data (e.g. sensitive or copyrighted material). A prominent approach is to fine-tune an existing model with an unlearning loss that retains overall utility. The space of suitable unlearning loss functions is vast, making the search for an optimal loss function daunting. Additionally, there might not even exist a universally optimal loss function: differences in the structure and overlap of the forget and retain data can cause a loss to work well in one setting but over-unlearn or under-unlearn in another. Our approach EvoMU tackles these two challenges simultaneously. An evolutionary search procedure automatically finds task-specific losses in the vast space of possible unlearning loss functions. This allows us to find dataset-specific losses that match or outperform existing losses from the literature, without the need for a human-in-the-loop. This work is therefore an instance of automatic scientific discovery, a.k.a. an AI co-scientist. In contrast to previous AI co-scientist works, we do so on a budget: We achieve SotA results using a small 4B parameter model (Qwen3-4B-Thinking), showing the potential of AI co-scientists with limited computational resources. Our experimental evaluation shows that we surpass previous loss-based unlearning formulations on TOFU-5%, TOFU-10%, MUSE and WMDP by synthesizing novel unlearning losses. Our code is available at https://github.com/Batorskq/EvoMU.
☆ CAM: A Causality-based Analysis Framework for Multi-Agent Code Generation Systems
Despite the remarkable success that Multi-Agent Code Generation Systems (MACGS) have achieved, the inherent complexity of multi-agent architectures produces substantial volumes of intermediate outputs. To date, the individual importance of these intermediate outputs to the system correctness remains opaque, which impedes targeted optimization of MACGS designs. To address this challenge, we propose CAM, the first \textbf{C}ausality-based \textbf{A}nalysis framework for \textbf{M}ACGS that systematically quantifies the contribution of different intermediate features for system correctness. By comprehensively categorizing intermediate outputs and systematically simulating realistic errors on intermediate features, we identify the important features for system correctness and aggregate their importance rankings. We conduct extensive empirical analysis on the identified importance rankings. Our analysis reveals intriguing findings: first, we uncover context-dependent features\textemdash features whose importance emerges mainly through interactions with other features, revealing that quality assurance for MACGS should incorporate cross-feature consistency checks; second, we reveal that hybrid backend MACGS with different backend LLMs assigned according to their relative strength achieves up to 7.2\% Pass@1 improvement, underscoring hybrid architectures as a promising direction for future MACGS design. We further demonstrate CAM's practical utility through two applications: (1) failure repair which achieves a 73.3\% success rate by optimizing top-3 importance-ranked features and (2) feature pruning that reduces up to 66.8\% intermediate token consumption while maintaining generation performance. Our work provides actionable insights for MACGS design and deployment, establishing causality analysis as a powerful approach for understanding and improving MACGS.
comment: 18 pages, 12 tables, 4 figures
☆ DCoPilot: Generative AI-Empowered Policy Adaptation for Dynamic Data Center Operations
Modern data centers (DCs) hosting artificial intelligence (AI)-dedicated devices operate at high power densities with rapidly varying workloads, making minute-level adaptation essential for safe and energy-efficient operation. However, manually designing piecewise deep reinforcement learning (DRL) agents cannot keep pace with frequent dynamics shifts and service-level agreement (SLA) changes of an evolving DC. This specification-to-policy lag causes a lack of timely, effective control policies, which may lead to service outages. To bridge the gap, we present DCoPilot, a hybrid framework for generative control policies in dynamic DC operation. DCoPilot synergizes two distinct generative paradigms, i.e., a large language model (LLM) that performs symbolic generation of structured reward forms, and a hypernetwork that conducts parametric generation of policy weights. DCoPilot operates through three coordinated phases: (i) simulation scale-up, which stress-tests reward candidates across diverse simulation-ready (SimReady) scenes; (ii) meta policy distillation, where a hypernetwork is trained to output policy weights conditioned on SLA and scene embeddings; and (iii) online adaptation, enabling zero-shot policy generation in response to updated specifications. Evaluated across five control task families spanning diverse DC components, DCoPilot achieves near-zero constraint violations and outperforms all baselines across specification variations. Ablation studies validate the effectiveness of LLM-based unified reward generation in enabling stable hypernetwork convergence.
☆ Mitigating Safety Tax via Distribution-Grounded Refinement in Large Reasoning Models
Safety alignment incurs safety tax that perturbs a large reasoning model's (LRM) general reasoning ability. Existing datasets used for safety alignment for an LRM are usually constructed by distilling safety reasoning traces and answers from an external LRM or human labeler. However, such reasoning traces and answers exhibit a distributional gap with the target LRM that needs alignment, and we conjecture such distributional gap is the culprit leading to significant degradation of reasoning ability of the target LRM. Driven by this hypothesis, we propose a safety alignment dataset construction method, dubbed DGR. DGR transforms and refines an existing out-of-distributional safety reasoning dataset to be aligned with the target's LLM inner distribution. Experimental results demonstrate that i) DGR effectively mitigates the safety tax while maintaining safety performance across all baselines, i.e., achieving \textbf{+30.2\%} on DirectRefusal and \textbf{+21.2\%} on R1-ACT improvement in average reasoning accuracy compared to Vanilla SFT; ii) the degree of reasoning degradation correlates with the extent of distribution shift, suggesting that bridging this gap is central to preserving capabilities. Furthermore, we find that safety alignment in LRMs may primarily function as a mechanism to activate latent knowledge, as a mere \textbf{10} samples are sufficient for activating effective refusal behaviors. These findings not only emphasize the importance of distributional consistency but also provide insights into the activation mechanism of safety in reasoning models.
comment: Code will be released soon
☆ Understanding the Reversal Curse Mitigation in Masked Diffusion Models through Attention and Training Dynamics
Autoregressive language models (ARMs) suffer from the reversal curse: after learning that "$A$ is $B$", they often fail on the reverse query "$B$ is $A$". Masked diffusion-based language models (MDMs) exhibit this failure in a much weaker form, but the underlying reason has remained unclear. A common explanation attributes this mitigation to the any-order training objective. However, observing "[MASK] is $B$" during training does not necessarily teach the model to handle the reverse prompt "$B$ is [MASK]". We show that the mitigation arises from architectural structure and its interaction with training. In a one-layer Transformer encoder, weight sharing couples the two directions by making forward and reverse attention scores positively correlated. In the same setting, we further show that the corresponding gradients are aligned, so minimizing the forward loss also reduces the reverse loss. Experiments on both controlled toy tasks and large-scale diffusion language models support these mechanisms, explaining why MDMs partially overcome a failure mode that persists in strong ARMs.
☆ Scalable Spatio-Temporal SE(3) Diffusion for Long-Horizon Protein Dynamics
Molecular dynamics (MD) simulations remain the gold standard for studying protein dynamics, but their computational cost limits access to biologically relevant timescales. Recent generative models have shown promise in accelerating simulations, yet they struggle with long-horizon generation due to architectural constraints, error accumulation, and inadequate modeling of spatio-temporal dynamics. We present STAR-MD (Spatio-Temporal Autoregressive Rollout for Molecular Dynamics), a scalable SE(3)-equivariant diffusion model that generates physically plausible protein trajectories over microsecond timescales. Our key innovation is a causal diffusion transformer with joint spatio-temporal attention that efficiently captures complex space-time dependencies while avoiding the memory bottlenecks of existing methods. On the standard ATLAS benchmark, STAR-MD achieves state-of-the-art performance across all metrics--substantially improving conformational coverage, structural validity, and dynamic fidelity compared to previous methods. STAR-MD successfully extrapolates to generate stable microsecond-scale trajectories where baseline methods fail catastrophically, maintaining high structural quality throughout the extended rollout. Our comprehensive evaluation reveals severe limitations in current models for long-horizon generation, while demonstrating that STAR-MD's joint spatio-temporal modeling enables robust dynamics simulation at biologically relevant timescales, paving the way for accelerated exploration of protein function.
comment: For associated project page, see https://bytedance-seed.github.io/ConfRover/starmd
☆ Two-Stage Grid Optimization for Group-wise Quantization of LLMs ICASSP 2026
Group-wise quantization is an effective strategy for mitigating accuracy degradation in low-bit quantization of large language models (LLMs). Among existing methods, GPTQ has been widely adopted due to its efficiency; however, it neglects input statistics and inter-group correlations when determining group scales, leading to a mismatch with its goal of minimizing layer-wise reconstruction loss. In this work, we propose a two-stage optimization framework for group scales that explicitly minimizes the layer-wise reconstruction loss. In the first stage, performed prior to GPTQ, we initialize each group scale to minimize the group-wise reconstruction loss, thereby incorporating input statistics. In the second stage, we freeze the integer weights obtained via GPTQ and refine the group scales to minimize the layer-wise reconstruction loss. To this end, we employ the coordinate descent algorithm and derive a closed-form update rule, which enables efficient refinement without costly numerical optimization. Notably, our derivation incorporates the quantization errors from preceding layers to prevent error accumulation. Experimental results demonstrate that our method consistently enhances group-wise quantization, achieving higher accuracy with negligible overhead.
comment: ICASSP 2026
☆ Toxicity Assessment in Preclinical Histopathology via Class-Aware Mahalanobis Distance for Known and Novel Anomalies
Drug-induced toxicity remains a leading cause of failure in preclinical development and early clinical trials. Detecting adverse effects at an early stage is critical to reduce attrition and accelerate the development of safe medicines. Histopathological evaluation remains the gold standard for toxicity assessment, but it relies heavily on expert pathologists, creating a bottleneck for large-scale screening. To address this challenge, we introduce an AI-based anomaly detection framework for histopathological whole-slide images (WSIs) in rodent livers from toxicology studies. The system identifies healthy tissue and known pathologies (anomalies) for which training data is available. In addition, it can detect rare pathologies without training data as out-of-distribution (OOD) findings. We generate a novel dataset of pixelwise annotations of healthy tissue and known pathologies and use this data to fine-tune a pre-trained Vision Transformer (DINOv2) via Low-Rank Adaptation (LoRA) in order to do tissue segmentation. Finally, we extract features for OOD detection using the Mahalanobis distance. To better account for class-dependent variability in histological data, we propose the use of class-specific thresholds. We optimize the thresholds using the mean of the false negative and false positive rates, resulting in only 0.16\% of pathological tissue classified as healthy and 0.35\% of healthy tissue classified as pathological. Applied to mouse liver WSIs with known toxicological findings, the framework accurately detects anomalies, including rare OOD morphologies. This work demonstrates the potential of AI-driven histopathology to support preclinical workflows, reduce late-stage failures, and improve efficiency in drug development.
☆ Unifying Masked Diffusion Models with Various Generation Orders and Beyond
Masked diffusion models (MDMs) are a potential alternative to autoregressive models (ARMs) for language generation, but generation quality depends critically on the generation order. Prior work either hard-codes an ordering (e.g., blockwise left-to-right) or learns an ordering policy for a pretrained MDM, which incurs extra cost and can yield suboptimal solutions due to the two-stage optimization. Motivated by this, we propose order-expressive masked diffusion model (OeMDM) for a broad class of diffusion generative processes with various generation orders, enabling the interpretation of MDM, ARM, and block diffusion in a single framework. Furthermore, building on OeMDM, we introduce learnable-order masked diffusion model (LoMDM), which jointly learns the generation ordering and diffusion backbone through a single objective from scratch, enabling the diffusion model to generate text in context-dependent ordering. Empirically, we confirm that LoMDM outperforms various discrete diffusion models across multiple language modeling benchmarks.
comment: Preprint
☆ The Verification Crisis: Expert Perceptions of GenAI Disinformation and the Case for Reproducible Provenance
The growth of Generative Artificial Intelligence (GenAI) has shifted disinformation production from manual fabrication to automated, large-scale manipulation. This article presents findings from the first wave of a longitudinal expert perception survey (N=21) involving AI researchers, policymakers, and disinformation specialists. It examines the perceived severity of multimodal threats -- text, image, audio, and video -- and evaluates current mitigation strategies. Results indicate that while deepfake video presents immediate "shock" value, large-scale text generation poses a systemic risk of "epistemic fragmentation" and "synthetic consensus," particularly in the political domain. The survey reveals skepticism about technical detection tools, with experts favoring provenance standards and regulatory frameworks despite implementation barriers. GenAI disinformation research requires reproducible methods. The current challenge is measurement: without standardized benchmarks and reproducibility checklists, tracking or countering synthetic media remains difficult. We propose treating information integrity as an infrastructure with rigor in data provenance and methodological reproducibility.
comment: Accepted at ACM TheWebConf '26 Companion
☆ Probabilistic Performance Guarantees for Multi-Task Reinforcement Learning
Multi-task reinforcement learning trains generalist policies that can execute multiple tasks. While recent years have seen significant progress, existing approaches rarely provide formal performance guarantees, which are indispensable when deploying policies in safety-critical settings. We present an approach for computing high-confidence guarantees on the performance of a multi-task policy on tasks not seen during training. Concretely, we introduce a new generalisation bound that composes (i) per-task lower confidence bounds from finitely many rollouts with (ii) task-level generalisation from finitely many sampled tasks, yielding a high-confidence guarantee for new tasks drawn from the same arbitrary and unknown distribution. Across state-of-the-art multi-task RL methods, we show that the guarantees are theoretically sound and informative at realistic sample sizes.
☆ WADEPre: A Wavelet-based Decomposition Model for Extreme Precipitation Nowcasting with Multi-Scale Learning KDD 2026
The heavy-tailed nature of precipitation intensity impedes precise precipitation nowcasting. Standard models that optimize pixel-wise losses are prone to regression-to-the-mean bias, which blurs extreme values. Existing Fourier-based methods also lack the spatial localization needed to resolve transient convective cells. To overcome these intrinsic limitations, we propose WADEPre, a wavelet-based decomposition model for extreme precipitation that transitions the modeling into the wavelet domain. By leveraging the Discrete Wavelet Transform for explicit decomposition, WADEPre employs a dual-branch architecture: an Approximation Network to model stable, low-frequency advection, isolating deterministic trends from statistical bias, and a spatially localized Detail Network to capture high-frequency stochastic convection, resolving transient singularities and preserving sharp boundaries. A subsequent Refiner module then dynamically reconstructs these decoupled multi-scale components into the final high-fidelity forecast. To address optimization instability, we introduce a multi-scale curriculum learning strategy that progressively shifts supervision from coarse scales to fine-grained details. Extensive experiments on the SEVIR and Shanghai Radar datasets demonstrate that WADEPre achieves state-of-the-art performance, yielding significant improvements in capturing extreme thresholds and maintaining structural fidelity. Our code is available at https://github.com/sonderlau/WADEPre.
comment: The paper has been submitted to KDD 2026 and is currently under review
☆ LEC-KG: An LLM-Embedding Collaborative Framework for Domain-Specific Knowledge Graph Construction -- A Case Study on SDGs
Constructing domain-specific knowledge graphs from unstructured text remains challenging due to heterogeneous entity mentions, long-tail relation distributions, and the absence of standardized schemas. We present LEC-KG, a bidirectional collaborative framework that integrates the semantic understanding of Large Language Models (LLMs) with the structural reasoning of Knowledge Graph Embeddings (KGE). Our approach features three key components: (1) hierarchical coarse-to-fine relation extraction that mitigates long-tail bias, (2) evidence-guided Chain-of-Thought feedback that grounds structural suggestions in source text, and (3) semantic initialization that enables structural validation for unseen entities. The two modules enhance each other iteratively-KGE provides structure-aware feedback to refine LLM extractions, while validated triples progressively improve KGE representations. We evaluate LEC-KG on Chinese Sustainable Development Goal (SDG) reports, demonstrating substantial improvements over LLM baselines, particularly on low-frequency relations. Through iterative refinement, our framework reliably transforms unstructured policy text into validated knowledge graph triples.
☆ Multi-View Stenosis Classification Leveraging Transformer-Based Multiple-Instance Learning Using Real-World Clinical Data
Coronary artery stenosis is a leading cause of cardiovascular disease, diagnosed by analyzing the coronary arteries from multiple angiography views. Although numerous deep-learning models have been proposed for stenosis detection from a single angiography view, their performance heavily relies on expensive view-level annotations, which are often not readily available in hospital systems. Moreover, these models fail to capture the temporal dynamics and dependencies among multiple views, which are crucial for clinical diagnosis. To address this, we propose SegmentMIL, a transformer-based multi-view multiple-instance learning framework for patient-level stenosis classification. Trained on a real-world clinical dataset, using patient-level supervision and without any view-level annotations, SegmentMIL jointly predicts the presence of stenosis and localizes the affected anatomical region, distinguishing between the right and left coronary arteries and their respective segments. SegmentMIL obtains high performance on internal and external evaluations and outperforms both view-level models and classical MIL baselines, underscoring its potential as a clinically viable and scalable solution for coronary stenosis diagnosis. Our code is available at https://github.com/NikolaCenic/mil-stenosis.
☆ See2Refine: Vision-Language Feedback Improves LLM-Based eHMI Action Designers
Automated vehicles lack natural communication channels with other road users, making external Human-Machine Interfaces (eHMIs) essential for conveying intent and maintaining trust in shared environments. However, most eHMI studies rely on developer-crafted message-action pairs, which are difficult to adapt to diverse and dynamic traffic contexts. A promising alternative is to use Large Language Models (LLMs) as action designers that generate context-conditioned eHMI actions, yet such designers lack perceptual verification and typically depend on fixed prompts or costly human-annotated feedback for improvement. We present See2Refine, a human-free, closed-loop framework that uses vision-language model (VLM) perceptual evaluation as automated visual feedback to improve an LLM-based eHMI action designer. Given a driving context and a candidate eHMI action, the VLM evaluates the perceived appropriateness of the action, and this feedback is used to iteratively revise the designer's outputs, enabling systematic refinement without human supervision. We evaluate our framework across three eHMI modalities (lightbar, eyes, and arm) and multiple LLM model sizes. Across settings, our framework consistently outperforms prompt-only LLM designers and manually specified baselines in both VLM-based metrics and human-subject evaluations. Results further indicate that the improvements generalize across modalities and that VLM evaluations are well aligned with human preferences, supporting the robustness and effectiveness of See2Refine for scalable action design.
comment: Under Review
☆ FiLoRA: Focus-and-Ignore LoRA for Controllable Feature Reliance
Multimodal foundation models integrate heterogeneous signals across modalities, yet it remains poorly understood how their predictions depend on specific internal feature groups and whether such reliance can be deliberately controlled. Existing studies of shortcut and spurious behavior largely rely on post hoc analyses or feature removal, offering limited insight into whether reliance can be modulated without altering task semantics. We introduce FiLoRA (Focus-and-Ignore LoRA), an instruction-conditioned, parameter-efficient adaptation framework that enables explicit control over internal feature reliance while keeping the predictive objective fixed. FiLoRA decomposes adaptation into feature group-aligned LoRA modules and applies instruction-conditioned gating, allowing natural language instructions to act as computation-level control signals rather than task redefinitions. Across text--image and audio--visual benchmarks, we show that instruction-conditioned gating induces consistent and causal shifts in internal computation, selectively amplifying or suppressing core and spurious feature groups without modifying the label space or training objective. Further analyses demonstrate that FiLoRA yields improved robustness under spurious feature interventions, revealing a principled mechanism to regulate reliance beyond correlation-driven learning.
☆ FORLER: Federated Offline Reinforcement Learning with Q-Ensemble and Actor Rectification
In Internet-of-Things systems, federated learning has advanced online reinforcement learning (RL) by enabling parallel policy training without sharing raw data. However, interacting with real environments online can be risky and costly, motivating offline federated RL (FRL), where local devices learn from fixed datasets. Despite its promise, offline FRL may break down under low-quality, heterogeneous data. Offline RL tends to get stuck in local optima, and in FRL, one device's suboptimal policy can degrade the aggregated model, i.e., policy pollution. We present FORLER, combining Q-ensemble aggregation on the server with actor rectification on devices. The server robustly merges device Q-functions to curb policy pollution and shift heavy computation off resource-constrained hardware without compromising privacy. Locally, actor rectification enriches policy gradients via a zeroth-order search for high-Q actions plus a bespoke regularizer that nudges the policy toward them. A $δ$-periodic strategy further reduces local computation. We theoretically provide safe policy improvement performance guarantees. Extensive experiments show FORLER consistently outperforms strong baselines under varying data quality and heterogeneity.
comment: accetped by IEEE International Conference on Communications (ICC 2026)
☆ SIDiffAgent: Self-Improving Diffusion Agent
Text-to-image diffusion models have revolutionized generative AI, enabling high-quality and photorealistic image synthesis. However, their practical deployment remains hindered by several limitations: sensitivity to prompt phrasing, ambiguity in semantic interpretation (e.g., ``mouse" as animal vs. a computer peripheral), artifacts such as distorted anatomy, and the need for carefully engineered input prompts. Existing methods often require additional training and offer limited controllability, restricting their adaptability in real-world applications. We introduce Self-Improving Diffusion Agent (SIDiffAgent), a training-free agentic framework that leverages the Qwen family of models (Qwen-VL, Qwen-Image, Qwen-Edit, Qwen-Embedding) to address these challenges. SIDiffAgent autonomously manages prompt engineering, detects and corrects poor generations, and performs fine-grained artifact removal, yielding more reliable and consistent outputs. It further incorporates iterative self-improvement by storing a memory of previous experiences in a database. This database of past experiences is then used to inject prompt-based guidance at each stage of the agentic pipeline. \modelour achieved an average VQA score of 0.884 on GenAIBench, significantly outperforming open-source, proprietary models and agentic methods. We will publicly release our code upon acceptance.
☆ Rethinking the Role of Entropy in Optimizing Tool-Use Behaviors for Large Language Model Agents
Tool-using agents based on Large Language Models (LLMs) excel in tasks such as mathematical reasoning and multi-hop question answering. However, in long trajectories, agents often trigger excessive and low-quality tool calls, increasing latency and degrading inference performance, making managing tool-use behavior challenging. In this work, we conduct entropy-based pilot experiments and observe a strong positive correlation between entropy reduction and high-quality tool calls. Building on this finding, we propose using entropy reduction as a supervisory signal and design two reward strategies to address the differing needs of optimizing tool-use behavior. Sparse outcome rewards provide coarse, trajectory-level guidance to improve efficiency, while dense process rewards offer fine-grained supervision to enhance performance. Experiments across diverse domains show that both reward designs improve tool-use behavior: the former reduces tool calls by 72.07% compared to the average of baselines, while the latter improves performance by 22.27%. These results position entropy reduction as a key mechanism for enhancing tool-use behavior, enabling agents to be more adaptive in real-world applications.
☆ Auto-Comp: An Automated Pipeline for Scalable Compositional Probing of Contrastive Vision-Language Models
Modern Vision-Language Models (VLMs) exhibit a critical flaw in compositional reasoning, often confusing "a red cube and a blue sphere" with "a blue cube and a red sphere". Disentangling the visual and linguistic roots of these failures is a fundamental challenge for robust evaluation. To enable fine-grained, controllable analysis, we introduce Auto-Comp, a fully automated and synthetic pipeline for generating scalable benchmarks. Its controllable nature is key to dissecting and isolating different reasoning skills. Auto-Comp generates paired images from Minimal (e.g., "a monitor to the left of a bicycle on a white background") and LLM-generated Contextual captions (e.g., "In a brightly lit photography studio, a monitor is positioned to the left of a bicycle"), allowing a controlled A/B test to disentangle core binding ability from visio-linguistic complexity. Our evaluation of 20 VLMs on novel benchmarks for color binding and spatial relations reveals universal compositional failures in both CLIP and SigLIP model families. Crucially, our novel "Confusion Benchmark" reveals a deeper flaw beyond simple attribute swaps: models are highly susceptible to low-entropy distractors (e.g., repeated objects or colors), demonstrating their compositional failures extend beyond known bag-of-words limitations. we uncover a surprising trade-off: visio-linguistic context, which provides global scene cues, aids spatial reasoning but simultaneously hinders local attribute binding by introducing visual clutter. We release the Auto-Comp pipeline to facilitate future benchmark creation, alongside all our generated benchmarks (https://huggingface.co/AutoComp).
☆ Hunt Instead of Wait: Evaluating Deep Data Research on Large Language Models
The agency expected of Agentic Large Language Models goes beyond answering correctly, requiring autonomy to set goals and decide what to explore. We term this investigatory intelligence, distinguishing it from executional intelligence, which merely completes assigned tasks. Data Science provides a natural testbed, as real-world analysis starts from raw data rather than explicit queries, yet few benchmarks focus on it. To address this, we introduce Deep Data Research (DDR), an open-ended task where LLMs autonomously extract key insights from databases, and DDR-Bench, a large-scale, checklist-based benchmark that enables verifiable evaluation. Results show that while frontier models display emerging agency, long-horizon exploration remains challenging. Our analysis highlights that effective investigatory intelligence depends not only on agent scaffolding or merely scaling, but also on intrinsic strategies of agentic models.
comment: 14 pages, 7 tables, 8 figures
☆ Bandwidth-Efficient Multi-Agent Communication through Information Bottleneck and Vector Quantization ICRA 2026
Multi-agent reinforcement learning systems deployed in real-world robotics applications face severe communication constraints that significantly impact coordination effectiveness. We present a framework that combines information bottleneck theory with vector quantization to enable selective, bandwidth-efficient communication in multi-agent environments. Our approach learns to compress and discretize communication messages while preserving task-critical information through principled information-theoretic optimization. We introduce a gated communication mechanism that dynamically determines when communication is necessary based on environmental context and agent states. Experimental evaluation on challenging coordination tasks demonstrates that our method achieves 181.8% performance improvement over no-communication baselines while reducing bandwidth usage by 41.4%. Comprehensive Pareto frontier analysis shows dominance across the entire success-bandwidth spectrum with area-under-curve of 0.198 vs 0.142 for next-best methods. Our approach significantly outperforms existing communication strategies and establishes a theoretically grounded framework for deploying multi-agent systems in bandwidth-constrained environments such as robotic swarms, autonomous vehicle fleets, and distributed sensor networks.
comment: Accepted at the 2026 IEEE International Conference on Robotics and Automation (ICRA 2026), Vienna, Austria. 9 pages, 4 figures, 6 tables
☆ Constrained Process Maps for Multi-Agent Generative AI Workflows
Large language model (LLM)-based agents are increasingly used to perform complex, multi-step workflows in regulated settings such as compliance and due diligence. However, many agentic architectures rely primarily on prompt engineering of a single agent, making it difficult to observe or compare how models handle uncertainty and coordination across interconnected decision stages and with human oversight. We introduce a multi-agent system formalized as a finite-horizon Markov Decision Process (MDP) with a directed acyclic structure. Each agent corresponds to a specific role or decision stage (e.g., content, business, or legal review in a compliance workflow), with predefined transitions representing task escalation or completion. Epistemic uncertainty is quantified at the agent level using Monte Carlo estimation, while system-level uncertainty is captured by the MDP's termination in either an automated labeled state or a human-review state. We illustrate the approach through a case study in AI safety evaluation for self-harm detection, implemented as a multi-agent compliance system. Results demonstrate improvements over a single-agent baseline, including up to a 19\% increase in accuracy, up to an 85x reduction in required human review, and, in some configurations, reduced processing time.
☆ One Size, Many Fits: Aligning Diverse Group-Wise Click Preferences in Large-Scale Advertising Image Generation
Advertising image generation has increasingly focused on online metrics like Click-Through Rate (CTR), yet existing approaches adopt a ``one-size-fits-all" strategy that optimizes for overall CTR while neglecting preference diversity among user groups. This leads to suboptimal performance for specific groups, limiting targeted marketing effectiveness. To bridge this gap, we present \textit{One Size, Many Fits} (OSMF), a unified framework that aligns diverse group-wise click preferences in large-scale advertising image generation. OSMF begins with product-aware adaptive grouping, which dynamically organizes users based on their attributes and product characteristics, representing each group with rich collective preference features. Building on these groups, preference-conditioned image generation employs a Group-aware Multimodal Large Language Model (G-MLLM) to generate tailored images for each group. The G-MLLM is pre-trained to simultaneously comprehend group features and generate advertising images. Subsequently, we fine-tune the G-MLLM using our proposed Group-DPO for group-wise preference alignment, which effectively enhances each group's CTR on the generated images. To further advance this field, we introduce the Grouped Advertising Image Preference Dataset (GAIP), the first large-scale public dataset of group-wise image preferences, including around 600K groups built from 40M users. Extensive experiments demonstrate that our framework achieves the state-of-the-art performance in both offline and online settings. Our code and datasets will be released at https://github.com/JD-GenX/OSMF.
☆ Canonical Intermediate Representation for LLM-based optimization problem formulation and code generation
Automatically formulating optimization models from natural language descriptions is a growing focus in operations research, yet current LLM-based approaches struggle with the composite constraints and appropriate modeling paradigms required by complex operational rules. To address this, we introduce the Canonical Intermediate Representation (CIR): a schema that LLMs explicitly generate between problem descriptions and optimization models. CIR encodes the semantics of operational rules through constraint archetypes and candidate modeling paradigms, thereby decoupling rule logic from its mathematical instantiation. Upon a newly generated CIR knowledge base, we develop the rule-to-constraint (R2C) framework, a multi-agent pipeline that parses problem texts, synthesizes CIR implementations by retrieving domain knowledge, and instantiates optimization models. To systematically evaluate rule-to-constraint reasoning, we test R2C on our newly constructed benchmark featuring rich operational rules, and benchmarks from prior work. Extensive experiments show that R2C achieves state-of-the-art accuracy on the proposed benchmark (47.2% Accuracy Rate). On established benchmarks from the literature, R2C delivers highly competitive results, approaching the performance of proprietary models (e.g., GPT-5). Moreover, with a reflection mechanism, R2C achieves further gains and sets new best-reported results on some benchmarks.
comment: 41 pages, 4 figures, 5 tables
☆ Edit Knowledge, Not Just Facts via Multi-Step Reasoning over Background Stories
Enabling artificial intelligence systems, particularly large language models, to integrate new knowledge and flexibly apply it during reasoning remains a central challenge. Existing knowledge editing approaches emphasize atomic facts, improving factual recall but often failing to integrate new information into a coherent framework usable across contexts. In this work, we argue that knowledge internalization is fundamentally a reasoning problem rather than a memorization problem. Consequently, a model should be trained in situations where the new information is instrumental to solving a task, combined with pre-existing knowledge, and exercised through multi-step reasoning. Based on this insight, we propose a training strategy based on three principles. First, new knowledge is introduced as a coherent background story that contextualizes novel facts and explains their relation to existing knowledge. Second, models are trained using self-generated multi-hop questions that require multi-step reasoning involving the new information. Third, training is done using knowledge distillation, forcing a student model to internalize the teacher's reasoning behavior without access to the novel information. Experiments show that models trained with this strategy effectively leverage newly acquired knowledge during reasoning and achieve remarkable performance on challenging questions that require combining multiple new facts.
comment: under review
☆ Light Alignment Improves LLM Safety via Model Self-Reflection with a Single Neuron
The safety of large language models (LLMs) has increasingly emerged as a fundamental aspect of their development. Existing safety alignment for LLMs is predominantly achieved through post-training methods, which are computationally expensive and often fail to generalize well across different models. A small number of lightweight alignment approaches either rely heavily on prior-computed safety injections or depend excessively on the model's own capabilities, resulting in limited generalization and degraded efficiency and usability during generation. In this work, we propose a safety-aware decoding method that requires only low-cost training of an expert model and employs a single neuron as a gating mechanism. By effectively balancing the model's intrinsic capabilities with external guidance, our approach simultaneously preserves utility and enhances output safety. It demonstrates clear advantages in training overhead and generalization across model scales, offering a new perspective on lightweight alignment for the safe and practical deployment of large language models. Code: https://github.com/Beijing-AISI/NGSD.
comment: 21 pages, 3 figures
☆ Do I Really Know? Learning Factual Self-Verification for Hallucination Reduction
Factual hallucination remains a central challenge for large language models (LLMs). Existing mitigation approaches primarily rely on either external post-hoc verification or mapping uncertainty directly to abstention during fine-tuning, often resulting in overly conservative behavior. We propose VeriFY, a training-time framework that teaches LLMs to reason about factual uncertainty through consistency-based self-verification. VeriFY augments training with structured verification traces that guide the model to produce an initial answer, generate and answer a probing verification query, issue a consistency judgment, and then decide whether to answer or abstain. To address the risk of reinforcing hallucinated content when training on augmented traces, we introduce a stage-level loss masking approach that excludes hallucinated answer stages from the training objective while preserving supervision over verification behavior. Across multiple model families and scales, VeriFY reduces factual hallucination rates by 9.7 to 53.3 percent, with only modest reductions in recall (0.4 to 5.7 percent), and generalizes across datasets when trained on a single source. The source code, training data, and trained model checkpoints will be released upon acceptance.
☆ Rethinking Genomic Modeling Through Optical Character Recognition
Recent genomic foundation models largely adopt large language model architectures that treat DNA as a one-dimensional token sequence. However, exhaustive sequential reading is structurally misaligned with sparse and discontinuous genomic semantics, leading to wasted computation on low-information background and preventing understanding-driven compression for long contexts. Here, we present OpticalDNA, a vision-based framework that reframes genomic modeling as Optical Character Recognition (OCR)-style document understanding. OpticalDNA renders DNA into structured visual layouts and trains an OCR-capable vision--language model with a \emph{visual DNA encoder} and a \emph{document decoder}, where the encoder produces compact, reconstructible visual tokens for high-fidelity compression. Building on this representation, OpticalDNA defines prompt-conditioned objectives over core genomic primitives-reading, region grounding, subsequence retrieval, and masked span completion-thereby learning layout-aware DNA representations that retain fine-grained genomic information under a reduced effective token budget. Across diverse genomic benchmarks, OpticalDNA consistently outperforms recent baselines; on sequences up to 450k bases, it achieves the best overall performance with nearly $20\times$ fewer effective tokens, and surpasses models with up to $985\times$ more activated parameters while tuning only 256k \emph{trainable} parameters.
☆ Beyond RAG for Agent Memory: Retrieval by Decoupling and Aggregation
Agent memory systems often adopt the standard Retrieval-Augmented Generation (RAG) pipeline, yet its underlying assumptions differ in this setting. RAG targets large, heterogeneous corpora where retrieved passages are diverse, whereas agent memory is a bounded, coherent dialogue stream with highly correlated spans that are often duplicates. Under this shift, fixed top-$k$ similarity retrieval tends to return redundant context, and post-hoc pruning can delete temporally linked prerequisites needed for correct reasoning. We argue retrieval should move beyond similarity matching and instead operate over latent components, following decoupling to aggregation: disentangle memories into semantic components, organise them into a hierarchy, and use this structure to drive retrieval. We propose xMemory, which builds a hierarchy of intact units and maintains a searchable yet faithful high-level node organisation via a sparsity--semantics objective that guides memory split and merge. At inference, xMemory retrieves top-down, selecting a compact, diverse set of themes and semantics for multi-fact queries, and expanding to episodes and raw messages only when it reduces the reader's uncertainty. Experiments on LoCoMo and PerLTQA across the three latest LLMs show consistent gains in answer quality and token efficiency.
☆ ClueTracer: Question-to-Vision Clue Tracing for Training-Free Hallucination Suppression in Multimodal Reasoning
Large multimodal reasoning models solve challenging visual problems via explicit long-chain inference: they gather visual clues from images and decode clues into textual tokens. Yet this capability also increases hallucinations, where the model generates content that is not supported by the input image or the question. To understand this failure mode, we identify \emph{reasoning drift}: during clue gathering, the model over-focuses on question-irrelevant entities, diluting focus on task-relevant cues and gradually decoupling the reasoning trace from visual grounding. As a consequence, many inference-time localization or intervention methods developed for non-reasoning models fail to pinpoint the true clues in reasoning settings. Motivated by these insights, we introduce ClueRecall, a metric for assessing visual clue retrieval, and present ClueTracer, a training-free, parameter-free, and architecture-agnostic plugin for hallucination suppression. ClueTracer starts from the question and traces how key clues propagate along the model's reasoning pathway (question $\rightarrow$ outputs $\rightarrow$ visual tokens), thereby localizing task-relevant patches while suppressing spurious attention to irrelevant regions. Remarkably, \textbf{without any additional training}, ClueTracer improves all \textbf{reasoning} architectures (including \texttt{R1-OneVision}, \texttt{Ocean-R1}, \texttt{MM-Eureka}, \emph{etc}.) by $\mathbf{1.21\times}$ on reasoning benchmarks. When transferred to \textbf{non-reasoning} settings, it yields a $\mathbf{1.14\times}$ gain.
comment: 20 pages, 7 figures
☆ Preserve-Then-Quantize: Balancing Rank Budgets for Quantization Error Reconstruction in LLMs
Quantization Error Reconstruction (QER) reduces accuracy loss in Post-Training Quantization (PTQ) by approximating weights as $\mathbf{W} \approx \mathbf{Q} + \mathbf{L}\mathbf{R}$, using a rank-$r$ correction to reconstruct quantization error. Prior methods devote the full rank budget to error reconstruction, which is suboptimal when $\mathbf{W}$ has intrinsic low-rank structure and quantization corrupts dominant directions. We propose Structured Residual Reconstruction (SRR), a rank-allocation framework that preserves the top-$k$ singular subspace of the activation-scaled weight before quantization, quantizes only the residual, and uses the remaining rank $r-k$ for error reconstruction. We derive a theory-guided criterion for selecting $k$ by balancing quantization-exposed energy and unrecoverable error under rank constraints. We further show that resulting $\mathbf{Q} + \mathbf{L}\mathbf{R}$ parameterization naturally supports Quantized Parameter-Efficient Fine-Tuning (QPEFT), and stabilizes fine-tuning via gradient scaling along preserved directions. Experiments demonstrate consistent perplexity reductions across diverse models and quantization settings in PTQ, along with a 5.9 percentage-point average gain on GLUE under 2-bit QPEFT.
♻ ☆ How to Train Your Advisor: Steering Black-Box LLMs with Advisor Models
Frontier language models are deployed as black-box services, where model weights cannot be modified and customization is limited to prompting. We introduce Advisor Models, a method to train small open-weight models to generate dynamic, per-instance natural language advice that improves the capabilities of black-box frontier models. Advisor Models improve GPT-5's performance on RuleArena (Taxes) by 71%, reduce Gemini 3 Pro's steps taken in SWE agent tasks by 24.6%, and outperform static prompt optimizers in personalizing GPT-5 to user preferences (85-100% vs. 40-60%). We also find that advisors are transferable: an advisor trained with a low-cost student model still transfers improvements to a frontier model. Moreover, Advisor Models are robust: we observe no degradation on other benchmarks than the pipeline is trained on. Our method shows how to perform parametric optimization for black-box frontier models in a practical and cost-effective way.
♻ ☆ FS-DFM: Fast and Accurate Long Text Generation with Few-Step Diffusion Language Models ICLR 2026
Autoregressive language models (ARMs) deliver strong likelihoods, but are inherently serial: they generate one token per forward pass, which limits throughput and inflates latency for long sequences. Diffusion Language Models (DLMs) parallelize across positions and thus appear promising for language generation, yet standard discrete diffusion typically needs hundreds to thousands of model evaluations to reach high quality, trading serial depth for iterative breadth. We introduce FS-DFM, Few-Step Discrete Flow-Matching. A discrete flow-matching model designed for speed without sacrificing quality. The core idea is simple: make the number of sampling steps an explicit parameter and train the model to be consistent across step budgets, so one big move lands where many small moves would. We pair this with a reliable update rule that moves probability in the right direction without overshooting, and with strong teacher guidance distilled from long-run trajectories. Together, these choices make few-step sampling stable, accurate, and easy to control. On language modeling benchmarks, FS-DFM with 8 sampling steps achieves perplexity parity with a 1,024-step discrete-flow baseline for generating 1,024 tokens using a similar-size model, delivering up to 128 times faster sampling and corresponding latency/throughput gains.
comment: Accepted to ICLR 2026
♻ ☆ Language Family Matters: Evaluating LLM-Based ASR Across Linguistic Boundaries EACL'26
Large Language Model (LLM)-powered Automatic Speech Recognition (ASR) systems achieve strong performance with limited resources by linking a frozen speech encoder to a pretrained LLM via a lightweight connector. Prior work trains a separate connector per language, overlooking linguistic relatedness. We propose an efficient and novel connector-sharing strategy based on linguistic family membership, enabling one connector per family, and empirically validate its effectiveness across two multilingual LLMs and two real-world corpora spanning curated and crowd-sourced speech. Our results show that family-based connectors reduce parameter count while improving generalization across domains, offering a practical and scalable strategy for multilingual ASR deployment.
comment: Accepted by EACL'26 main
♻ ☆ Outcome-Based RL Provably Leads Transformers to Reason, but Only With the Right Data
Transformers trained via Reinforcement Learning (RL) with outcome-based supervision can spontaneously develop the ability to generate intermediate reasoning steps (Chain-of-Thought). Yet the mechanism by which sparse rewards drive policy gradient to discover such systematic reasoning remains poorly understood. We address this by analyzing the policy gradient dynamics of single-layer Transformers on a synthetic graph traversal task that cannot be solved without Chain-of-Thought but admits a simple iterative solution. We prove that despite training solely on final-answer correctness, policy gradient drives the Transformer to converge to a structured, interpretable algorithm that iteratively traverses the graph vertex-by-vertex. We characterize the distributional properties required for this emergence, identifying the critical role of "simple examples": instances requiring fewer reasoning steps. When the training distribution places sufficient mass on these simpler examples, the Transformer learns a generalizable traversal strategy that extrapolates to longer chains; when this mass vanishes, policy gradient learning becomes infeasible. We corroborate our theoretical results through experiments on synthetic data and with real-world language models on mathematical reasoning tasks, validating that our theoretical findings carry over to practical settings.
comment: 87 pages, 6 figures
♻ ☆ EUGens: Efficient, Unified, and General Dense Layers
Efficient neural networks are essential for scaling machine learning models to real-time applications and resource-constrained environments. Fully-connected feedforward layers (FFLs) introduce computation and parameter count bottlenecks within neural network architectures. To address this challenge, in this work, we propose a new class of dense layers that generalize standard fully-connected feedforward layers, \textbf{E}fficient, \textbf{U}nified and \textbf{Gen}eral dense layers (EUGens). EUGens leverage random features to approximate standard FFLs and go beyond them by incorporating a direct dependence on the input norms in their computations. The proposed layers unify existing efficient FFL extensions and improve efficiency by reducing inference complexity from quadratic to linear time. They also lead to \textbf{the first} unbiased algorithms approximating FFLs with arbitrary polynomial activation functions. Furthermore, EuGens reduce the parameter count and computational overhead while preserving the expressive power and adaptability of FFLs. We also present a layer-wise knowledge transfer technique that bypasses backpropagation, enabling efficient adaptation of EUGens to pre-trained models. Empirically, we observe that integrating EUGens into Transformers and MLPs yields substantial improvements in inference speed (up to \textbf{27}\%) and memory efficiency (up to \textbf{30}\%) across a range of tasks, including image classification, language model pre-training, and 3D scene reconstruction. Overall, our results highlight the potential of EUGens for the scalable deployment of large-scale neural networks in real-world scenarios.
comment: We want to update 2410.09771 with this submission
♻ ☆ Decoding Generalization from Memorization in Deep Neural Networks
Overparameterized deep networks that generalize well have been key to the dramatic success of deep learning in recent years. The reasons for their remarkable ability to generalize are not well understood yet. When class labels in the training set are shuffled to varying degrees, it is known that deep networks can still reach perfect training accuracy at the detriment of generalization to true labels -- a phenomenon that has been called memorization. It has, however, been unclear why the poor generalization to true labels that accompanies such memorization, comes about. One possibility is that during training, all layers of the network irretrievably re-organize their representations in a manner that makes generalization to true labels difficult. The other possibility is that one or more layers of the trained network retain significantly more latent ability to generalize to true labels, but the network somehow "chooses" to readout in a manner that is detrimental to generalization to true labels. Here, we provide evidence for the latter possibility by demonstrating, empirically, that such models possess information in their representations for substantially-improved generalization to true labels. Furthermore, such abilities can be easily decoded from the internals of the trained model, and we build a technique to do so. We demonstrate results on multiple models trained with standard datasets. Our code is available at: https://github.com/simranketha/MASC_DNN.
♻ ☆ Breaking Up with Normatively Monolithic Agency with GRACE: A Reason-Based Neuro-Symbolic Architecture for Safe and Ethical AI Alignment
As AI agents become increasingly autonomous, widely deployed in consequential contexts, and efficacious in bringing about real-world impacts, ensuring that their decisions are not only instrumentally effective but also normatively aligned has become critical. We introduce a neuro-symbolic reason-based containment architecture, Governor for Reason-Aligned ContainmEnt (GRACE), that decouples normative reasoning from instrumental decision-making and can contain AI agents of virtually any design. GRACE restructures decision-making into three modules: a Moral Module (MM) that determines permissible macro actions via deontic logic-based reasoning; a Decision-Making Module (DMM) that encapsulates the target agent while selecting instrumentally optimal primitive actions in accordance with derived macro actions; and a Guard that monitors and enforces moral compliance. The MM uses a reason-based formalism providing a semantic foundation for deontic logic, enabling interpretability, contestability, and justifiability. Its symbolic representation enriches the DMM's informational context and supports formal verification and statistical guarantees of alignment enforced by the Guard. We demonstrate GRACE on an example of a LLM therapy assistant, showing how it enables stakeholders to understand, contest, and refine agent behavior.
comment: 10 pages, 4 figures, accepted at 2nd Annual Conference of the International Association for Safe & Ethical AI (IASEAI'26)
♻ ☆ To See Far, Look Close: Evolutionary Forecasting for Long-term Time Series
The prevailing Direct Forecasting (DF) paradigm dominates Long-term Time Series Forecasting (LTSF) by forcing models to predict the entire future horizon in a single forward pass. While efficient, this rigid coupling of output and evaluation horizons necessitates computationally prohibitive re-training for every target horizon. In this work, we uncover a counter-intuitive optimization anomaly: models trained on short horizons-when coupled with our proposed Evolutionary Forecasting (EF) paradigm-significantly outperform those trained directly on long horizons. We attribute this success to the mitigation of a fundamental optimization pathology inherent in DF, where conflicting gradients from distant futures cripple the learning of local dynamics. We establish EF as a unified generative framework, proving that DF is merely a degenerate special case of EF. Extensive experiments demonstrate that a singular EF model surpasses task-specific DF ensembles across standard benchmarks and exhibits robust asymptotic stability in extreme extrapolation. This work propels a paradigm shift in LTSF: moving from passive Static Mapping to autonomous Evolutionary Reasoning.
♻ ☆ Adaptive Testing for LLM Evaluation: A Psychometric Alternative to Static Benchmarks
Evaluating large language models (LLMs) typically requires thousands of benchmark items, making the process expensive, slow, and increasingly impractical at scale. Existing evaluation protocols rely on average accuracy over fixed item sets, treating all items as equally informative despite substantial variation in difficulty and discrimination. We introduce ATLAS, an adaptive testing framework based on Item Response Theory (IRT) that estimates model ability using Fisher information-guided item selection. ATLAS reduces the number of required items by up to 90% while maintaining measurement precision. For instance, it matches whole-bank ability estimates using only 41 items (0.157 MAE) on HellaSwag (5,600 items). We further reconstruct accuracy from ATLAS's ability estimates and find that reconstructed accuracies closely match raw accuracies across all five benchmarks, indicating that ability $θ$ preserves the global performance structure. At the same time, $θ$ provides finer discrimination within accuracy-equivalent models: among more than 3,000 evaluated models, 23-31% shift by more than 10 rank positions, and models with identical accuracies receive meaningfully different ability estimates. Code and calibrated item banks are available at https://github.com/Peiyu-Georgia-Li/ATLAS.git.
comment: Code and calibrated item banks are available at https://github.com/Peiyu-Georgia-Li/ATLAS.git
♻ ☆ SparseSwaps: Tractable LLM Pruning Mask Refinement at Scale
The resource requirements of neural networks can be significantly reduced through pruning - the removal of seemingly less important parameters. However, for LLMs, full retraining to recover pruning-induced performance degradation is often prohibitive and classical approaches such as magnitude pruning are suboptimal on Transformers. State-of-the-art methods hence solve a layer-wise mask selection problem: finding a pruning mask that minimizes per-layer pruning error on a small set of calibration data. Exactly solving this problem is computationally infeasible due to its combinatorial nature and the size of the search space, and existing approaches rely on approximations or heuristics. We demonstrate that the mask selection problem can be made drastically more tractable at LLM scale. To that end, we decouple the rows by enforcing equal sparsity levels per row. This allows us to derive optimal 1-swaps (exchanging one kept and one pruned weight) computable efficiently via the Gram matrix. We propose a simple 1-swap algorithm that warmstarts from any pruning mask, runs efficiently on GPUs at LLM scale, and is essentially hyperparameter-free. Our approach reduces per-layer pruning error by up to 60% over Wanda (Sun et al., 2024) and consistently improves perplexity and zero-shot accuracy across state-of-the-art GPT architectures.
comment: 13 pages, 2 figures, 5 tables
♻ ☆ Estimating Respiratory Effort from Nocturnal Breathing Sounds for Obstructive Sleep Apnoea Screening ICASSP 2026
Obstructive sleep apnoea (OSA) is a prevalent condition with significant health consequences, yet many patients remain undiagnosed due to the complexity and cost of over-night polysomnography. Acoustic-based screening provides a scalable alternative, yet performance is limited by environmental noise and the lack of physiological context. Respiratory effort is a key signal used in clinical scoring of OSA events, but current approaches require additional contact sensors that reduce scalability and patient comfort. This paper presents the first study to estimate respiratory effort directly from nocturnal audio, enabling physiological context to be recovered from sound alone. We propose a latent-space fusion framework that integrates the estimated effort embeddings with acoustic features for OSA detection. Using a dataset of 157 nights from 103 participants recorded in home environments, our respiratory effort estimator achieves a concordance correlation coefficient of 0.48, capturing meaningful respiratory dynamics. Fusing effort and audio improves sensitivity and AUC over audio-only baselines, especially at low apnoea-hypopnoea index thresholds. The proposed approach requires only smartphone audio at test time, which enables sensor-free, scalable, and longitudinal OSA monitoring.
comment: Accepted at ICASSP 2026
♻ ☆ Language as a Wave Phenomenon: Semantic Phase Locking and Interference in Neural Networks
In standard Transformer architectures, semantic importance is often conflated with activation magnitude, obscuring the geometric structure of latent representations. To disentangle these factors, we introduce PRISM, a complex-valued architecture designed to isolate the computational role of phase. By enforcing a strict unit-norm constraint (|z| = 1) and replacing attention with gated harmonic convolutions, the model is compelled to utilize subtractive interference in the frequency domain to suppress noise, rather than relying on magnitude-based gating. We utilize this constrained regime to demonstrate that a hybrid architecture - fusing phase-based routing with standard attention - achieves superior parameter efficiency and representation quality compared to unconstrained baselines. Mechanistically, we identify geometric phase clustering, where tokens naturally self-organize to resolve semantic ambiguities. This establishes an O(N log N) reasoning framework based on spectral interference, providing an algorithmic existence proof that subtractive logic is a sufficient primitive for deep reasoning.
comment: 14 pages, 7 figures; Revised title; Added new experiments on encoder-only models using WikiText-103
♻ ☆ A Scalable Inter-edge Correlation Modeling in CopulaGNN for Link Sign Prediction ICLR 2026
Link sign prediction on a signed graph is a task to determine whether the relationship represented by an edge is positive or negative. Since the presence of negative edges violates the graph homophily assumption that adjacent nodes are similar, regular graph methods have not been applicable without auxiliary structures to handle them. We aim to directly model the latent statistical dependency among edges with the Gaussian copula and its corresponding correlation matrix, extending CopulaGNN (Ma et al., 2021). However, a naive modeling of edge-edge relations is computationally intractable even for a graph with moderate scale. To address this, we propose to 1) represent the correlation matrix as a Gramian of edge embeddings, significantly reducing the number of parameters, and 2) reformulate the conditional probability distribution to dramatically reduce the inference cost. We theoretically verify scalability of our method by proving its linear convergence. Also, our extensive experiments demonstrate that it achieves significantly faster convergence than baselines, maintaining competitive prediction performance to the state-of-the-art models.
comment: Accepted for ICLR 2026
♻ ☆ A Scalable Measure of Loss Landscape Curvature for Analyzing the Training Dynamics of LLMs
Understanding the curvature evolution of the loss landscape is fundamental to analyzing the training dynamics of neural networks. The most commonly studied measure, Hessian sharpness ($λ_{\max}^H$) -- the largest eigenvalue of the loss Hessian -- determines local training stability and interacts with the learning rate throughout training. Despite its significance in analyzing training dynamics, direct measurement of Hessian sharpness remains prohibitive for Large Language Models (LLMs) due to high computational cost. We analyze $\textit{critical sharpness}$ ($λ_c$), a computationally efficient measure requiring fewer than $10$ forward passes given the update direction $Δ\mathbfθ$. Critically, this measure captures well-documented Hessian sharpness phenomena, including progressive sharpening and Edge of Stability. Using this measure, we provide the first demonstration of these sharpness phenomena at scale, up to $7$B parameters, spanning both pre-training and mid-training of OLMo-2 models. We further introduce $\textit{relative critical sharpness}$ ($λ_c^{1\to 2}$), which quantifies the curvature of one loss landscape while optimizing another, to analyze the transition from pre-training to fine-tuning and guide data mixing strategies. Critical sharpness provides practitioners with a practical tool for diagnosing curvature dynamics and informing data composition choices at scale. More broadly, our work shows that scalable curvature measures can provide actionable insights for large-scale training.
comment: Improved Appendix D proofs, text for clarity, added more related works
♻ ☆ STAC: When Innocent Tools Form Dangerous Chains to Jailbreak LLM Agents
As LLMs advance into autonomous agents with tool-use capabilities, they introduce security challenges that extend beyond traditional content-based LLM safety concerns. This paper introduces Sequential Tool Attack Chaining (STAC), a novel multi-turn attack framework that exploits agent tool use. STAC chains together tool calls that each appear harmless in isolation but, when combined, collectively enable harmful operations that only become apparent at the final execution step. We apply our framework to automatically generate and systematically evaluate 483 STAC cases, featuring 1,352 sets of user-agent-environment interactions and spanning diverse domains, tasks, agent types, and 10 failure modes. Our evaluations show that state-of-the-art LLM agents, including GPT-4.1, are highly vulnerable to STAC, with attack success rates (ASR) exceeding 90% in most cases. The core design of STAC's automated framework is a closed-loop pipeline that synthesizes executable multi-step tool chains, validates them through in-environment execution, and reverse-engineers stealthy multi-turn prompts that reliably induce agents to execute the verified malicious sequence. We further perform defense analysis against STAC and find that existing prompt-based defenses provide limited protection. To address this gap, we propose a new reasoning-driven defense prompt that achieves far stronger protection, cutting ASR by up to 28.8%. These results highlight a crucial gap: defending tool-enabled agents requires reasoning over entire action sequences and their cumulative effects, rather than evaluating isolated prompts or responses.
♻ ☆ A Proof of Learning Rate Transfer under $μ$P
We provide the first proof of learning rate transfer with width in a linear multi-layer perceptron (MLP) parametrized with $μ$P, a neural network parameterization designed to ``maximize'' feature learning in the infinite-width limit. We show that under $μP$, the optimal learning rate converges to a \emph{non-zero constant} as width goes to infinity, providing a theoretical explanation to learning rate transfer. In contrast, we show that this property fails to hold under alternative parametrizations such as Standard Parametrization (SP) and Neural Tangent Parametrization (NTP). We provide intuitive proofs and support the theoretical findings with extensive empirical results.
comment: 21 pages
♻ ☆ HER: Human-like Reasoning and Reinforcement Learning for LLM Role-playing
LLM role-playing, i.e., using LLMs to simulate specific personas, has emerged as a key capability in various applications, such as companionship, content creation, and digital games. While current models effectively capture character tones and knowledge, simulating the inner thoughts behind their behaviors remains a challenge. Towards cognitive simulation in LLM role-play, previous efforts mainly suffer from two deficiencies: data with high-quality reasoning traces, and reliable reward signals aligned with human preferences. In this paper, we propose HER, a unified framework for cognitive-level persona simulation. HER introduces dual-layer thinking, which distinguishes characters' first-person thinking from LLMs' third-person thinking. To bridge these gaps, we curate reasoning-augmented role-playing data via reverse engineering and construct human-aligned principles and reward models. Leveraging these resources, we train HER models based on Qwen3-32B via supervised and reinforcement learning. Extensive experiments validate the effectiveness of our approach. Notably, our models significantly outperform the Qwen3-32B baseline, achieving a 30.26 improvement on the CoSER benchmark and a 14.97 gain on the Minimax Role-Play Bench. Our datasets, principles, and models will be released to facilitate future research.
comment: 41pages, 10 figures
♻ ☆ TEON: Tensorized Orthonormalization Beyond Layer-Wise Muon for Large Language Model Pre-Training
The Muon optimizer has demonstrated strong empirical performance in pre-training large language models by performing matrix-level gradient (or momentum) orthogonalization in each layer independently. In this work, we propose TEON, a principled generalization of Muon that extends orthogonalization beyond individual layers by modeling the gradients of a neural network as a structured higher-order tensor. We present TEON's improved convergence guarantee over layer-wise Muon, and further develop a practical instantiation of TEON based on the theoretical analysis with corresponding ablation. We evaluate our approach on two widely adopted architectures: GPT-style models, ranging from 130M to 774M parameters, and LLaMA-style models, ranging from 60M to 1B parameters. Experimental results show that TEON consistently improves training and validation perplexity across model scales and exhibits strong robustness under various approximate SVD schemes.
♻ ☆ Preference-Conditioned Gradient Variations for Multi-Objective Quality-Diversity
In a variety of domains, from robotics to finance, Quality-Diversity algorithms have been used to generate collections of both diverse and high-performing solutions. Multi-Objective Quality-Diversity algorithms have emerged as a promising approach for applying these methods to complex, multi-objective problems. However, existing methods are limited by their search capabilities. For example, Multi-Objective Map-Elites depends on random genetic variations which struggle in high-dimensional search spaces. Despite efforts to enhance search efficiency with gradient-based mutation operators, existing approaches consider updating solutions to improve on each objective separately rather than achieving desired trade-offs. In this work, we address this limitation by introducing Multi-Objective Map-Elites with Preference-Conditioned Policy-Gradient and Crowding Mechanisms: a new Multi-Objective Quality-Diversity algorithm that uses preference-conditioned policy-gradient mutations to efficiently discover promising regions of the objective space and crowding mechanisms to promote a uniform distribution of solutions on the non-dominated front. We evaluate our approach on six robotics locomotion tasks and show that our method outperforms or matches all state-of-the-art Multi-Objective Quality-Diversity methods in all six, including two newly proposed tri-objective tasks. Importantly, our method also achieves a smoother set of trade-offs, as measured by newly-proposed sparsity-based metrics.
♻ ☆ StefaLand: An Efficient Geoscience Foundation Model That Improves Dynamic Land-Surface Predictions
Managing natural resources and mitigating risks from floods, droughts, wildfires, and landslides require models that can accurately predict climate-driven land-surface responses. Traditional models often struggle with spatial generalization because they are trained or calibrated on limited observations and can degrade under concept drift. Recently proposed vision foundation models trained on satellite imagery demand massive compute, and they are not designed for dynamic land surface prediction tasks. We introduce StefaLand, a generative spatiotemporal Earth representation learning model centered on learning cross-domain interactions to suppress overfitting. StefaLand demonstrates especially strong spatial generalization on five datasets across four important tasks: streamflow, soil moisture, soil composition and landslides, compared to previous state-of-the-art methods. The domain-inspired design choices include a location-aware masked autoencoder that fuses static and time-series inputs, an attribute-based rather than image-based representation that drastically reduces compute demands, and residual fine-tuning adapters that strengthen knowledge transfer across tasks. StefaLand can be pretrained and finetuned on commonly available academic compute resources, yet consistently outperforms state-of-the-art supervised learning baselines, fine-tuned vision foundation models and commercially available embeddings, highlighting the previously overlooked value of cross-domain interactions and providing assistance to data-poor regions of the world.
♻ ☆ Aesthetics as Structural Harm: Algorithmic Lookism Across Text-to-Image Generation and Classification
This paper examines algorithmic lookism-the systematic preferential treatment based on physical appearance-in text-to-image (T2I) generative AI and a downstream gender classification task. Through the analysis of 26,400 synthetic faces created with Stable Diffusion 2.1 and 3.5 Medium, we demonstrate how generative AI models systematically associate facial attractiveness with positive attributes and vice-versa, mirroring socially constructed biases rather than evidence-based correlations. Furthermore, we find significant gender bias in three gender classification algorithms depending on the attributes of the input faces. Our findings reveal three critical harms: (1) the systematic encoding of attractiveness-positive attribute associations in T2I models; (2) gender disparities in classification systems, where women's faces, particularly those generated with negative attributes, suffer substantially higher misclassification rates than men's; and (3) intensifying aesthetic constraints in newer models through age homogenization, gendered exposure patterns, and geographic reductionism. These convergent patterns reveal algorithmic lookism as systematic infrastructure operating across AI vision systems, compounding existing inequalities through both representation and recognition. Disclaimer: This work includes visual and textual content that reflects stereotypical associations between physical appearance and socially constructed attributes, including gender, race, and traits associated with social desirability. Any such associations found in this study emerge from the biases embedded in generative AI systems-not from empirical truths or the authors' views.
comment: 22 pages, 15 figures; v2 - fix typo
♻ ☆ Semi-Autonomous Mathematics Discovery with Gemini: A Case Study on the Erdős Problems
We present a case study in semi-autonomous mathematics discovery, using Gemini to systematically evaluate 700 conjectures labeled 'Open' in Bloom's Erdős Problems database. We employ a hybrid methodology: AI-driven natural language verification to narrow the search space, followed by human expert evaluation to gauge correctness and novelty. We address 13 problems that were marked 'Open' in the database: 5 through seemingly novel autonomous solutions, and 8 through identification of previous solutions in the existing literature. Our findings suggest that the 'Open' status of the problems was through obscurity rather than difficulty. We also identify and discuss issues arising in applying AI to math conjectures at scale, highlighting the difficulty of literature identification and the risk of ''subconscious plagiarism'' by AI. We reflect on the takeaways from AI-assisted efforts on the Erdős Problems.
comment: Correct some typos and wordings
♻ ☆ Why Inference in Large Models Becomes Decomposable After Training
Inference in large-scale AI models is typically performed on dense parameter matrices, leading to inference cost and system complexity that scale unsustainably with model size. This limitation does not arise from insufficient model capacity, but from treating post-training inference systems as monolithic operators while ignoring internal structures formed during learning. We show that gradient update events in large models are highly localized and selective, leaving many parameter dependencies statistically indistinguishable from their initialization distribution after training. As a result, post-training inference systems are structurally non-uniform and inherently decomposable. Based on this observation, we introduce a post-training statistical criterion and a structural annealing procedure that removes unsupported dependencies and reveals stable, independent substructures. This work establishes a post-training, model-agnostic structural view of inference systems and enables structured, parallel inference without modifying model functionality or interfaces.
comment: 39 pages, 6 figures
♻ ☆ Game-Time: Evaluating Temporal Dynamics in Spoken Language Models ICASSP 2026
Conversational Spoken Language Models (SLMs) are emerging as a promising paradigm for real-time speech interaction. However, their capacity of temporal dynamics, including the ability to manage timing, tempo and simultaneous speaking, remains a critical and unevaluated challenge for conversational fluency. To address this gap, we introduce the Game-Time Benchmark, a framework to systematically assess these temporal capabilities. Inspired by how humans learn a language through language activities, Game-Time consists of basic instruction-following tasks and advanced tasks with temporal constraints, such as tempo adherence and synchronized responses. Our evaluation of diverse SLM architectures reveals a clear performance disparity: while state-of-the-art models handle basic tasks well, many contemporary systems still struggle with fundamental instruction-following. More critically, nearly all models degrade substantially under temporal constraints, exposing persistent weaknesses in time awareness and full-duplex interaction. The Game-Time Benchmark provides a foundation for guiding future research toward more temporally-aware conversational AI. Demos and datasets are available on our project website https://ga642381.github.io/Game-Time.
comment: Accepted to ICASSP 2026
♻ ☆ Learning Robust Intervention Representations with Delta Embeddings
Causal representation learning has attracted significant research interest during the past few years, as a means for improving model generalization and robustness. Causal representations of interventional image pairs (also called ``actionable counterfactuals'' in the literature), have the property that only variables corresponding to scene elements affected by the intervention / action are changed between the start state and the end state. While most work in this area has focused on identifying and representing the variables of the scene under a causal model, fewer efforts have focused on representations of the interventions themselves. In this work, we show that an effective strategy for improving out of distribution (OOD) robustness is to focus on the representation of actionable counterfactuals in the latent space. Specifically, we propose that an intervention can be represented by a Causal Delta Embedding that is invariant to the visual scene and sparse in terms of the causal variables it affects. Leveraging this insight, we propose a method for learning causal representations from image pairs, without any additional supervision. Experiments in the Causal Triplet challenge demonstrate that Causal Delta Embeddings are highly effective in OOD settings, significantly exceeding baseline performance in both synthetic and real-world benchmarks.
♻ ☆ AgentRAN: An Agentic AI Architecture for Autonomous Control of Open 6G Networks
Despite the programmable architecture of Open RAN, today's deployments still rely heavily on static control and manual operations. To move beyond this limitation, we introduce AgentRAN, an AI-native, Open RAN-aligned agentic framework that generates and orchestrates a fabric of distributed AI agents based on natural language intents. Unlike traditional approaches that require explicit programming, AgentRAN's LLM-powered agents interpret natural language intents, negotiate strategies through structured conversations, and orchestrate control loops across the network. AgentRAN instantiates a self-organizing hierarchy of agents that decompose complex intents across time scales (from sub-millisecond to minutes), spatial domains (cell to network-wide), and protocol layers (PHY/MAC to RRC). A central innovation is the AI-RAN Factory, which continuously generates improved agents and algorithms from operational data, transforming the network into a system that evolves its own intelligence. We validate AgentRAN through live 5G experiments, demonstrating dynamic adaptation to changing operator intents across power control and scheduling. Key benefits include transparent decision-making (all agent reasoning is auditable), bootstrapped intelligence (no initial training data required), and continuous self-improvement via the AI-RAN Factory.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Staircase Cascaded Fusion of Lightweight Local Pattern Recognition and Long-Range Dependencies for Structural Crack Segmentation
Accurately segmenting structural cracks at the pixel level remains a major hurdle, as existing methods fail to integrate local textures with pixel dependencies, often leading to fragmented and incomplete predictions. Moreover, their high parameter counts and substantial computational demands hinder practical deployment on resource-constrained edge devices. To address these challenges, we propose CrackSCF, a Lightweight Cascaded Fusion Crack Segmentation Network designed to achieve robust crack segmentation with exceptional computational efficiency. We design a lightweight convolutional block (LRDS) to replace all standard convolutions. This approach efficiently captures local patterns while operating with a minimal computational footprint. For a holistic perception of crack structures, a lightweight Long-range Dependency Extractor (LDE) captures global dependencies. These are then intelligently unified with local patterns by our Staircase Cascaded Fusion Module (SCFM), ensuring the final segmentation maps are both seamless in continuity and rich in fine-grained detail. To comprehensively evaluate our method, this paper created the challenging TUT benchmark dataset and evaluated it alongside five other public datasets. The experimental results show that the CrackSCF method consistently outperforms the existing methods, and it demonstrates greater robustness in dealing with complex background noise. On the TUT dataset, CrackSCF achieved 0.8382 on F1 score and 0.8473 on mIoU, and it only required 4.79M parameters.
comment: This paper is currently under review
♻ ☆ Conditional diffusion models for downscaling and bias correction of Earth system model precipitation
Climate change exacerbates extreme weather events like heavy rainfall and flooding. As these events cause severe socioeconomic damage, accurate high-resolution simulation of precipitation is imperative. However, existing Earth System Models (ESMs) struggle to resolve small-scale dynamics and suffer from biases. Traditional statistical bias correction and downscaling methods fall short in improving spatial structure, while recent deep learning methods lack controllability and suffer from unstable training. Here, we propose a machine learning framework for simultaneous bias correction and downscaling. We first map observational and ESM data to a shared embedding space, where both are unbiased towards each other, and then train a conditional diffusion model to reverse the mapping. Only observational data is used for the training, so that the diffusion model can be employed to correct and downscale any ESM field without need for retraining. Our approach ensures statistical fidelity and preserves spatial patterns larger than a chosen spatial correction scale. We demonstrate that our approach outperforms existing statistical and deep learning methods especially regarding extreme events.
♻ ☆ Entropy-Lens: Uncovering Decision Strategies in LLMs
In large language models (LLMs), each block operates on the residual stream to map input token sequences to output token distributions. However, most of the interpretability literature focuses on internal latent representations, leaving token-space dynamics underexplored. The high dimensionality and categoricity of token distributions hinder their analysis, as standard statistical descriptors are not suitable. We show that the entropy of logit-lens predictions overcomes these issues. In doing so, it provides a per-layer scalar, permutation-invariant metric. We introduce Entropy-Lens to distill the token-space dynamics of the residual stream into a low-dimensional signal. We call this signal the entropy profile. We apply our method to a variety of model sizes and families, showing that (i) entropy profiles uncover token prediction dynamics driven by expansion and pruning strategies; (ii) these dynamics are family-specific and invariant under depth rescaling; (iii) they are characteristic of task type and output format; (iv) these strategies have unequal impact on downstream performance, with the expansion strategy usually being more critical. Ultimately, our findings further enhance our understanding of the residual stream, enabling a granular assessment of how information is processed across model depth.
♻ ☆ Avoiding Premature Collapse: Adaptive Annealing for Entropy-Regularized Structural Inference
Differentiable matching layers, often implemented via entropy-regularized Optimal Transport, serve as a critical approximate inference mechanism in structural prediction. However, recovering discrete permutations via annealing $ε\to 0$ is notoriously unstable. We identify a fundamental mechanism for this failure: \textbf{Premature Mode Collapse}. By analyzing the non-normal dynamics of the Sinkhorn fixed-point map, we reveal a theoretical \textbf{thermodynamic speed limit}. Under standard exponential cooling, the shift in the target posterior ($O(1)$) outpaces the contraction rate of the inference operator, which degrades as $O(1/ε)$. This mismatch inevitably forces the inference trajectory into spurious local basins. To address this, we propose \textbf{Efficient PH-ASC}, an adaptive scheduling algorithm that monitors the stability of the inference process. By enforcing a linear stability law, we decouple expensive spectral diagnostics from the training loop, reducing overhead from $O(N^3)$ to amortized $O(1)$. Our implementation and interactive demo are available at https://github.com/xxx0438/torch-sinkhorn-asc and https://huggingface.co/spaces/leon0923/torch-sinkhorn-asc-demo. bounded away from zero in generic training dynamics unless the feature extractor converges unrealistically fast.
♻ ☆ RDDM: Practicing RAW Domain Diffusion Model for Real-world Image Restoration
We present the RAW domain diffusion model (RDDM), an end-to-end diffusion model that restores photo-realistic images directly from the sensor RAW data. While recent sRGB-domain diffusion methods achieve impressive results, they are caught in a dilemma between high fidelity and image generation. These models process lossy sRGB inputs and neglect the accessibility of the sensor RAW images in many scenarios, e.g., in image and video capturing in edge devices, resulting in sub-optimal performance. RDDM obviates this limitation by directly restoring images in the RAW domain, replacing the conventional two-stage image signal processing (ISP)->Image Restoration (IR) pipeline. However, a simple adaptation of pre-trained diffusion models to the RAW domain confronts many challenges. To this end, we propose: (1) a RAW-domain VAE (RVAE), encoding sensor RAW and decoding it into an enhanced linear domain image, to solve the out-of-distribution (OOD) issues between the different domain distributions; (2) a configurable multi-bayer (CMB) LoRA module, adapting diverse RAW Bayer patterns such as RGGB, BGGR, etc. To compensate for the deficiency in the dataset, we develop a scalable data synthesis pipeline synthesizing RAW LQ-HQ pairs from existing sRGB datasets for large-scale training. Extensive experiments demonstrate RDDM's superiority over state-of-the-art sRGB diffusion methods, yielding higher fidelity results with fewer artifacts. Codes will be publicly available at https://github.com/YanCHEN-fr/RDDM.
♻ ☆ Large Multimodal Models for Low-Resource Languages: A Survey
In this survey, we systematically analyze techniques used to adapt large multimodal models (LMMs) for low-resource (LR) languages, examining approaches ranging from visual enhancement and data creation to cross-modal transfer and fusion strategies. Through a comprehensive analysis of 117 studies across 96 LR languages, we identify key patterns in how researchers tackle the challenges of limited data and computational resources. We categorize works into resource-oriented and method-oriented contributions, further dividing contributions into relevant sub-categories. We compare method-oriented contributions in terms of performance and efficiency, discussing benefits and limitations of representative studies. We find that visual information often serves as a crucial bridge for improving model performance in LR settings, though significant challenges remain in areas such as hallucination mitigation and computational efficiency. In summary, we provide researchers with a clear understanding of current approaches and remaining challenges in making LMMs more accessible to speakers of LR (understudied) languages. We complement our survey with an open-source repository available at: https://github.com/marianlupascu/LMM4LRL-Survey.
comment: Accepted in Information Fusion
♻ ☆ BiasGym: A Simple and Generalizable Framework for Analyzing and Removing Biases through Elicitation
Understanding biases and stereotypes encoded in the weights of Large Language Models (LLMs) is crucial for developing effective mitigation strategies. However, biased behaviour is often subtle and non-trivial to isolate, even when deliberately elicited, making systematic analysis and debiasing particularly challenging. To address this, we introduce \texttt{BiasGym}, a simple, cost-effective, and generalizable framework for reliably and safely injecting, analyzing, and mitigating conceptual associations of biases within LLMs. \texttt{BiasGym} consists of two components: \texttt{BiasInject}, which safely injects specific biases into the model via token-based fine-tuning while keeping the model frozen, and \texttt{BiasScope}, which leverages these injected signals to identify and reliably steer the components responsible for biased behavior. Our method enables consistent bias elicitation for mechanistic analysis, supports targeted debiasing without degrading performance on downstream tasks, and generalizes to biases unseen during fine-tuning. We demonstrate the effectiveness of BiasGym in reducing real-world stereotypes (e.g., people from Italy being `reckless drivers'), showing its utility for both safety interventions and interpretability research.
comment: Under review. Title updated
♻ ☆ PIQL: Projective Implicit Q-Learning with Support Constraint for Offline Reinforcement Learning
Offline Reinforcement Learning (RL) faces a fundamental challenge of extrapolation errors caused by out-of-distribution (OOD) actions. Implicit Q-Learning (IQL) employs expectile regression to achieve in-sample learning. Nevertheless, IQL relies on a fixed expectile hyperparameter and a density-based policy improvement method, both of which impede its adaptability and performance. In this paper, we propose Projective IQL (PIQL), a projective variant of IQL enhanced with a support constraint. In the policy evaluation stage, PIQL substitutes the fixed expectile hyperparameter with a projection-based parameter and extends the one-step value estimation to a multi-step formulation. In the policy improvement stage, PIQL adopts a support constraint instead of a density constraint, ensuring closer alignment with the policy evaluation. Theoretically, we demonstrate that PIQL maintains the expectile regression and in-sample learning framework, guarantees monotonic policy improvement, and introduces a progressively more rigorous criterion for advantageous actions. Experiments on D4RL and NeoRL2 benchmarks demonstrate robust gains across diverse domains, achieving state-of-the-art performance overall.
♻ ☆ Optimizing Agentic Workflows using Meta-tools
Agentic AI enables LLM to dynamically reason, plan, and interact with tools to solve complex tasks. However, agentic workflows often require many iterative reasoning steps and tool invocations, leading to significant operational expense, end-to-end latency and failures due to hallucinations. This work introduces Agent Workflow Optimization (AWO), a framework that identifies and optimizes redundant tool execution patterns to improve the efficiency and robustness of agentic workflows. AWO analyzes existing workflow traces to discover recurring sequences of tool calls and transforms them into meta-tools, which are deterministic, composite tools that bundle multiple agent actions into a single invocation. Meta-tools bypass unnecessary intermediate LLM reasoning steps and reduce operational cost while also shortening execution paths, leading to fewer failures. Experiments on two agentic AI benchmarks show that AWO reduces the number of LLM calls up to 11.9% while also increasing the task success rate by up to 4.2 percent points.
♻ ☆ Learning-Augmented Power System Operations: A Unified Optimization View
With the increasing penetration of renewable energy, traditional physics-based power system operation faces growing challenges in achieving economic efficiency, stability, and robustness. Machine learning (ML) has emerged as a powerful tool for modeling complex system dynamics to address these challenges. However, existing ML designs are often developed in isolation and lack systematic integration with established operational decision frameworks. To bridge this gap, this paper proposes a holistic framework of Learning-Augmented Power System Operations (LAPSO, pronounced Lap-So). From a native mathematical optimization perspective, LAPSO is centered on the operation stage and aims to unify traditionally siloed power system tasks such as forecasting, operation, and control. The framework jointly optimizes machine learning and physics-based models at both the training and inference stages. Then, a complete set of design metrics is introduced to quantify and evaluate the impact of ML models on the existing decision-makings. These metrics facilitate a deeper understanding of representative applications such as stability-constrained optimization (SCO) and objective-based forecasting (OBF). Moreover, LAPSO is inherently extensible to emerging learning paradigms that integrate forecasting, operation, and control in a closed loop. It also enables the systematic identification and mitigation of different sources and timings of uncertainty from Bayesian perspective. Finally, a dedicated Python package \texttt{lapso} is developed to automatically augment existing power system optimization models with learnable components. All source code and datasets are publicly available at: https://github.com/xuwkk/lapso_exp.
♻ ☆ Semiparametric Preference Optimization: Your Language Model is Secretly a Single-Index Model
Aligning large language models (LLMs) to preference data typically assumes a known link function between observed preferences and latent rewards (e.g., a logistic Bradley-Terry link). Misspecification of this link can bias inferred rewards and misalign learned policies. We study preference alignment under an unknown and unrestricted link function. We show that realizability of $f$-divergence-constrained reward maximization in a policy class induces a semiparametric single-index binary choice model, where a scalar policy-dependent index captures all dependence on demonstrations and the remaining preference distribution is unrestricted. Rather than assuming this model has identifiable finite-dimensional structural parameters and estimating them, as in econometrics, we focus on policy learning with the reward function implicit, analyzing error to the optimal policy and allowing for unidentifiable nonparametric indices. We develop preference optimization algorithms robust to the unknown link and prove convergence guarantees in terms of generic function complexity measures. We demonstrate this empirically on LLM alignment. Code is available at https://github.com/causalml/spo/
♻ ☆ Less Noise, More Voice: Reinforcement Learning for Reasoning via Instruction Purification
Reinforcement Learning with Verifiable Rewards (RLVR) has advanced LLM reasoning, but remains constrained by inefficient exploration under limited rollout budgets, leading to low sampling success and unstable training in complex tasks. We find that many exploration failures arise not from problem difficulty, but from a small number of prompt tokens that introduce interference. Building on this insight, we propose the Less Noise Sampling Framework (LENS), which first prompts by identifying and removing interference tokens. then transfers successful rollouts from the purification process to supervise policy optimization on the original noisy prompts, enabling the model to learn to ignore interference in the real-world, noisy prompting settings. Experimental results show that LENS significantly outperforms GRPO, delivering higher performance and faster convergence, with a 3.88% average gain and over 1.6$\times$ speedup. Our work highlights the critical role of pruning interference tokens in improving rollout efficiency, offering a new perspective for RLVR research.
comment: Work in progress
♻ ☆ EvoXplain: When Machine Learning Models Agree on Predictions but Disagree on Why -- Measuring Mechanistic Multiplicity Across Training Runs
Machine learning models are primarily judged by predictive performance, especially in applied settings. Once a model reaches high accuracy, its explanation is often assumed to be correct and trustworthy. This assumption raises an overlooked question: when two models achieve high accuracy, do they rely on the same internal logic, or do they reach the same outcome via different and potentially competing mechanisms? We introduce EvoXplain, a diagnostic framework that measures the stability of model explanations across repeated training. Rather than analysing the explanation of a single trained model, EvoXplain treats explanations as samples drawn from the training and model selection pipeline itself, without aggregating predictions or constructing ensembles. It examines whether these samples form a single coherent explanation or separate into multiple structured explanatory modes. We evaluate EvoXplain on the Breast Cancer and COMPAS datasets using Logistic Regression and Random Forests. Although all models achieve high predictive accuracy, their explanations frequently exhibit clear multimodality. Even models commonly assumed to be stable, such as Logistic Regression, can give rise to distinct explanation modes under repeated training on the same data split. Crucially, these modes can coexist at near-identical hyperparameter configurations, indicating explanation non-identifiability rather than smooth sensitivity to regularisation strength. EvoXplain does not attempt to select a correct explanation. Instead, it makes explanatory instability visible and quantifiable, revealing when single-instance or averaged explanations obscure the existence of multiple underlying mechanisms. More broadly, EvoXplain reframes interpretability as a property of a model class under repeated instantiation, rather than of any single trained model.
♻ ☆ Transferring Visual Explainability of Self-Explaining Models to Prediction-Only Models without Additional Training
In image classification scenarios where both prediction and explanation efficiency are required, self-explaining models that perform both tasks in a single inference are effective. However, for users who already have prediction-only models, training a new self-explaining model from scratch imposes significant costs in terms of both labeling and computation. This study proposes a method to transfer the visual explanation capability of self-explaining models learned in a source domain to prediction-only models in a target domain based on a task arithmetic framework. Our self-explaining model comprises an architecture that extends Vision Transformer-based prediction-only models, enabling the proposed method to endow explanation capability to many trained prediction-only models without additional training. Experiments on various image classification datasets demonstrate that, except for transfers between less-related domains, the transfer of visual explanation capability from source to target domains is successful, and explanation quality in the target domain improves without substantially sacrificing classification accuracy.
♻ ☆ MLLMEraser: Achieving Test-Time Unlearning in Multimodal Large Language Models through Activation Steering
Multimodal large language models (MLLMs) have demonstrated remarkable capabilities across vision-language tasks, yet their large-scale deployment raises pressing concerns about memorized private data, outdated knowledge, and harmful content. Existing unlearning approaches for MLLMs typically adapt training-based strategies such as gradient ascent or preference optimization, but these methods are computationally expensive, irreversible, and often distort retained knowledge. In this work, we propose MLLMEraser, an input-aware, training-free framework for test-time unlearning. Our approach leverages activation steering to enable dynamic knowledge erasure without parameter updates. Specifically, we construct a multimodal erasure direction by contrasting adversarially perturbed, knowledge-recall image-text pairs with knowledge-erasure counterparts, capturing both textual and visual discrepancies. To prevent unnecessary interference, we further design an input-aware steering mechanism that adaptively determines when and how the erasure direction should be applied, preserving utility on retained knowledge while enforcing forgetting on designated content. Experiments on LLaVA-1.5 and Qwen-2.5-VL demonstrate that MLLMEraser consistently outperforms state-of-the-art MLLM unlearning baselines, achieving stronger forgetting performance with lower computational cost and minimal utility degradation.
♻ ☆ Real-Time Vibration-Based Bearing Fault Diagnosis Under Time-Varying Speed Conditions
Detection of rolling-element bearing faults is crucial for implementing proactive maintenance strategies and for minimizing the economic and operational consequences of unexpected failures. However, many existing techniques are developed and tested under strictly controlled conditions, limiting their adaptability to the diverse and dynamic settings encountered in practical applications. This paper presents an efficient real-time convolutional neural network (CNN) for diagnosing multiple bearing faults under various noise levels and time-varying rotational speeds. Additionally, we propose a novel Fisher-based spectral separability analysis (SSA) method to elucidate the effectiveness of the designed CNN model. We conducted experiments on both healthy bearings and bearings afflicted with inner race, outer race, and roller ball faults. The experimental results show the superiority of our model over the current state-of-the-art approach in three folds: it achieves substantial accuracy gains of up to 15.8%, it is robust to noise with high performance across various signal-to-noise ratios, and it runs in real-time with processing durations five times less than acquisition. Additionally, by using the proposed SSA technique, we offer insights into the model's performance and underscore its effectiveness in tackling real-world challenges.
♻ ☆ SeNeDiF-OOD: Semantic Nested Dichotomy Fusion for Out-of-Distribution Detection Methodology in Open-World Classification. A Case Study on Monument Style Classification
Out-of-distribution (OOD) detection is a fundamental requirement for the reliable deployment of artificial intelligence applications in open-world environments. However, addressing the heterogeneous nature of OOD data, ranging from low-level corruption to semantic shifts, remains a complex challenge that single-stage detectors often fail to resolve. To address this issue, we propose SeNeDiF-OOD, a novel methodology based on Semantic Nested Dichotomy Fusion. This framework decomposes the detection task into a hierarchical structure of binary fusion nodes, where each layer is designed to integrate decision boundaries aligned with specific levels of semantic abstraction. To validate the proposed framework, we present a comprehensive case study using MonuMAI, a real-world architectural style recognition system exposed to an open environment. This application faces a diverse range of inputs, including non-monument images, unknown architectural styles, and adversarial attacks, making it an ideal testbed for our proposal. Through extensive experimental evaluation in this domain, results demonstrate that our hierarchical fusion methodology significantly outperforms traditional baselines, effectively filtering these diverse OOD categories while preserving in-distribution performance.
comment: 28 pages
♻ ☆ Multivariate Standardized Residuals for Conformal Prediction
While split conformal prediction guarantees marginal coverage, approaching the stronger property of conditional coverage is essential for reliable uncertainty quantification. Naive conformal scores, however, suffer from poor conditional coverage in heteroskedastic settings. In univariate regression, this is commonly addressed by normalizing nonconformity scores using estimated local score variance. In this work, we propose a natural extension of this normalization to the multivariate setting, effectively whitening the residuals to decouple output correlations and standardize local variance. We demonstrate that using the Mahalanobis distance induced by a learned local covariance as a nonconformity score provides a closed-form, computationally efficient mechanism for capturing inter-output correlations and heteroskedasticity, avoiding the expensive sampling required by previous methods based on cumulative distribution functions. This structure unlocks several practical extensions, including the handling of missing output values, the refinement of conformal sets when partial information is revealed, and the construction of valid conformal sets for transformations of the output. Finally, we provide extensive empirical evidence on both synthetic and real-world datasets showing that our approach yields conformal sets that significantly improve upon the conditional coverage of existing multivariate baselines.
♻ ☆ A Survey on Efficient Vision-Language-Action Models
Vision-Language-Action models (VLAs) represent a significant frontier in embodied intelligence, aiming to bridge digital knowledge with physical-world interaction. Despite their remarkable performance, foundational VLAs are hindered by the prohibitive computational and data demands inherent to their large-scale architectures. While a surge of recent research has focused on enhancing VLA efficiency, the field lacks a unified framework to consolidate these disparate advancements. To bridge this gap, this survey presents the first comprehensive review of Efficient Vision-Language-Action models (Efficient VLAs) across the entire model-training-data pipeline. Specifically, we introduce a unified taxonomy to systematically organize the disparate efforts in this domain, categorizing current techniques into three core pillars: (1) Efficient Model Design, focusing on efficient architectures and model compression; (2) Efficient Training, which reduces computational burdens during model learning; and (3) Efficient Data Collection, which addresses the bottlenecks in acquiring and utilizing robotic data. Through a critical review of state-of-the-art methods within this framework, this survey not only establishes a foundational reference for the community but also summarizes representative applications, delineates key challenges, and charts a roadmap for future research. We maintain a continuously updated project page to track our latest developments: https://evla-survey.github.io/.
comment: 28 pages, 8 figures
♻ ☆ Stream: Scaling up Mechanistic Interpretability to Long Context in LLMs via Sparse Attention
As Large Language Models (LLMs) scale to million-token contexts, traditional Mechanistic Interpretability techniques for analyzing attention scale quadratically with context length, demanding terabytes of memory beyond 100,000 tokens. We introduce Sparse Tracing, a novel technique that leverages dynamic sparse attention to efficiently analyze long context attention patterns. We present Stream, a compilable hierarchical pruning algorithm that estimates per-head sparse attention masks in near-linear time $O(T \log T)$ and linear space $O(T)$, enabling one-pass interpretability at scale. Stream performs a binary-search-style refinement to retain only the top-$k$ key blocks per query while preserving the model's next-token behavior. We apply Stream to long chain-of-thought reasoning traces and identify thought anchors while pruning 97-99\% of token interactions. On the RULER benchmark, Stream preserves critical retrieval paths while discarding 90-96\% of interactions and exposes layer-wise routes from the needle to output. Our method offers a practical drop-in tool for analyzing attention patterns and tracing information flow without terabytes of caches. By making long context interpretability feasible on consumer GPUs, Sparse Tracing helps democratize chain-of-thought monitoring. Code is available at https://anonymous.4open.science/r/stream-03B8/.
Machine Learning 150
☆ Reward-free Alignment for Conflicting Objectives
Direct alignment methods are increasingly used to align large language models (LLMs) with human preferences. However, many real-world alignment problems involve multiple conflicting objectives, where naive aggregation of preferences can lead to unstable training and poor trade-offs. In particular, weighted loss methods may fail to identify update directions that simultaneously improve all objectives, and existing multi-objective approaches often rely on explicit reward models, introducing additional complexity and distorting user-specified preferences. The contributions of this paper are two-fold. First, we propose a Reward-free Alignment framework for Conflicted Objectives (RACO) that directly leverages pairwise preference data and resolves gradient conflicts via a novel clipped variant of conflict-averse gradient descent. We provide convergence guarantees to Pareto-critical points that respect user-specified objective weights, and further show that clipping can strictly improve convergence rate in the two-objective setting. Second, we improve our method using some heuristics and conduct experiments to demonstrate the compatibility of the proposed framework for LLM alignment. Both qualitative and quantitative evaluations on multi-objective summarization and safety alignment tasks across multiple LLM families (Qwen 3, Llama 3, Gemma 3) show that our method consistently achieves better Pareto trade-offs compared to existing multi-objective alignment baselines.
comment: 27 pages
☆ MEG-XL: Data-Efficient Brain-to-Text via Long-Context Pre-Training
Clinical brain-to-text interfaces are designed for paralysed patients who cannot provide extensive training recordings. Pre-training improves data-efficient generalisation by learning statistical priors across subjects, but these priors critically depend on context. While natural speech might unfold gradually over minutes, most methods pre-train with only a few seconds of context. Thus, we propose MEG-XL, a model pre-trained with 2.5 minutes of MEG context per sample, 5-300x longer than prior work, and equivalent to 191k tokens, capturing extended neural context. Fine-tuning on the task of word decoding from brain data, MEG-XL matches supervised performance with a fraction of the data (e.g. 1hr vs 50hrs) and outperforms brain foundation models. We find that models pre-trained with longer contexts learn representations that transfer better to word decoding. Our results indicate that long-context pre-training helps exploit extended neural context that other methods unnecessarily discard. Code, model weights, and instructions are available at https://github.com/neural-processing-lab/MEG-XL .
comment: 19 pages, 8 figures, 5 tables
☆ RLAnything: Forge Environment, Policy, and Reward Model in Completely Dynamic RL System
We propose RLAnything, a reinforcement learning framework that dynamically forges environment, policy, and reward models through closed-loop optimization, amplifying learning signals and strengthening the overall RL system for any LLM or agentic scenarios. Specifically, the policy is trained with integrated feedback from step-wise and outcome signals, while the reward model is jointly optimized via consistency feedback, which in turn further improves policy training. Moreover, our theory-motivated automatic environment adaptation improves training for both the reward and policy models by leveraging critic feedback from each, enabling learning from experience. Empirically, each added component consistently improves the overall system, and RLAnything yields substantial gains across various representative LLM and agentic tasks, boosting Qwen3-VL-8B-Thinking by 9.1% on OSWorld and Qwen2.5-7B-Instruct by 18.7% and 11.9% on AlfWorld and LiveBench, respectively. We also that optimized reward-model signals outperform outcomes that rely on human labels. Code: https://github.com/Gen-Verse/Open-AgentRL
comment: Code: https://github.com/Gen-Verse/Open-AgentRL
☆ Expanding the Capabilities of Reinforcement Learning via Text Feedback
The success of RL for LLM post-training stems from an unreasonably uninformative source: a single bit of information per rollout as binary reward or preference label. At the other extreme, distillation offers dense supervision but requires demonstrations, which are costly and difficult to scale. We study text feedback as an intermediate signal: richer than scalar rewards, yet cheaper than complete demonstrations. Textual feedback is a natural mode of human interaction and is already abundant in many real-world settings, where users, annotators, and automated judges routinely critique LLM outputs. Towards leveraging text feedback at scale, we formalize a multi-turn RL setup, RL from Text Feedback (RLTF), where text feedback is available during training but not at inference. Therefore, models must learn to internalize the feedback in order to improve their test-time single-turn performance. To do this, we propose two methods: Self Distillation (RLTF-SD), which trains the single-turn policy to match its own feedback-conditioned second-turn generations; and Feedback Modeling (RLTF-FM), which predicts the feedback as an auxiliary objective. We provide theoretical analysis on both methods, and empirically evaluate on reasoning puzzles, competition math, and creative writing tasks. Our results show that both methods consistently outperform strong baselines across benchmarks, highlighting the potential of RL with an additional source of rich supervision at scale.
comment: 43 pages, 6 figures
☆ MemSkill: Learning and Evolving Memory Skills for Self-Evolving Agents
Most Large Language Model (LLM) agent memory systems rely on a small set of static, hand-designed operations for extracting memory. These fixed procedures hard-code human priors about what to store and how to revise memory, making them rigid under diverse interaction patterns and inefficient on long histories. To this end, we present \textbf{MemSkill}, which reframes these operations as learnable and evolvable memory skills, structured and reusable routines for extracting, consolidating, and pruning information from interaction traces. Inspired by the design philosophy of agent skills, MemSkill employs a \emph{controller} that learns to select a small set of relevant skills, paired with an LLM-based \emph{executor} that produces skill-guided memories. Beyond learning skill selection, MemSkill introduces a \emph{designer} that periodically reviews hard cases where selected skills yield incorrect or incomplete memories, and evolves the skill set by proposing refinements and new skills. Together, MemSkill forms a closed-loop procedure that improves both the skill-selection policy and the skill set itself. Experiments on LoCoMo, LongMemEval, HotpotQA, and ALFWorld demonstrate that MemSkill improves task performance over strong baselines and generalizes well across settings. Further analyses shed light on how skills evolve, offering insights toward more adaptive, self-evolving memory management for LLM agents.
comment: Code is available at https://github.com/ViktorAxelsen/MemSkill
☆ HumanX: Toward Agile and Generalizable Humanoid Interaction Skills from Human Videos
Enabling humanoid robots to perform agile and adaptive interactive tasks has long been a core challenge in robotics. Current approaches are bottlenecked by either the scarcity of realistic interaction data or the need for meticulous, task-specific reward engineering, which limits their scalability. To narrow this gap, we present HumanX, a full-stack framework that compiles human video into generalizable, real-world interaction skills for humanoids, without task-specific rewards. HumanX integrates two co-designed components: XGen, a data generation pipeline that synthesizes diverse and physically plausible robot interaction data from video while supporting scalable data augmentation; and XMimic, a unified imitation learning framework that learns generalizable interaction skills. Evaluated across five distinct domains--basketball, football, badminton, cargo pickup, and reactive fighting--HumanX successfully acquires 10 different skills and transfers them zero-shot to a physical Unitree G1 humanoid. The learned capabilities include complex maneuvers such as pump-fake turnaround fadeaway jumpshots without any external perception, as well as interactive tasks like sustained human-robot passing sequences over 10 consecutive cycles--learned from a single video demonstration. Our experiments show that HumanX achieves over 8 times higher generalization success than prior methods, demonstrating a scalable and task-agnostic pathway for learning versatile, real-world robot interactive skills.
☆ SPARKLING: Balancing Signal Preservation and Symmetry Breaking for Width-Progressive Learning
Progressive Learning (PL) reduces pre-training computational overhead by gradually increasing model scale. While prior work has extensively explored depth expansion, width expansion remains significantly understudied, with the few existing methods limited to the early stages of training. However, expanding width during the mid-stage is essential for maximizing computational savings, yet it remains a formidable challenge due to severe training instabilities. Empirically, we show that naive initialization at this stage disrupts activation statistics, triggering loss spikes, while copy-based initialization introduces gradient symmetry that hinders feature diversity. To address these issues, we propose SPARKLING (balancing {S}ignal {P}reservation {A}nd symmet{R}y brea{K}ing for width-progressive {L}earn{ING}), a novel framework for mid-stage width expansion. Our method achieves signal preservation via RMS-scale consistency, stabilizing activation statistics during expansion. Symmetry breaking is ensured through asymmetric optimizer state resetting and learning rate re-warmup. Extensive experiments on Mixture-of-Experts (MoE) models demonstrate that, across multiple width axes and optimizer families, SPARKLING consistently outperforms training from scratch and reduces training cost by up to 35% under $2\times$ width expansion.
☆ Age-Aware Edge-Blind Federated Learning via Over-the-Air Aggregation
We study federated learning (FL) over wireless fading channels where multiple devices simultaneously send their model updates. We propose an efficient \emph{age-aware edge-blind over-the-air FL} approach that does not require channel state information (CSI) at the devices. Instead, the parameter server (PS) uses multiple antennas and applies maximum-ratio combining (MRC) based on its estimated sum of the channel gains to detect the parameter updates. A key challenge is that the number of orthogonal subcarriers is limited; thus, transmitting many parameters requires multiple Orthogonal Frequency Division Multiplexing (OFDM) symbols, which increases latency. To address this, the PS selects only a small subset of model coordinates each round using \emph{AgeTop-\(k\)}, which first picks the largest-magnitude entries and then chooses the \(k\) coordinates with the longest waiting times since they were last selected. This ensures that all selected parameters fit into a single OFDM symbol, reducing latency. We provide a convergence bound that highlights the advantages of using a higher number of antenna array elements and demonstrates a key trade-off: increasing \(k\) decreases compression error at the cost of increasing the effect of channel noise. Experimental results show that (i) more PS antennas greatly improve accuracy and convergence speed; (ii) AgeTop-\(k\) outperforms random selection under relatively good channel conditions; and (iii) the optimum \(k\) depends on the channel, with smaller \(k\) being better in noisy settings.
comment: To appear in IEEE ICC 2026
☆ MentisOculi: Revealing the Limits of Reasoning with Mental Imagery
Frontier models are transitioning from multimodal large language models (MLLMs) that merely ingest visual information to unified multimodal models (UMMs) capable of native interleaved generation. This shift has sparked interest in using intermediate visualizations as a reasoning aid, akin to human mental imagery. Central to this idea is the ability to form, maintain, and manipulate visual representations in a goal-oriented manner. To evaluate and probe this capability, we develop MentisOculi, a procedural, stratified suite of multi-step reasoning problems amenable to visual solution, tuned to challenge frontier models. Evaluating visual strategies ranging from latent tokens to explicit generated imagery, we find they generally fail to improve performance. Analysis of UMMs specifically exposes a critical limitation: While they possess the textual reasoning capacity to solve a task and can sometimes generate correct visuals, they suffer from compounding generation errors and fail to leverage even ground-truth visualizations. Our findings suggest that despite their inherent appeal, visual thoughts do not yet benefit model reasoning. MentisOculi establishes the necessary foundation to analyze and close this gap across diverse model families.
comment: 9 pages, 8 figures
☆ Conflict-Aware Client Selection for Multi-Server Federated Learning
Federated learning (FL) has emerged as a promising distributed machine learning (ML) that enables collaborative model training across clients without exposing raw data, thereby preserving user privacy and reducing communication costs. Despite these benefits, traditional single-server FL suffers from high communication latency due to the aggregation of models from a large number of clients. While multi-server FL distributes workloads across edge servers, overlapping client coverage and uncoordinated selection often lead to resource contention, causing bandwidth conflicts and training failures. To address these limitations, we propose a decentralized reinforcement learning with conflict risk prediction, named RL CRP, to optimize client selection in multi-server FL systems. Specifically, each server estimates the likelihood of client selection conflicts using a categorical hidden Markov model based on its sparse historical client selection sequence. Then, a fairness-aware reward mechanism is incorporated to promote long-term client participation for minimizing training latency and resource contention. Extensive experiments demonstrate that the proposed RL-CRP framework effectively reduces inter-server conflicts and significantly improves training efficiency in terms of convergence speed and communication cost.
comment: 6 pages, 4 figures
☆ Active Causal Experimentalist (ACE): Learning Intervention Strategies via Direct Preference Optimization
Discovering causal relationships requires controlled experiments, but experimentalists face a sequential decision problem: each intervention reveals information that should inform what to try next. Traditional approaches such as random sampling, greedy information maximization, and round-robin coverage treat each decision in isolation, unable to learn adaptive strategies from experience. We propose Active Causal Experimentalist (ACE), which learns experimental design as a sequential policy. Our key insight is that while absolute information gains diminish as knowledge accumulates (making value-based RL unstable), relative comparisons between candidate interventions remain meaningful throughout. ACE exploits this via Direct Preference Optimization, learning from pairwise intervention comparisons rather than non-stationary reward magnitudes. Across synthetic benchmarks, physics simulations, and economic data, ACE achieves 70-71% improvement over baselines at equal intervention budgets (p < 0.001, Cohen's d ~ 2). Notably, the learned policy autonomously discovers that collider mechanisms require concentrated interventions on parent variables, a theoretically-grounded strategy that emerges purely from experience. This suggests preference-based learning can recover principled experimental strategies, complementing theory with learned domain adaptation.
comment: 9 pages, 5 figures
☆ Finite-Sample Wasserstein Error Bounds and Concentration Inequalities for Nonlinear Stochastic Approximation
This paper derives non-asymptotic error bounds for nonlinear stochastic approximation algorithms in the Wasserstein-$p$ distance. To obtain explicit finite-sample guarantees for the last iterate, we develop a coupling argument that compares the discrete-time process to a limiting Ornstein-Uhlenbeck process. Our analysis applies to algorithms driven by general noise conditions, including martingale differences and functions of ergodic Markov chains. Complementing this result, we handle the convergence rate of the Polyak-Ruppert average through a direct analysis that applies under the same general setting. Assuming the driving noise satisfies a non-asymptotic central limit theorem, we show that the normalized last iterates converge to a Gaussian distribution in the $p$-Wasserstein distance at a rate of order $γ_n^{1/6}$, where $γ_n$ is the step size. Similarly, the Polyak-Ruppert average is shown to converge in the Wasserstein distance at a rate of order $n^{-1/6}$. These distributional guarantees imply high-probability concentration inequalities that improve upon those derived from moment bounds and Markov's inequality. We demonstrate the utility of this approach by considering two applications: (1) linear stochastic approximation, where we explicitly quantify the transition from heavy-tailed to Gaussian behavior of the iterates, thereby bridging the gap between recent finite-sample analyses and asymptotic theory and (2) stochastic gradient descent, where we establish rate of convergence to the central limit theorem.
☆ Certain Head, Uncertain Tail: Expert-Sample for Test-Time Scaling in Fine-Grained MoE
Test-time scaling improves LLM performance by generating multiple candidate solutions, yet token-level sampling requires temperature tuning that trades off diversity against stability. Fine-grained MoE, featuring hundreds of well-trained experts per layer and multi-expert activation per token, offers an unexplored alternative through its rich routing space. We empirically characterize fine-grained MoE routing and uncover an informative pattern: router scores exhibit a certain head of high-confidence experts followed by an uncertain tail of low-confidence candidates. While single-run greedy accuracy remains stable when fewer experts are activated, multi-sample pass@n degrades significantly-suggesting that the certain head governs core reasoning capability while the uncertain tail correlates with reasoning diversity. Motivated by these findings, we propose Expert-Sample, a training-free method that preserves high-confidence selections while injecting controlled stochasticity into the uncertain tail, enabling diverse generation without destabilizing outputs. Evaluated on multiple fine-grained MoE models across math, knowledge reasoning, and code tasks, Expert-Sample consistently improves pass@n and verification-based accuracy. On Qwen3-30B-A3B-Instruct evaluated on GPQA-Diamond with 32 parallel samples, pass@32 rises from 85.4% to 91.9%, and accuracy improves from 59.1% to 62.6% with Best-of-N verification.
comment: 24 pages, 13 figures
☆ Energy-Efficient Neuromorphic Computing for Edge AI: A Framework with Adaptive Spiking Neural Networks and Hardware-Aware Optimization
Edge AI applications increasingly require ultra-low-power, low-latency inference. Neuromorphic computing based on event-driven spiking neural networks (SNNs) offers an attractive path, but practical deployment on resource-constrained devices is limited by training difficulty, hardware-mapping overheads, and sensitivity to temporal dynamics. We present NeuEdge, a framework that combines adaptive SNN models with hardware-aware optimization for edge deployment. NeuEdge uses a temporal coding scheme that blends rate and spike-timing patterns to reduce spike activity while preserving accuracy, and a hardware-aware training procedure that co-optimizes network structure and on-chip placement to improve utilization on neuromorphic processors. An adaptive threshold mechanism adjusts neuron excitability from input statistics, reducing energy consumption without degrading performance. Across standard vision and audio benchmarks, NeuEdge achieves 91-96% accuracy with up to 2.3 ms inference latency on edge hardware and an estimated 847 GOp/s/W energy efficiency. A case study on an autonomous-drone workload shows up to 312x energy savings relative to conventional deep neural networks while maintaining real-time operation.
comment: 8 pages, 4 figures, 4 tables. Submitted to IEEE Transactions on Neural Networks and Learning Systems (TNNLS)
☆ Maximizing Reliability with Bayesian Optimization
Bayesian optimization (BO) is a popular, sample-efficient technique for expensive, black-box optimization. One such problem arising in manufacturing is that of maximizing the reliability, or equivalently minimizing the probability of a failure, of a design which is subject to random perturbations - a problem that can involve extremely rare failures ($P_\mathrm{fail} = 10^{-6}-10^{-8}$). In this work, we propose two BO methods based on Thompson sampling and knowledge gradient, the latter approximating the one-step Bayes-optimal policy for minimizing the logarithm of the failure probability. Both methods incorporate importance sampling to target extremely small failure probabilities. Empirical results show the proposed methods outperform existing methods in both extreme and non-extreme regimes.
comment: 25 pages, 9 figures
☆ Full-Batch Gradient Descent Outperforms One-Pass SGD: Sample Complexity Separation in Single-Index Learning
It is folklore that reusing training data more than once can improve the statistical efficiency of gradient-based learning. However, beyond linear regression, the theoretical advantage of full-batch gradient descent (GD, which always reuses all the data) over one-pass stochastic gradient descent (online SGD, which uses each data point only once) remains unclear. In this work, we consider learning a $d$-dimensional single-index model with a quadratic activation, for which it is known that one-pass SGD requires $n\gtrsim d\log d$ samples to achieve weak recovery. We first show that this $\log d$ factor in the sample complexity persists for full-batch spherical GD on the correlation loss; however, by simply truncating the activation, full-batch GD exhibits a favorable optimization landscape at $n \simeq d$ samples, thereby outperforming one-pass SGD (with the same activation) in statistical efficiency. We complement this result with a trajectory analysis of full-batch GD on the squared loss from small initialization, showing that $n \gtrsim d$ samples and $T \gtrsim\log d$ gradient steps suffice to achieve strong (exact) recovery.
☆ Embedding Perturbation may Better Reflect the Uncertainty in LLM Reasoning
Large language Models (LLMs) have achieved significant breakthroughs across diverse domains; however, they can still produce unreliable or misleading outputs. For responsible LLM application, Uncertainty Quantification (UQ) techniques are used to estimate a model's uncertainty about its outputs, indicating the likelihood that those outputs may be problematic. For LLM reasoning tasks, it is essential to estimate the uncertainty not only for the final answer, but also for the intermediate steps of the reasoning, as this can enable more fine-grained and targeted interventions. In this study, we explore what UQ metrics better reflect the LLM's ``intermediate uncertainty''during reasoning. Our study reveals that an LLMs' incorrect reasoning steps tend to contain tokens which are highly sensitive to the perturbations on the preceding token embeddings. In this way, incorrect (uncertain) intermediate steps can be readily identified using this sensitivity score as guidance in practice. In our experiments, we show such perturbation-based metric achieves stronger uncertainty quantification performance compared with baseline methods such as token (generation) probability and token entropy. Besides, different from approaches that rely on multiple sampling, the perturbation-based metrics offer better simplicity and efficiency.
☆ Repurposing Protein Language Models for Latent Flow-Based Fitness Optimization
Protein fitness optimization is challenged by a vast combinatorial landscape where high-fitness variants are extremely sparse. Many current methods either underperform or require computationally expensive gradient-based sampling. We present CHASE, a framework that repurposes the evolutionary knowledge of pretrained protein language models by compressing their embeddings into a compact latent space. By training a conditional flow-matching model with classifier-free guidance, we enable the direct generation of high-fitness variants without predictor-based guidance during the ODE sampling steps. CHASE achieves state-of-the-art performance on AAV and GFP protein design benchmarks. Finally, we show that bootstrapping with synthetic data can further enhance performance in data-constrained settings.
☆ Poly-attention: a general scheme for higher-order self-attention
The self-attention mechanism, at the heart of the Transformer model, is able to effectively model pairwise interactions between tokens. However, numerous recent works have shown that it is unable to perform basic tasks involving detecting triples of correlated tokens, or compositional tasks where multiple input tokens need to be referenced to generate a result. Some higher-dimensional alternatives to self-attention have been proposed to address this, including higher-order attention and Strassen attention, which can perform some of these polyadic tasks in exchange for slower, superquadratic running times. In this work, we define a vast class of generalizations of self-attention, which we call poly-attention mechanisms. Our mechanisms can incorporate arbitrary higher-order (tensor) computations as well as arbitrary relationship structures between the input tokens, and they include the aforementioned alternatives as special cases. We then systematically study their computational complexity and representational strength, including giving new algorithms and matching complexity-theoretic lower bounds on the time complexity of computing the attention matrix exactly as well as approximately, and tightly determining which polyadic tasks they can each perform. Our results give interesting trade-offs between different desiderata for these mechanisms, including a tight relationship between how expressive a mechanism is, and how large the coefficients in the model may be so that the mechanism can be approximated in almost-linear time. Notably, we give a new attention mechanism which can be computed exactly in quadratic time, and which can perform function composition for any fixed number of functions. Prior mechanisms, even for just composing two functions, could only be computed in superquadratic time, and our new lower bounds show that faster algorithms for them are not possible.
☆ Trust Region Continual Learning as an Implicit Meta-Learner
Continual learning aims to acquire tasks sequentially without catastrophic forgetting, yet standard strategies face a core tradeoff: regularization-based methods (e.g., EWC) can overconstrain updates when task optima are weakly overlapping, while replay-based methods can retain performance but drift due to imperfect replay. We study a hybrid perspective: \emph{trust region continual learning} that combines generative replay with a Fisher-metric trust region constraint. We show that, under local approximations, the resulting update admits a MAML-style interpretation with a single implicit inner step: replay supplies an old-task gradient signal (query-like), while the Fisher-weighted penalty provides an efficient offline curvature shaping (support-like). This yields an emergent meta-learning property in continual learning: the model becomes an initialization that rapidly \emph{re-converges} to prior task optima after each task transition, without explicitly optimizing a bilevel objective. Empirically, on task-incremental diffusion image generation and continual diffusion-policy control, trust region continual learning achieves the best final performance and retention, and consistently recovers early-task performance faster than EWC, replay, and continual meta-learning baselines.
comment: 19 pages, 23 tables
☆ Active Transfer Bagging: A New Approach for Accelerated Active Learning Acquisition of Data by Combined Transfer Learning and Bagging Based Models
Modern machine learning has achieved remarkable success on many problems, but this success often depends on the existence of large, labeled datasets. While active learning can dramatically reduce labeling cost when annotations are expensive, early performance is frequently dominated by the initial seed set, typically chosen at random. In many applications, however, related or approximate datasets are readily available and can be leveraged to construct a better seed set. We introduce a new method for selecting the seed data set for active learning, Active-Transfer Bagging (ATBagging). ATBagging estimates the informativeness of candidate data point from a Bayesian interpretation of bagged ensemble models by comparing in-bag and out-of-bag predictive distributions from the labeled dataset, yielding an information-gain proxy. To avoid redundant selections, we impose feature-space diversity by sampling a determinantal point process (DPP) whose kernel uses Random Fourier Features and a quality-diversity factorization that incorporates the informativeness scores. This same blended method is used for selection of new data points to collect during the active learning phase. We evaluate ATBagging on four real-world datasets covering both target-transfer and feature-shift scenarios (QM9, ERA5, Forbes 2000, and Beijing PM2.5). Across seed sizes nseed = 10-100, ATBagging improves or ties early active learning and increases area under the learning-curve relative to alternative seed subset selection methodologies in almost all cases, with strongest benefits in low-data regimes. Thus, ATBagging provides a low-cost, high reward means to initiating active learning-based data collection.
☆ Misconception Diagnosis From Student-Tutor Dialogue: Generate, Retrieve, Rerank
Timely and accurate identification of student misconceptions is key to improving learning outcomes and pre-empting the compounding of student errors. However, this task is highly dependent on the effort and intuition of the teacher. In this work, we present a novel approach for detecting misconceptions from student-tutor dialogues using large language models (LLMs). First, we use a fine-tuned LLM to generate plausible misconceptions, and then retrieve the most promising candidates among these using embedding similarity with the input dialogue. These candidates are then assessed and re-ranked by another fine-tuned LLM to improve misconception relevance. Empirically, we evaluate our system on real dialogues from an educational tutoring platform. We consider multiple base LLM models including LLaMA, Qwen and Claude on zero-shot and fine-tuned settings. We find that our approach improves predictive performance over baseline models and that fine-tuning improves both generated misconception quality and can outperform larger closed-source models. Finally, we conduct ablation studies to both validate the importance of our generation and reranking steps on misconception generation quality.
comment: 21 pages, 8 figures, 8 tables. Joshua Mitton and Prarthana Bhattacharyya contributed equally to this paper
☆ Masked Autoencoders as Universal Speech Enhancer
Supervised speech enhancement methods have been very successful. However, in practical scenarios, there is a lack of clean speech, and self-supervised learning-based (SSL) speech enhancement methods that offer comparable enhancement performance and can be applied to other speech-related downstream applications are desired. In this work, we develop a masked autoencoder based universal speech enhancer that is agnostic to the type of distortion affecting speech, can handle multiple distortions simultaneously, and is trained in a self-supervised manner. An augmentation stack adds further distortions to the noisy input data. The masked autoencoder model learns to remove the added distortions along with reconstructing the masked regions of the spectrogram during pre-training. The pre-trained embeddings are then used by fine-tuning models trained on a small amount of paired data for specific downstream tasks. We evaluate the pre-trained features for denoising and dereverberation downstream tasks. We explore different augmentations (like single or multi-speaker) in the pre-training augmentation stack and the effect of different noisy input feature representations (like $log1p$ compression) on pre-trained embeddings and downstream fine-tuning enhancement performance. We show that the proposed method not only outperforms the baseline but also achieves state-of-the-art performance for both in-domain and out-of-domain evaluation datasets.
☆ Provably Data-driven Multiple Hyper-parameter Tuning with Structured Loss Function
Data-driven algorithm design automates hyperparameter tuning, but its statistical foundations remain limited because model performance can depend on hyperparameters in implicit and highly non-smooth ways. Existing guarantees focus on the simple case of a one-dimensional (scalar) hyperparameter. This leaves the practically important, multi-dimensional hyperparameter tuning setting unresolved. We address this open question by establishing the first general framework for establishing generalization guarantees for tuning multi-dimensional hyperparameters in data-driven settings. Our approach strengthens the generalization guarantee framework for semi-algebraic function classes by exploiting tools from real algebraic geometry, yielding sharper, more broadly applicable guarantees. We then extend the analysis to hyperparameter tuning using the validation loss under minimal assumptions, and derive improved bounds when additional structure is available. Finally, we demonstrate the scope of the framework with new learnability results, including data-driven weighted group lasso and weighted fused lasso.
☆ Didactic to Constructive: Turning Expert Solutions into Learnable Reasoning
Improving the reasoning capabilities of large language models (LLMs) typically relies either on the model's ability to sample a correct solution to be reinforced or on the existence of a stronger model able to solve the problem. However, many difficult problems remain intractable for even current frontier models, preventing the extraction of valid training signals. A promising alternative is to leverage high-quality expert human solutions, yet naive imitation of this data fails because it is fundamentally out of distribution: expert solutions are typically didactic, containing implicit reasoning gaps intended for human readers rather than computational models. Furthermore, high-quality expert solutions are expensive, necessitating generalizable sample-efficient training methods. We propose Distribution Aligned Imitation Learning (DAIL), a two-step method that bridges the distributional gap by first transforming expert solutions into detailed, in-distribution reasoning traces and then applying a contrastive objective to focus learning on expert insights and methodologies. We find that DAIL can leverage fewer than 1000 high-quality expert solutions to achieve 10-25% pass@k gains on Qwen2.5-Instruct and Qwen3 models, improve reasoning efficiency by 2x to 4x, and enable out-of-domain generalization.
☆ An Empirical Study on Noisy Data and LLM Pretraining Loss Divergence
Large-scale pretraining datasets drive the success of large language models (LLMs). However, these web-scale corpora inevitably contain large amounts of noisy data due to unregulated web content or randomness inherent in data. Although LLM pretrainers often speculate that such noise contributes to instabilities in large-scale LLM pretraining and, in the worst cases, loss divergence, this phenomenon remains poorly understood.In this work, we present a systematic empirical study of whether noisy data causes LLM pretraining divergences and how it does so. By injecting controlled synthetic uniformly random noise into otherwise clean datasets, we analyze training dynamics across model sizes ranging from 480M to 5.2B parameters. We show that noisy data indeed induces training loss divergence, and that the probability of divergence depends strongly on the noise type, amount of noise, and model scale. We further find that noise-induced divergences exhibit activation patterns distinct from those caused by high learning rates, and we provide diagnostics that differentiate these two failure modes. Together, these results provide a large-scale, controlled characterization of how noisy data affects loss divergence in LLM pretraining.
☆ PRISM: Performer RS-IMLE for Single-pass Multisensory Imitation Learning
Robotic imitation learning typically requires models that capture multimodal action distributions while operating at real-time control rates and accommodating multiple sensing modalities. Although recent generative approaches such as diffusion models, flow matching, and Implicit Maximum Likelihood Estimation (IMLE) have achieved promising results, they often satisfy only a subset of these requirements. To address this, we introduce PRISM, a single-pass policy based on a batch-global rejection-sampling variant of IMLE. PRISM couples a temporal multisensory encoder (integrating RGB, depth, tactile, audio, and proprioception) with a linear-attention generator using a Performer architecture. We demonstrate the efficacy of PRISM on a diverse real-world hardware suite, including loco-manipulation using a Unitree Go2 with a 7-DoF arm D1 and tabletop manipulation with a UR5 manipulator. Across challenging physical tasks such as pre-manipulation parking, high-precision insertion, and multi-object pick-and-place, PRISM outperforms state-of-the-art diffusion policies by 10-25% in success rate while maintaining high-frequency (30-50 Hz) closed-loop control. We further validate our approach on large-scale simulation benchmarks, including CALVIN, MetaWorld, and Robomimic. In CALVIN (10% data split), PRISM improves success rates by approximately 25% over diffusion and approximately 20% over flow matching, while simultaneously reducing trajectory jerk by 20x-50x. These results position PRISM as a fast, accurate, and multisensory imitation policy that retains multimodal action coverage without the latency of iterative sampling.
comment: 10 pages main text and 4 figures, and 11 pages appendix and 10 figures, total 21 pages and 14 figures
☆ David vs. Goliath: Verifiable Agent-to-Agent Jailbreaking via Reinforcement Learning
The evolution of large language models into autonomous agents introduces adversarial failures that exploit legitimate tool privileges, transforming safety evaluation in tool-augmented environments from a subjective NLP task into an objective control problem. We formalize this threat model as Tag-Along Attacks: a scenario where a tool-less adversary "tags along" on the trusted privileges of a safety-aligned Operator to induce prohibited tool use through conversation alone. To validate this threat, we present Slingshot, a 'cold-start' reinforcement learning framework that autonomously discovers emergent attack vectors, revealing a critical insight: in our setting, learned attacks tend to converge to short, instruction-like syntactic patterns rather than multi-turn persuasion. On held-out extreme-difficulty tasks, Slingshot achieves a 67.0% success rate against a Qwen2.5-32B-Instruct-AWQ Operator (vs. 1.7% baseline), reducing the expected attempts to first success (on solved tasks) from 52.3 to 1.3. Crucially, Slingshot transfers zero-shot to several model families, including closed-source models like Gemini 2.5 Flash (56.0% attack success rate) and defensive-fine-tuned open-source models like Meta-SecAlign-8B (39.2% attack success rate). Our work establishes Tag-Along Attacks as a first-class, verifiable threat model and shows that effective agentic attacks can be elicited from off-the-shelf open-weight models through environment interaction alone.
comment: Under review. 8 main pages, 2 figures, 2 tables. Appendix included
☆ Personalized Image Generation via Human-in-the-loop Bayesian Optimization
Imagine Alice has a specific image $x^\ast$ in her mind, say, the view of the street in which she grew up during her childhood. To generate that exact image, she guides a generative model with multiple rounds of prompting and arrives at an image $x^{p*}$. Although $x^{p*}$ is reasonably close to $x^\ast$, Alice finds it difficult to close that gap using language prompts. This paper aims to narrow this gap by observing that even after language has reached its limits, humans can still tell when a new image $x^+$ is closer to $x^\ast$ than $x^{p*}$. Leveraging this observation, we develop MultiBO (Multi-Choice Preferential Bayesian Optimization) that carefully generates $K$ new images as a function of $x^{p*}$, gets preferential feedback from the user, uses the feedback to guide the diffusion model, and ultimately generates a new set of $K$ images. We show that within $B$ rounds of user feedback, it is possible to arrive much closer to $x^\ast$, even though the generative model has no information about $x^\ast$. Qualitative scores from $30$ users, combined with quantitative metrics compared across $5$ baselines, show promising results, suggesting that multi-choice feedback from humans can be effectively harnessed for personalized image generation.
☆ Trust by Design: Skill Profiles for Transparent, Cost-Aware LLM Routing
How should Large Language Model (LLM) practitioners select the right model for a task without wasting money? We introduce BELLA (Budget-Efficient LLM Selection via Automated skill-profiling), a framework that recommends optimal LLM selection for tasks through interpretable skill-based model selection. Standard benchmarks report aggregate metrics that obscure which specific capabilities a task requires and whether a cheaper model could suffice. BELLA addresses this gap through three stages: (1) decomposing LLM outputs and extract the granular skills required by using critic-based profiling, (2) clustering skills into structured capability matrices, and (3) multi-objective optimization to select the right models to maximize performance while respecting budget constraints. BELLA provides natural-language rationale for recommendations, providing transparency that current black-box routing systems lack. We describe the framework architecture, situate it within the landscape of LLM routing and evaluation, and discuss its application to financial reasoning as a representative domain exhibiting diverse skill requirements and cost-variation across models. Our framework enables practitioners to make principled and cost-performance trade-offs for deploying LLMs.
comment: Appeared at MLSys YPS 2025
Transformers learn factored representations
Transformers pretrained via next token prediction learn to factor their world into parts, representing these factors in orthogonal subspaces of the residual stream. We formalize two representational hypotheses: (1) a representation in the product space of all factors, whose dimension grows exponentially with the number of parts, or (2) a factored representation in orthogonal subspaces, whose dimension grows linearly. The factored representation is lossless when factors are conditionally independent, but sacrifices predictive fidelity otherwise, creating a tradeoff between dimensional efficiency and accuracy. We derive precise predictions about the geometric structure of activations for each, including the number of subspaces, their dimensionality, and the arrangement of context embeddings within them. We test between these hypotheses on transformers trained on synthetic processes with known latent structure. Models learn factored representations when factors are conditionally independent, and continue to favor them early in training even when noise or hidden dependencies undermine conditional independence, reflecting an inductive bias toward factoring at the cost of fidelity. This provides a principled explanation for why transformers decompose the world into parts, and suggests that interpretable low dimensional structure may persist even in models trained on complex data.
☆ SLIME: Stabilized Likelihood Implicit Margin Enforcement for Preference Optimization
Direct preference optimization methods have emerged as a computationally efficient alternative to Reinforcement Learning from Human Feedback (RLHF) for aligning Large Language Models (LLMs). Latest approaches have streamlined the alignment process by deriving implicit reward functions, yet they often suffer from a critical objective mismatch: optimizing the relative margin between chosen and rejected responses does not guarantee the preservation of the chosen response's absolute likelihood. This can lead to ``unlearning'', where the model degrades the probability of high-quality outputs to satisfy margin constraints, and ``formatting collapse'' caused by the over-penalization of rejected sequences. In this work, we introduce SLIME (Stabilized Likelihood Implicit Margin Enforcement), a reference-free alignment objective designed to decouple preference learning from generation quality. SLIME incorporates a three-pronged objective: (1) an anchoring term to maximize the likelihood of preferred responses; (2) a stabilizing penalty that prevents the probabilities of rejected tokens from collapsing to zero; and (3) a dual-margin mechanism that combines hard and soft constraints for precise boundary shaping. Our results demonstrate that SLIME achieves superior performance compared to state-of-the-art baselines while maintaining higher generation stability.
Self-Supervised Learning from Structural Invariance ICLR 2026
Joint-embedding self-supervised learning (SSL), the key paradigm for unsupervised representation learning from visual data, learns from invariances between semantically-related data pairs. We study the one-to-many mapping problem in SSL, where each datum may be mapped to multiple valid targets. This arises when data pairs come from naturally occurring generative processes, e.g., successive video frames. We show that existing methods struggle to flexibly capture this conditional uncertainty. As a remedy, we introduce a latent variable to account for this uncertainty and derive a variational lower bound on the mutual information between paired embeddings. Our derivation yields a simple regularization term for standard SSL objectives. The resulting method, which we call AdaSSL, applies to both contrastive and distillation-based SSL objectives, and we empirically show its versatility in causal representation learning, fine-grained image understanding, and world modeling on videos.
comment: ICLR 2026
☆ C-kNN-LSH: A Nearest-Neighbor Algorithm for Sequential Counterfactual Inference
Estimating causal effects from longitudinal trajectories is central to understanding the progression of complex conditions and optimizing clinical decision-making, such as comorbidities and long COVID recovery. We introduce \emph{C-kNN--LSH}, a nearest-neighbor framework for sequential causal inference designed to handle such high-dimensional, confounded situations. By utilizing locality-sensitive hashing, we efficiently identify ``clinical twins'' with similar covariate histories, enabling local estimation of conditional treatment effects across evolving disease states. To mitigate bias from irregular sampling and shifting patient recovery profiles, we integrate neighborhood estimator with a doubly-robust correction. Theoretical analysis guarantees our estimator is consistent and second-order robust to nuisance error. Evaluated on a real-world Long COVID cohort with 13,511 participants, \emph{C-kNN-LSH} demonstrates superior performance in capturing recovery heterogeneity and estimating policy values compared to existing baselines.
☆ Live-Evo: Online Evolution of Agentic Memory from Continuous Feedback
Large language model (LLM) agents are increasingly equipped with memory, which are stored experience and reusable guidance that can improve task-solving performance. Recent \emph{self-evolving} systems update memory based on interaction outcomes, but most existing evolution pipelines are developed for static train/test splits and only approximate online learning by folding static benchmarks, making them brittle under true distribution shift and continuous feedback. We introduce \textsc{Live-Evo}, an online self-evolving memory system that learns from a stream of incoming data over time. \textsc{Live-Evo} decouples \emph{what happened} from \emph{how to use it} via an Experience Bank and a Meta-Guideline Bank, compiling task-adaptive guidelines from retrieved experiences for each task. To manage memory online, \textsc{Live-Evo} maintains experience weights and updates them from feedback: experiences that consistently help are reinforced and retrieved more often, while misleading or stale experiences are down-weighted and gradually forgotten, analogous to reinforcement and decay in human memory. On the live \textit{Prophet Arena} benchmark over a 10-week horizon, \textsc{Live-Evo} improves Brier score by 20.8\% and increases market returns by 12.9\%, while also transferring to deep-research benchmarks with consistent gains over strong baselines. Our code is available at https://github.com/ag2ai/Live-Evo.
comment: 13 pages
☆ ReasonCACHE: Teaching LLMs To Reason Without Weight Updates
Can Large language models (LLMs) learn to reason without any weight update and only through in-context learning (ICL)? ICL is strikingly sample-efficient, often learning from only a handful of demonstrations, but complex reasoning tasks typically demand many training examples to learn from. However, naively scaling ICL by adding more demonstrations breaks down at this scale: attention costs grow quadratically, performance saturates or degrades with longer contexts, and the approach remains a shallow form of learning. Due to these limitations, practitioners predominantly rely on in-weight learning (IWL) to induce reasoning. In this work, we show that by using Prefix Tuning, LLMs can learn to reason without overloading the context window and without any weight updates. We introduce $\textbf{ReasonCACHE}$, an instantiation of this mechanism that distills demonstrations into a fixed key-value cache. Empirically, across challenging reasoning benchmarks, including GPQA-Diamond, ReasonCACHE outperforms standard ICL and matches or surpasses IWL approaches. Further, it achieves this all while being more efficient across three key axes: data, inference cost, and trainable parameters. We also theoretically prove that ReasonCACHE can be strictly more expressive than low-rank weight update since the latter ties expressivity to input rank, whereas ReasonCACHE bypasses this constraint by directly injecting key-values into the attention mechanism. Together, our findings identify ReasonCACHE as a middle path between in-context and in-weight learning, providing a scalable algorithm for learning reasoning skills beyond the context window without modifying parameters. Our project page: https://reasoncache.github.io/
comment: 26 pages, 17 Figures
☆ Transfer Learning Through Conditional Quantile Matching
We introduce a transfer learning framework for regression that leverages heterogeneous source domains to improve predictive performance in a data-scarce target domain. Our approach learns a conditional generative model separately for each source domain and calibrates the generated responses to the target domain via conditional quantile matching. This distributional alignment step corrects general discrepancies between source and target domains without imposing restrictive assumptions such as covariate or label shift. The resulting framework provides a principled and flexible approach to high-quality data augmentation for downstream learning tasks in the target domain. From a theoretical perspective, we show that an empirical risk minimizer (ERM) trained on the augmented dataset achieves a tighter excess risk bound than the target-only ERM under mild conditions. In particular, we establish new convergence rates for the quantile matching estimator that governs the transfer bias-variance tradeoff. From a practical perspective, extensive simulations and real data applications demonstrate that the proposed method consistently improves prediction accuracy over target-only learning and competing transfer learning methods.
comment: 24 pages (8 pages for the main paper), 3 figures, 3 tables
☆ NAB: Neural Adaptive Binning for Sparse-View CT reconstruction
Computed Tomography (CT) plays a vital role in inspecting the internal structures of industrial objects. Furthermore, achieving high-quality CT reconstruction from sparse views is essential for reducing production costs. While classic implicit neural networks have shown promising results for sparse reconstruction, they are unable to leverage shape priors of objects. Motivated by the observation that numerous industrial objects exhibit rectangular structures, we propose a novel \textbf{N}eural \textbf{A}daptive \textbf{B}inning (\textbf{NAB}) method that effectively integrates rectangular priors into the reconstruction process. Specifically, our approach first maps coordinate space into a binned vector space. This mapping relies on an innovative binning mechanism based on differences between shifted hyperbolic tangent functions, with our extension enabling rotations around the input-plane normal vector. The resulting representations are then processed by a neural network to predict CT attenuation coefficients. This design enables end-to-end optimization of the encoding parameters -- including position, size, steepness, and rotation -- via gradient flow from the projection data, thus enhancing reconstruction accuracy. By adjusting the smoothness of the binning function, NAB can generalize to objects with more complex geometries. This research provides a new perspective on integrating shape priors into neural network-based reconstruction. Extensive experiments demonstrate that NAB achieves superior performance on two industrial datasets. It also maintains robust on medical datasets when the binning function is extended to more general expression. The code will be made available.
☆ Hierarchical Federated Learning with SignSGD: A Highly Communication-Efficient Approach
Hierarchical federated learning (HFL) has emerged as a key architecture for large-scale wireless and Internet of Things systems, where devices communicate with nearby edge servers before reaching the cloud. In these environments, uplink bandwidth and latency impose strict communication limits, thereby making aggressive gradient compression essential. One-bit methods such as sign-based stochastic gradient descent (SignSGD) offer an attractive solution in flat federated settings, but existing theory and algorithms do not naturally extend to hierarchical settings. In particular, the interaction between majority-vote aggregation at the edge layer and model aggregation at the cloud layer, and its impact on end-to-end performance, remains unknown. To bridge this gap, we propose a highly communication-efficient sign-based HFL framework and develop its corresponding formulation for nonconvex learning, where devices send only signed stochastic gradients, edge servers combine them through majority-vote, and the cloud periodically averages the obtained edge models, while utilizing downlink quantization to broadcast the global model. We introduce the resulting scalable HFL algorithm, HierSignSGD, and provide the convergence analysis for SignSGD in a hierarchical setting. Our core technical contribution is a characterization of how biased sign compression, two-level aggregation intervals, and inter-cluster heterogeneity collectively affect convergence. Numerical experiments under homogeneous and heterogeneous data splits show that HierSignSGD, despite employing extreme compression, achieves accuracy comparable to or better than full-precision stochastic gradient descent while reducing communication cost in the process, and remains robust under aggressive downlink sparsification.
☆ Implicit neural representation of textures
Implicit neural representation (INR) has proven to be accurate and efficient in various domains. In this work, we explore how different neural networks can be designed as a new texture INR, which operates in a continuous manner rather than a discrete one over the input UV coordinate space. Through thorough experiments, we demonstrate that these INRs perform well in terms of image quality, with considerable memory usage and rendering inference time. We analyze the balance between these objectives. In addition, we investigate various related applications in real-time rendering and down-stream tasks, e.g. mipmap fitting and INR-space generation.
comment: Albert Kwok and Zheyuan Hu contributed equally to this work
☆ Artificial Intelligence and Symmetries: Learning, Encoding, and Discovering Structure in Physical Data
Symmetries play a central role in physics, organizing dynamics, constraining interactions, and determining the effective number of physical degrees of freedom. In parallel, modern artificial intelligence methods have demonstrated a remarkable ability to extract low-dimensional structure from high-dimensional data through representation learning. This review examines the interplay between these two perspectives, focusing on the extent to which symmetry-induced constraints can be identified, encoded, or diagnosed using machine learning techniques. Rather than emphasizing architectures that enforce known symmetries by construction, we concentrate on data-driven approaches and latent representation learning, with particular attention to variational autoencoders. We discuss how symmetries and conservation laws reduce the intrinsic dimensionality of physical datasets, and how this reduction may manifest itself through self-organization of latent spaces in generative models trained to balance reconstruction and compression. We review recent results, including case studies from simple geometric systems and particle physics processes, and analyze the theoretical and practical limitations of inferring symmetry structure without explicit inductive bias.
comment: 25 pages, 9 figures. This manuscript is an invited review at the International Journal of Modern Physics A
☆ Context Learning for Multi-Agent Discussion
Multi-Agent Discussion (MAD) has garnered increasing attention very recently, where multiple LLM instances collaboratively solve problems via structured discussion. However, we find that current MAD methods easily suffer from discussion inconsistency, LLMs fail to reach a coherent solution, due to the misalignment between their individual contexts.In this paper, we introduce a multi-LLM context learning method (M2CL) that learns a context generator for each agent, capable of dynamically generating context instructions per discussion round via automatic information organization and refinement. Specifically, inspired by our theoretical insights on the context instruction, M2CL train the generators to control context coherence and output discrepancies via a carefully crafted self-adaptive mechanism.It enables LLMs to avoid premature convergence on majority noise and progressively reach the correct consensus. We evaluate M2CL on challenging tasks, including academic reasoning, embodied tasks, and mobile control. The results show that the performance of M2CL significantly surpasses existing methods by 20%--50%, while enjoying favorable transferability and computational efficiency.
☆ Why Steering Works: Toward a Unified View of Language Model Parameter Dynamics
Methods for controlling large language models (LLMs), including local weight fine-tuning, LoRA-based adaptation, and activation-based interventions, are often studied in isolation, obscuring their connections and making comparison difficult. In this work, we present a unified view that frames these interventions as dynamic weight updates induced by a control signal, placing them within a single conceptual framework. Building on this view, we propose a unified preference-utility analysis that separates control effects into preference, defined as the tendency toward a target concept, and utility, defined as coherent and task-valid generation, and measures both on a shared log-odds scale using polarity-paired contrastive examples. Across methods, we observe a consistent trade-off between preference and utility: stronger control increases preference while predictably reducing utility. We further explain this behavior through an activation manifold perspective, in which control shifts representations along target-concept directions to enhance preference, while utility declines primarily when interventions push representations off the model's valid-generation manifold. Finally, we introduce a new steering approach SPLIT guided by this analysis that improves preference while better preserving utility. Code is available at https://github.com/zjunlp/EasyEdit/blob/main/examples/SPLIT.md.
comment: Work in progress
☆ VQ-Style: Disentangling Style and Content in Motion with Residual Quantized Representations
Human motion data is inherently rich and complex, containing both semantic content and subtle stylistic features that are challenging to model. We propose a novel method for effective disentanglement of the style and content in human motion data to facilitate style transfer. Our approach is guided by the insight that content corresponds to coarse motion attributes while style captures the finer, expressive details. To model this hierarchy, we employ Residual Vector Quantized Variational Autoencoders (RVQ-VAEs) to learn a coarse-to-fine representation of motion. We further enhance the disentanglement by integrating contrastive learning and a novel information leakage loss with codebook learning to organize the content and the style across different codebooks. We harness this disentangled representation using our simple and effective inference-time technique Quantized Code Swapping, which enables motion style transfer without requiring any fine-tuning for unseen styles. Our framework demonstrates strong versatility across multiple inference applications, including style transfer, style removal, and motion blending.
☆ Interpreting and Controlling LLM Reasoning through Integrated Policy Gradient
Large language models (LLMs) demonstrate strong reasoning abilities in solving complex real-world problems. Yet, the internal mechanisms driving these complex reasoning behaviors remain opaque. Existing interpretability approaches targeting reasoning either identify components (e.g., neurons) correlated with special textual patterns, or rely on human-annotated contrastive pairs to derive control vectors. Consequently, current methods struggle to precisely localize complex reasoning mechanisms or capture sequential influence from model internal workings to the reasoning outputs. In this paper, built on outcome-oriented and sequential-influence-aware principles, we focus on identifying components that have sequential contribution to reasoning behavior where outcomes are cumulated by long-range effects. We propose Integrated Policy Gradient (IPG), a novel framework that attributes reasoning behaviors to model's inner components by propagating compound outcome-based signals such as post reasoning accuracy backward through model inference trajectories. Empirical evaluations demonstrate that our approach achieves more precise localization and enables reliable modulation of reasoning behaviors (e.g., reasoning capability, reasoning strength) across diverse reasoning models.
☆ Spark: Modular Spiking Neural Networks
Nowadays, neural networks act as a synonym for artificial intelligence. Present neural network models, although remarkably powerful, are inefficient both in terms of data and energy. Several alternative forms of neural networks have been proposed to address some of these problems. Specifically, spiking neural networks are suitable for efficient hardware implementations. However, effective learning algorithms for spiking networks remain elusive, although it is suspected that effective plasticity mechanisms could alleviate the problem of data efficiency. Here, we present a new framework for spiking neural networks - Spark - built upon the idea of modular design, from simple components to entire models. The aim of this framework is to provide an efficient and streamlined pipeline for spiking neural networks. We showcase this framework by solving the sparse-reward cartpole problem with simple plasticity mechanisms. We hope that a framework compatible with traditional ML pipelines may accelerate research in the area, specifically for continuous and unbatched learning, akin to the one animals exhibit.
☆ Position: Explaining Behavioral Shifts in Large Language Models Requires a Comparative Approach
Large-scale foundation models exhibit behavioral shifts: intervention-induced behavioral changes that appear after scaling, fine-tuning, reinforcement learning or in-context learning. While investigating these phenomena have recently received attention, explaining their appearance is still overlooked. Classic explainable AI (XAI) methods can surface failures at a single checkpoint of a model, but they are structurally ill-suited to justify what changed internally across different checkpoints and which explanatory claims are warranted about that change. We take the position that behavioral shifts should be explained comparatively: the core target should be the intervention-induced shift between a reference model and an intervened model, rather than any single model in isolation. To this aim we formulate a Comparative XAI ($Δ$-XAI) framework with a set of desiderata to be taken into account when designing proper explaining methods. To highlight how $Δ$-XAI methods work, we introduce a set of possible pipelines, relate them to the desiderata, and provide a concrete $Δ$-XAI experiment.
☆ Advancing General-Purpose Reasoning Models with Modular Gradient Surgery
Reinforcement learning (RL) has played a central role in recent advances in large reasoning models (LRMs), yielding strong gains in verifiable and open-ended reasoning. However, training a single general-purpose LRM across diverse domains remains challenging due to pronounced domain heterogeneity. Through a systematic study of two widely used strategies, Sequential RL and Mixed RL, we find that both incur substantial cross-domain interference at the behavioral and gradient levels, resulting in limited overall gains. To address these challenges, we introduce **M**odular **G**radient **S**urgery (**MGS**), which resolves gradient conflicts at the module level within the transformer. When applied to Llama and Qwen models, MGS achieves average improvements of 4.3 (16.6\%) and 4.5 (11.1\%) points, respectively, over standard multi-task RL across three representative domains (math, general chat, and instruction following). Further analysis demonstrates that MGS remains effective under prolonged training. Overall, our study clarifies the sources of interference in multi-domain RL and presents an effective solution for training general-purpose LRMs.
comment: Preprint; Code: https://github.com/StringNLPLAB/MGS; Website: https://modular-gradient-surgery.github.io
☆ Decoupling Generalizability and Membership Privacy Risks in Neural Networks
A deep learning model usually has to sacrifice some utilities when it acquires some other abilities or characteristics. Privacy preservation has such trade-off relationships with utilities. The loss disparity between various defense approaches implies the potential to decouple generalizability and privacy risks to maximize privacy gain. In this paper, we identify that the model's generalization and privacy risks exist in different regions in deep neural network architectures. Based on the observations that we investigate, we propose Privacy-Preserving Training Principle (PPTP) to protect model components from privacy risks while minimizing the loss in generalizability. Through extensive evaluations, our approach shows significantly better maintenance in model generalizability while enhancing privacy preservation.
☆ EvalQReason: A Framework for Step-Level Reasoning Evaluation in Large Language Models
Large Language Models (LLMs) are increasingly deployed in critical applications requiring reliable reasoning, yet their internal reasoning processes remain difficult to evaluate systematically. Existing methods focus on final-answer correctness, providing limited insight into how reasoning unfolds across intermediate steps. We present EvalQReason, a framework that quantifies LLM reasoning quality through step-level probability distribution analysis without requiring human annotation. The framework introduces two complementary algorithms: Consecutive Step Divergence (CSD), which measures local coherence between adjacent reasoning steps, and Step-to-Final Convergence (SFC), which assesses global alignment with final answers. Each algorithm employs five statistical metrics to capture reasoning dynamics. Experiments across mathematical and medical datasets with open-source 7B-parameter models demonstrate that CSD-based features achieve strong predictive performance for correctness classification, with classical machine learning models reaching F1=0.78 and ROC-AUC=0.82, and sequential neural models substantially improving performance (F1=0.88, ROC-AUC=0.97). CSD consistently outperforms SFC, and sequential architectures outperform classical machine learning approaches. Critically, reasoning dynamics prove domain-specific: mathematical reasoning exhibits clear divergence-based discrimination patterns between correct and incorrect solutions, while medical reasoning shows minimal discriminative signals, revealing fundamental differences in how LLMs process different reasoning types. EvalQReason enables scalable, process-aware evaluation of reasoning reliability, establishing probability-based divergence analysis as a principled approach for trustworthy AI deployment.
comment: 15 pages (including appendix), 11 figures
☆ An Optimization Method for Autoregressive Time Series Forecasting
Current time-series forecasting models are primarily based on transformer-style neural networks. These models achieve long-term forecasting mainly by scaling up the model size rather than through genuinely autoregressive (AR) rollout. From the perspective of large language model training, the traditional training process for time-series forecasting models ignores temporal causality. In this paper, we propose a novel training method for time-series forecasting that enforces two key properties: (1) AR prediction errors should increase with the forecasting horizon. Any violation of this principle is considered random guessing and is explicitly penalized in the loss function, and (2) the method enables models to concatenate short-term AR predictions for forming flexible long-term forecasts. Empirical results demonstrate that our method establishes a new state-of-the-art across multiple benchmarks, achieving an MSE reduction of more than 10% compared to iTransformer and other recent strong baselines. Furthermore, it enables short-horizon forecasting models to perform reliable long-term predictions at horizons over 7.5 times longer. Code is available at https://github.com/LizhengMathAi/AROpt
comment: 10 pages, 2 figures, 2 tables
☆ DFKI-Speech System for WildSpoof Challenge: A robust framework for SASV In-the-Wild
This paper presents the DFKI-Speech system developed for the WildSpoof Challenge under the Spoofing aware Automatic Speaker Verification (SASV) track. We propose a robust SASV framework in which a spoofing detector and a speaker verification (SV) network operate in tandem. The spoofing detector employs a self-supervised speech embedding extractor as the frontend, combined with a state-of-the-art graph neural network backend. In addition, a top-3 layer based mixture-of-experts (MoE) is used to fuse high-level and low-level features for effective spoofed utterance detection. For speaker verification, we adapt a low-complexity convolutional neural network that fuses 2D and 1D features at multiple scales, trained with the SphereFace loss. Additionally, contrastive circle loss is applied to adaptively weight positive and negative pairs within each training batch, enabling the network to better distinguish between hard and easy sample pairs. Finally, fixed imposter cohort based AS Norm score normalization and model ensembling are used to further enhance the discriminative capability of the speaker verification system.
☆ Statistical Learning Theory in Lean 4: Empirical Processes from Scratch
We present the first comprehensive Lean 4 formalization of statistical learning theory (SLT) grounded in empirical process theory. Our end-to-end formal infrastructure implement the missing contents in latest Lean 4 Mathlib library, including a complete development of Gaussian Lipschitz concentration, the first formalization of Dudley's entropy integral theorem for sub-Gaussian processes, and an application to least-squares (sparse) regression with a sharp rate. The project was carried out using a human-AI collaborative workflow, in which humans design proof strategies and AI agents execute tactical proof construction, leading to the human-verified Lean 4 toolbox for SLT. Beyond implementation, the formalization process exposes and resolves implicit assumptions and missing details in standard SLT textbooks, enforcing a granular, line-by-line understanding of the theory. This work establishes a reusable formal foundation and opens the door for future developments in machine learning theory. The code is available at https://github.com/YuanheZ/lean-stat-learning-theory
comment: 19 pages, 2 figures. Comments are welcome
☆ Choice-Model-Assisted Q-learning for Delayed-Feedback Revenue Management
We study reinforcement learning for revenue management with delayed feedback, where a substantial fraction of value is determined by customer cancellations and modifications observed days after booking. We propose \emph{choice-model-assisted RL}: a calibrated discrete choice model is used as a fixed partial world model to impute the delayed component of the learning target at decision time. In the fixed-model deployment regime, we prove that tabular Q-learning with model-imputed targets converges to an $O(\varepsilon/(1-γ))$ neighborhood of the optimal Q-function, where $\varepsilon$ summarizes partial-model error, with an additional $O(t^{-1/2})$ sampling term. Experiments in a simulator calibrated from 61{,}619 hotel bookings (1{,}088 independent runs) show: (i) no statistically detectable difference from a maturity-buffer DQN baseline in stationary settings; (ii) positive effects under in-family parameter shifts, with significant gains in 5 of 10 shift scenarios after Holm--Bonferroni correction (up to 12.4\%); and (iii) consistent degradation under structural misspecification, where the choice model assumptions are violated (1.4--2.6\% lower revenue). These results characterize when partial behavioral models improve robustness under shift and when they introduce harmful bias.
☆ MoLF: Mixture-of-Latent-Flow for Pan-Cancer Spatial Gene Expression Prediction from Histology
Inferring spatial transcriptomics (ST) from histology enables scalable histogenomic profiling, yet current methods are largely restricted to single-tissue models. This fragmentation fails to leverage biological principles shared across cancer types and hinders application to data-scarce scenarios. While pan-cancer training offers a solution, the resulting heterogeneity challenges monolithic architectures. To bridge this gap, we introduce MoLF (Mixture-of-Latent-Flow), a generative model for pan-cancer histogenomic prediction. MoLF leverages a conditional Flow Matching objective to map noise to the gene latent manifold, parameterized by a Mixture-of-Experts (MoE) velocity field. By dynamically routing inputs to specialized sub-networks, this architecture effectively decouples the optimization of diverse tissue patterns. Our experiments demonstrate that MoLF establishes a new state-of-the-art, consistently outperforming both specialized and foundation model baselines on pan-cancer benchmarks. Furthermore, MoLF exhibits zero-shot generalization to cross-species data, suggesting it captures fundamental, conserved histo-molecular mechanisms.
☆ Backpropagation as Physical Relaxation: Exact Gradients in Finite Time
Backpropagation, the foundational algorithm for training neural networks, is typically understood as a symbolic computation that recursively applies the chain rule. We show it emerges exactly as the finite-time relaxation of a physical dynamical system. By formulating feedforward inference as a continuous-time process and applying Lagrangian theory of non-conservative systems to handle asymmetric interactions, we derive a global energy functional on a doubled state space encoding both activations and sensitivities. The saddle-point dynamics of this energy perform inference and credit assignment simultaneously through local interactions. We term this framework ''Dyadic Backpropagation''. Crucially, we prove that unit-step Euler discretization, the natural timescale of layer transitions, recovers standard backpropagation exactly in precisely 2L steps for an L-layer network, with no approximations. Unlike prior energy-based methods requiring symmetric weights, asymptotic convergence, or vanishing perturbations, our framework guarantees exact gradients in finite time. This establishes backpropagation as the digitally optimized shadow of a continuous physical relaxation, providing a rigorous foundation for exact gradient computation in analog and neuromorphic substrates where continuous dynamics are native.
comment: 15 pages, 8 figures
☆ RACA: Representation-Aware Coverage Criteria for LLM Safety Testing
Recent advancements in LLMs have led to significant breakthroughs in various AI applications. However, their sophisticated capabilities also introduce severe safety concerns, particularly the generation of harmful content through jailbreak attacks. Current safety testing for LLMs often relies on static datasets and lacks systematic criteria to evaluate the quality and adequacy of these tests. While coverage criteria have been effective for smaller neural networks, they are not directly applicable to LLMs due to scalability issues and differing objectives. To address these challenges, this paper introduces RACA, a novel set of coverage criteria specifically designed for LLM safety testing. RACA leverages representation engineering to focus on safety-critical concepts within LLMs, thereby reducing dimensionality and filtering out irrelevant information. The framework operates in three stages: first, it identifies safety-critical representations using a small, expert-curated calibration set of jailbreak prompts. Second, it calculates conceptual activation scores for a given test suite based on these representations. Finally, it computes coverage results using six sub-criteria that assess both individual and compositional safety concepts. We conduct comprehensive experiments to validate RACA's effectiveness, applicability, and generalization, where the results demonstrate that RACA successfully identifies high-quality jailbreak prompts and is superior to traditional neuron-level criteria. We also showcase its practical application in real-world scenarios, such as test set prioritization and attack prompt sampling. Furthermore, our findings confirm RACA's generalization to various scenarios and its robustness across various configurations. Overall, RACA provides a new framework for evaluating the safety of LLMs, contributing a valuable technique to the field of testing for AI.
☆ HopFormer: Sparse Graph Transformers with Explicit Receptive Field Control
Graph Transformers typically rely on explicit positional or structural encodings and dense global attention to incorporate graph topology. In this work, we show that neither is essential. We introduce HopFormer, a graph Transformer that injects structure exclusively through head-specific n-hop masked sparse attention, without the use of positional encodings or architectural modifications. This design provides explicit and interpretable control over receptive fields while enabling genuinely sparse attention whose computational cost scales linearly with mask sparsity. Through extensive experiments on both node-level and graph-level benchmarks, we demonstrate that our approach achieves competitive or superior performance across diverse graph structures. Our results further reveal that dense global attention is often unnecessary: on graphs with strong small-world properties, localized attention yields more stable and consistently high performance, while on graphs with weaker small-world effects, global attention offers diminishing returns. Together, these findings challenge prevailing assumptions in graph Transformer design and highlight sparsity-controlled attention as a principled and efficient alternative.
☆ Unsupervised Physics-Informed Operator Learning through Multi-Stage Curriculum Training
Solving partial differential equations remains a central challenge in scientific machine learning. Neural operators offer a promising route by learning mappings between function spaces and enabling resolution-independent inference, yet they typically require supervised data. Physics-informed neural networks address this limitation through unsupervised training with physical constraints but often suffer from unstable convergence and limited generalization capability. To overcome these issues, we introduce a multi-stage physics-informed training strategy that achieves convergence by progressively enforcing boundary conditions in the loss landscape and subsequently incorporating interior residuals. At each stage the optimizer is re-initialized, acting as a continuation mechanism that restores stability and prevents gradient stagnation. We further propose the Physics-Informed Spline Fourier Neural Operator (PhIS-FNO), combining Fourier layers with Hermite spline kernels for smooth residual evaluation. Across canonical benchmarks, PhIS-FNO attains a level of accuracy comparable to that of supervised learning, using labeled information only along a narrow boundary region, establishing staged, spline-based optimization as a robust paradigm for physics-informed operator learning.
comment: 51 pages, 15 figures, 6 tables
☆ Unlocking the Duality between Flow and Field Matching
Conditional Flow Matching (CFM) unifies conventional generative paradigms such as diffusion models and flow matching. Interaction Field Matching (IFM) is a newer framework that generalizes Electrostatic Field Matching (EFM) rooted in Poisson Flow Generative Models (PFGM). While both frameworks define generative dynamics, they start from different objects: CFM specifies a conditional probability path in data space, whereas IFM specifies a physics-inspired interaction field in an augmented data space. This raises a basic question: are CFM and IFM genuinely different, or are they two descriptions of the same underlying dynamics? We show that they coincide for a natural subclass of IFM that we call forward-only IFM. Specifically, we construct a bijection between CFM and forward-only IFM. We further show that general IFM is strictly more expressive: it includes EFM and other interaction fields that cannot be realized within the standard CFM formulation. Finally, we highlight how this duality can benefit both frameworks: it provides a probabilistic interpretation of forward-only IFM and yields novel, IFM-driven techniques for CFM.
☆ Learning Markov Decision Processes under Fully Bandit Feedback
A standard assumption in Reinforcement Learning is that the agent observes every visited state-action pair in the associated Markov Decision Process (MDP), along with the per-step rewards. Strong theoretical results are known in this setting, achieving nearly-tight $Θ(\sqrt{T})$-regret bounds. However, such detailed feedback can be unrealistic, and recent research has investigated more restricted settings such as trajectory feedback, where the agent observes all the visited state-action pairs, but only a single \emph{aggregate} reward. In this paper, we consider a far more restrictive ``fully bandit'' feedback model for episodic MDPs, where the agent does not even observe the visited state-action pairs -- it only learns the aggregate reward. We provide the first efficient bandit learning algorithm for episodic MDPs with $\widetilde{O}(\sqrt{T})$ regret. Our regret has an exponential dependence on the horizon length $\H$, which we show is necessary. We also obtain improved nearly-tight regret bounds for ``ordered'' MDPs; these can be used to model classical stochastic optimization problems such as $k$-item prophet inequality and sequential posted pricing. Finally, we evaluate the empirical performance of our algorithm for the setting of $k$-item prophet inequalities; despite the highly restricted feedback, our algorithm's performance is comparable to that of a state-of-art learning algorithm (UCB-VI) with detailed state-action feedback.
☆ Segment to Focus: Guiding Latent Action Models in the Presence of Distractors
Latent Action Models (LAMs) learn to extract action-relevant representations solely from raw observations, enabling reinforcement learning from unlabelled videos and significantly scaling available training data. However, LAMs face a critical challenge in disentangling action-relevant features from action-correlated noise (e.g., background motion). Failing to filter these distractors causes LAMs to capture spurious correlations and build sub-optimal latent action spaces. In this paper, we introduce MaskLAM -- a lightweight modification to LAM training to mitigate this issue by incorporating visual agent segmentation. MaskLAM utilises segmentation masks from pretrained foundation models to weight the LAM reconstruction loss, thereby prioritising salient information over background elements while requiring no architectural modifications. We demonstrate the effectiveness of our method on continuous-control MuJoCo tasks, modified with action-correlated background noise. Our approach yields up to a 4x increase in accrued rewards compared to standard baselines and a 3x improvement in the latent action quality, as evidenced by linear probe evaluation.
☆ Alignment-Aware Model Adaptation via Feedback-Guided Optimization
Fine-tuning is the primary mechanism for adapting foundation models to downstream tasks; however, standard approaches largely optimize task objectives in isolation and do not account for secondary yet critical alignment objectives (e.g., safety and hallucination avoidance). As a result, downstream fine-tuning can degrade alignment and fail to correct pre-existing misaligned behavior. We propose an alignment-aware fine-tuning framework that integrates feedback from an external alignment signal through policy-gradient-based regularization. Our method introduces an adaptive gating mechanism that dynamically balances supervised and alignment-driven gradients on a per-sample basis, prioritizing uncertain or misaligned cases while allowing well-aligned examples to follow standard supervised updates. The framework further learns abstention behavior for fully misaligned inputs, incorporating conservative responses directly into the fine-tuned model. Experiments on general and domain-specific instruction-tuning benchmarks demonstrate consistent reductions in harmful and hallucinated outputs without sacrificing downstream task performance. Additional analyses show robustness to adversarial fine-tuning, prompt-based attacks, and unsafe initializations, establishing adaptively gated alignment optimization as an effective approach for alignment-preserving and alignment-recovering model adaptation.
☆ Well-Posed KL-Regularized Control via Wasserstein and Kalman-Wasserstein KL Divergences
Kullback-Leibler divergence (KL) regularization is widely used in reinforcement learning, but it becomes infinite under support mismatch and can degenerate in low-noise limits. Utilizing a unified information-geometric framework, we introduce (Kalman)-Wasserstein-based KL analogues by replacing the Fisher-Rao geometry in the dynamical formulation of the KL with transport-based geometries, and we derive closed-form values for common distribution families. These divergences remain finite under support mismatch and yield a geometric interpretation of regularization heuristics used in Kalman ensemble methods. We demonstrate the utility of these divergences in KL-regularized optimal control. In the fully tractable setting of linear time-invariant systems with Gaussian process noise, the classical KL reduces to a quadratic control penalty that becomes singular as process noise vanishes. Our variants remove this singularity, yielding well-posed problems. On a double integrator and a cart-pole example, the resulting controls outperform KL-based regularization.
comment: 37 pages, 9 figures, comments welcome
☆ Learning While Staying Curious: Entropy-Preserving Supervised Fine-Tuning via Adaptive Self-Distillation for Large Reasoning Models
The standard post-training recipe for large reasoning models, supervised fine-tuning followed by reinforcement learning (SFT-then-RL), may limit the benefits of the RL stage: while SFT imitates expert demonstrations, it often causes overconfidence and reduces generation diversity, leaving RL with a narrowed solution space to explore. Adding entropy regularization during SFT is not a cure-all; it tends to flatten token distributions toward uniformity, increasing entropy without improving meaningful exploration capability. In this paper, we propose CurioSFT, an entropy-preserving SFT method designed to enhance exploration capabilities through intrinsic curiosity. It consists of (a) Self-Exploratory Distillation, which distills the model toward a self-generated, temperature-scaled teacher to encourage exploration within its capability; and (b) Entropy-Guided Temperature Selection, which adaptively adjusts distillation strength to mitigate knowledge forgetting by amplifying exploration at reasoning tokens while stabilizing factual tokens. Extensive experiments on mathematical reasoning tasks demonstrate that, in SFT stage, CurioSFT outperforms the vanilla SFT by 2.5 points on in-distribution tasks and 2.9 points on out-of-distribution tasks. We also verify that exploration capabilities preserved during SFT successfully translate into concrete gains in RL stage, yielding an average improvement of 5.0 points.
☆ Variational Entropic Optimal Transport
Entropic optimal transport (EOT) in continuous spaces with quadratic cost is a classical tool for solving the domain translation problem. In practice, recent approaches optimize a weak dual EOT objective depending on a single potential, but doing so is computationally not efficient due to the intractable log-partition term. Existing methods typically resolve this obstacle in one of two ways: by significantly restricting the transport family to obtain closed-form normalization (via Gaussian-mixture parameterizations), or by using general neural parameterizations that require simulation-based training procedures. We propose Variational Entropic Optimal Transport (VarEOT), based on an exact variational reformulation of the log-partition $\log \mathbb{E}[\exp(\cdot)]$ as a tractable minimization over an auxiliary positive normalizer. This yields a differentiable learning objective optimized with stochastic gradients and avoids the necessity of MCMC simulations during the training. We provide theoretical guarantees, including finite-sample generalization bounds and approximation results under universal function approximation. Experiments on synthetic data and unpaired image-to-image translation demonstrate competitive or improved translation quality, while comparisons within the solvers that use the same weak dual EOT objective support the benefit of the proposed optimization principle.
☆ Interpretability in Deep Time Series Models Demands Semantic Alignment
Deep time series models continue to improve predictive performance, yet their deployment remains limited by their black-box nature. In response, existing interpretability approaches in the field keep focusing on explaining the internal model computations, without addressing whether they align or not with how a human would reason about the studied phenomenon. Instead, we state interpretability in deep time series models should pursue semantic alignment: predictions should be expressed in terms of variables that are meaningful to the end user, mediated by spatial and temporal mechanisms that admit user-dependent constraints. In this paper, we formalize this requirement and require that, once established, semantic alignment must be preserved under temporal evolution: a constraint with no analog in static settings. Provided with this definition, we outline a blueprint for semantically aligned deep time series models, identify properties that support trust, and discuss implications for model design.
☆ Geometry- and Relation-Aware Diffusion for EEG Super-Resolution
Recent electroencephalography (EEG) spatial super-resolution (SR) methods, while showing improved quality by either directly predicting missing signals from visible channels or adapting latent diffusion-based generative modeling to temporal data, often lack awareness of physiological spatial structure, thereby constraining spatial generation performance. To address this issue, we introduce TopoDiff, a geometry- and relation-aware diffusion model for EEG spatial super-resolution. Inspired by how human experts interpret spatial EEG patterns, TopoDiff incorporates topology-aware image embeddings derived from EEG topographic representations to provide global geometric context for spatial generation, together with a dynamic channel-relation graph that encodes inter-electrode relationships and evolves with temporal dynamics. This design yields a spatially grounded EEG spatial super-resolution framework with consistent performance improvements. Across multiple EEG datasets spanning diverse applications, including SEED/SEED-IV for emotion recognition, PhysioNet motor imagery (MI/MM), and TUSZ for seizure detection, our method achieves substantial gains in generation fidelity and leads to notable improvements in downstream EEG task performance.
☆ Online Fine-Tuning of Pretrained Controllers for Autonomous Driving via Real-Time Recurrent RL
Deploying pretrained policies in real-world applications presents substantial challenges that fundamentally limit the practical applicability of learning-based control systems. When autonomous systems encounter environmental changes in system dynamics, sensor drift, or task objectives, fixed policies rapidly degrade in performance. We show that employing Real-Time Recurrent Reinforcement Learning (RTRRL), a biologically plausible algorithm for online adaptation, can effectively fine-tune a pretrained policy to improve autonomous agents' performance on driving tasks. We further show that RTRRL synergizes with a recent biologically inspired recurrent network model, the Liquid-Resistance Liquid-Capacitance RNN. We demonstrate the effectiveness of this closed-loop approach in a simulated CarRacing environment and in a real-world line-following task with a RoboRacer car equipped with an event camera.
☆ SEDformer: Event-Synchronous Spiking Transformers for Irregular Telemetry Time Series Forecasting
Telemetry streams from large-scale Internet-connected systems (e.g., IoT deployments and online platforms) naturally form an irregular multivariate time series (IMTS) whose accurate forecasting is operationally vital. A closer examination reveals a defining Sparsity-Event Duality (SED) property of IMTS, i.e., long stretches with sparse or no observations are punctuated by short, dense bursts where most semantic events (observations) occur. However, existing Graph- and Transformer-based forecasters ignore SED: pre-alignment to uniform grids with heavy padding violates sparsity by inflating sequences and forcing computation at non-informative steps, while relational recasting weakens event semantics by disrupting local temporal continuity. These limitations motivate a more faithful and natural modeling paradigm for IMTS that aligns with its SED property. We find that Spiking Neural Networks meet this requirement, as they communicate via sparse binary spikes and update in an event-driven manner, aligning naturally with the SED nature of IMTS. Therefore, we present SEDformer, an SED-enhanced Spiking Transformer for telemetry IMTS forecasting that couples: (1) a SED-based Spike Encoder converts raw observations into event synchronous spikes using an Event-Aligned LIF neuron, (2) an Event-Preserving Temporal Downsampling module compresses long gaps while retaining salient firings and (3) a stack of SED-based Spike Transformer blocks enable intra-series dependency modeling with a membrane-based linear attention driven by EA-LIF spiking features. Experiments on public telemetry IMTS datasets show that SEDformer attains state-of-the-art forecasting accuracy while reducing energy and memory usage, providing a natural and efficient path for modeling IMTS.
comment: Under review
☆ Prediction-Powered Risk Monitoring of Deployed Models for Detecting Harmful Distribution Shifts
We study the problem of monitoring model performance in dynamic environments where labeled data are limited. To this end, we propose prediction-powered risk monitoring (PPRM), a semi-supervised risk-monitoring approach based on prediction-powered inference (PPI). PPRM constructs anytime-valid lower bounds on the running risk by combining synthetic labels with a small set of true labels. Harmful shifts are detected via a threshold-based comparison with an upper bound on the nominal risk, satisfying assumption-free finite-sample guarantees in the probability of false alarm. We demonstrate the effectiveness of PPRM through extensive experiments on image classification, large language model (LLM), and telecommunications monitoring tasks.
☆ Spectral Superposition: A Theory of Feature Geometry
Neural networks represent more features than they have dimensions via superposition, forcing features to share representational space. Current methods decompose activations into sparse linear features but discard geometric structure. We develop a theory for studying the geometric structre of features by analyzing the spectra (eigenvalues, eigenspaces, etc.) of weight derived matrices. In particular, we introduce the frame operator $F = WW^\top$, which gives us a spectral measure that describes how each feature allocates norm across eigenspaces. While previous tools could describe the pairwise interactions between features, spectral methods capture the global geometry (``how do all features interact?''). In toy models of superposition, we use this theory to prove that capacity saturation forces spectral localization: features collapse onto single eigenspaces, organize into tight frames, and admit discrete classification via association schemes, classifying all geometries from prior work (simplices, polygons, antiprisms). The spectral measure formalism applies to arbitrary weight matrices, enabling diagnosis of feature localization beyond toy settings. These results point toward a broader program: applying operator theory to interpretability.
☆ Scientific Theory of a Black-Box: A Life Cycle-Scale XAI Framework Based on Constructive Empiricism
Explainable AI (XAI) offers a growing number of algorithms that aim to answer specific questions about black-box models. What is missing is a principled way to consolidate explanatory information about a fixed black-box model into a persistent, auditable artefact, that accompanies the black-box throughout its life cycle. We address this gap by introducing the notion of a scientific theory of a black (SToBB). Grounded in Constructive Empiricism, a SToBB fulfils three obligations: (i) empirical adequacy with respect to all available observations of black-box behaviour, (ii) adaptability via explicit update commitments that restore adequacy when new observations arrive, and (iii) auditability through transparent documentation of assumptions, construction choices, and update behaviour. We operationalise these obligations as a general framework that specifies an extensible observation base, a traceable hypothesis class, algorithmic components for construction and revision, and documentation sufficient for third-party assessment. Explanations for concrete stakeholder needs are then obtained by querying the maintained record through interfaces, rather than by producing isolated method outputs. As a proof of concept, we instantiate a complete SToBB for a neural-network classifier on a tabular task and introduce the Constructive Box Theoriser (CoBoT) algorithm, an online procedure that constructs and maintains an empirically adequate rule-based surrogate as observations accumulate. Together, these contributions position SToBBs as a life cycle-scale, inspectable point of reference that supports consistent, reusable analyses and systematic external scrutiny.
☆ Generating Physically Sound Designs from Text and a Set of Physical Constraints NeurIPS 2025
We present TIDES, a text informed design approach for generating physically sound designs based on a textual description and a set of physical constraints. TIDES jointly optimizes structural (topology) and visual properties. A pre-trained text-image model is used to measure the design's visual alignment with a text prompt and a differentiable physics simulator is used to measure its physical performance. We evaluate TIDES on a series of structural optimization problems operating under different load and support conditions, at different resolutions, and experimentally in the lab by performing the 3-point bending test on 2D beam designs that are extruded and 3D printed. We find that it can jointly optimize the two objectives and return designs that satisfy engineering design requirements (compliance and density) while utilizing features specified by text.
comment: NeurIPS 2025
☆ Fat-Cat: Document-Driven Metacognitive Multi-Agent System for Complex Reasoning
The effectiveness of LLM-based agents is often limited not by model capacity alone, but by how efficiently contextual information is utilized at runtime. Existing agent frameworks rely on rigid, syntax-heavy state representations such as nested JSON, which require models to devote a substantial portion of their limited attention to syntactic processing rather than semantic reasoning. In this paper, we propose Fat-Cat, a document-driven agent architecture that improves the signal-to-noise ratio of state management. By integrating three key components: (1) a Semantic File System that represents agent state as Markdown documents aligned with common pre-training corpora, (2) a Textual Strategy Evolution module that accumulates task-solving knowledge without parameter updates, and (3) a Closed-Loop Watcher that monitors reasoning trajectories to reduce hallucinations. Extensive reasoning, retrieval, and coding benchmarks, Fat-Cat consistently improves agent performance. It enables the Kimi-k2 model to outperform the proprietary GPT-4o baseline on HotPotQA. Replacing the document-based state with JSON leads to performance drop, while empirically validating the critical necessity of document-driven state modeling over rigid syntax. The code is available at https://github.com/answeryt/Fat-Cat.
☆ Cardinality-Preserving Structured Sparse Graph Transformers for Molecular Property Prediction
Drug discovery motivates efficient molecular property prediction under limited labeled data. Chemical space is vast, often estimated at approximately 10^60 drug-like molecules, while only thousands of drugs have been approved. As a result, self-supervised pretraining on large unlabeled molecular corpora has become essential for data-efficient molecular representation learning. We introduce **CardinalGraphFormer**, a graph transformer that incorporates Graphormer-inspired structural biases, including shortest-path distance and centrality, as well as direct-bond edge bias, within a structured sparse attention regime limited to shortest-path distance <= 3. The model further augments this design with a cardinality-preserving unnormalized aggregation channel over the same support set. Pretraining combines contrastive graph-level alignment with masked attribute reconstruction. Under a fully matched evaluation protocol, CardinalGraphFormer improves mean performance across all 11 evaluated tasks and achieves statistically significant gains on 10 of 11 public benchmarks spanning MoleculeNet, OGB, and TDC ADMET tasks when compared to strong reproduced baselines.
☆ Hierarchical Adaptive Eviction for KV Cache Management in Multimodal Language Models
The integration of visual information into Large Language Models (LLMs) has enabled Multimodal LLMs (MLLMs), but the quadratic memory and computational costs of Transformer architectures remain a bottleneck. Existing KV cache eviction strategies fail to address the heterogeneous attention distributions between visual and text tokens, leading to suboptimal efficiency or degraded performance. In this paper, we propose Hierarchical Adaptive Eviction (HAE), a KV cache eviction framework that optimizes text-visual token interaction in MLLMs by implementing Dual-Attention Pruning during pre-filling (leveraging visual token sparsity and attention variance) and a Dynamic Decoding Eviction Strategy (inspired by OS Recycle Bins) during decoding. HAE minimizes KV cache usage across layers, reduces computational overhead via index broadcasting, and theoretically ensures superior information integrity and lower error bounds compared to greedy strategies, enhancing efficiency in both comprehension and generation tasks. Empirically, HAE reduces KV-Cache memory by 41\% with minimal accuracy loss (0.3\% drop) in image understanding tasks and accelerates story generation inference by 1.5x while maintaining output quality on Phi3.5-Vision-Instruct model.
comment: 10 oages, 3 figures
☆ State Rank Dynamics in Linear Attention LLMs
Linear Attention Large Language Models (LLMs) offer a compelling recurrent formulation that compresses context into a fixed-size state matrix, enabling constant-time inference. However, the internal dynamics of this compressed state remain largely opaque. In this work, we present a comprehensive study on the runtime state dynamics of state-of-the-art Linear Attention models. We uncover a fundamental phenomenon termed State Rank Stratification, characterized by a distinct spectral bifurcation among linear attention heads: while one group maintains an effective rank oscillating near zero, the other exhibits rapid growth that converges to an upper bound. Extensive experiments across diverse inference contexts reveal that these dynamics remain strikingly consistent, indicating that the identity of a head,whether low-rank or high-rank,is an intrinsic structural property acquired during pre-training, rather than a transient state dependent on the input data. Furthermore, our diagnostic probes reveal a surprising functional divergence: low-rank heads are indispensable for model reasoning, whereas high-rank heads exhibit significant redundancy. Leveraging this insight, we propose Joint Rank-Norm Pruning, a zero-shot strategy that achieves a 38.9\% reduction in KV-cache overhead while largely maintaining model accuracy.
☆ ECHO-2: A Large Scale Distributed Rollout Framework for Cost-efficient Reinforcement Learning
Reinforcement learning (RL) is a critical stage in post-training large language models (LLMs), involving repeated interaction between rollout generation, reward evaluation, and centralized learning. Distributing rollout execution offers opportunities to leverage more cost-efficient inference resources, but introduces challenges in wide-area coordination and policy dissemination. We present ECHO-2, a distributed RL framework for post-training with remote inference workers and non-negligible dissemination latency. ECHO-2 combines centralized learning with distributed rollouts and treats bounded policy staleness as a user-controlled parameter, enabling rollout generation, dissemination, and training to overlap. We introduce an overlap-based capacity model that relates training time, dissemination latency, and rollout throughput, yielding a practical provisioning rule for sustaining learner utilization. To mitigate dissemination bottlenecks and lower cost, ECHO-2 employs peer-assisted pipelined broadcast and cost-aware activation of heterogeneous workers. Experiments on GRPO post-training of 4B and 8B models under real wide-area bandwidth regimes show that ECHO-2 significantly improves cost efficiency while preserving RL reward comparable to strong baselines.
comment: 23 pages, 7 figures
☆ PCA of probability measures: Sparse and Dense sampling regimes
A common approach to perform PCA on probability measures is to embed them into a Hilbert space where standard functional PCA techniques apply. While convergence rates for estimating the embedding of a single measure from $m$ samples are well understood, the literature has not addressed the setting involving multiple measures. In this paper, we study PCA in a double asymptotic regime where $n$ probability measures are observed, each through $m$ samples. We derive convergence rates of the form $n^{-1/2} + m^{-α}$ for the empirical covariance operator and the PCA excess risk, where $α>0$ depends on the chosen embedding. This characterizes the relationship between the number $n$ of measures and the number $m$ of samples per measure, revealing a sparse (small $m$) to dense (large $m$) transition in the convergence behavior. Moreover, we prove that the dense-regime rate is minimax optimal for the empirical covariance error. Our numerical experiments validate these theoretical rates and demonstrate that appropriate subsampling preserves PCA accuracy while reducing computational cost.
☆ Vision-DeepResearch Benchmark: Rethinking Visual and Textual Search for Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have advanced VQA and now support Vision-DeepResearch systems that use search engines for complex visual-textual fact-finding. However, evaluating these visual and textual search abilities is still difficult, and existing benchmarks have two major limitations. First, existing benchmarks are not visual search-centric: answers that should require visual search are often leaked through cross-textual cues in the text questions or can be inferred from the prior world knowledge in current MLLMs. Second, overly idealized evaluation scenario: On the image-search side, the required information can often be obtained via near-exact matching against the full image, while the text-search side is overly direct and insufficiently challenging. To address these issues, we construct the Vision-DeepResearch benchmark (VDR-Bench) comprising 2,000 VQA instances. All questions are created via a careful, multi-stage curation pipeline and rigorous expert review, designed to assess the behavior of Vision-DeepResearch systems under realistic real-world conditions. Moreover, to address the insufficient visual retrieval capabilities of current MLLMs, we propose a simple multi-round cropped-search workflow. This strategy is shown to effectively improve model performance in realistic visual retrieval scenarios. Overall, our results provide practical guidance for the design of future multimodal deep-research systems. The code will be released in https://github.com/Osilly/Vision-DeepResearch.
☆ STILL: Selecting Tokens for Intra-Layer Hybrid Attention to Linearize LLMs
Linearizing pretrained large language models (LLMs) primarily relies on intra-layer hybrid attention mechanisms to alleviate the quadratic complexity of standard softmax attention. Existing methods perform token routing based on sliding-window partitions, resulting in position-based selection and fails to capture token-specific global importance. Meanwhile, linear attention further suffers from distribution shift caused by learnable feature maps that distort pretrained feature magnitudes. Motivated by these limitations, we propose STILL, an intra-layer hybrid linearization framework for efficiently linearizing LLMs. STILL introduces a Self-Saliency Score with strong local-global consistency, enabling accurate token selection using sliding-window computation, and retains salient tokens for sparse softmax attention while summarizing the remaining context via linear attention. To preserve pretrained representations, we design a Norm-Preserved Feature Map (NP-Map) that decouples feature direction from magnitude and reinjects pretrained norms. We further adopt a unified training-inference architecture with chunk-wise parallelization and delayed selection to improve hardware efficiency. Experiments show that STILL matches or surpasses the original pretrained model on commonsense and general reasoning tasks, and achieves up to a 86.2% relative improvement over prior linearized attention methods on long-context benchmarks.
☆ SurvKAN: A Fully Parametric Survival Model Based on Kolmogorov-Arnold Networks
Accurate prediction of time-to-event outcomes is critical for clinical decision-making, treatment planning, and resource allocation in modern healthcare. While classical survival models such as Cox remain widely adopted in standard practice, they rely on restrictive assumptions, including linear covariate relationships and proportional hazards over time, that often fail to capture real-world clinical dynamics. Recent deep learning approaches like DeepSurv and DeepHit offer improved expressivity but sacrifice interpretability, limiting clinical adoption where trust and transparency are paramount. Hybrid models incorporating Kolmogorov-Arnold Networks (KANs), such as CoxKAN, have begun to address this trade-off but remain constrained by the semi-parametric Cox framework. In this work we introduce SurvKAN, a fully parametric, time-continuous survival model based on KAN architectures that eliminates the proportional hazards constraint. SurvKAN treats time as an explicit input to a KAN that directly predicts the log-hazard function, enabling end-to-end training on the full survival likelihood. Our architecture preserves interpretability through learnable univariate functions that indicate how individual features influence risk over time. Extensive experiments on standard survival benchmarks demonstrate that SurvKAN achieves competitive or superior performance compared to classical and state-of-the-art baselines across concordance and calibration metrics. Additionally, interpretability analyses reveal clinically meaningful patterns that align with medical domain knowledge.
Generalized Optimal Classification Trees: A Mixed-Integer Programming Approach
Global optimization of decision trees is a long-standing challenge in combinatorial optimization, yet such models play an important role in interpretable machine learning. Although the problem has been investigated for several decades, only recent advances in discrete optimization have enabled practical algorithms for solving optimal classification tree problems on real-world datasets. Mixed-integer programming (MIP) offers a high degree of modeling flexibility, and we therefore propose a MIP-based framework for learning optimal classification trees under nonlinear performance metrics, such as the F1-score, that explicitly addresses class imbalance. To improve scalability, we develop problem-specific acceleration techniques, including a tailored branch-and-cut algorithm, an instance-reduction scheme, and warm-start strategies. We evaluate the proposed approach on 50 benchmark datasets. The computational results show that the framework can efficiently optimize nonlinear metrics while achieving strong predictive performance and reduced solution times compared with existing methods.
☆ Real-Time 2D LiDAR Object Detection Using Three-Frame RGB Scan Encoding
Indoor service robots need perception that is robust, more privacy-friendly than RGB video, and feasible on embedded hardware. We present a camera-free 2D LiDAR object detection pipeline that encodes short-term temporal context by stacking three consecutive scans as RGB channels, yielding a compact YOLOv8n input without occupancy-grid construction while preserving angular structure and motion cues. Evaluated in Webots across 160 randomized indoor scenarios with strict scenario-level holdout, the method achieves 98.4% mAP@0.5 (0.778 mAP@0.5:0.95) with 94.9% precision and 94.7% recall on four object classes. On a Raspberry Pi 5, it runs in real time with a mean post-warm-up end-to-end latency of 47.8ms per frame, including scan encoding and postprocessing. Relative to a closely related occupancy-grid LiDAR-YOLO pipeline reported on the same platform, the proposed representation is associated with substantially lower reported end-to-end latency. Although results are simulation-based, they suggest that lightweight temporal encoding can enable accurate and real-time LiDAR-only detection for embedded indoor robotics without capturing RGB appearance.
comment: 6 pages, 6 figures, submitted to IEEE SAS 2026
Co-RedTeam: Orchestrated Security Discovery and Exploitation with LLM Agents
Large language models (LLMs) have shown promise in assisting cybersecurity tasks, yet existing approaches struggle with automatic vulnerability discovery and exploitation due to limited interaction, weak execution grounding, and a lack of experience reuse. We propose Co-RedTeam, a security-aware multi-agent framework designed to mirror real-world red-teaming workflows by integrating security-domain knowledge, code-aware analysis, execution-grounded iterative reasoning, and long-term memory. Co-RedTeam decomposes vulnerability analysis into coordinated discovery and exploitation stages, enabling agents to plan, execute, validate, and refine actions based on real execution feedback while learning from prior trajectories. Extensive evaluations on challenging security benchmarks demonstrate that Co-RedTeam consistently outperforms strong baselines across diverse backbone models, achieving over 60% success rate in vulnerability exploitation and over 10% absolute improvement in vulnerability detection. Ablation and iteration studies further confirm the critical role of execution feedback, structured interaction, and memory for building robust and generalizable cybersecurity agents.
☆ Interpretable Tabular Foundation Models via In-Context Kernel Regression
Tabular foundation models like TabPFN and TabICL achieve state-of-the-art performance through in-context learning, yet their architectures remain fundamentally opaque. We introduce KernelICL, a framework to enhance tabular foundation models with quantifiable sample-based interpretability. Building on the insight that in-context learning is akin to kernel regression, we make this mechanism explicit by replacing the final prediction layer with kernel functions (Gaussian, dot-product, kNN) so that every prediction is a transparent weighted average of training labels. We introduce a two-dimensional taxonomy that formally unifies standard kernel methods, modern neighbor-based approaches, and attention mechanisms under a single framework, and quantify inspectability via the perplexity of the weight distribution over training samples. On 55 TALENT benchmark datasets, KernelICL achieves performance on par with existing tabular foundation models, demonstrating that explicit kernel constraints on the final layer enable inspectable predictions without sacrificing performance.
☆ Generating Causal Temporal Interaction Graphs for Counterfactual Validation of Temporal Link Prediction
Temporal link prediction (TLP) models are commonly evaluated based on predictive accuracy, yet such evaluations do not assess whether these models capture the causal mechanisms that govern temporal interactions. In this work, we propose a framework for counterfactual validation of TLP models by generating causal temporal interaction graphs (CTIGs) with known ground-truth causal structure. We first introduce a structural equation model for continuous-time event sequences that supports both excitatory and inhibitory effects, and then extend this mechanism to temporal interaction graphs. To compare causal models, we propose a distance metric based on cross-model predictive error, and empirically validate the hypothesis that predictors trained on one causal model degrade when evaluated on sufficiently distant models. Finally, we instantiate counterfactual evaluation under (i) controlled causal shifts between generating models and (ii) timestamp shuffling as a stochastic distortion with measurable causal distance. Our framework provides a foundation for causality-aware benchmarking.
☆ Efficient Neural Controlled Differential Equations via Attentive Kernel Smoothing
Neural Controlled Differential Equations (Neural CDEs) provide a powerful continuous-time framework for sequence modeling, yet the roughness of the driving control path often restricts their efficiency. Standard splines introduce high-frequency variations that force adaptive solvers to take excessively small steps, driving up the Number of Function Evaluations (NFE). We propose a novel approach to Neural CDE path construction that replaces exact interpolation with Kernel and Gaussian Process (GP) smoothing, enabling explicit control over trajectory regularity. To recover details lost during smoothing, we propose an attention-based Multi-View CDE (MV-CDE) and its convolutional extension (MVC-CDE), which employ learnable queries to inform path reconstruction. This framework allows the model to distribute representational capacity across multiple trajectories, each capturing distinct temporal patterns. Empirical results demonstrate that our method, MVC-CDE with GP, achieves state-of-the-art accuracy while significantly reducing NFEs and total inference time compared to spline-based baselines.
☆ Learning Beyond the Gaussian Data: Learning Dynamics of Neural Networks on an Expressive and Cumulant-Controllable Data Model ICASSP 2026
We study the effect of high-order statistics of data on the learning dynamics of neural networks (NNs) by using a moment-controllable non-Gaussian data model. Considering the expressivity of two-layer neural networks, we first construct the data model as a generative two-layer NN where the activation function is expanded by using Hermite polynomials. This allows us to achieve interpretable control over high-order cumulants such as skewness and kurtosis through the Hermite coefficients while keeping the data model realistic. Using samples generated from the data model, we perform controlled online learning experiments with a two-layer NN. Our results reveal a moment-wise progression in training: networks first capture low-order statistics such as mean and covariance, and progressively learn high-order cumulants. Finally, we pretrain the generative model on the Fashion-MNIST dataset and leverage the generated samples for further experiments. The results of these additional experiments confirm our conclusions and show the utility of the data model in a real-world scenario. Overall, our proposed approach bridges simplified data assumptions and practical data complexity, which offers a principled framework for investigating distributional effects in machine learning and signal processing.
comment: ICASSP 2026, 5 pages, 2 figures
☆ Revisiting Adaptive Rounding with Vectorized Reparameterization for LLM Quantization
Adaptive Rounding has emerged as an alternative to round-to-nearest (RTN) for post-training quantization by enabling cross-element error cancellation. Yet, dense and element-wise rounding matrices are prohibitively expensive for billion-parameter large language models (LLMs). We revisit adaptive rounding from an efficiency perspective and propose VQRound, a parameter-efficient optimization framework that reparameterizes the rounding matrix into a compact codebook. Unlike low-rank alternatives, VQRound minimizes the element-wise worst-case error under $L_\infty$ norm, which is critical for handling heavy-tailed weight distributions in LLMs. Beyond reparameterization, we identify rounding initialization as a decisive factor and develop a lightweight end-to-end finetuning pipeline that optimizes codebooks across all layers using only 128 samples. Extensive experiments on OPT, LLaMA, LLaMA2, and Qwen3 models demonstrate that VQRound achieves better convergence than traditional adaptive rounding at the same number of steps while using as little as 0.2% of the trainable parameters. Our results show that adaptive rounding can be made both scalable and fast-fitting. The code is available at https://github.com/zhoustan/VQRound.
comment: 17 pages, 6 figures, 14 tables
☆ ECHO: Entropy-Confidence Hybrid Optimization for Test-Time Reinforcement Learning
Test-time reinforcement learning generates multiple candidate answers via repeated rollouts and performs online updates using pseudo-labels constructed by majority voting. To reduce overhead and improve exploration, prior work introduces tree structured rollouts, which share reasoning prefixes and branch at key nodes to improve sampling efficiency. However, this paradigm still faces two challenges: (1) high entropy branching can trigger rollout collapse, where the branching budget concentrates on a few trajectories with consecutive high-entropy segments, rapidly reducing the number of effective branches; (2) early pseudo-labels are noisy and biased, which can induce self-reinforcing overfitting, causing the policy to sharpen prematurely and suppress exploration. To address these issues, we propose Entropy Confidence Hybrid Group Relative Policy Optimization (ECHO). During rollout, ECHO jointly leverages local entropy and group level confidence to adaptively control branch width, and further introduces online confidence-based pruning to terminate persistently low confidence branches, avoiding high entropy traps and mitigating collapse. During policy updates, ECHO employs confidence adaptive clipping and an entropy confidence hybrid advantage shaping approach to enhance training robustness and mitigate early stage bias. Experiments demonstrate that ECHO achieves consistent gains on multiple mathematical and visual reasoning benchmarks, and generalizes more effectively under a limited rollout budget.
comment: 19 ppages
☆ Back to the Future: Look-ahead Augmentation and Parallel Self-Refinement for Time Series Forecasting WWW
Long-term time series forecasting (LTSF) remains challenging due to the trade-off between parallel efficiency and sequential modeling of temporal coherence. Direct multi-step forecasting (DMS) methods enable fast, parallel prediction of all future horizons but often lose temporal consistency across steps, while iterative multi-step forecasting (IMS) preserves temporal dependencies at the cost of error accumulation and slow inference. To bridge this gap, we propose Back to the Future (BTTF), a simple yet effective framework that enhances forecasting stability through look-ahead augmentation and self-corrective refinement. Rather than relying on complex model architectures, BTTF revisits the fundamental forecasting process and refines a base model by ensembling the second-stage models augmented with their initial predictions. Despite its simplicity, our approach consistently improves long-horizon accuracy and mitigates the instability of linear forecasting models, achieving accuracy gains of up to 58% and demonstrating stable improvements even when the first-stage model is trained under suboptimal conditions. These results suggest that leveraging model-generated forecasts as augmentation can be a simple yet powerful way to enhance long-term prediction, even without complex architectures.
comment: 4 pages, Short paper accepted at The Web Conference (WWW) 2026
☆ Learning Generative Selection for Best-of-N
Scaling test-time compute via parallel sampling can substantially improve LLM reasoning, but is often limited by Best-of-N selection quality. Generative selection methods, such as GenSelect, address this bottleneck, yet strong selection performance remains largely limited to large models. We show that small reasoning models can acquire strong GenSelect capabilities through targeted reinforcement learning. To this end, we synthesize selection tasks from large-scale math and code instruction datasets by filtering to instances with both correct and incorrect candidate solutions, and train 1.7B-parameter models with DAPO to reward correct selections. Across math (AIME24, AIME25, HMMT25) and code (LiveCodeBench) reasoning benchmarks, our models consistently outperform prompting and majority-voting baselines, often approaching or exceeding much larger models. Moreover, these gains generalize to selecting outputs from stronger models despite training only on outputs from weaker models. Overall, our results establish reinforcement learning as a scalable way to unlock strong generative selection in small models, enabling efficient test-time scaling.
☆ EvoMU: Evolutionary Machine Unlearning
Machine unlearning aims to unlearn specified training data (e.g. sensitive or copyrighted material). A prominent approach is to fine-tune an existing model with an unlearning loss that retains overall utility. The space of suitable unlearning loss functions is vast, making the search for an optimal loss function daunting. Additionally, there might not even exist a universally optimal loss function: differences in the structure and overlap of the forget and retain data can cause a loss to work well in one setting but over-unlearn or under-unlearn in another. Our approach EvoMU tackles these two challenges simultaneously. An evolutionary search procedure automatically finds task-specific losses in the vast space of possible unlearning loss functions. This allows us to find dataset-specific losses that match or outperform existing losses from the literature, without the need for a human-in-the-loop. This work is therefore an instance of automatic scientific discovery, a.k.a. an AI co-scientist. In contrast to previous AI co-scientist works, we do so on a budget: We achieve SotA results using a small 4B parameter model (Qwen3-4B-Thinking), showing the potential of AI co-scientists with limited computational resources. Our experimental evaluation shows that we surpass previous loss-based unlearning formulations on TOFU-5%, TOFU-10%, MUSE and WMDP by synthesizing novel unlearning losses. Our code is available at https://github.com/Batorskq/EvoMU.
♻ ☆ Helios 2.0: A Robust, Ultra-Low Power Gesture Recognition System Optimised for Event-Sensor based Wearables
We present an advance in wearable technology: a mobile-optimized, real-time, ultra-low-power event camera system that enables natural hand gesture control for smart glasses, dramatically improving user experience. While hand gesture recognition in computer vision has advanced significantly, critical challenges remain in creating systems that are intuitive, adaptable across diverse users and environments, and energy-efficient enough for practical wearable applications. Our approach tackles these challenges through carefully selected microgestures: lateral thumb swipes across the index finger (in both directions) and a double pinch between thumb and index fingertips. These human-centered interactions leverage natural hand movements, ensuring intuitive usability without requiring users to learn complex command sequences. To overcome variability in users and environments, we developed a novel simulation methodology that enables comprehensive domain sampling without extensive real-world data collection. Our power-optimised architecture maintains exceptional performance, achieving F1 scores above 80\% on benchmark datasets featuring diverse users and environments. The resulting models operate at just 6-8 mW when exploiting the Qualcomm Snapdragon Hexagon DSP, with our 2-channel implementation exceeding 70\% F1 accuracy and our 6-channel model surpassing 80\% F1 accuracy across all gesture classes in user studies. These results were achieved using only synthetic training data. This improves on the state-of-the-art for F1 accuracy by 20\% with a power reduction 25x when using DSP. This advancement brings deploying ultra-low-power vision systems in wearable devices closer and opens new possibilities for seamless human-computer interaction.
comment: 24 pages, 14 figures. Prarthana Bhattacharyya, Joshua Mitton, Ryan Page, Owen Morgan, and Oliver Powell contributed equally to this paper
♻ ☆ How to Train Your Advisor: Steering Black-Box LLMs with Advisor Models
Frontier language models are deployed as black-box services, where model weights cannot be modified and customization is limited to prompting. We introduce Advisor Models, a method to train small open-weight models to generate dynamic, per-instance natural language advice that improves the capabilities of black-box frontier models. Advisor Models improve GPT-5's performance on RuleArena (Taxes) by 71%, reduce Gemini 3 Pro's steps taken in SWE agent tasks by 24.6%, and outperform static prompt optimizers in personalizing GPT-5 to user preferences (85-100% vs. 40-60%). We also find that advisors are transferable: an advisor trained with a low-cost student model still transfers improvements to a frontier model. Moreover, Advisor Models are robust: we observe no degradation on other benchmarks than the pipeline is trained on. Our method shows how to perform parametric optimization for black-box frontier models in a practical and cost-effective way.
♻ ☆ Uncertainty-Aware Knowledge Tracing Models
The main focus of research on Knowledge Tracing (KT) models is on model developments with the aim of improving predictive accuracy. Most of these models make the most incorrect predictions when students choose a distractor, leading to student errors going undetected. We present an approach to add new capabilities to KT models by capturing predictive uncertainty and demonstrate that a larger predictive uncertainty aligns with model incorrect predictions. We show that uncertainty in KT models is informative and that this signal would be pedagogically useful for application in an educational learning platform that can be used in a limited resource setting where understanding student ability is necessary.
comment: 10 pages, 7 figures. Joshua Mitton and Prarthana Bhattacharyya contributed equally to this paper
♻ ☆ FS-DFM: Fast and Accurate Long Text Generation with Few-Step Diffusion Language Models ICLR 2026
Autoregressive language models (ARMs) deliver strong likelihoods, but are inherently serial: they generate one token per forward pass, which limits throughput and inflates latency for long sequences. Diffusion Language Models (DLMs) parallelize across positions and thus appear promising for language generation, yet standard discrete diffusion typically needs hundreds to thousands of model evaluations to reach high quality, trading serial depth for iterative breadth. We introduce FS-DFM, Few-Step Discrete Flow-Matching. A discrete flow-matching model designed for speed without sacrificing quality. The core idea is simple: make the number of sampling steps an explicit parameter and train the model to be consistent across step budgets, so one big move lands where many small moves would. We pair this with a reliable update rule that moves probability in the right direction without overshooting, and with strong teacher guidance distilled from long-run trajectories. Together, these choices make few-step sampling stable, accurate, and easy to control. On language modeling benchmarks, FS-DFM with 8 sampling steps achieves perplexity parity with a 1,024-step discrete-flow baseline for generating 1,024 tokens using a similar-size model, delivering up to 128 times faster sampling and corresponding latency/throughput gains.
comment: Accepted to ICLR 2026
♻ ☆ A Backpropagation-Free Feedback-Hebbian Network for Continual Learning Dynamics
Feedback-rich neural architectures can regenerate earlier representations and inject temporal context, making them a natural setting for strictly local synaptic plasticity. Existing literature raises doubt about whether a minimal, backpropagation-free feedback-Hebbian system can already express interpretable continual-learning-relevant behaviors under controlled training schedules. In this work, we introduce a compact prediction-reconstruction architecture with a dedicated feedback pathway providing lightweight, locally trainable temporal context for continual adaptation. All synapses are updated by a unified local rule combining centered Hebbian covariance, Oja-style stabilization, and a local supervised drive where targets are available. With a simple two-pair association task, learning is characterized through layer-wise activity snapshots, connectivity trajectories (row and column means of learned weights), and a normalized retention index across phases. Under sequential A to B training, forward output connectivity exhibits a long-term depression (LTD)-like suppression of the earlier association, while feedback connectivity preserves an A-related trace during acquisition of B. Under an alternating sequence, both associations are concurrently maintained rather than sequentially suppressed. Architectural controls and rule-term ablations isolate the role of dedicated feedback in regeneration and co-maintenance, alongside the role of the local supervised term in output selectivity and unlearning. Together, the results show that a compact feedback pathway trained with local plasticity can support regeneration and continual-learning-relevant dynamics in a minimal, mechanistically transparent setting.
comment: 8 pages, 10 figures
♻ ☆ Generalization or Hallucination? Understanding Out-of-Context Reasoning in Transformers NeurIPS 2025
Large language models (LLMs) can acquire new knowledge through fine-tuning, but this process exhibits a puzzling duality: models can generalize remarkably from new facts, yet are also prone to hallucinating incorrect information. However, the reasons for this phenomenon remain poorly understood. In this work, we argue that both behaviors stem from a single mechanism known as out-of-context reasoning (OCR): the ability to deduce implications by associating concepts, even those without a causal link. Our experiments across five prominent LLMs confirm that OCR indeed drives both generalization and hallucination, depending on whether the associated concepts are causally related. To build a rigorous theoretical understanding of this phenomenon, we then formalize OCR as a synthetic factual recall task. We empirically show that a one-layer single-head attention-only transformer with factorized output and value matrices can learn to solve this task, while a model with combined weights cannot, highlighting the crucial role of matrix factorization. Our theoretical analysis shows that the OCR capability can be attributed to the implicit bias of gradient descent, which favors solutions that minimize the nuclear norm of the combined output-value matrix. This mathematical structure explains why the model learns to associate facts and implications with high sample efficiency, regardless of whether the correlation is causal or merely spurious. Ultimately, our work provides a theoretical foundation for understanding the OCR phenomenon, offering a new lens for analyzing and mitigating undesirable behaviors from knowledge injection.
comment: NeurIPS 2025, first three authors contributed equally
♻ ☆ Outcome-Based RL Provably Leads Transformers to Reason, but Only With the Right Data
Transformers trained via Reinforcement Learning (RL) with outcome-based supervision can spontaneously develop the ability to generate intermediate reasoning steps (Chain-of-Thought). Yet the mechanism by which sparse rewards drive policy gradient to discover such systematic reasoning remains poorly understood. We address this by analyzing the policy gradient dynamics of single-layer Transformers on a synthetic graph traversal task that cannot be solved without Chain-of-Thought but admits a simple iterative solution. We prove that despite training solely on final-answer correctness, policy gradient drives the Transformer to converge to a structured, interpretable algorithm that iteratively traverses the graph vertex-by-vertex. We characterize the distributional properties required for this emergence, identifying the critical role of "simple examples": instances requiring fewer reasoning steps. When the training distribution places sufficient mass on these simpler examples, the Transformer learns a generalizable traversal strategy that extrapolates to longer chains; when this mass vanishes, policy gradient learning becomes infeasible. We corroborate our theoretical results through experiments on synthetic data and with real-world language models on mathematical reasoning tasks, validating that our theoretical findings carry over to practical settings.
comment: 87 pages, 6 figures
♻ ☆ EUGens: Efficient, Unified, and General Dense Layers
Efficient neural networks are essential for scaling machine learning models to real-time applications and resource-constrained environments. Fully-connected feedforward layers (FFLs) introduce computation and parameter count bottlenecks within neural network architectures. To address this challenge, in this work, we propose a new class of dense layers that generalize standard fully-connected feedforward layers, \textbf{E}fficient, \textbf{U}nified and \textbf{Gen}eral dense layers (EUGens). EUGens leverage random features to approximate standard FFLs and go beyond them by incorporating a direct dependence on the input norms in their computations. The proposed layers unify existing efficient FFL extensions and improve efficiency by reducing inference complexity from quadratic to linear time. They also lead to \textbf{the first} unbiased algorithms approximating FFLs with arbitrary polynomial activation functions. Furthermore, EuGens reduce the parameter count and computational overhead while preserving the expressive power and adaptability of FFLs. We also present a layer-wise knowledge transfer technique that bypasses backpropagation, enabling efficient adaptation of EUGens to pre-trained models. Empirically, we observe that integrating EUGens into Transformers and MLPs yields substantial improvements in inference speed (up to \textbf{27}\%) and memory efficiency (up to \textbf{30}\%) across a range of tasks, including image classification, language model pre-training, and 3D scene reconstruction. Overall, our results highlight the potential of EUGens for the scalable deployment of large-scale neural networks in real-world scenarios.
comment: We want to update 2410.09771 with this submission
♻ ☆ MEMOIR: Lifelong Model Editing with Minimal Overwrite and Informed Retention for LLMs NeurIPS 2025
Language models deployed in real-world systems often require post-hoc updates to incorporate new or corrected knowledge. However, editing such models efficiently and reliably-without retraining or forgetting previous information-remains a major challenge. Existing methods for lifelong model editing either compromise generalization, interfere with past edits, or fail to scale to long editing sequences. We propose MEMOIR, a novel scalable framework that injects knowledge through a residual memory, i.e., a dedicated parameter module, while preserving the core capabilities of the pre-trained model. By sparsifying input activations through sample-dependent masks, MEMOIR confines each edit to a distinct subset of the memory parameters, minimizing interference among edits. At inference, it identifies relevant edits by comparing the sparse activation patterns of new queries to those stored during editing. This enables generalization to rephrased queries by activating only the relevant knowledge while suppressing unnecessary memory activation for unrelated prompts. Experiments on question answering, hallucination correction, and out-of-distribution generalization benchmarks for LLaMA-3 and Mistral backbones demonstrate that MEMOIR achieves state-of-the-art performance across reliability, generalization, and locality metrics, scaling to thousands of sequential edits with minimal forgetting.
comment: The first two authors contributed equally to this work; Accepted to NeurIPS 2025
♻ ☆ Context-Free Synthetic Data Mitigates Forgetting
Fine-tuning a language model often results in a degradation of its existing performance on other tasks, due to a shift in the model parameters; this phenomenon is often referred to as (catastrophic) forgetting. We are interested in mitigating this, in settings where we only have access to the model weights but no access to its training data/recipe. A natural approach is to penalize the KL divergence between the original model and the new one. Our main realization is that a simple process - which we term context-free generation - allows for an approximate unbiased estimation of this KL divergence. We show that augmenting a fine-tuning dataset with context-free generations mitigates forgetting, in two settings: (a) preserving the zero-shot performance of pretrained-only models, and (b) preserving the reasoning performance of thinking models. We show that contextual synthetic data, and even a portion of the pretraining data, are less effective. We also investigate the effect of choices like generation temperature, data ratios etc. We present our results for OLMo-1B for pretrained-only setting and R1-Distill-Llama-8B for the reasoning setting.
♻ ☆ Decoding Generalization from Memorization in Deep Neural Networks
Overparameterized deep networks that generalize well have been key to the dramatic success of deep learning in recent years. The reasons for their remarkable ability to generalize are not well understood yet. When class labels in the training set are shuffled to varying degrees, it is known that deep networks can still reach perfect training accuracy at the detriment of generalization to true labels -- a phenomenon that has been called memorization. It has, however, been unclear why the poor generalization to true labels that accompanies such memorization, comes about. One possibility is that during training, all layers of the network irretrievably re-organize their representations in a manner that makes generalization to true labels difficult. The other possibility is that one or more layers of the trained network retain significantly more latent ability to generalize to true labels, but the network somehow "chooses" to readout in a manner that is detrimental to generalization to true labels. Here, we provide evidence for the latter possibility by demonstrating, empirically, that such models possess information in their representations for substantially-improved generalization to true labels. Furthermore, such abilities can be easily decoded from the internals of the trained model, and we build a technique to do so. We demonstrate results on multiple models trained with standard datasets. Our code is available at: https://github.com/simranketha/MASC_DNN.
♻ ☆ Future frame prediction in chest and liver cine MRI using the PCA respiratory motion model: comparing transformers and dynamically trained recurrent neural networks
Respiratory motion complicates accurate irradiation of thoraco-abdominal tumors in radiotherapy, as treatment-system latency entails target-location uncertainties. This work addresses frame forecasting in chest and liver cine MRI to compensate for such delays. We investigate RNNs trained with online learning algorithms, enabling adaptation to changing respiratory patterns via on-the-fly parameter updates, and transformers, increasingly common in time series forecasting for their ability to capture long-term dependencies. Experiments were conducted using 12 sagittal thoracic and upper-abdominal cine-MRI sequences from ETH Zürich and OvGU. PCA decomposes the Lucas-Kanade optical-flow field into static deformations and low-dimensional time-dependent weights. We compare various methods forecasting the latter: linear filters, population and sequence-specific encoder-only transformers, and RNNs trained with real-time recurrent learning (RTRL), unbiased online recurrent optimization, decoupled neural interfaces, and sparse one-step approximation (SnAp-1). Predicted displacements were used to warp the reference frame and generate future images. Prediction accuracy decreased with the horizon h. Linear regression performed best at short horizons (1.3mm geometrical error at h=0.32s, ETH Zürich data), while RTRL and SnAp-1 outperformed the other algorithms at medium-to-long horizons, with geometrical errors below 1.4mm and 2.8mm on the sequences from ETH Zürich and OvGU (the latter featuring higher motion variability, noise, and lower contrast), respectively. The sequence-specific transformer was competitive for low-to-medium horizons, but transformers remained overall limited by data scarcity and domain shift between datasets. Predicted frames visually resembled the ground truth, with notable errors occurring near the diaphragm at end-inspiration and regions affected by out-of-plane motion.
comment: 43 pages, 19 figures, revised version (including transformer experiments, evaluation on liver MRI data, statistical analysis...)
♻ ☆ MeshGraphNet-Transformer: Scalable Mesh-based Learned Simulation for Solid Mechanics
We present MeshGraphNet-Transformer (MGN-T), a novel architecture that combines the global modeling capabilities of Transformers with the geometric inductive bias of MeshGraphNets, while preserving a mesh-based graph representation. MGN-T overcomes a key limitation of standard MGN, the inefficient long-range information propagation caused by iterative message passing on large, high-resolution meshes. A physics-attention Transformer serves as a global processor, updating all nodal states simultaneously while explicitly retaining node and edge attributes. By directly capturing long-range physical interactions, MGN-T eliminates the need for deep message-passing stacks or hierarchical, coarsened meshes, enabling efficient learning on high-resolution meshes with varying geometries, topologies, and boundary conditions at an industrial scale. We demonstrate that MGN-T successfully handles industrial-scale meshes for impact dynamics, a setting in which standard MGN fails due message-passing under-reaching. The method accurately models self-contact, plasticity, and multivariate outputs, including internal, phenomenological plastic variables. Moreover, MGN-T outperforms state-of-the-art approaches on classical benchmarks, achieving higher accuracy while maintaining practical efficiency, using only a fraction of the parameters required by competing baselines.
♻ ☆ To See Far, Look Close: Evolutionary Forecasting for Long-term Time Series
The prevailing Direct Forecasting (DF) paradigm dominates Long-term Time Series Forecasting (LTSF) by forcing models to predict the entire future horizon in a single forward pass. While efficient, this rigid coupling of output and evaluation horizons necessitates computationally prohibitive re-training for every target horizon. In this work, we uncover a counter-intuitive optimization anomaly: models trained on short horizons-when coupled with our proposed Evolutionary Forecasting (EF) paradigm-significantly outperform those trained directly on long horizons. We attribute this success to the mitigation of a fundamental optimization pathology inherent in DF, where conflicting gradients from distant futures cripple the learning of local dynamics. We establish EF as a unified generative framework, proving that DF is merely a degenerate special case of EF. Extensive experiments demonstrate that a singular EF model surpasses task-specific DF ensembles across standard benchmarks and exhibits robust asymptotic stability in extreme extrapolation. This work propels a paradigm shift in LTSF: moving from passive Static Mapping to autonomous Evolutionary Reasoning.
♻ ☆ Enabling Approximate Joint Sampling in Diffusion LMs
In autoregressive language models, each token is sampled by conditioning on all the past tokens; the overall string has thus been sampled from the correct underlying joint distribution represented by the model. In contrast, masked diffusion language models generate text by unmasking tokens out of order and potentially in parallel. Generating an overall string sampled from the correct underlying joint distribution would (again) require exactly one token unmasking in every full-model forward pass. The more tokens unmasked in parallel, the further away the string is from the true joint; this can be seen in the resulting drop in accuracy (but, increase in speed). In this paper we devise a way to {\em approximately} sample multiple tokens from the joint distribution in a single full-model forward pass; we do so by developing a new lightweight single-layer ``sampler" on top of an existing large diffusion LM. One forward pass of the full model can now be followed by multiple forward passes of only this sampler layer, to yield multiple unmasked tokens. Our sampler is trained to mimic exact joint sampling from the (frozen) full model. We show the effectiveness of our approximate joint sampling for both pretrained-only (Dream-7B-Base, Llada-7B-Base) and instruction-tuned (Dream-7B-Instruct, Dream-7B-Coder) models on language modeling and math \& coding tasks. When four tokens are unmasked for each full-model denoising step, our sampling algorithm achieves a MAUVE score of 0.87 (vs marginal baseline of 0.31) with respect to the true joint distribution.
♻ ☆ SparseSwaps: Tractable LLM Pruning Mask Refinement at Scale
The resource requirements of neural networks can be significantly reduced through pruning - the removal of seemingly less important parameters. However, for LLMs, full retraining to recover pruning-induced performance degradation is often prohibitive and classical approaches such as magnitude pruning are suboptimal on Transformers. State-of-the-art methods hence solve a layer-wise mask selection problem: finding a pruning mask that minimizes per-layer pruning error on a small set of calibration data. Exactly solving this problem is computationally infeasible due to its combinatorial nature and the size of the search space, and existing approaches rely on approximations or heuristics. We demonstrate that the mask selection problem can be made drastically more tractable at LLM scale. To that end, we decouple the rows by enforcing equal sparsity levels per row. This allows us to derive optimal 1-swaps (exchanging one kept and one pruned weight) computable efficiently via the Gram matrix. We propose a simple 1-swap algorithm that warmstarts from any pruning mask, runs efficiently on GPUs at LLM scale, and is essentially hyperparameter-free. Our approach reduces per-layer pruning error by up to 60% over Wanda (Sun et al., 2024) and consistently improves perplexity and zero-shot accuracy across state-of-the-art GPT architectures.
comment: 13 pages, 2 figures, 5 tables
♻ ☆ Language as a Wave Phenomenon: Semantic Phase Locking and Interference in Neural Networks
In standard Transformer architectures, semantic importance is often conflated with activation magnitude, obscuring the geometric structure of latent representations. To disentangle these factors, we introduce PRISM, a complex-valued architecture designed to isolate the computational role of phase. By enforcing a strict unit-norm constraint (|z| = 1) and replacing attention with gated harmonic convolutions, the model is compelled to utilize subtractive interference in the frequency domain to suppress noise, rather than relying on magnitude-based gating. We utilize this constrained regime to demonstrate that a hybrid architecture - fusing phase-based routing with standard attention - achieves superior parameter efficiency and representation quality compared to unconstrained baselines. Mechanistically, we identify geometric phase clustering, where tokens naturally self-organize to resolve semantic ambiguities. This establishes an O(N log N) reasoning framework based on spectral interference, providing an algorithmic existence proof that subtractive logic is a sufficient primitive for deep reasoning.
comment: 14 pages, 7 figures; Revised title; Added new experiments on encoder-only models using WikiText-103
♻ ☆ MINIF2F-DAFNY: LLM-Guided Mathematical Theorem Proving via Auto-Active Verification
LLMs excel at reasoning, but validating their steps remains challenging. Formal verification offers a solution through mechanically checkable proofs. Interactive theorem provers (ITPs) dominate mathematical reasoning but require detailed low-level proof steps, while auto-active verifiers offer automation but focus on software verification. Recent work has begun bridging this divide by evaluating LLMs for software verification in ITPs, but the complementary direction--LLMs for mathematical theorem proving in auto-active verifiers--remains unexplored. We present MINIF2F-DAFNY, the first translation of the widely-used mathematical benchmark miniF2F to an auto-active verifier: Dafny. We find that Dafny's automation alone solves 39-44% of problems with empty proofs, whereas many require substantial proof guidance in ITPs. For remaining problems, we evaluate 7 off-the-shelf LLMs, achieving 55.7% success with the best model (Claude Sonnet 4.5) using modest resources. These results demonstrate effective division of labor: LLMs provide high-level guidance while automation handles low-level details. Our benchmark can be found on GitHub at http://github.com/dafny-lang/miniF2F .
♻ ☆ A Scalable Inter-edge Correlation Modeling in CopulaGNN for Link Sign Prediction ICLR 2026
Link sign prediction on a signed graph is a task to determine whether the relationship represented by an edge is positive or negative. Since the presence of negative edges violates the graph homophily assumption that adjacent nodes are similar, regular graph methods have not been applicable without auxiliary structures to handle them. We aim to directly model the latent statistical dependency among edges with the Gaussian copula and its corresponding correlation matrix, extending CopulaGNN (Ma et al., 2021). However, a naive modeling of edge-edge relations is computationally intractable even for a graph with moderate scale. To address this, we propose to 1) represent the correlation matrix as a Gramian of edge embeddings, significantly reducing the number of parameters, and 2) reformulate the conditional probability distribution to dramatically reduce the inference cost. We theoretically verify scalability of our method by proving its linear convergence. Also, our extensive experiments demonstrate that it achieves significantly faster convergence than baselines, maintaining competitive prediction performance to the state-of-the-art models.
comment: Accepted for ICLR 2026
♻ ☆ A Scalable Measure of Loss Landscape Curvature for Analyzing the Training Dynamics of LLMs
Understanding the curvature evolution of the loss landscape is fundamental to analyzing the training dynamics of neural networks. The most commonly studied measure, Hessian sharpness ($λ_{\max}^H$) -- the largest eigenvalue of the loss Hessian -- determines local training stability and interacts with the learning rate throughout training. Despite its significance in analyzing training dynamics, direct measurement of Hessian sharpness remains prohibitive for Large Language Models (LLMs) due to high computational cost. We analyze $\textit{critical sharpness}$ ($λ_c$), a computationally efficient measure requiring fewer than $10$ forward passes given the update direction $Δ\mathbfθ$. Critically, this measure captures well-documented Hessian sharpness phenomena, including progressive sharpening and Edge of Stability. Using this measure, we provide the first demonstration of these sharpness phenomena at scale, up to $7$B parameters, spanning both pre-training and mid-training of OLMo-2 models. We further introduce $\textit{relative critical sharpness}$ ($λ_c^{1\to 2}$), which quantifies the curvature of one loss landscape while optimizing another, to analyze the transition from pre-training to fine-tuning and guide data mixing strategies. Critical sharpness provides practitioners with a practical tool for diagnosing curvature dynamics and informing data composition choices at scale. More broadly, our work shows that scalable curvature measures can provide actionable insights for large-scale training.
comment: Improved Appendix D proofs, text for clarity, added more related works
♻ ☆ STAC: When Innocent Tools Form Dangerous Chains to Jailbreak LLM Agents
As LLMs advance into autonomous agents with tool-use capabilities, they introduce security challenges that extend beyond traditional content-based LLM safety concerns. This paper introduces Sequential Tool Attack Chaining (STAC), a novel multi-turn attack framework that exploits agent tool use. STAC chains together tool calls that each appear harmless in isolation but, when combined, collectively enable harmful operations that only become apparent at the final execution step. We apply our framework to automatically generate and systematically evaluate 483 STAC cases, featuring 1,352 sets of user-agent-environment interactions and spanning diverse domains, tasks, agent types, and 10 failure modes. Our evaluations show that state-of-the-art LLM agents, including GPT-4.1, are highly vulnerable to STAC, with attack success rates (ASR) exceeding 90% in most cases. The core design of STAC's automated framework is a closed-loop pipeline that synthesizes executable multi-step tool chains, validates them through in-environment execution, and reverse-engineers stealthy multi-turn prompts that reliably induce agents to execute the verified malicious sequence. We further perform defense analysis against STAC and find that existing prompt-based defenses provide limited protection. To address this gap, we propose a new reasoning-driven defense prompt that achieves far stronger protection, cutting ASR by up to 28.8%. These results highlight a crucial gap: defending tool-enabled agents requires reasoning over entire action sequences and their cumulative effects, rather than evaluating isolated prompts or responses.
♻ ☆ A Proof of Learning Rate Transfer under $μ$P
We provide the first proof of learning rate transfer with width in a linear multi-layer perceptron (MLP) parametrized with $μ$P, a neural network parameterization designed to ``maximize'' feature learning in the infinite-width limit. We show that under $μP$, the optimal learning rate converges to a \emph{non-zero constant} as width goes to infinity, providing a theoretical explanation to learning rate transfer. In contrast, we show that this property fails to hold under alternative parametrizations such as Standard Parametrization (SP) and Neural Tangent Parametrization (NTP). We provide intuitive proofs and support the theoretical findings with extensive empirical results.
comment: 21 pages
♻ ☆ SNAP-UQ: Self-supervised Next-Activation Prediction for Single-Pass Uncertainty in TinyML ICLR 2026
This paper proposes a novel and practical method, SNAP-UQ, for single-pass, label-free uncertainty estimation based on depth-wise next-activation prediction. SNAP-UQ taps a small set of backbone layers and uses tiny int8 heads to predict the mean and scale of the next activation from a low-rank projection of the previous one; the resulting standardized prediction error forms a depth-wise surprisal signal that is aggregated and mapped through a lightweight monotone calibrator into an actionable uncertainty score. The design introduces no temporal buffers or auxiliary exits and preserves state-free inference, while increasing deployment footprint by only a few tens of kilobytes. Across vision and audio backbones, SNAP-UQ reduces flash and latency relative to early-exit and deep-ensemble baselines (typically $\sim$40--60% smaller and $\sim$25--35% faster), with several competing methods at similar accuracy often exceeding MCU memory limits. On corrupted streams, it improves accuracy-drop event detection by multiple AUPRC points and maintains strong failure detection (AUROC $\approx 0.9$) in a single forward pass. By grounding uncertainty in layer-to-layer dynamics rather than solely in output confidence, SNAP-UQ offers a novel, resource-efficient basis for robust TinyML monitoring.
comment: Accepted at ICLR 2026
♻ ☆ HER: Human-like Reasoning and Reinforcement Learning for LLM Role-playing
LLM role-playing, i.e., using LLMs to simulate specific personas, has emerged as a key capability in various applications, such as companionship, content creation, and digital games. While current models effectively capture character tones and knowledge, simulating the inner thoughts behind their behaviors remains a challenge. Towards cognitive simulation in LLM role-play, previous efforts mainly suffer from two deficiencies: data with high-quality reasoning traces, and reliable reward signals aligned with human preferences. In this paper, we propose HER, a unified framework for cognitive-level persona simulation. HER introduces dual-layer thinking, which distinguishes characters' first-person thinking from LLMs' third-person thinking. To bridge these gaps, we curate reasoning-augmented role-playing data via reverse engineering and construct human-aligned principles and reward models. Leveraging these resources, we train HER models based on Qwen3-32B via supervised and reinforcement learning. Extensive experiments validate the effectiveness of our approach. Notably, our models significantly outperform the Qwen3-32B baseline, achieving a 30.26 improvement on the CoSER benchmark and a 14.97 gain on the Minimax Role-Play Bench. Our datasets, principles, and models will be released to facilitate future research.
comment: 41pages, 10 figures
♻ ☆ TEON: Tensorized Orthonormalization Beyond Layer-Wise Muon for Large Language Model Pre-Training
The Muon optimizer has demonstrated strong empirical performance in pre-training large language models by performing matrix-level gradient (or momentum) orthogonalization in each layer independently. In this work, we propose TEON, a principled generalization of Muon that extends orthogonalization beyond individual layers by modeling the gradients of a neural network as a structured higher-order tensor. We present TEON's improved convergence guarantee over layer-wise Muon, and further develop a practical instantiation of TEON based on the theoretical analysis with corresponding ablation. We evaluate our approach on two widely adopted architectures: GPT-style models, ranging from 130M to 774M parameters, and LLaMA-style models, ranging from 60M to 1B parameters. Experimental results show that TEON consistently improves training and validation perplexity across model scales and exhibits strong robustness under various approximate SVD schemes.
♻ ☆ ASIL: Augmented Structural Information Learning for Deep Graph Clustering in Hyperbolic Space
Graph clustering is a longstanding topic in machine learning. Recently, deep methods have achieved results but still require predefined cluster numbers K and struggle with imbalanced graphs. We study deep graph clustering without K considering realistic imbalance through structural information theory. In the literature, structural information is rarely used in deep clustering, and its classic discrete definition neglects node attributes while exhibiting prohibitive complexity. In this paper, we establish a differentiable structural information framework, generalizing the discrete formalism to the continuous realm. We design a hyperbolic model (LSEnet) to learn the neural partitioning tree in the Lorentz model. Theoretically, we demonstrate its capability in clustering without K and identifying minority clusters. Second, we refine hyperbolic representations to enhance graph semantics. Since tree contrastive learning is non-trivial and costs quadratic complexity, we advance our theory by discovering that structural entropy bounds the tree contrastive loss. Finally, we approach graph clustering through a novel augmented structural information learning (ASIL), which offers an efficient objective to integrate hyperbolic partitioning tree construction and contrastive learning. With a provable improvement in graph conductance, ASIL achieves effective debiased graph clustering in linear complexity. Extensive experiments show ASIL outperforms 20 strong baselines by an average of +12.42% in NMI on the Citeseer dataset.
comment: Accepted by IEEE TPAMI, 36 pages
♻ ☆ Accurate Network Traffic Matrix Prediction via LEAD: a Large Language Model-Enhanced Adapter-Based Conditional Diffusion Model
Driven by the evolution toward 6G and AI-native edge intelligence, network operations increasingly require predictive and risk-aware adaptation under stringent computation and latency constraints. Network Traffic Matrix (TM), which characterizes flow volumes between nodes, is a fundamental signal for proactive traffic engineering. However, accurate TM forecasting remains challenging due to the stochastic, non-linear, and bursty nature of network dynamics. Existing discriminative models often suffer from over-smoothing and provide limited uncertainty awareness, leading to poor fidelity under extreme bursts. To address these limitations, we propose LEAD, a Large Language Model (LLM)-Enhanced Adapter-based conditional Diffusion model. First, LEAD adopts a "Traffic-to-Image" paradigm to transform traffic matrices into RGB images, enabling global dependency modeling via vision backbones. Then, we design a "Frozen LLM with Trainable Adapter" model, which efficiently captures temporal semantics with limited computational cost. Moreover, we propose a Dual-Conditioning Strategy to precisely guide a diffusion model to generate complex, dynamic network traffic matrices. Experiments on the Abilene and GEANT datasets demonstrate that LEAD outperforms all baselines. On the Abilene dataset, LEAD attains a remarkable 45.2% reduction in RMSE against the best baseline, with the error margin rising only marginally from 0.1098 at one-step to 0.1134 at 20-step predictions. Meanwhile, on the GEANT dataset, LEAD achieves a 0.0258 RMSE at 20-step prediction horizon which is 27.3% lower than the best baseline.
♻ ☆ On Purely Private Covariance Estimation ALT 2026
We present a simple perturbation mechanism for the release of $d$-dimensional covariance matrices $Σ$ under pure differential privacy. For large datasets with at least $n\geq d^2/\varepsilon$ elements, our mechanism recovers the provably optimal Frobenius norm error guarantees of \cite{nikolov2023private}, while simultaneously achieving best known error for all other $p$-Schatten norms, with $p\in [1,\infty]$. Our error is information-theoretically optimal for all $p\ge 2$, in particular, our mechanism is the first purely private covariance estimator that achieves optimal error in spectral norm. For small datasets $n< d^2/\varepsilon$, we further show that by projecting the output onto the nuclear norm ball of appropriate radius, our algorithm achieves the optimal Frobenius norm error $O(\sqrt{d\;\text{Tr}(Σ) /n})$, improving over the known bounds of $O(\sqrt{d/n})$ of \cite{nikolov2023private} and ${O}\big(d^{3/4}\sqrt{\text{Tr}(Σ)/n}\big)$ of \cite{dong2022differentially}.
comment: ALT 2026; equal contribution
♻ ☆ Joint Transmit and Pinching Beamforming for Pinching Antenna Systems (PASS): Optimization-Based or Learning-Based?
A novel pinching antenna system (PASS)-enabled downlink multi-user multiple-input single-output (MISO) framework is proposed. PASS consists of multiple waveguides spanning over thousands of wavelength, which equip numerous low-cost dielectric particles, named pinching antennas (PAs), to radiate signals into free space. The positions of PAs can be reconfigured to change both the large-scale path losses and phases of signals, thus facilitating the novel pinching beamforming design. A sum rate maximization problem is formulated, which jointly optimizes the transmit and pinching beamforming to adaptively achieve constructive signal enhancement and destructive interference mitigation. To solve this highly coupled and nonconvex problem, both optimization-based and learning-based methods are proposed. 1) For the optimization-based method, a majorization-minimization and penalty dual decomposition (MM-PDD) algorithm is developed, which handles the nonconvex complex exponential component using a Lipschitz surrogate function and then invokes PDD for problem decoupling. 2) For the learning-based method, a novel Karush-Kuhn-Tucker (KKT)-guided dual learning (KDL) approach is proposed, which enables KKT solutions to be reconstructed in a data-driven manner by learning dual variables. Following this idea, a KDL-Transformer algorithm is developed, which captures both inter-PA/inter-user dependencies and channel-state-information (CSI)-beamforming dependencies by attention mechanisms. Simulation results demonstrate that: i) The proposed PASS framework significantly outperforms conventional massive multiple input multiple output (MIMO) system even with a few PAs. ii) The proposed KDL-Transformer can improve over 20% system performance than MM-PDD algorithm, while achieving a millisecond-level response on modern GPUs.
comment: Accepted by IEEE Transactions on Wireless Communications (TWC). Reproducible code for KDL-Transformer is available at https://github.com/xiaoxiaxusummer/KDL_Transformer_Beamforming
♻ ☆ Monotonic Transformation Invariant Multi-task Learning
Multi-task learning (MTL) algorithms typically rely on schemes that combine different task losses or their gradients through weighted averaging. These methods aim to find Pareto stationary points by using heuristics that require access to task loss values, gradients, or both. In doing so, a central challenge arises because task losses can be arbitrarily scaled relative to one another, causing certain tasks to dominate training and degrade overall performance. A recent advance in cooperative bargaining theory, the Direction-based Bargaining Solution (DiBS), yields Pareto stationary solutions immune to task domination because of its invariance to monotonic nonaffine task loss transformations. However, the convergence behavior of DiBS in nonconvex MTL settings is currently not understood. To this end, we prove that under standard assumptions, a subsequence of DiBS iterates converges to a Pareto stationary point when task losses are nonconvex, and propose DiBS-MTL, an adaptation of DiBS to the MTL setting which is more computationally efficient that prior bargaining-inspired MTL approaches. Finally, we empirically show that DiBS-MTL is competitive with leading MTL methods on standard benchmarks, and it drastically outperforms state-of-the-art baselines in multiple examples with poorly-scaled task losses, highlighting the importance of invariance to nonaffine monotonic transformations of the loss landscape. Code available at https://github.com/suryakmurthy/dibs-mtl
♻ ☆ StefaLand: An Efficient Geoscience Foundation Model That Improves Dynamic Land-Surface Predictions
Managing natural resources and mitigating risks from floods, droughts, wildfires, and landslides require models that can accurately predict climate-driven land-surface responses. Traditional models often struggle with spatial generalization because they are trained or calibrated on limited observations and can degrade under concept drift. Recently proposed vision foundation models trained on satellite imagery demand massive compute, and they are not designed for dynamic land surface prediction tasks. We introduce StefaLand, a generative spatiotemporal Earth representation learning model centered on learning cross-domain interactions to suppress overfitting. StefaLand demonstrates especially strong spatial generalization on five datasets across four important tasks: streamflow, soil moisture, soil composition and landslides, compared to previous state-of-the-art methods. The domain-inspired design choices include a location-aware masked autoencoder that fuses static and time-series inputs, an attribute-based rather than image-based representation that drastically reduces compute demands, and residual fine-tuning adapters that strengthen knowledge transfer across tasks. StefaLand can be pretrained and finetuned on commonly available academic compute resources, yet consistently outperforms state-of-the-art supervised learning baselines, fine-tuned vision foundation models and commercially available embeddings, highlighting the previously overlooked value of cross-domain interactions and providing assistance to data-poor regions of the world.
♻ ☆ Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity ICLR 2022
The success of deep ensembles on improving predictive performance, uncertainty estimation, and out-of-distribution robustness has been extensively studied in the machine learning literature. Albeit the promising results, naively training multiple deep neural networks and combining their predictions at inference leads to prohibitive computational costs and memory requirements. Recently proposed efficient ensemble approaches reach the performance of the traditional deep ensembles with significantly lower costs. However, the training resources required by these approaches are still at least the same as training a single dense model. In this work, we draw a unique connection between sparse neural network training and deep ensembles, yielding a novel efficient ensemble learning framework called FreeTickets. Instead of training multiple dense networks and averaging them, we directly train sparse subnetworks from scratch and extract diverse yet accurate subnetworks during this efficient, sparse-to-sparse training. Our framework, FreeTickets, is defined as the ensemble of these relatively cheap sparse subnetworks. Despite being an ensemble method, FreeTickets has even fewer parameters and training FLOPs than a single dense model. This seemingly counter-intuitive outcome is due to the ultra training/inference efficiency of dynamic sparse training. FreeTickets surpasses the dense baseline in all the following criteria: prediction accuracy, uncertainty estimation, out-of-distribution (OoD) robustness, as well as efficiency for both training and inference. Impressively, FreeTickets outperforms the naive deep ensemble with ResNet50 on ImageNet using around only 1/5 of the training FLOPs required by the latter. We have released our source code at https://github.com/VITA-Group/FreeTickets.
comment: published in International Conference on Learning Representations (ICLR 2022)
♻ ☆ Why Inference in Large Models Becomes Decomposable After Training
Inference in large-scale AI models is typically performed on dense parameter matrices, leading to inference cost and system complexity that scale unsustainably with model size. This limitation does not arise from insufficient model capacity, but from treating post-training inference systems as monolithic operators while ignoring internal structures formed during learning. We show that gradient update events in large models are highly localized and selective, leaving many parameter dependencies statistically indistinguishable from their initialization distribution after training. As a result, post-training inference systems are structurally non-uniform and inherently decomposable. Based on this observation, we introduce a post-training statistical criterion and a structural annealing procedure that removes unsupported dependencies and reveals stable, independent substructures. This work establishes a post-training, model-agnostic structural view of inference systems and enables structured, parallel inference without modifying model functionality or interfaces.
comment: 39 pages, 6 figures
♻ ☆ CATTO: Balancing Preferences and Confidence in Language Models
Large language models (LLMs) often make accurate next token predictions but their confidence in these predictions can be poorly calibrated: high-confidence predictions are frequently wrong, and low-confidence predictions may be correct. This miscalibration is exacerbated by preference-based alignment methods breaking the link between predictive probability and correctness. We introduce a Calibration Aware Token-level Training Objective (CATTO), a calibration-aware objective that aligns predicted confidence with empirical prediction correctness, which can be combined with the original preference optimization objectives. Empirically, CATTO reduces Expected Calibration Error (ECE) by 2.22%-7.61% in-distribution and 1.46%-10.44% out-of-distribution compared to direct preference optimization (DPO), and by 0.22%-1.24% in-distribution and 1.23%-5.07% out-of-distribution compared to the strongest DPO baseline. This improvement in confidence does not come at a cost of losing task accuracy, where CATTO maintains or slightly improves multiple-choice question-answering accuracy on five datasets. We also introduce Confidence@k, a test-time scaling mechanism leveraging calibrated token probabilities for Bayes-optimal selection of output tokens.
♻ ☆ Resolving Extreme Data Scarcity by Explicit Physics Integration: An Application to Groundwater Heat Transport
Real-world flow applications in complex scientific and engineering domains, such as geosciences, challenge classical simulation methods due to large spatial domains, high spatio-temporal resolution requirements, and potentially strong material heterogeneities that lead to ill-conditioning and long runtimes. While machine learning-based surrogate models can reduce computational cost, they typically rely on large training datasets that are often unavailable in practice. To address data-scarce settings, we revisit the structure of advection-diffusion problems and decompose them into multiscale processes of locally and globally dominated components, separating spatially localized interactions and long-range effects. We propose a Local-Global Convolutional Neural Network (LGCNN) that combines a lightweight numerical model for global transport with two convolutional neural networks addressing processes of a more local nature. We demonstrate the performance of our method on city-scale geothermal heat pump interaction modeling and show that, even when trained on fewer than five simulations, LGCNN generalizes to arbitrarily larger domains, and can be successfully transferred to real subsurface parameter maps from the Munich region, Germany.
♻ ☆ HAMLOCK: HArdware-Model LOgically Combined attacK
The growing use of third-party hardware accelerators (e.g., FPGAs, ASICs) for deep neural networks (DNNs) introduces new security vulnerabilities. Conventional model-level backdoor attacks, which only poison a model's weights to misclassify inputs with a specific trigger, are often detectable because the entire attack logic is embedded within the model (i.e., software), creating a traceable layer-by-layer activation path. This paper introduces the HArdware-Model Logically Combined Attack (HAMLOCK), a far stealthier threat that distributes the attack logic across the hardware-software boundary. The software (model) is now only minimally altered by tuning the activations of few neurons to produce uniquely high activation values when a trigger is present. A malicious hardware Trojan detects those unique activations by monitoring the corresponding neurons' most significant bit or the 8-bit exponents and triggers another hardware Trojan to directly manipulate the final output logits for misclassification. This decoupled design is highly stealthy, as the model itself contains no complete backdoor activation path as in conventional attacks and hence, appears fully benign. Empirically, across benchmarks like MNIST, CIFAR10, GTSRB, and ImageNet, HAMLOCK achieves a near-perfect attack success rate with a negligible clean accuracy drop. More importantly, HAMLOCK circumvents the state-of-the-art model-level defenses without any adaptive optimization. The hardware Trojan is also undetectable, incurring area and power overheads as low as 0.01%, which is easily masked by process and environmental noise. Our findings expose a critical vulnerability at the hardware-software interface, demanding new cross-layer defenses against this emerging threat.
comment: Accepted to usenix security 2026
♻ ☆ Investigating Modality Contribution in Audio LLMs for Music ICASSP 2026
Audio Large Language Models (Audio LLMs) enable human-like conversation about music, yet it is unclear if they are truly listening to the audio or just using textual reasoning, as recent benchmarks suggest. This paper investigates this issue by quantifying the contribution of each modality to a model's output. We adapt the MM-SHAP framework, a performance-agnostic score based on Shapley values that quantifies the relative contribution of each modality to a model's prediction. We evaluate two models on the MuChoMusic benchmark and find that the model with higher accuracy relies more on text to answer questions, but further inspection shows that even if the overall audio contribution is low, models can successfully localize key sound events, suggesting that audio is not entirely ignored. Our study is the first application of MM-SHAP to Audio LLMs and we hope it will serve as a foundational step for future research in explainable AI and audio.
comment: 5 pages, 2 figures, accepted at ICASSP 2026
♻ ☆ Conditional diffusion models for downscaling and bias correction of Earth system model precipitation
Climate change exacerbates extreme weather events like heavy rainfall and flooding. As these events cause severe socioeconomic damage, accurate high-resolution simulation of precipitation is imperative. However, existing Earth System Models (ESMs) struggle to resolve small-scale dynamics and suffer from biases. Traditional statistical bias correction and downscaling methods fall short in improving spatial structure, while recent deep learning methods lack controllability and suffer from unstable training. Here, we propose a machine learning framework for simultaneous bias correction and downscaling. We first map observational and ESM data to a shared embedding space, where both are unbiased towards each other, and then train a conditional diffusion model to reverse the mapping. Only observational data is used for the training, so that the diffusion model can be employed to correct and downscale any ESM field without need for retraining. Our approach ensures statistical fidelity and preserves spatial patterns larger than a chosen spatial correction scale. We demonstrate that our approach outperforms existing statistical and deep learning methods especially regarding extreme events.
♻ ☆ Entropy-Lens: Uncovering Decision Strategies in LLMs
In large language models (LLMs), each block operates on the residual stream to map input token sequences to output token distributions. However, most of the interpretability literature focuses on internal latent representations, leaving token-space dynamics underexplored. The high dimensionality and categoricity of token distributions hinder their analysis, as standard statistical descriptors are not suitable. We show that the entropy of logit-lens predictions overcomes these issues. In doing so, it provides a per-layer scalar, permutation-invariant metric. We introduce Entropy-Lens to distill the token-space dynamics of the residual stream into a low-dimensional signal. We call this signal the entropy profile. We apply our method to a variety of model sizes and families, showing that (i) entropy profiles uncover token prediction dynamics driven by expansion and pruning strategies; (ii) these dynamics are family-specific and invariant under depth rescaling; (iii) they are characteristic of task type and output format; (iv) these strategies have unequal impact on downstream performance, with the expansion strategy usually being more critical. Ultimately, our findings further enhance our understanding of the residual stream, enabling a granular assessment of how information is processed across model depth.
♻ ☆ Avoiding Premature Collapse: Adaptive Annealing for Entropy-Regularized Structural Inference
Differentiable matching layers, often implemented via entropy-regularized Optimal Transport, serve as a critical approximate inference mechanism in structural prediction. However, recovering discrete permutations via annealing $ε\to 0$ is notoriously unstable. We identify a fundamental mechanism for this failure: \textbf{Premature Mode Collapse}. By analyzing the non-normal dynamics of the Sinkhorn fixed-point map, we reveal a theoretical \textbf{thermodynamic speed limit}. Under standard exponential cooling, the shift in the target posterior ($O(1)$) outpaces the contraction rate of the inference operator, which degrades as $O(1/ε)$. This mismatch inevitably forces the inference trajectory into spurious local basins. To address this, we propose \textbf{Efficient PH-ASC}, an adaptive scheduling algorithm that monitors the stability of the inference process. By enforcing a linear stability law, we decouple expensive spectral diagnostics from the training loop, reducing overhead from $O(N^3)$ to amortized $O(1)$. Our implementation and interactive demo are available at https://github.com/xxx0438/torch-sinkhorn-asc and https://huggingface.co/spaces/leon0923/torch-sinkhorn-asc-demo. bounded away from zero in generic training dynamics unless the feature extractor converges unrealistically fast.
♻ ☆ Sampling-Free Privacy Accounting for Matrix Mechanisms under Random Allocation
We study privacy amplification for differentially private model training with matrix factorization under random allocation (also known as the balls-in-bins model). Recent work by Choquette-Choo et al. (2025) proposes a sampling-based Monte Carlo approach to compute amplification parameters in this setting. However, their guarantees either only hold with some high probability or require random abstention by the mechanism. Furthermore, the required number of samples for ensuring $(ε,δ)$-DP is inversely proportional to $δ$. In contrast, we develop sampling-free bounds based on Rényi divergence and conditional composition. The former is facilitated by a dynamic programming formulation to efficiently compute the bounds. The latter complements it by offering stronger privacy guarantees for small $ε$, where Rényi divergence bounds inherently lead to an over-approximation. Our framework applies to arbitrary banded and non-banded matrices. Through numerical comparisons, we demonstrate the efficacy of our approach across a broad range of matrix mechanisms used in research and practice.
♻ ☆ Critic-Guided Reinforcement Unlearning in Text-to-Image Diffusion
Machine unlearning in text-to-image diffusion models aims to remove targeted concepts while preserving overall utility. Prior diffusion unlearning methods typically rely on supervised weight edits or global penalties; reinforcement-learning (RL) approaches, while flexible, often optimize sparse end-of-trajectory rewards, yielding high-variance updates and weak credit assignment. We present a general RL framework for diffusion unlearning that treats denoising as a sequential decision process and introduces a timestep-aware critic with noisy-step rewards. Concretely, we train a CLIP-based reward predictor on noisy latents and use its per-step signal to compute advantage estimates for policy-gradient updates of the reverse diffusion kernel. Our algorithm is simple to implement, supports off-policy reuse, and plugs into standard text-to-image backbones. Across multiple concepts, the method achieves better or comparable forgetting to strong baselines while maintaining image quality and benign prompt fidelity; ablations show that (i) per-step critics and (ii) noisy-conditioned rewards are key to stability and effectiveness. We release code and evaluation scripts to facilitate reproducibility and future research on RL-based diffusion unlearning.
comment: Preprint
♻ ☆ Attention in Geometry: Scalable Spatial Modeling via Adaptive Density Fields and FAISS-Accelerated Kernels
This work introduces Adaptive Density Fields (ADF), a geometric attention framework that formulates spatial aggregation as a query-conditioned, metric-induced attention operator in continuous space. By reinterpreting spatial influence as geometry-preserving attention grounded in physical distance, ADF bridges concepts from adaptive kernel methods and attention mechanisms. Scalability is achieved via FAISS-accelerated inverted file indices, treating approximate nearest-neighbor search as an intrinsic component of the attention mechanism. We demonstrate the framework through a case study on aircraft trajectory analysis in the Chengdu region, extracting trajectory-conditioned Zones of Influence (ZOI) to reveal recurrent airspace structures and localized deviations.
comment: Indepented Study. 31 pages, 3 figures. Includes full mathematical derivation of Adaptive Density Fields (ADF), implementation of FAISS-accelerated kernels, and a physics-informed trajectory POI detection pipeline
♻ ☆ Large Multimodal Models for Low-Resource Languages: A Survey
In this survey, we systematically analyze techniques used to adapt large multimodal models (LMMs) for low-resource (LR) languages, examining approaches ranging from visual enhancement and data creation to cross-modal transfer and fusion strategies. Through a comprehensive analysis of 117 studies across 96 LR languages, we identify key patterns in how researchers tackle the challenges of limited data and computational resources. We categorize works into resource-oriented and method-oriented contributions, further dividing contributions into relevant sub-categories. We compare method-oriented contributions in terms of performance and efficiency, discussing benefits and limitations of representative studies. We find that visual information often serves as a crucial bridge for improving model performance in LR settings, though significant challenges remain in areas such as hallucination mitigation and computational efficiency. In summary, we provide researchers with a clear understanding of current approaches and remaining challenges in making LMMs more accessible to speakers of LR (understudied) languages. We complement our survey with an open-source repository available at: https://github.com/marianlupascu/LMM4LRL-Survey.
comment: Accepted in Information Fusion
♻ ☆ BiasGym: A Simple and Generalizable Framework for Analyzing and Removing Biases through Elicitation
Understanding biases and stereotypes encoded in the weights of Large Language Models (LLMs) is crucial for developing effective mitigation strategies. However, biased behaviour is often subtle and non-trivial to isolate, even when deliberately elicited, making systematic analysis and debiasing particularly challenging. To address this, we introduce \texttt{BiasGym}, a simple, cost-effective, and generalizable framework for reliably and safely injecting, analyzing, and mitigating conceptual associations of biases within LLMs. \texttt{BiasGym} consists of two components: \texttt{BiasInject}, which safely injects specific biases into the model via token-based fine-tuning while keeping the model frozen, and \texttt{BiasScope}, which leverages these injected signals to identify and reliably steer the components responsible for biased behavior. Our method enables consistent bias elicitation for mechanistic analysis, supports targeted debiasing without degrading performance on downstream tasks, and generalizes to biases unseen during fine-tuning. We demonstrate the effectiveness of BiasGym in reducing real-world stereotypes (e.g., people from Italy being `reckless drivers'), showing its utility for both safety interventions and interpretability research.
comment: Under review. Title updated
♻ ☆ Single-Head Attention in High Dimensions: A Theory of Generalization, Weights Spectra, and Scaling Laws
Trained attention layers exhibit striking and reproducible spectral structure of the weights, including low-rank collapse, bulk deformation, and isolated spectral outliers, yet the origin of these phenomena and their implications for generalization remain poorly understood. We study empirical risk minimization in a single-head tied-attention layer trained on synthetic high-dimensional sequence tasks generated from the attention-indexed model. Using tools from random matrix theory, spin-glass theory, and approximate message passing, we obtain an exact high-dimensional characterization of training and test error, interpolation and recovery thresholds, and the spectrum of the key and query matrices. Our theory predicts the full singular-value distribution of the trained query-key map, including low-rank structure and isolated spectral outliers, in qualitative agreement with observations in more realistic transformers. Finally, for targets with power-law spectra, we show that learning proceeds through sequential spectral recovery, leading to the emergence of power-law scaling laws.
♻ ☆ PIQL: Projective Implicit Q-Learning with Support Constraint for Offline Reinforcement Learning
Offline Reinforcement Learning (RL) faces a fundamental challenge of extrapolation errors caused by out-of-distribution (OOD) actions. Implicit Q-Learning (IQL) employs expectile regression to achieve in-sample learning. Nevertheless, IQL relies on a fixed expectile hyperparameter and a density-based policy improvement method, both of which impede its adaptability and performance. In this paper, we propose Projective IQL (PIQL), a projective variant of IQL enhanced with a support constraint. In the policy evaluation stage, PIQL substitutes the fixed expectile hyperparameter with a projection-based parameter and extends the one-step value estimation to a multi-step formulation. In the policy improvement stage, PIQL adopts a support constraint instead of a density constraint, ensuring closer alignment with the policy evaluation. Theoretically, we demonstrate that PIQL maintains the expectile regression and in-sample learning framework, guarantees monotonic policy improvement, and introduces a progressively more rigorous criterion for advantageous actions. Experiments on D4RL and NeoRL2 benchmarks demonstrate robust gains across diverse domains, achieving state-of-the-art performance overall.
♻ ☆ Do Whitepaper Claims Predict Market Behavior? Evidence from Cryptocurrency Factor Analysis
Cryptocurrency projects articulate value propositions through whitepapers, making claims about functionality and technical capabilities. This study investigates whether these narratives align with observed market behavior. We construct a pipeline combining zero-shot NLP classification (BART-MNLI) with CP tensor decomposition to compare three spaces: (1) a claims matrix from 24 whitepapers across 10 semantic categories, (2) market statistics for 49 assets over two years of hourly data, and (3) latent factors from tensor decomposition (rank 2, 92.45% variance explained). Using Procrustes rotation and Tucker's congruence coefficient, we test alignment across 23 common entities. Results show weak alignment: claims-statistics (phi=0.341, p=0.332), claims-factors (phi=0.077, p=0.747), and statistics-factors (phi=0.197, p<0.001). The statistics-factors significance validates our methodology, confirming the pipeline detects relationships when present. Inter-model validation with DeBERTa-v3 yields 32% exact agreement but 67% top-3 agreement. Cross-sectional analysis reveals heterogeneous contributions: NEAR, MKR, ATOM show positive alignment while ENS, UNI, Bitcoin diverge most. Excluding Bitcoin confirms results are not driven by market dominance. We interpret findings as weak alignment between whitepaper narratives and market factor structure. Limited power (n=23) precludes distinguishing weak from no alignment, but strong alignment (phi>=0.70) can be confidently rejected. Implications for narrative economics and investment analysis are discussed.
comment: 35 pages, 8 figures, 10 tables. JEL: G14, G12, C38, C45. Code available at https://github.com/studiofarzulla/tensor-defi
♻ ☆ WUSH: Near-Optimal Adaptive Transforms for LLM Quantization
Quantizing LLM weights and activations is a standard approach for efficient deployment, but a few extreme outliers can stretch the dynamic range and amplify low-bit quantization errors. Prior transform-based mitigations (e.g., Hadamard rotations) are fixed and data-agnostic, and their optimality for quantization has remained unclear. We derive closed-form optimal linear blockwise transforms for joint weight-activation quantization under standard RTN AbsMax-scaled block quantizers, covering both integer and floating-point formats. The resulting construction, WUSH, combines a Hadamard backbone with a data-dependent second-moment component to form a non-orthogonal transform that is provably near-optimal for FP and INT quantizers under mild assumptions while admitting an efficient fused GPU implementation. Empirically, WUSH improves W4A4 accuracy over the strongest Hadamard-based baselines (e.g., on Llama-3.1-8B-Instruct in MXFP4, it gains +2.8 average points with RTN and +0.7 with GPTQ) while delivering up to 6.6$\times$ per-layer throughput over BF16 via FP4 MatMul. Source code is available at https://github.com/IST-DASLab/WUSH.
♻ ☆ The Nuclear Route: Sharp Asymptotics of ERM in Overparameterized Quadratic Networks
We study the high-dimensional asymptotics of empirical risk minimization (ERM) in over-parametrized two-layer neural networks with quadratic activations trained on synthetic data. We derive sharp asymptotics for both training and test errors by mapping the $\ell_2$-regularized learning problem to a convex matrix sensing task with nuclear norm penalization. This reveals that capacity control in such networks emerges from a low-rank structure in the learned feature maps. Our results characterize the global minima of the loss and yield precise generalization thresholds, showing how the width of the target function governs learnability. This analysis bridges and extends ideas from spin-glass methods, matrix factorization, and convex optimization and emphasizes the deep link between low-rank matrix sensing and learning in quadratic neural networks.
♻ ☆ Optimizing Agentic Workflows using Meta-tools
Agentic AI enables LLM to dynamically reason, plan, and interact with tools to solve complex tasks. However, agentic workflows often require many iterative reasoning steps and tool invocations, leading to significant operational expense, end-to-end latency and failures due to hallucinations. This work introduces Agent Workflow Optimization (AWO), a framework that identifies and optimizes redundant tool execution patterns to improve the efficiency and robustness of agentic workflows. AWO analyzes existing workflow traces to discover recurring sequences of tool calls and transforms them into meta-tools, which are deterministic, composite tools that bundle multiple agent actions into a single invocation. Meta-tools bypass unnecessary intermediate LLM reasoning steps and reduce operational cost while also shortening execution paths, leading to fewer failures. Experiments on two agentic AI benchmarks show that AWO reduces the number of LLM calls up to 11.9% while also increasing the task success rate by up to 4.2 percent points.
♻ ☆ Small Vectors, Big Effects: A Mechanistic Study of RL-Induced Reasoning via Steering Vectors
The mechanisms by which reasoning training reshapes LLMs' internal computations remain unclear. We study lightweight steering vectors inserted into the base model's residual stream and trained with a reinforcement-learning objective. These vectors explain a large portion of full fine-tuning performance increase while preserving the interpretability of small, additive interventions. We find that (i) the last-layer steering vector acts like a token-substitution bias concentrated on the first generated token, consistently boosting tokens such as "To" and "Step"; (ii) the penultimate-layer vector leaves attention patterns largely intact and instead operates through the MLP and unembedding, preferentially up-weighting process words and structure symbols; and (iii) the steering vectors transfer to other models from the same family. Taken together, these results deepen understanding of how trained steering vectors shape computation and should inform future work in activation engineering and the study of reasoning models.
comment: Preprint
♻ ☆ Dense Associative Memory with Epanechnikov Energy NeurIPS 2025
We propose a novel energy function for Dense Associative Memory (DenseAM) networks, the log-sum-ReLU (LSR), inspired by optimal kernel density estimation. Unlike the common log-sum-exponential (LSE) function, LSR is based on the Epanechnikov kernel and enables exact memory retrieval with exponential capacity without requiring exponential separation functions. Moreover, it introduces abundant additional \emph{emergent} local minima while preserving perfect pattern recovery -- a characteristic previously unseen in DenseAM literature. Empirical results show that LSR energy has significantly more local minima (memories) that have comparable log-likelihood to LSE-based models. Analysis of LSR's emergent memories on image datasets reveals a degree of creativity and novelty, hinting at this method's potential for both large-scale memory storage and generative tasks.
comment: Accepted as Spotlight Poster to NeurIPS 2025 main conference
♻ ☆ Graph Learning via Logic-Based Weisfeiler-Leman Variants and Tabularization
We present a novel approach for graph classification based on tabularizing graph data via new variants of the Weisfeiler-Leman algorithm and then applying methods for tabular data. We investigate a comprehensive class of versions of the Weisfeiler-Leman algorithm obtained by modifying the underlying logical framework and establish a precise theoretical characterization of their expressive power. We then test selected versions on 14 benchmark datasets that span a range of application domains. The experiments demonstrate that our approach generally achieves better predictive performance than graph neural networks and matches that of graph transformers, while being 40-60x faster and requiring neither a GPU nor extensive hyperparameter tuning.
comment: New version of the manuscript with the following fixes: 1. Clarified proof of the main theorem. 2. Revised the experimental section
♻ ☆ Semiparametric Preference Optimization: Your Language Model is Secretly a Single-Index Model
Aligning large language models (LLMs) to preference data typically assumes a known link function between observed preferences and latent rewards (e.g., a logistic Bradley-Terry link). Misspecification of this link can bias inferred rewards and misalign learned policies. We study preference alignment under an unknown and unrestricted link function. We show that realizability of $f$-divergence-constrained reward maximization in a policy class induces a semiparametric single-index binary choice model, where a scalar policy-dependent index captures all dependence on demonstrations and the remaining preference distribution is unrestricted. Rather than assuming this model has identifiable finite-dimensional structural parameters and estimating them, as in econometrics, we focus on policy learning with the reward function implicit, analyzing error to the optimal policy and allowing for unidentifiable nonparametric indices. We develop preference optimization algorithms robust to the unknown link and prove convergence guarantees in terms of generic function complexity measures. We demonstrate this empirically on LLM alignment. Code is available at https://github.com/causalml/spo/
Information Retrieval 24
☆ RANKVIDEO: Reasoning Reranking for Text-to-Video Retrieval
Reranking is a critical component of modern retrieval systems, which typically pair an efficient first-stage retriever with a more expressive model to refine results. While large reasoning models have driven rapid progress in text-centric reranking, reasoning-based reranking for video retrieval remains underexplored. To address this gap, we introduce RANKVIDEO, a reasoning-based reranker for video retrieval that explicitly reasons over query-video pairs using video content to assess relevance. RANKVIDEO is trained using a two-stage curriculum consisting of perception-grounded supervised fine-tuning followed by reranking training that combines pointwise, pairwise, and teacher confidence distillation objectives, and is supported by a data synthesis pipeline for constructing reasoning-intensive query-video pairs. Experiments on the large-scale MultiVENT 2.0 benchmark demonstrate that RANKVIDEO consistently improves retrieval performance within a two-stage framework, yielding an average improvement of 31% on nDCG@10 and outperforming text-only and vision-language reranking alternatives, while more efficient.
☆ Trust by Design: Skill Profiles for Transparent, Cost-Aware LLM Routing
How should Large Language Model (LLM) practitioners select the right model for a task without wasting money? We introduce BELLA (Budget-Efficient LLM Selection via Automated skill-profiling), a framework that recommends optimal LLM selection for tasks through interpretable skill-based model selection. Standard benchmarks report aggregate metrics that obscure which specific capabilities a task requires and whether a cheaper model could suffice. BELLA addresses this gap through three stages: (1) decomposing LLM outputs and extract the granular skills required by using critic-based profiling, (2) clustering skills into structured capability matrices, and (3) multi-objective optimization to select the right models to maximize performance while respecting budget constraints. BELLA provides natural-language rationale for recommendations, providing transparency that current black-box routing systems lack. We describe the framework architecture, situate it within the landscape of LLM routing and evaluation, and discuss its application to financial reasoning as a representative domain exhibiting diverse skill requirements and cost-variation across models. Our framework enables practitioners to make principled and cost-performance trade-offs for deploying LLMs.
comment: Appeared at MLSys YPS 2025
☆ Why Steering Works: Toward a Unified View of Language Model Parameter Dynamics
Methods for controlling large language models (LLMs), including local weight fine-tuning, LoRA-based adaptation, and activation-based interventions, are often studied in isolation, obscuring their connections and making comparison difficult. In this work, we present a unified view that frames these interventions as dynamic weight updates induced by a control signal, placing them within a single conceptual framework. Building on this view, we propose a unified preference-utility analysis that separates control effects into preference, defined as the tendency toward a target concept, and utility, defined as coherent and task-valid generation, and measures both on a shared log-odds scale using polarity-paired contrastive examples. Across methods, we observe a consistent trade-off between preference and utility: stronger control increases preference while predictably reducing utility. We further explain this behavior through an activation manifold perspective, in which control shifts representations along target-concept directions to enhance preference, while utility declines primarily when interventions push representations off the model's valid-generation manifold. Finally, we introduce a new steering approach SPLIT guided by this analysis that improves preference while better preserving utility. Code is available at https://github.com/zjunlp/EasyEdit/blob/main/examples/SPLIT.md.
comment: Work in progress
☆ Rethinking Generative Recommender Tokenizer: Recsys-Native Encoding and Semantic Quantization Beyond LLMs
Semantic ID (SID)-based recommendation is a promising paradigm for scaling sequential recommender systems, but existing methods largely follow a semantic-centric pipeline: item embeddings are learned from foundation models and discretized using generic quantization schemes. This design is misaligned with generative recommendation objectives: semantic embeddings are weakly coupled with collaborative prediction, and generic quantization is inefficient at reducing sequential uncertainty for autoregressive modeling. To address these, we propose ReSID, a recommendation-native, principled SID framework that rethinks representation learning and quantization from the perspective of information preservation and sequential predictability, without relying on LLMs. ReSID consists of two components: (i) Field-Aware Masked Auto-Encoding (FAMAE), which learns predictive-sufficient item representations from structured features, and (ii) Globally Aligned Orthogonal Quantization (GAOQ), which produces compact and predictable SID sequences by jointly reducing semantic ambiguity and prefix-conditional uncertainty. Theoretical analysis and extensive experiments across ten datasets show the effectiveness of ReSID. ReSID consistently outperforms strong sequential and SID-based generative baselines by an average of over 10%, while reducing tokenization cost by up to 122x. Code is available at https://github.com/FuCongResearchSquad/ReSID.
☆ Towards AI Evaluation in Domain-Specific RAG Systems: The AgriHubi Case Study
Large language models show promise for knowledge-intensive domains, yet their use in agriculture is constrained by weak grounding, English-centric training data, and limited real-world evaluation. These issues are amplified for low-resource languages, where high-quality domain documentation exists but remains difficult to access through general-purpose models. This paper presents AgriHubi, a domain-adapted retrieval-augmented generation (RAG) system for Finnish-language agricultural decision support. AgriHubi integrates Finnish agricultural documents with open PORO family models and combines explicit source grounding with user feedback to support iterative refinement. Developed over eight iterations and evaluated through two user studies, the system shows clear gains in answer completeness, linguistic accuracy, and perceived reliability. The results also reveal practical trade-offs between response quality and latency when deploying larger models. This study provides empirical guidance for designing and evaluating domain-specific RAG systems in low-resource language settings.
comment: 6 pages, 2 figures, submitted to MIPRO 2026
☆ Deep learning enables urban change profiling through alignment of historical maps
Prior to modern Earth observation technologies, historical maps provide a unique record of long-term urban transformation and offer a lens on the evolving identity of cities. However, extracting consistent and fine-grained change information from historical map series remains challenging due to spatial misalignment, cartographic variation, and degrading document quality, limiting most analyses to small-scale or qualitative approaches. We propose a fully automated, deep learning-based framework for fine-grained urban change analysis from large collections of historical maps, built on a modular design that integrates dense map alignment, multi-temporal object detection, and change profiling. This framework shifts the analysis of historical maps from ad hoc visual comparison toward systematic, quantitative characterization of urban change. Experiments demonstrate the robust performance of the proposed alignment and object detection methods. Applied to Paris between 1868 and 1937, the framework reveals the spatial and temporal heterogeneity in urban transformation, highlighting its relevance for research in the social sciences and humanities. The modular design of our framework further supports adaptation to diverse cartographic contexts and downstream applications.
comment: 40 pages
☆ Adaptive Quality-Diversity Trade-offs for Large-Scale Batch Recommendation
A core research question in recommender systems is to propose batches of highly relevant and diverse items, that is, items personalized to the user's preferences, but which also might get the user out of their comfort zone. This diversity might induce properties of serendipidity and novelty which might increase user engagement or revenue. However, many real-life problems arise in that case: e.g., avoiding to recommend distinct but too similar items to reduce the churn risk, and computational cost for large item libraries, up to millions of items. First, we consider the case when the user feedback model is perfectly observed and known in advance, and introduce an efficient algorithm called B-DivRec combining determinantal point processes and a fuzzy denuding procedure to adjust the degree of item diversity. This helps enforcing a quality-diversity trade-off throughout the user history. Second, we propose an approach to adaptively tailor the quality-diversity trade-off to the user, so that diversity in recommendations can be enhanced if it leads to positive feedback, and vice-versa. Finally, we illustrate the performance and versatility of B-DivRec in the two settings on synthetic and real-life data sets on movie recommendation and drug repurposing.
☆ Orthogonal Hierarchical Decomposition for Structure-Aware Table Understanding with Large Language Models
Complex tables with multi-level headers, merged cells and heterogeneous layouts pose persistent challenges for LLMs in both understanding and reasoning. Existing approaches typically rely on table linearization or normalized grid modeling. However, these representations struggle to explicitly capture hierarchical structures and cross-dimensional dependencies, which can lead to misalignment between structural semantics and textual representations for non-standard tables. To address this issue, we propose an Orthogonal Hierarchical Decomposition (OHD) framework that constructs structure-preserving input representations of complex tables for LLMs. OHD introduces an Orthogonal Tree Induction (OTI) method based on spatial--semantic co-constraints, which decomposes irregular tables into a column tree and a row tree to capture vertical and horizontal hierarchical dependencies, respectively. Building on this representation, we design a dual-pathway association protocol to symmetrically reconstruct semantic lineage of each cell, and incorporate an LLM as a semantic arbitrator to align multi-level semantic information. We evaluate OHD framework on two complex table question answering benchmarks, AITQA and HiTab. Experimental results show that OHD consistently outperforms existing representation paradigms across multiple evaluation metrics.
comment: Work in process
☆ GRAB: An LLM-Inspired Sequence-First Click-Through Rate Prediction Modeling Paradigm
Traditional Deep Learning Recommendation Models (DLRMs) face increasing bottlenecks in performance and efficiency, often struggling with generalization and long-sequence modeling. Inspired by the scaling success of Large Language Models (LLMs), we propose Generative Ranking for Ads at Baidu (GRAB), an end-to-end generative framework for Click-Through Rate (CTR) prediction. GRAB integrates a novel Causal Action-aware Multi-channel Attention (CamA) mechanism to effectively capture temporal dynamics and specific action signals within user behavior sequences. Full-scale online deployment demonstrates that GRAB significantly outperforms established DLRMs, delivering a 3.05% increase in revenue and a 3.49% rise in CTR. Furthermore, the model demonstrates desirable scaling behavior: its expressive power shows a monotonic and approximately linear improvement as longer interaction sequences are utilized.
☆ Mapping a Decade of Avian Influenza Research (2014-2023): A Scientometric Analysis from Web of Science
This scientometric study analyzes Avian Influenza research from 2014 to 2023 using bibliographic data from the Web of Science database. We examined publication trends, sources, authorship, collaborative networks, document types, and geographical distribution to gain insights into the global research landscape. Results reveal a steady increase in publications, with high contributions from Chinese and American institutions. Journals such as PLoS One and the Journal of Virology published the highest number of studies, indicating their influence in this field. The most prolific institutions include the Chinese Academy of Sciences and the University of Hong Kong, while the College of Veterinary Medicine at South China Agricultural University emerged as the most productive department. China and the USA lead in publication volume, though developed nations like the United Kingdom and Germany exhibit a higher rate of international collaboration. "Articles" are the most common document type, constituting 84.6% of the total, while "Reviews" account for 7.6%. This study provides a comprehensive view of global trends in Avian Influenza research, emphasizing the need for collaborative efforts across borders.
comment: 24 pages, 7 figures, Research Article
☆ Unmediated AI-Assisted Scholarly Citations
Traditional bibliography databases require users to navigate search forms and manually copy citation data. Language models offer an alternative: a natural-language interface where researchers write text with informal citation fragments, which are automatically resolved to proper references. However, language models are not reliable for scholarly work as they generate fabricated (hallucinated) citations at substantial rates. We present an architectural approach that combines the natural-language interface of LLM chatbots with the accuracy of direct database access, implemented through the Model Context Protocol. Our system enables language models to search bibliographic databases, perform fuzzy matching, and export verified entries, all through conversational interaction. A key architectural principle bypasses the language model during final data export: entries are fetched directly from authoritative sources, with timeout protection, to guarantee accuracy. We demonstrate this approach with MCP-DBLP, a server providing access to the DBLP computer science bibliography. The system transforms form-based bibliographic services into conversational assistants that maintain scholarly integrity. This architecture is adaptable to other bibliographic databases and academic data sources.
LLM-based Embeddings: Attention Values Encode Sentence Semantics Better Than Hidden States
Sentence representations are foundational to many Natural Language Processing (NLP) applications. While recent methods leverage Large Language Models (LLMs) to derive sentence representations, most rely on final-layer hidden states, which are optimized for next-token prediction and thus often fail to capture global, sentence-level semantics. This paper introduces a novel perspective, demonstrating that attention value vectors capture sentence semantics more effectively than hidden states. We propose Value Aggregation (VA), a simple method that pools token values across multiple layers and token indices. In a training-free setting, VA outperforms other LLM-based embeddings, even matches or surpasses the ensemble-based MetaEOL. Furthermore, we demonstrate that when paired with suitable prompts, the layer attention outputs can be interpreted as aligned weighted value vectors. Specifically, the attention scores of the last token function as the weights, while the output projection matrix ($W_O$) aligns these weighted value vectors with the common space of the LLM residual stream. This refined method, termed Aligned Weighted VA (AlignedWVA), achieves state-of-the-art performance among training-free LLM-based embeddings, outperforming the high-cost MetaEOL by a substantial margin. Finally, we highlight the potential of obtaining strong LLM embedding models through fine-tuning Value Aggregation.
☆ Efficiency Optimizations for Superblock-based Sparse Retrieval
Learned sparse retrieval (LSR) is a popular method for first-stage retrieval because it combines the semantic matching of language models with efficient CPU-friendly algorithms. Previous work aggregates blocks into "superblocks" to quickly skip the visitation of blocks during query processing by using an advanced pruning heuristic. This paper proposes a simple and effective superblock pruning scheme that reduces the overhead of superblock score computation while preserving competitive relevance. It combines this scheme with a compact index structure and a robust zero-shot configuration that is effective across LSR models and multiple datasets. This paper provides an analytical justification and evaluation on the MS MARCO and BEIR datasets, demonstrating that the proposed scheme can be a strong alternative for efficient sparse retrieval.
comment: 11 pages, 5 figures, 9 tables. Under review
☆ Col-Bandit: Zero-Shot Query-Time Pruning for Late-Interaction Retrieval
Multi-vector late-interaction retrievers such as ColBERT achieve state-of-the-art retrieval quality, but their query-time cost is dominated by exhaustively computing token-level MaxSim interactions for every candidate document. While approximating late interaction with single-vector representations reduces cost, it often incurs substantial accuracy loss. We introduce Col-Bandit, a query-time pruning algorithm that reduces this computational burden by casting reranking as a finite-population Top-$K$ identification problem. Col-Bandit maintains uncertainty-aware bounds over partially observed document scores and adaptively reveals only the (document, query token) MaxSim entries needed to determine the top results under statistical decision bounds with a tunable relaxation. Unlike coarse-grained approaches that prune entire documents or tokens offline, Col-Bandit sparsifies the interaction matrix on the fly. It operates as a zero-shot, drop-in layer over standard multi-vector systems, requiring no index modifications, offline preprocessing, or model retraining. Experiments on textual (BEIR) and multimodal (REAL-MM-RAG) benchmarks show that Col-Bandit preserves ranking fidelity while reducing MaxSim FLOPs by up to 5$\times$, indicating that dense late-interaction scoring contains substantial redundancy that can be identified and pruned efficiently at query time.
☆ WideSeek: Advancing Wide Research via Multi-Agent Scaling
Search intelligence is evolving from Deep Research to Wide Research, a paradigm essential for retrieving and synthesizing comprehensive information under complex constraints in parallel. However, progress in this field is impeded by the lack of dedicated benchmarks and optimization methodologies for search breadth. To address these challenges, we take a deep dive into Wide Research from two perspectives: Data Pipeline and Agent Optimization. First, we produce WideSeekBench, a General Broad Information Seeking (GBIS) benchmark constructed via a rigorous multi-phase data pipeline to ensure diversity across the target information volume, logical constraints, and domains. Second, we introduce WideSeek, a dynamic hierarchical multi-agent architecture that can autonomously fork parallel sub-agents based on task requirements. Furthermore, we design a unified training framework that linearizes multi-agent trajectories and optimizes the system using end-to-end RL. Experimental results demonstrate the effectiveness of WideSeek and multi-agent RL, highlighting that scaling the number of agents is a promising direction for advancing the Wide Research paradigm.
♻ ☆ A Scalable Inter-edge Correlation Modeling in CopulaGNN for Link Sign Prediction ICLR 2026
Link sign prediction on a signed graph is a task to determine whether the relationship represented by an edge is positive or negative. Since the presence of negative edges violates the graph homophily assumption that adjacent nodes are similar, regular graph methods have not been applicable without auxiliary structures to handle them. We aim to directly model the latent statistical dependency among edges with the Gaussian copula and its corresponding correlation matrix, extending CopulaGNN (Ma et al., 2021). However, a naive modeling of edge-edge relations is computationally intractable even for a graph with moderate scale. To address this, we propose to 1) represent the correlation matrix as a Gramian of edge embeddings, significantly reducing the number of parameters, and 2) reformulate the conditional probability distribution to dramatically reduce the inference cost. We theoretically verify scalability of our method by proving its linear convergence. Also, our extensive experiments demonstrate that it achieves significantly faster convergence than baselines, maintaining competitive prediction performance to the state-of-the-art models.
comment: Accepted for ICLR 2026
♻ ☆ OneMall: One Architecture, More Scenarios -- End-to-End Generative Recommender Family at Kuaishou E-Commerce
In the wave of generative recommendation, we present OneMall, an end-to-end generative recommendation framework tailored for e-commerce services at Kuaishou. Our OneMall systematically unifies the e-commerce's multiple item distribution scenarios, such as Product-card, short-video and live-streaming. Specifically, it comprises three key components, aligning the entire model training pipeline to the LLM's pre-training/post-training: (1) E-commerce Semantic Tokenizer: we provide a tokenizer solution that captures both real-world semantics and business-specific item relations across different scenarios; (2) Transformer-based Architecture: we largely utilize Transformer as our model backbone, e.g., employing Query-Former for long sequence compression, Cross-Attention for multi-behavior sequence fusion, and Sparse MoE for scalable auto-regressive generation; (3) Reinforcement Learning Pipeline: we further connect retrieval and ranking models via RL, enabling the ranking model to serve as a reward signal for end-to-end policy retrieval model optimization. Extensive experiments demonstrate that OneMall achieves consistent improvements across all e-commerce scenarios: +13.01\% GMV in product-card, +15.32\% Orders in Short-Video, and +2.78\% Orders in Live-Streaming. OneMall has been deployed, serving over 400 million daily active users at Kuaishou.
comment: Work in progress
♻ ☆ Free Access to World News: Reconstructing Full-Text Articles from GDELT
News data have become essential resources across various disciplines. Still, access to full-text news corpora remains challenging due to high costs and the limited availability of free alternatives. This paper presents a novel Python package (gdeltnews) that reconstructs full-text newspaper articles at near-zero cost by leveraging the Global Database of Events, Language, and Tone (GDELT) Web News NGrams 3.0 dataset. Our method merges overlapping n-grams extracted from global online news to rebuild complete articles. We validate the approach on a benchmark set of 2211 articles from major U.S. news outlets, achieving up to 95% text similarity against original articles based on Levenshtein and SequenceMatcher metrics. Our tool facilitates economic forecasting, computational social science, information science, and natural language processing applications by enabling free and large-scale access to full-text news data.
♻ ☆ Automated Archival Descriptions with Federated Intelligence of LLMs
Enforcing archival standards requires specialized expertise, and manually creating metadata descriptions for archival materials is a tedious and error-prone task. This work aims at exploring the potential of agentic AI and large language models (LLMs) in addressing the challenges of implementing a standardized archival description process. To this end, we introduce an agentic AI-driven system for automated generation of high-quality metadata descriptions of archival materials. We develop a federated optimization approach that unites the intelligence of multiple LLMs to construct optimal archival metadata. We also suggest methods to overcome the challenges associated with using LLMs for consistent metadata generation. To evaluate the feasibility and effectiveness of our techniques, we conducted extensive experiments using a real-world dataset of archival materials, which covers a variety of document types and formats. The evaluation results demonstrate the feasibility of our techniques and highlight the superior performance of the federated optimization approach compared to single-model solutions in metadata quality and reliability.
comment: 16 pages
♻ ☆ Curriculum Approximate Unlearning for Session-based Recommendation
Approximate unlearning for session-based recommendation refers to eliminating the influence of specific training samples from the recommender without retraining of (sub-)models. Gradient ascent (GA) is a representative method to conduct approximate unlearning. However, there still exist dual challenges to apply GA for session-based recommendation. On the one hand, naive applying of GA could lead to degradation of recommendation performance. On the other hand, existing studies fail to consider the ordering of unlearning samples when simultaneously processing multiple unlearning requests, leading to sub-optimal recommendation performance and unlearning effect. To address the above challenges, we introduce CAU, a curriculum approximate unlearning framework tailored to session-based recommendation. CAU handles the unlearning task with a GA term on unlearning samples. Specifically, to address the first challenge, CAU formulates the overall optimization task as a multi-objective optimization problem, where the GA term for unlearning samples is combined with retaining terms for preserving performance. The multi-objective optimization problem is solved through seeking the Pareto-Optimal solution, which achieves effective unlearning with trivial sacrifice on recommendation performance. To tackle the second challenge, CAU adopts a curriculum-based sequence to conduct unlearning on batches of unlearning samples. The key motivation is to perform unlearning from easy samples to harder ones. To this end, CAU first introduces two metrics to measure the unlearning difficulty, including gradient unlearning difficulty and embedding unlearning difficulty. Then, two strategies, hard-sampling and soft-sampling, are proposed to select unlearning samples according to difficulty scores.
♻ ☆ OneTrans: Unified Feature Interaction and Sequence Modeling with One Transformer in Industrial Recommender WWW 2026
In recommendation systems, scaling up feature-interaction modules (e.g., Wukong, RankMixer) or user-behavior sequence modules (e.g., LONGER) has achieved notable success. However, these efforts typically proceed on separate tracks, which not only hinders bidirectional information exchange but also prevents unified optimization and scaling. In this paper, we propose OneTrans, a unified Transformer backbone that simultaneously performs user-behavior sequence modeling and feature interaction. OneTrans employs a unified tokenizer to convert both sequential and non-sequential attributes into a single token sequence. The stacked OneTrans blocks share parameters across similar sequential tokens while assigning token-specific parameters to non-sequential tokens. Through causal attention and cross-request KV caching, OneTrans enables precomputation and caching of intermediate representations, significantly reducing computational costs during both training and inference. Experimental results on industrial-scale datasets demonstrate that OneTrans scales efficiently with increasing parameters, consistently outperforms strong baselines, and yields a 5.68% lift in per-user GMV in online A/B tests.
comment: Accepted at The Web Conference 2026 (WWW 2026). Camera-ready version forthcoming
♻ ☆ Towards Context-aware Reasoning-enhanced Generative Searching in E-commerce WWW'26
Search-based recommendation is one of the most critical application scenarios in e-commerce platforms. Users' complex search contexts--such as spatiotemporal factors, historical interactions, and current query's information--constitute an essential part of their decision-making, reflecting implicit preferences that complement explicit query terms. Modeling such rich contextual signals and their intricate associations with candidate items remains a key challenge. Although numerous efforts have been devoted to building more effective search methods, existing approaches still show limitations in integrating contextual information, which hinders their ability to fully capture user intent. To address these challenges, we propose a context-aware reasoning-enhanced generative search framework for better \textbf{understanding the complicated context}. Specifically, the framework first unifies heterogeneous user and item contexts into textual representations or text-based semantic identifiers and aligns them. To overcome the lack of explicit reasoning trajectories, we introduce a self-evolving post-training paradigm that iteratively combines supervised fine-tuning and reinforcement learning to progressively enhance the model's reasoning capability. In addition, we identify potential biases in existing RL algorithms when applied to search scenarios and present a debiased variant of GRPO to improve ranking performance. Extensive experiments on search log data collected from a real-world e-commerce platform demonstrate that our approach achieves superior performance compared with strong baselines, validating its effectiveness for search-based recommendation.
comment: Accepted by WWW'26
Towards Next-Generation Recommender Systems: A Benchmark for Personalized Recommendation Assistant with LLMs WSDM 2026
Recommender systems (RecSys) are widely used across various modern digital platforms and have garnered significant attention. Traditional recommender systems usually focus only on fixed and simple recommendation scenarios, making it difficult to generalize to new and unseen recommendation tasks in an interactive paradigm. Recently, the advancement of large language models (LLMs) has revolutionized the foundational architecture of RecSys, driving their evolution into more intelligent and interactive personalized recommendation assistants. However, most existing studies rely on fixed task-specific prompt templates to generate recommendations and evaluate the performance of personalized assistants, which limits the comprehensive assessments of their capabilities. This is because commonly used datasets lack high-quality textual user queries that reflect real-world recommendation scenarios, making them unsuitable for evaluating LLM-based personalized recommendation assistants. To address this gap, we introduce RecBench+, a new dataset benchmark designed to access LLMs' ability to handle intricate user recommendation needs in the era of LLMs. RecBench+ encompasses a diverse set of queries that span both hard conditions and soft preferences, with varying difficulty levels. We evaluated commonly used LLMs on RecBench+ and uncovered below findings: 1) LLMs demonstrate preliminary abilities to act as recommendation assistants, 2) LLMs are better at handling queries with explicitly stated conditions, while facing challenges with queries that require reasoning or contain misleading information. Our dataset has been released at https://github.com/jiani-huang/RecBench.git.
comment: Accepted for publication at WSDM 2026
♻ ☆ Merged ChemProt-DrugProt for Relation Extraction from Biomedical Literature
The extraction of chemical-gene relations plays a pivotal role in understanding the intricate interactions between chemical compounds and genes, with significant implications for drug discovery, disease understanding, and biomedical research. This paper presents a data set created by merging the ChemProt and DrugProt datasets to augment sample counts and improve model accuracy. We evaluate the merged dataset using two state of the art relationship extraction algorithms: Bidirectional Encoder Representations from Transformers (BERT) specifically BioBERT, and Graph Convolutional Networks (GCNs) combined with BioBERT. While BioBERT excels at capturing local contexts, it may benefit from incorporating global information essential for understanding chemical-gene interactions. This can be achieved by integrating GCNs with BioBERT to harness both global and local context. Our results show that by integrating the ChemProt and DrugProt datasets, we demonstrated significant improvements in model performance, particularly in CPR groups shared between the datasets. Incorporating the global context using GCN can help increase the overall precision and recall in some of the CPR groups over using just BioBERT.
Information Retrieval 8
☆ The Algorithmic Self-Portrait: Deconstructing Memory in ChatGPT
To enable personalized and context-aware interactions, conversational AI systems have introduced a new mechanism: Memory. Memory creates what we refer to as the Algorithmic Self-portrait - a new form of personalization derived from users' self-disclosed information divulged within private conversations. While memory enables more coherent exchanges, the underlying processes of memory creation remain opaque, raising critical questions about data sensitivity, user agency, and the fidelity of the resulting portrait. To bridge this research gap, we analyze 2,050 memory entries from 80 real-world ChatGPT users. Our analyses reveal three key findings: (1) A striking 96% of memories in our dataset are created unilaterally by the conversational system, potentially shifting agency away from the user; (2) Memories, in our dataset, contain a rich mix of GDPR-defined personal data (in 28% memories) along with psychological insights about participants (in 52% memories); and (3)~A significant majority of the memories (84%) are directly grounded in user context, indicating faithful representation of the conversations. Finally, we introduce a framework-Attribution Shield-that anticipates these inferences, alerts about potentially sensitive memory inferences, and suggests query reformulations to protect personal information without sacrificing utility.
comment: This paper has been accepted at The ACM Web Conference 2026
☆ PARSE: An Open-Domain Reasoning Question Answering Benchmark for Persian SIGIR 2026
Reasoning-focused Question Answering (QA) has advanced rapidly with Large Language Models (LLMs), yet high-quality benchmarks for low-resource languages remain scarce. Persian, spoken by roughly 130 million people, lacks a comprehensive open-domain resource for evaluating reasoning-capable QA systems. We introduce PARSE, the first open-domain Persian reasoning QA benchmark, containing 10,800 questions across Boolean, multiple-choice, and factoid formats, with diverse reasoning types, difficulty levels, and answer structures. The benchmark is built via a controlled LLM-based generation pipeline and validated through human evaluation. We also ensure linguistic and factual quality through multi-stage filtering, annotation, and consistency checks. We benchmark multilingual and Persian LLMs under multiple prompting strategies and show that Persian prompts and structured prompting (CoT for Boolean/multiple-choice; few-shot for factoid) improve performance. Fine-tuning further boosts results, especially for Persian-specialized models. These findings highlight how PARSE supports both fair comparison and practical model adaptation. PARSE fills a critical gap in Persian QA research and provides a strong foundation for developing and evaluating reasoning-capable LLMs in low-resource settings.
comment: Submitted to SIGIR 2026
☆ Inferential Question Answering WWW 2026
Despite extensive research on a wide range of question answering (QA) systems, most existing work focuses on answer containment-i.e., assuming that answers can be directly extracted and/or generated from documents in the corpus. However, some questions require inference, i.e., deriving answers that are not explicitly stated but can be inferred from the available information. We introduce Inferential QA -- a new task that challenges models to infer answers from answer-supporting passages which provide only clues. To study this problem, we construct QUIT (QUestions requiring Inference from Texts) dataset, comprising 7,401 questions and 2.4M passages built from high-convergence human- and machine-authored hints, labeled across three relevance levels using LLM-based answerability and human verification. Through comprehensive evaluation of retrievers, rerankers, and LLM-based readers, we show that methods effective on traditional QA tasks struggle in inferential QA: retrievers underperform, rerankers offer limited gains, and fine-tuning provides inconsistent improvements. Even reasoning-oriented LLMs fail to outperform smaller general-purpose models. These findings reveal that current QA pipelines are not yet ready for inference-based reasoning. Inferential QA thus establishes a new class of QA tasks that move towards understanding and reasoning from indirect textual evidence.
comment: Proceedings of the ACM Web Conference 2026 (WWW 2026)
☆ Unifying Ranking and Generation in Query Auto-Completion via Retrieval-Augmented Generation and Multi-Objective Alignment
Query Auto-Completion (QAC) suggests query completions as users type, helping them articulate intent and reach results more efficiently. Existing approaches face fundamental challenges: traditional retrieve-and-rank pipelines have limited long-tail coverage and require extensive feature engineering, while recent generative methods suffer from hallucination and safety risks. We present a unified framework that reformulates QAC as end-to-end list generation through Retrieval-Augmented Generation (RAG) and multi-objective Direct Preference Optimization (DPO). Our approach combines three key innovations: (1) reformulating QAC as end-to-end list generation with multi-objective optimization; (2) defining and deploying a suite of rule-based, model-based, and LLM-as-judge verifiers for QAC, and using them in a comprehensive methodology that combines RAG, multi-objective DPO, and iterative critique-revision for high-quality synthetic data; (3) a hybrid serving architecture enabling efficient production deployment under strict latency constraints. Evaluation on a large-scale commercial search platform demonstrates substantial improvements: offline metrics show gains across all dimensions, human evaluation yields +0.40 to +0.69 preference scores, and a controlled online experiment achieves 5.44\% reduction in keystrokes and 3.46\% increase in suggestion adoption, validating that unified generation with RAG and multi-objective alignment provides an effective solution for production QAC. This work represents a paradigm shift to end-to-end generation powered by large language models, RAG, and multi-objective alignment, establishing a production-validated framework that can benefit the broader search and recommendation industry.
comment: 11 pages, 4 figures
♻ ☆ Evaluation on Entity Matching in Recommender Systems
Entity matching is a crucial component in various recommender systems, including conversational recommender systems (CRS) and knowledge-based recommender systems. However, the lack of rigorous evaluation frameworks for cross-dataset entity matching impedes progress in areas such as LLM-driven conversational recommendations and knowledge-grounded dataset construction. In this paper, we introduce Reddit-Amazon-EM, a novel dataset comprising naturally occurring items from Reddit and the Amazon '23 dataset. Through careful manual annotation, we identify corresponding movies across Reddit-Movies and Amazon'23, two existing recommender system datasets with inherently overlapping catalogs. Leveraging Reddit-Amazon-EM, we conduct a comprehensive evaluation of state-of-the-art entity matching methods, including rule-based, graph-based, lexical-based, embedding-based, and LLM-based approaches. For reproducible research, we release our manually annotated entity matching gold set and provide the mapping between the two datasets using the best-performing method from our experiments. This serves as a valuable resource for advancing future work on entity matching in recommender systems.Data and Code are accessible at: https://github.com/huang-zihan/Reddit-Amazon-Entity-Matching.
♻ ☆ Towards Fair Large Language Model-based Recommender Systems without Costly Retraining WWW 2026
Large Language Models (LLMs) have revolutionized Recommender Systems (RS) through advanced generative user modeling. However, LLM-based RS (LLM-RS) often inadvertently perpetuates bias present in the training data, leading to severe fairness issues. Addressing these fairness problems in LLM-RS faces two significant challenges. 1) Existing debiasing methods, designed for specific bias types, lack the generality to handle diverse or emerging biases in real-world applications. 2) Debiasing methods relying on retraining are computationally infeasible given the massive parameter scale of LLMs. To overcome these challenges, we propose FUDLR (Fast Unified Debiasing for LLM-RS). The core idea is to reformulate the debiasing problem as an efficient machine unlearning task with two stages. First, FUDLR identifies bias-inducing samples to unlearn through a novel bias-agnostic mask, optimized to balance fairness improvement with accuracy preservation. Its bias-agnostic design allows adaptability to various or co-existing biases simply by incorporating different fairness metrics. Second, FUDLR performs efficient debiasing by estimating and removing the influence of identified samples on model parameters. Extensive experiments demonstrate that FUDLR effectively and efficiently improves fairness while preserving recommendation accuracy, offering a practical path toward socially responsible LLM-RS. The code and data are available at https://github.com/JinLi-i/FUDLR.
comment: Accepted by WWW 2026
♻ ☆ S$^2$GR: Stepwise Semantic-Guided Reasoning in Latent Space for Generative Recommendation
Generative Recommendation (GR) has emerged as a transformative paradigm with its end-to-end generation advantages. However, existing GR methods primarily focus on direct Semantic ID (SID) generation from interaction sequences, failing to activate deeper reasoning capabilities analogous to those in large language models and thus limiting performance potential. We identify two critical limitations in current reasoning-enhanced GR approaches: (1) Strict sequential separation between reasoning and generation steps creates imbalanced computational focus across hierarchical SID codes, degrading quality for SID codes; (2) Generated reasoning vectors lack interpretable semantics, while reasoning paths suffer from unverifiable supervision. In this paper, we propose stepwise semantic-guided reasoning in latent space (S$^2$GR), a novel reasoning enhanced GR framework. First, we establish a robust semantic foundation via codebook optimization, integrating item co-occurrence relationship to capture behavioral patterns, and load balancing and uniformity objectives that maximize codebook utilization while reinforcing coarse-to-fine semantic hierarchies. Our core innovation introduces the stepwise reasoning mechanism inserting thinking tokens before each SID generation step, where each token explicitly represents coarse-grained semantics supervised via contrastive learning against ground-truth codebook cluster distributions ensuring physically grounded reasoning paths and balanced computational focus across all SID codes. Extensive experiments demonstrate the superiority of S$^2$GR, and online A/B test confirms efficacy on large-scale industrial short video platform.
♻ ☆ UMM-RM: An Upcycle-and-Merge MoE Reward Model for Mitigating Reward Hacking
Reward models (RMs) are a critical component of reinforcement learning from human feedback (RLHF). However, conventional dense RMs are susceptible to exploitation by policy models through biases or spurious correlations, resulting in reward hacking: RM scores increase during training while alignment with human preferences deteriorates, a problem that is further exacerbated under distribution shift.To address this issue, we propose UMM-RM (Upcycle-and-Merge MoE Reward Model). UMM-RM first upscales the feed-forward layers of a dense backbone into a mixture-of-experts (MoE) reward model with shared experts. The shared experts are always activated to capture instruction-agnostic preference signals, while the remaining experts model fine-grained preferences across instructions or task regimes. After training, the experts are consolidated into a single dense RM via learnable merging weights.This design retains the robustness and exploitation resistance provided by expert diversity while avoiding the inference overhead of MoE architectures or explicit ensembles. Experiments across multiple base models and preference datasets show that, compared with standard dense RMs, UMM-RM improves accuracy on preference data, reduces reward hacking during PPO training, and yields more stable preference alignment.
comment: 8 pages,14 figures
Information Retrieval 18
☆ Domain-Adaptive and Scalable Dense Retrieval for Content-Based Recommendation
E-commerce recommendation and search commonly rely on sparse keyword matching (e.g., BM25), which breaks down under vocabulary mismatch when user intent has limited lexical overlap with product metadata. We cast content-based recommendation as recommendation-as-retrieval: given a natural-language intent signal (a query or review), retrieve the top-K most relevant items from a large catalog via semantic similarity. We present a scalable dense retrieval system based on a two-tower bi-encoder, fine-tuned on the Amazon Reviews 2023 (Fashion) subset using supervised contrastive learning with Multiple Negatives Ranking Loss. We construct training pairs from review text (as a query proxy) and item metadata (as the positive document) and fine-tune on 50,000 sampled interactions with a maximum sequence length of 500 tokens. For efficient serving, we combine FAISS HNSW indexing with an ONNX Runtime inference pipeline using INT8 dynamic quantization. On a review-to-title benchmark over 826,402 catalog items, our approach improves Recall@10 from 0.26 (BM25) to 0.66, while meeting practical latency and model-size constraints: 6.1 ms median CPU inference latency (batch size 1) and a 4x reduction in model size. Overall, we provide an end-to-end, reproducible blueprint for taking domain-adapted dense retrieval from offline training to CPU-efficient serving at catalog scale.
comment: 13 pages, 4 figures. Semantic dense retrieval for content-based recommendation on Amazon Reviews 2023 (Category - Fashion). Dataset statistics: 2.0M users; 825.9K items; 2.5M ratings; 94.9M review tokens; 510.5M metadata tokens. Timespan: May 1996 to September 2023. Metadata includes: user reviews (ratings, text, helpfulness votes, etc.); item metadata (descriptions, price, raw images, etc.)
☆ Unifying Adversarial Robustness and Training Across Text Scoring Models
Research on adversarial robustness in language models is currently fragmented across applications and attacks, obscuring shared vulnerabilities. In this work, we propose unifying the study of adversarial robustness in text scoring models spanning dense retrievers, rerankers, and reward models. This motivates adapting both attacks and adversarial training methods across model roles. Unlike open-ended generation, text scoring failures are directly testable: an attack succeeds when an irrelevant or rejected text outscores a relevant or chosen one. Using this principled lens of text scoring, we demonstrate that current adversarial training formulations for language models are often short-sighted, failing to effectively generalize across attacks. To address this, we introduce multiple adversarial training methods for text scoring models and show that combining complementary training methods can yield strong robustness while also improving task effectiveness. We also highlight the practical value of our approach for RLHF, showing that our adversarially trained reward models mitigate reward hacking and support the training of better-aligned LLMs. We provide our code and models for further study.
☆ Optimizing Retrieval Components for a Shared Backbone via Component-Wise Multi-Stage Training
Recent advances in embedding-based retrieval have enabled dense retrievers to serve as core infrastructure in many industrial systems, where a single retrieval backbone is often shared across multiple downstream applications. In such settings, retrieval quality directly constrains system performance and extensibility, while coupling model selection, deployment, and rollback decisions across applications. In this paper, we present empirical findings and a system-level solution for optimizing retrieval components deployed as a shared backbone in production legal retrieval systems. We adopt a multi-stage optimization framework for dense retrievers and rerankers, and show that different retrieval components exhibit stage-dependent trade-offs. These observations motivate a component-wise, mixed-stage configuration rather than relying on a single uniformly optimal checkpoint. The resulting backbone is validated through end-to-end evaluation and deployed as a shared retrieval service supporting multiple industrial applications.
comment: 4 pages, 3 figures, 3 tables
☆ SpeechLess: Micro-utterance with Personalized Spatial Memory-aware Assistant in Everyday Augmented Reality
Speaking aloud to a wearable AR assistant in public can be socially awkward, and re-articulating the same requests every day creates unnecessary effort. We present SpeechLess, a wearable AR assistant that introduces a speech-based intent granularity control paradigm grounded in personalized spatial memory. SpeechLess helps users "speak less," while still obtaining the information they need, and supports gradual explicitation of intent when more complex expression is required. SpeechLess binds prior interactions to multimodal personal context-space, time, activity, and referents-to form spatial memories, and leverages them to extrapolate missing intent dimensions from under-specified user queries. This enables users to dynamically adjust how explicitly they express their informational needs, from full-utterance to micro/zero-utterance interaction. We motivate our design through a week-long formative study using a commercial smart glasses platform, revealing discomfort with public voice use, frustration with repetitive speech, and hardware constraints. Building on these insights, we design SpeechLess, and evaluate it through controlled lab and in-the-wild studies. Our results indicate that regulated speech-based interaction, can improve everyday information access, reduce articulation effort, and support socially acceptable use without substantially degrading perceived usability or intent resolution accuracy across diverse everyday environments.
comment: 11 pages, 9 figures. This is the author's version of the article that will appear at the IEEE Conference on Virtual Reality and 3D User Interfaces (IEEE VR) 2026
☆ Temporal Leakage in Search-Engine Date-Filtered Web Retrieval: A Case Study from Retrospective Forecasting
Search-engine date filters are widely used to enforce pre-cutoff retrieval in retrospective evaluations of search-augmented forecasters. We show this approach is unreliable: auditing Google Search with a before: filter, 71% of questions return at least one page containing strong post-cutoff leakage, and for 41%, at least one page directly reveals the answer. Using a large language model (LLM), gpt-oss-120b, to forecast with these leaky documents, we demonstrate an inflated prediction accuracy (Brier score 0.108 vs. 0.242 with leak-free documents). We characterize common leakage mechanisms, including updated articles, related-content modules, unreliable metadata/timestamps, and absence-based signals, and argue that date-restricted search is insufficient for temporal evaluation. We recommend stronger retrieval safeguards or evaluation on frozen, time-stamped web snapshots to ensure credible retrospective forecasting.
comment: 9 pages, 6 figures
☆ Towards Trustworthy Multimodal Recommendation
Recent advances in multimodal recommendation have demonstrated the effectiveness of incorporating visual and textual content into collaborative filtering. However, real-world deployments raise an increasingly important yet underexplored issue: trustworthiness. On modern e-commerce platforms, multimodal content can be misleading or unreliable (e.g., visually inconsistent product images or click-bait titles), injecting untrustworthy signals into multimodal representations and making existing recommenders brittle under modality corruption. In this work, we take a step towards trustworthy multimodal recommendation from both a method and an analysis perspective. First, we propose a plug-and-play modality-level rectification component that mitigates untrustworthy modality features by learning soft correspondences between items and multimodal features. Using lightweight projections and Sinkhorn-based soft matching, the rectification suppresses mismatched modality signals while preserving semantic consistency, and can be integrated into existing multimodal recommenders without architectural modifications. Second, we present two practical insights on interaction-level trustworthiness under noisy collaborative signals: (i) training-set pseudo interactions can help or hurt performance under noise depending on prior-signal alignment; and (ii) propagation-graph pseudo edges can also help or hurt robustness, as message passing may amplify misalignment. Extensive experiments on multiple datasets and backbones under varying corruption levels demonstrate improved robustness from modality rectification and validate the above interaction-level observations.
comment: Preprint, 10 pages, 5 figures
☆ SWGCN: Synergy Weighted Graph Convolutional Network for Multi-Behavior Recommendation
Multi-behavior recommendation paradigms have emerged to capture diverse user activities, forecasting primary conversions (e.g., purchases) by leveraging secondary signals like browsing history. However, current graph-based methods often overlook cross-behavioral synergistic signals and fine-grained intensity of individual actions. Motivated by the need to overcome these shortcomings, we introduce Synergy Weighted Graph Convolutional Network (SWGCN). SWGCN introduces two novel components: a Target Preference Weigher, which adaptively assigns weights to user-item interactions within each behavior, and a Synergy Alignment Task, which guides its training by leveraging an Auxiliary Preference Valuator. This task prioritizes interactions from synergistic signals that more accurately reflect user preferences. The performance of our model is rigorously evaluated through comprehensive tests on three open-source datasets, specifically Taobao, IJCAI, and Beibei. On the Taobao dataset, SWGCN yields relative gains of 112.49% and 156.36% in terms of Hit Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG), respectively. It also yields consistent gains on IJCAI and Beibei, confirming its robustness and generalizability across various datasets. Our implementation is open-sourced and can be accessed via https://github.com/FangdChen/SWGCN.
comment: Accepted by Information Sciences
☆ From Prompt to Graph: Comparing LLM-Based Information Extraction Strategies in Domain-Specific Ontology Development
Ontologies are essential for structuring domain knowledge, improving accessibility, sharing, and reuse. However, traditional ontology construction relies on manual annotation and conventional natural language processing (NLP) techniques, making the process labour-intensive and costly, especially in specialised fields like casting manufacturing. The rise of Large Language Models (LLMs) offers new possibilities for automating knowledge extraction. This study investigates three LLM-based approaches, including pre-trained LLM-driven method, in-context learning (ICL) method and fine-tuning method to extract terms and relations from domain-specific texts using limited data. We compare their performances and use the best-performing method to build a casting ontology that validated by domian expert.
comment: 11 pages,8 figures,3 tables,presented at International Conference on Industry of the Future and Smart Manufacturing,2025
☆ RecGOAT: Graph Optimal Adaptive Transport for LLM-Enhanced Multimodal Recommendation with Dual Semantic Alignment
Multimodal recommendation systems typically integrates user behavior with multimodal data from items, thereby capturing more accurate user preferences. Concurrently, with the rise of large models (LMs), multimodal recommendation is increasingly leveraging their strengths in semantic understanding and contextual reasoning. However, LM representations are inherently optimized for general semantic tasks, while recommendation models rely heavily on sparse user/item unique identity (ID) features. Existing works overlook the fundamental representational divergence between large models and recommendation systems, resulting in incompatible multimodal representations and suboptimal recommendation performance. To bridge this gap, we propose RecGOAT, a novel yet simple dual semantic alignment framework for LLM-enhanced multimodal recommendation, which offers theoretically guaranteed alignment capability. RecGOAT first employs graph attention networks to enrich collaborative semantics by modeling item-item, user-item, and user-user relationships, leveraging user/item LM representations and interaction history. Furthermore, we design a dual-granularity progressive multimodality-ID alignment framework, which achieves instance-level and distribution-level semantic alignment via cross-modal contrastive learning (CMCL) and optimal adaptive transport (OAT), respectively. Theoretically, we demonstrate that the unified representations derived from our alignment framework exhibit superior semantic consistency and comprehensiveness. Extensive experiments on three public benchmarks show that our RecGOAT achieves state-of-the-art performance, empirically validating our theoretical insights. Additionally, the deployment on a large-scale online advertising platform confirms the model's effectiveness and scalability in industrial recommendation scenarios. Code available at https://github.com/6lyc/RecGOAT-LLM4Rec.
comment: Under Review
☆ Audio-to-Image Bird Species Retrieval without Audio-Image Pairs via Text Distillation
Audio-to-image retrieval offers an interpretable alternative to audio-only classification for bioacoustic species recognition, but learning aligned audio-image representations is challenging due to the scarcity of paired audio-image data. We propose a simple and data-efficient approach that enables audio-to-image retrieval without any audio-image supervision. Our proposed method uses text as a semantic intermediary: we distill the text embedding space of a pretrained image-text model (BioCLIP-2), which encodes rich visual and taxonomic structure, into a pretrained audio-text model (BioLingual) by fine-tuning its audio encoder with a contrastive objective. This distillation transfers visually grounded semantics into the audio representation, inducing emergent alignment between audio and image embeddings without using images during training. We evaluate the resulting model on multiple bioacoustic benchmarks. The distilled audio encoder preserves audio discriminative power while substantially improving audio-text alignment on focal recordings and soundscape datasets. Most importantly, on the SSW60 benchmark, the proposed approach achieves strong audio-to-image retrieval performance exceeding baselines based on zero-shot model combinations or learned mappings between text embeddings, despite not training on paired audio-image data. These results demonstrate that indirect semantic transfer through text is sufficient to induce meaningful audio-image alignment, providing a practical solution for visually grounded species recognition in data-scarce bioacoustic settings.
☆ Towards Sample-Efficient and Stable Reinforcement Learning for LLM-based Recommendation
While Long Chain-of-Thought (Long CoT) reasoning has shown promise in Large Language Models (LLMs), its adoption for enhancing recommendation quality is growing rapidly. In this work, we critically examine this trend and argue that Long CoT is inherently ill-suited for the sequential recommendation domain. We attribute this misalignment to two primary factors: excessive inference latency and the lack of explicit cognitive reasoning patterns in user behavioral data. Driven by these observations, we propose pivoting away from the CoT structure to directly leverage its underlying mechanism: Reinforcement Learning (RL), to explore the item space. However, applying RL directly faces significant obstacles, notably low sample efficiency-where most actions fail to provide learning signals-and training instability. To overcome these limitations, we propose RISER, a novel Reinforced Item Space Exploration framework for Recommendation. RISER is designed to transform non-learnable trajectories into effective pairwise preference data for optimization. Furthermore, it incorporates specific strategies to ensure stability, including the prevention of redundant rollouts and the constraint of token-level update magnitudes. Extensive experiments on three real-world datasets show that RISER significantly outperforms competitive baselines, establishing a robust paradigm for RL-enhanced LLM recommendation. Our code will be available at https://anonymous.4open.science/r/RISER/.
☆ Equity vs. Equality: Optimizing Ranking Fairness for Tailored Provider Needs
Ranking plays a central role in connecting users and providers in Information Retrieval (IR) systems, making provider-side fairness an important challenge. While recent research has begun to address fairness in ranking, most existing approaches adopt an equality-based perspective, aiming to ensure that providers with similar content receive similar exposure. However, it overlooks the diverse needs of real-world providers, whose utility from ranking may depend not only on exposure but also on outcomes like sales or engagement. Consequently, exposure-based fairness may not accurately capture the true utility perceived by different providers with varying priorities. To this end, we introduce an equity-oriented fairness framework that explicitly models each provider's preferences over key outcomes such as exposure and sales, thus evaluating whether a ranking algorithm can fulfill these individualized goals while maintaining overall fairness across providers. Based on this framework, we develop EquityRank, a gradient-based algorithm that jointly optimizes user-side effectiveness and provider-side equity. Extensive offline and online simulations demonstrate that EquityRank offers improved trade-offs between effectiveness and fairness and adapts to heterogeneous provider needs.
☆ Uncertainty and Fairness Awareness in LLM-Based Recommendation Systems
Large language models (LLMs) enable powerful zero-shot recommendations by leveraging broad contextual knowledge, yet predictive uncertainty and embedded biases threaten reliability and fairness. This paper studies how uncertainty and fairness evaluations affect the accuracy, consistency, and trustworthiness of LLM-generated recommendations. We introduce a benchmark of curated metrics and a dataset annotated for eight demographic attributes (31 categorical values) across two domains: movies and music. Through in-depth case studies, we quantify predictive uncertainty (via entropy) and demonstrate that Google DeepMind's Gemini 1.5 Flash exhibits systematic unfairness for certain sensitive attributes; measured similarity-based gaps are SNSR at 0.1363 and SNSV at 0.0507. These disparities persist under prompt perturbations such as typographical errors and multilingual inputs. We further integrate personality-aware fairness into the RecLLM evaluation pipeline to reveal personality-linked bias patterns and expose trade-offs between personalization and group fairness. We propose a novel uncertainty-aware evaluation methodology for RecLLMs, present empirical insights from deep uncertainty case studies, and introduce a personality profile-informed fairness benchmark that advances explainability and equity in LLM recommendations. Together, these contributions establish a foundation for safer, more interpretable RecLLMs and motivate future work on multi-model benchmarks and adaptive calibration for trustworthy deployment.
comment: Accepted at the Second Conference of the International Association for Safe and Ethical Artificial Intelligence, IASEAI26, 14 pages
♻ ☆ LLM-Based Multi-Agent Blackboard System for Information Discovery in Data Science
Advances in large language models (LLMs) have created new opportunities in data science, but their deployment is often limited by the challenge of finding relevant data in large data lakes. Existing methods struggle with this: both single- and multi-agent systems are quickly overwhelmed by large, heterogeneous files, and master-slave multi-agent systems rely on a rigid central controller that requires precise knowledge of each sub-agent's capabilities, which is not possible in large-scale settings where the main agent lacks full observability over sub-agents' knowledge and competencies. We propose a novel multi-agent paradigm inspired by the blackboard architecture for traditional AI models. In our framework, a central agent posts requests to a shared blackboard, and autonomous subordinate agents - either responsible for a partition of the data lake or retrieval from the web - volunteer to respond based on their capabilities. This design improves scalability and flexibility by removing the need for a central coordinator to know each agent's expertise or internal knowledge. We evaluate the approach on three benchmarks that require data discovery: KramaBench and modified versions of DSBench and DA-Code. Results show that the blackboard architecture substantially outperforms strong baselines, achieving 13%-57% relative improvements in end-to-end success and up to a 9% relative gain in data discovery F1 over the best baseline.
♻ ☆ Clarifying the Path to User Satisfaction: An Investigation into Clarification Usefulness EACL
Clarifying questions are an integral component of modern information retrieval systems, directly impacting user satisfaction and overall system performance. Poorly formulated questions can lead to user frustration and confusion, negatively affecting the system's performance. This research addresses the urgent need to identify and leverage key features that contribute to the classification of clarifying questions, enhancing user satisfaction. To gain deeper insights into how different features influence user satisfaction, we conduct a comprehensive analysis, considering a broad spectrum of lexical, semantic, and statistical features, such as question length and sentiment polarity. Our empirical results provide three main insights into the qualities of effective query clarification: (1) specific questions are more effective than generic ones; (2) the subjectivity and emotional tone of a question play a role; and (3) shorter and more ambiguous queries benefit significantly from clarification. Based on these insights, we implement feature-integrated user satisfaction prediction using various classifiers, both traditional and neural-based, including random forest, BERT, and large language models. Our experiments show a consistent and significant improvement, particularly in traditional classifiers, with a minimum performance boost of 45\%. This study presents invaluable guidelines for refining the formulation of clarifying questions and enhancing both user satisfaction and system performance.
comment: EACL
♻ ☆ MixLM: High-Throughput and Effective LLM Ranking via Text-Embedding Mix-Interaction
Large language models (LLMs) excel at capturing semantic nuances and therefore show impressive relevance ranking performance in modern recommendation and search systems. However, they suffer from high computational overhead under industrial latency and throughput requirements. In particular, cross-encoder ranking systems often create long context prefill-heavy workloads, as the model has to be presented with the user, query and item information. To this end, we propose MixLM, a novel LLM-based ranking framework, which significantly improves the system throughput via reducing the input context length, while preserving the semantic strength of cross-encoder rankers. In contrast to a standard ranking system where the context is presented to the model as pure text, we propose to use mix-interaction, a mixture of text and embedding tokens to represent the input. Specifically, MixLM encodes all items in the catalog into a few embedding tokens and stores in a nearline cache. The encoded item descriptions are used during online inference, effectively reducing the item length from a few thousand text tokens to a few embedding tokens. We share insights from deploying our MixLM framework to a real-world search application at LinkedIn, including a detailed discussion of our training pipelines, as well as a thorough analysis of our online serving infrastructure optimization. With the same latency budget and on-par relevance metrics, MixLM increased throughput by 10.0x comparing with strong baselines, 75.9x over full-text LLM rerankers. The efficiency gains delivered by MixLM enabled full-traffic deployment of LLM-powered search, which resulted in a significant 0.47\% increase in Daily Active Users (DAU) in online A/B tests.
♻ ☆ TabRAG: Improving Tabular Document Question Answering for Retrieval Augmented Generation via Structured Representations NeurIPS 2025
Incorporating external knowledge bases in traditional retrieval-augmented generation (RAG) relies on parsing the document, followed by querying a language model with the parsed information via in-context learning. While effective for text-based documents, question answering on tabular documents often fails to generate plausible responses. Standard parsing techniques lose the two-dimensional structural semantics critical for cell interpretation. In this work, we present TabRAG, a parsing-based RAG framework designed to improve tabular document question answering via structured representations. Our framework consists of layout segmentation that decomposes the document inputs into a series of components, enabling fine-grained extraction. Subsequently, a vision language model parses and extracts the document tables into a hierarchically structured representation. In order to cater various table styles and formats, we integrate a self-generated in-context learning module that guides the table extraction process. Experimental results demonstrate that TabRAG outperforms existing popular parsing techniques across a broad suite of evaluation and ablation benchmarks. Code is available at: https://github.com/jacobyhsi/TabRAG.
comment: NeurIPS 2025 AI4Tab
♻ ☆ Memento: Towards Proactive Visualization of Everyday Memories with Personal Wearable AR Assistant
We introduce Memento, a conversational AR assistant that permanently captures and memorizes user's verbal queries alongside their spatiotemporal and activity contexts. By storing these "memories," Memento discovers connections between users' recurring interests and the contexts that trigger them. Upon detection of similar or identical spatiotemporal activity, Memento proactively recalls user interests and delivers up-to-date responses through AR, seamlessly integrating AR experience into their daily routine. Unlike prior work, each interaction in Memento is not a transient event, but a connected series of interactions with coherent long--term perspective, tailored to the user's broader multimodal (visual, spatial, temporal, and embodied) context. We conduct a preliminary evaluation through user feedbacks with participants of diverse expertise in immersive apps, and explore the value of proactive context-aware AR assistant in everyday settings. We share our findings and challenges in designing a proactive, context-aware AR system.
comment: 8 pages, 5 figures. This is the author's version of the article that will appear at the IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (IEEE VRW) 2026
Computation and Language 150
☆ FOCUS: DLLMs Know How to Tame Their Compute Bound
Diffusion Large Language Models (DLLMs) offer a compelling alternative to Auto-Regressive models, but their deployment is constrained by high decoding cost. In this work, we identify a key inefficiency in DLLM decoding: while computation is parallelized over token blocks, only a small subset of tokens is decodable at each diffusion step, causing most compute to be wasted on non-decodable tokens. We further observe a strong correlation between attention-derived token importance and token-wise decoding probability. Based on this insight, we propose FOCUS -- an inference system designed for DLLMs. By dynamically focusing computation on decodable tokens and evicting non-decodable ones on-the-fly, FOCUS increases the effective batch size, alleviating compute limitations and enabling scalable throughput. Empirical evaluations demonstrate that FOCUS achieves up to 3.52$\times$ throughput improvement over the production-grade engine LMDeploy, while preserving or improving generation quality across multiple benchmarks. The FOCUS system is publicly available on GitHub: https://github.com/sands-lab/FOCUS.
comment: 22 pages, 15 figures
☆ UPA: Unsupervised Prompt Agent via Tree-Based Search and Selection
Prompt agents have recently emerged as a promising paradigm for automated prompt optimization, framing refinement as a sequential decision-making problem over a structured prompt space. While this formulation enables the use of advanced planning algorithms, these methods typically assume access to supervised reward signals, which are often unavailable in practical scenarios. In this work, we propose UPA, an Unsupervised Prompt Agent that realizes structured search and selection without relying on supervised feedback. Specifically, during search, UPA iteratively constructs an evolving tree structure to navigate the prompt space, guided by fine-grained and order-invariant pairwise comparisons from Large Language Models (LLMs). Crucially, as these local comparisons do not inherently yield a consistent global scale, we decouple systematic prompt exploration from final selection, introducing a two-stage framework grounded in the Bradley-Terry-Luce (BTL) model. This framework first performs path-wise Bayesian aggregation of local comparisons to filter candidates under uncertainty, followed by global tournament-style comparisons to infer latent prompt quality and identify the optimal prompt. Experiments across multiple tasks demonstrate that UPA consistently outperforms existing prompt optimization methods, showing that agent-style optimization remains highly effective even in fully unsupervised settings.
☆ PaperBanana: Automating Academic Illustration for AI Scientists
Despite rapid advances in autonomous AI scientists powered by language models, generating publication-ready illustrations remains a labor-intensive bottleneck in the research workflow. To lift this burden, we introduce PaperBanana, an agentic framework for automated generation of publication-ready academic illustrations. Powered by state-of-the-art VLMs and image generation models, PaperBanana orchestrates specialized agents to retrieve references, plan content and style, render images, and iteratively refine via self-critique. To rigorously evaluate our framework, we introduce PaperBananaBench, comprising 292 test cases for methodology diagrams curated from NeurIPS 2025 publications, covering diverse research domains and illustration styles. Comprehensive experiments demonstrate that PaperBanana consistently outperforms leading baselines in faithfulness, conciseness, readability, and aesthetics. We further show that our method effectively extends to the generation of high-quality statistical plots. Collectively, PaperBanana paves the way for the automated generation of publication-ready illustrations.
☆ Agnostic Language Identification and Generation
Recent works on language identification and generation have established tight statistical rates at which these tasks can be achieved. These works typically operate under a strong realizability assumption: that the input data is drawn from an unknown distribution necessarily supported on some language in a given collection. In this work, we relax this assumption of realizability entirely, and impose no restrictions on the distribution of the input data. We propose objectives to study both language identification and generation in this more general "agnostic" setup. Across both problems, we obtain novel interesting characterizations and nearly tight rates.
☆ Now You Hear Me: Audio Narrative Attacks Against Large Audio-Language Models EACL 2026
Large audio-language models increasingly operate on raw speech inputs, enabling more seamless integration across domains such as voice assistants, education, and clinical triage. This transition, however, introduces a distinct class of vulnerabilities that remain largely uncharacterized. We examine the security implications of this modality shift by designing a text-to-audio jailbreak that embeds disallowed directives within a narrative-style audio stream. The attack leverages an advanced instruction-following text-to-speech (TTS) model to exploit structural and acoustic properties, thereby circumventing safety mechanisms primarily calibrated for text. When delivered through synthetic speech, the narrative format elicits restricted outputs from state-of-the-art models, including Gemini 2.0 Flash, achieving a 98.26% success rate that substantially exceeds text-only baselines. These results highlight the need for safety frameworks that jointly reason over linguistic and paralinguistic representations, particularly as speech-based interfaces become more prevalent.
comment: to be published at EACL 2026 main conference
☆ Scaling Multiagent Systems with Process Rewards
While multiagent systems have shown promise for tackling complex tasks via specialization, finetuning multiple agents simultaneously faces two key challenges: (1) credit assignment across agents, and (2) sample efficiency of expensive multiagent rollouts. In this work, we propose finetuning multiagent systems with per-action process rewards from AI feedback (MAPPA) to address both. Through assigning credit to individual agent actions rather than only at task completion, MAPPA enables fine-grained supervision without ground truth labels while extracting maximal training signal from each rollout. We demonstrate our approach on competition math problems and tool-augmented data analysis tasks. On unseen math problems, MAPPA achieves +5.0--17.5pp on AIME and +7.8--17.2pp on AMC. For data analysis tasks, our method improves success rate by +12.5pp while quality metrics improve by up to 30%, validating that per-action supervision can lead to improvements across different multiagent system on various domains. By addressing these challenges, our work takes a first step toward scaling multiagent systems for complex, long-horizon tasks with minimal human supervision.
☆ Are you going to finish that? A Practical Study of the Tokenization Boundary Problem
Language models (LMs) are trained over sequences of tokens, whereas users interact with LMs via text. This mismatch gives rise to the partial token problem, which occurs when a user ends their prompt in the middle of the expected next-token, leading to distorted next-token predictions. Although this issue has been studied using arbitrary character prefixes, its prevalence and severity in realistic prompts respecting word boundaries remains underexplored. In this work, we identify three domains where token and "word" boundaries often do not line up: languages that do not use whitespace, highly compounding languages, and code. In Chinese, for example, up to 25% of word boundaries do not line up with token boundaries, making even natural, word-complete prompts susceptible to this problem. We systematically construct semantically natural prompts ending with a partial tokens; in experiments, we find that they comprise a serious failure mode: frontier LMs consistently place three orders of magnitude less probability on the correct continuation compared to when the prompt is "backed-off" to be token-aligned. This degradation does not diminish with scale and often worsens for larger models. Finally, we evaluate inference-time mitigations to the partial token problem and validate the effectiveness of recent exact solutions. Overall, we demonstrate the scale and severity of probability distortion caused by tokenization in realistic use cases, and provide practical recommentions for model inference providers.
☆ Deep Search with Hierarchical Meta-Cognitive Monitoring Inspired by Cognitive Neuroscience
Deep search agents powered by large language models have demonstrated strong capabilities in multi-step retrieval, reasoning, and long-horizon task execution. However, their practical failures often stem from the lack of mechanisms to monitor and regulate reasoning and retrieval states as tasks evolve under uncertainty. Insights from cognitive neuroscience suggest that human metacognition is hierarchically organized, integrating fast anomaly detection with selectively triggered, experience-driven reflection. In this work, we propose Deep Search with Meta-Cognitive Monitoring (DS-MCM), a deep search framework augmented with an explicit hierarchical metacognitive monitoring mechanism. DS-MCM integrates a Fast Consistency Monitor, which performs lightweight checks on the alignment between external evidence and internal reasoning confidence, and a Slow Experience-Driven Monitor, which is selectively activated to guide corrective intervention based on experience memory from historical agent trajectories. By embedding monitoring directly into the reasoning-retrieval loop, DS-MCM determines both when intervention is warranted and how corrective actions should be informed by prior experience. Experiments across multiple deep search benchmarks and backbone models demonstrate that DS-MCM consistently improves performance and robustness.
comment: 11 pages, 3 figures
☆ ReGuLaR: Variational Latent Reasoning Guided by Rendered Chain-of-Thought
While Chain-of-Thought (CoT) significantly enhances the performance of Large Language Models (LLMs), explicit reasoning chains introduce substantial computational redundancy. Recent latent reasoning methods attempt to mitigate this by compressing reasoning processes into latent space, but often suffer from severe performance degradation due to the lack of appropriate compression guidance. In this study, we propose Rendered CoT-Guided variational Latent Reasoning (ReGuLaR), a simple yet novel latent learning paradigm resolving this issue. Fundamentally, we formulate latent reasoning within the Variational Auto-Encoding (VAE) framework, sampling the current latent reasoning state from the posterior distribution conditioned on previous ones. Specifically, when learning this variational latent reasoning model, we render explicit reasoning chains as images, from which we extract dense visual-semantic representations to regularize the posterior distribution, thereby achieving efficient compression with minimal information loss. Extensive experiments demonstrate that ReGuLaR significantly outperforms existing latent reasoning methods across both computational efficiency and reasoning effectiveness, and even surpasses CoT through multi-modal reasoning, providing a new and insightful solution to latent reasoning. Code: https://github.com/FanmengWang/ReGuLaR.
☆ JobResQA: A Benchmark for LLM Machine Reading Comprehension on Multilingual Résumés and JDs
We introduce JobResQA, a multilingual Question Answering benchmark for evaluating Machine Reading Comprehension (MRC) capabilities of LLMs on HR-specific tasks involving résumés and job descriptions. The dataset comprises 581 QA pairs across 105 synthetic résumé-job description pairs in five languages (English, Spanish, Italian, German, and Chinese), with questions spanning three complexity levels from basic factual extraction to complex cross-document reasoning. We propose a data generation pipeline derived from real-world sources through de-identification and data synthesis to ensure both realism and privacy, while controlled demographic and professional attributes (implemented via placeholders) enable systematic bias and fairness studies. We also present a cost-effective, human-in-the-loop translation pipeline based on the TEaR methodology, incorporating MQM error annotations and selective post-editing to ensure an high-quality multi-way parallel benchmark. We provide a baseline evaluations across multiple open-weight LLM families using an LLM-as-judge approach revealing higher performances on English and Spanish but substantial degradation for other languages, highlighting critical gaps in multilingual MRC capabilities for HR applications. JobResQA provides a reproducible benchmark for advancing fair and reliable LLM-based HR systems. The benchmark is publicly available at: https://github.com/Avature/jobresqa-benchmark
comment: Under review
☆ FourierSampler: Unlocking Non-Autoregressive Potential in Diffusion Language Models via Frequency-Guided Generation
Despite the non-autoregressive potential of diffusion language models (dLLMs), existing decoding strategies demonstrate positional bias, failing to fully unlock the potential of arbitrary generation. In this work, we delve into the inherent spectral characteristics of dLLMs and present the first frequency-domain analysis showing that low-frequency components in hidden states primarily encode global structural information and long-range dependencies, while high-frequency components are responsible for characterizing local details. Based on this observation, we propose FourierSampler, which leverages a frequency-domain sliding window mechanism to dynamically guide the model to achieve a "structure-to-detail" generation. FourierSampler outperforms other inference enhancement strategies on LLADA and SDAR, achieving relative improvements of 20.4% on LLaDA1.5-8B and 16.0% on LLaDA-8B-Instruct. It notably surpasses similarly sized autoregressive models like Llama3.1-8B-Instruct.
comment: 15 pages, 6 figures, under review
☆ Monotonic Reference-Free Refinement for Autoformalization
While statement autoformalization has advanced rapidly, full-theorem autoformalization remains largely unexplored. Existing iterative refinement methods in statement autoformalization typicall improve isolated aspects of formalization, such as syntactic correctness, but struggle to jointly optimizing multiple quality dimensions, which is critical for full-theorem autoformalization. We introduce a reference-free iterative monotonic process for full-theorem autoformalization that leverages complementary feedback from theorem provers and LLM-based judges, without access to ground-truth proofs or existing formalizations at inference time. Our approach optimizes a masked composite objective over Formal Validity, Logical Preservation, Mathematical Consistency, and Formal Quality, guided by a responsiveness map that indicates how different LLMs acting as different roles preferentially improve each dimension. We further propose an acceptance policy that guarantees certified monotonic improvement, and provide conditions ensuring convergence and termination. Empirical experiments demonstrate the proposed process enables simultaneous improvement across multiple dimensions, achieving 93.44% formal validity and a 78.22% overall score on miniF2F, and 44.09% formal validity and a 29.79% overall score on ProofNet.
comment: Work in progress
☆ DIFFA-2: A Practical Diffusion Large Language Model for General Audio Understanding
Autoregressive (AR) large audio language models (LALMs) such as Qwen-2.5-Omni have achieved strong performance on audio understanding and interaction, but scaling them remains costly in data and computation, and strictly sequential decoding limits inference efficiency. Diffusion large language models (dLLMs) have recently been shown to make effective use of limited training data, and prior work on DIFFA indicates that replacing an AR backbone with a diffusion counterpart can substantially improve audio understanding under matched settings, albeit at a proof-of-concept scale without large-scale instruction tuning, preference alignment, or practical decoding schemes. We introduce DIFFA-2, a practical diffusion-based LALM for general audio understanding. DIFFA-2 upgrades the speech encoder, employs dual semantic and acoustic adapters, and is trained with a four-stage curriculum that combines semantic and acoustic alignment, large-scale supervised fine-tuning, and variance-reduced preference optimization, using only fully open-source corpora. Experiments on MMSU, MMAU, and MMAR show that DIFFA-2 consistently improves over DIFFA and is competitive to strong AR LALMs under practical training budgets, supporting diffusion-based modeling is a viable backbone for large-scale audio understanding. Our code is available at https://github.com/NKU-HLT/DIFFA.git.
☆ Evaluating the Utility of Grounding Documents with Reference-Free LLM-based Metrics
Retrieval Augmented Generation (RAG)'s success depends on the utility the LLM derives from the content used for grounding. Quantifying content utility does not have a definitive specification and existing metrics ignore model-specific capabilities and/or rely on costly annotations. In this paper, we propose Grounding Generation Utility (GroGU), a model-specific and reference-free metric that defines utility as a function of the downstream LLM's generation confidence based on entropy. Despite having no annotation requirements, GroGU is largely faithful in distinguishing ground-truth documents while capturing nuances ignored by LLM-agnostic metrics. We apply GroGU to train a query-rewriter for RAG by identifying high-utility preference data for Direct Preference Optimization. Experiments show improvements by up to 18.2 points in Mean Reciprocal Rank and up to 9.4 points in answer accuracy.
☆ Safer Policy Compliance with Dynamic Epistemic Fallback
Humans develop a series of cognitive defenses, known as epistemic vigilance, to combat risks of deception and misinformation from everyday interactions. Developing safeguards for LLMs inspired by this mechanism might be particularly helpful for their application in high-stakes tasks such as automating compliance with data privacy laws. In this paper, we introduce Dynamic Epistemic Fallback (DEF), a dynamic safety protocol for improving an LLM's inference-time defenses against deceptive attacks that make use of maliciously perturbed policy texts. Through various levels of one-sentence textual cues, DEF nudges LLMs to flag inconsistencies, refuse compliance, and fallback to their parametric knowledge upon encountering perturbed policy texts. Using globally recognized legal policies such as HIPAA and GDPR, our empirical evaluations report that DEF effectively improves the capability of frontier LLMs to detect and refuse perturbed versions of policies, with DeepSeek-R1 achieving a 100% detection rate in one setting. This work encourages further efforts to develop cognitively inspired defenses to improve LLM robustness against forms of harm and deception that exploit legal artifacts.
☆ Character as a Latent Variable in Large Language Models: A Mechanistic Account of Emergent Misalignment and Conditional Safety Failures
Emergent Misalignment refers to a failure mode in which fine-tuning large language models (LLMs) on narrowly scoped data induces broadly misaligned behavior. Prior explanations mainly attribute this phenomenon to the generalization of erroneous or unsafe content. In this work, we show that this view is incomplete. Across multiple domains and model families, we find that fine-tuning models on data exhibiting specific character-level dispositions induces substantially stronger and more transferable misalignment than incorrect-advice fine-tuning, while largely preserving general capabilities. This indicates that emergent misalignment arises from stable shifts in model behavior rather than from capability degradation or corrupted knowledge. We further show that such behavioral dispositions can be conditionally activated by both training-time triggers and inference-time persona-aligned prompts, revealing shared structure across emergent misalignment, backdoor activation, and jailbreak susceptibility. Overall, our results identify character formation as a central and underexplored alignment risk, suggesting that robust alignment must address behavioral dispositions rather than isolated errors or prompt-level defenses.
☆ DimABSA: Building Multilingual and Multidomain Datasets for Dimensional Aspect-Based Sentiment Analysis
Aspect-Based Sentiment Analysis (ABSA) focuses on extracting sentiment at a fine-grained aspect level and has been widely applied across real-world domains. However, existing ABSA research relies on coarse-grained categorical labels (e.g., positive, negative), which limits its ability to capture nuanced affective states. To address this limitation, we adopt a dimensional approach that represents sentiment with continuous valence-arousal (VA) scores, enabling fine-grained analysis at both the aspect and sentiment levels. To this end, we introduce DimABSA, the first multilingual, dimensional ABSA resource annotated with both traditional ABSA elements (aspect terms, aspect categories, and opinion terms) and newly introduced VA scores. This resource contains 76,958 aspect instances across 42,590 sentences, spanning six languages and four domains. We further introduce three subtasks that combine VA scores with different ABSA elements, providing a bridge from traditional ABSA to dimensional ABSA. Given that these subtasks involve both categorical and continuous outputs, we propose a new unified metric, continuous F1 (cF1), which incorporates VA prediction error into standard F1. We provide a comprehensive benchmark using both prompted and fine-tuned large language models across all subtasks. Our results show that DimABSA is a challenging benchmark and provides a foundation for advancing multilingual dimensional ABSA.
☆ Mem-T: Densifying Rewards for Long-Horizon Memory Agents
Memory agents, which depart from predefined memory-processing pipelines by endogenously managing the processing, storage, and retrieval of memories, have garnered increasing attention for their autonomy and adaptability. However, existing training paradigms remain constrained: agents often traverse long-horizon sequences of memory operations before receiving sparse and delayed rewards, which hinders truly end-to-end optimization of memory management policies. To address this limitation, we introduce Mem-T, an autonomous memory agent that interfaces with a lightweight hierarchical memory database to perform dynamic updates and multi-turn retrieval over streaming inputs. To effectively train long-horizon memory management capabilities, we further propose MoT-GRPO, a tree-guided reinforcement learning framework that transforms sparse terminal feedback into dense, step-wise supervision via memory operation tree backpropagation and hindsight credit assignment, thereby enabling the joint optimization of memory construction and retrieval. Extensive experiments demonstrate that Mem-T is (1) high-performing, surpassing frameworks such as A-Mem and Mem0 by up to $14.92\%$, and (2) economical, operating on a favorable accuracy-efficiency Pareto frontier and reducing inference tokens per query by $\sim24.45\%$ relative to GAM without sacrificing performance.
☆ InstructDiff: Domain-Adaptive Data Selection via Differential Entropy for Efficient LLM Fine-Tuning
Supervised fine-tuning (SFT) is fundamental to adapting large language models, yet training on complete datasets incurs prohibitive costs with diminishing returns. Existing data selection methods suffer from severe domain specificity: techniques optimized for general instruction-following fail on reasoning tasks, and vice versa. We observe that measuring entropy differences between base models and minimally instruction-tuned calibrated models reveals a pattern -- samples with the lowest differential entropy consistently yield optimal performance across domains, yet this principle manifests domain-adaptively: reasoning tasks favor entropy increase (cognitive expansion), while general tasks favor entropy decrease (cognitive compression). We introduce InstructDiff, a unified framework that operationalizes differential entropy as a domain-adaptive selection criterion through warmup calibration, bi-directional NLL filtering, and entropy-based ranking. Extensive experiments show that InstructDiff achieves 17\% relative improvement over full data training on mathematical reasoning and 52\% for general instruction-following, outperforming prior baselines while using only 10\% of the data.
☆ Bias Beyond Borders: Political Ideology Evaluation and Steering in Multilingual LLMs
Large Language Models (LLMs) increasingly shape global discourse, making fairness and ideological neutrality essential for responsible AI deployment. Despite growing attention to political bias in LLMs, prior work largely focuses on high-resource, Western languages or narrow multilingual settings, leaving cross-lingual consistency and safe post-hoc mitigation underexplored. To address this gap, we present a large-scale multilingual evaluation of political bias spanning 50 countries and 33 languages. We introduce a complementary post-hoc mitigation framework, Cross-Lingual Alignment Steering (CLAS), designed to augment existing steering methods by aligning ideological representations across languages and dynamically regulating intervention strength. This method aligns latent ideological representations induced by political prompts into a shared ideological subspace, ensuring cross lingual consistency, with the adaptive mechanism prevents over correction and preserves coherence. Experiments demonstrate substantial bias reduction along both economic and social axes with minimal degradation in response quality. The proposed framework establishes a scalable and interpretable paradigm for fairness-aware multilingual LLM governance, balancing ideological neutrality with linguistic and cultural diversity.
comment: PrePrint
☆ ArabicDialectHub: A Cross-Dialectal Arabic Learning Resource and Platform
We present ArabicDialectHub, a cross-dialectal Arabic learning resource comprising 552 phrases across six varieties (Moroccan Darija, Lebanese, Syrian, Emirati, Saudi, and MSA) and an interactive web platform. Phrases were generated using LLMs and validated by five native speakers, stratified by difficulty, and organized thematically. The open-source platform provides translation exploration, adaptive quizzing with algorithmic distractor generation, cloud-synchronized progress tracking, and cultural context. Both the dataset and complete platform source code are released under MIT license. Platform: https://arabic-dialect-hub.netlify.app.
☆ Learnable Permutation for Structured Sparsity on Transformer Models
Structured sparsity has emerged as a popular model pruning technique, widely adopted in various architectures, including CNNs, Transformer models, and especially large language models (LLMs) in recent years. A promising direction to further improve post-pruning performance is weight permutation, which reorders model weights into patterns more amenable to pruning. However, the exponential growth of the permutation search space with the scale of Transformer architectures forces most methods to rely on greedy or heuristic algorithms, limiting the effectiveness of reordering. In this work, we propose a novel end-to-end learnable permutation framework. Our method introduces a learnable permutation cost matrix to quantify the cost of swapping any two input channels of a given weight matrix, a differentiable bipartite matching solver to obtain the optimal binary permutation matrix given a cost matrix, and a sparsity optimization loss function to directly optimize the permutation operator. We extensively validate our approach on vision and language Transformers, demonstrating that our method achieves state-of-the-art permutation results for structured sparsity.
☆ MiTa: A Hierarchical Multi-Agent Collaboration Framework with Memory-integrated and Task Allocation ICASSP 2026
Recent advances in large language models (LLMs) have substantially accelerated the development of embodied agents. LLM-based multi-agent systems mitigate the inefficiency of single agents in complex tasks. However, they still suffer from issues such as memory inconsistency and agent behavioral conflicts. To address these challenges, we propose MiTa, a hierarchical memory-integrated task allocative framework to enhance collaborative efficiency. MiTa organizes agents into a manager-member hierarchy, where the manager incorporates additional allocation and summary modules that enable (1) global task allocation and (2) episodic memory integration. The allocation module enables the manager to allocate tasks from a global perspective, thereby avoiding potential inter-agent conflicts. The summary module, triggered by task progress updates, performs episodic memory integration by condensing recent collaboration history into a concise summary that preserves long-horizon context. By combining task allocation with episodic memory, MiTa attains a clearer understanding of the task and facilitates globally consistent task distribution. Experimental results confirm that MiTa achieves superior efficiency and adaptability in complex multi-agent cooperation over strong baseline methods.
comment: Accepted to 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2026)
☆ A Unified View of Attention and Residual Sinks: Outlier-Driven Rescaling is Essential for Transformer Training
We investigate the functional role of emergent outliers in large language models, specifically attention sinks (a few tokens that consistently receive large attention logits) and residual sinks (a few fixed dimensions with persistently large activations across most tokens). We hypothesize that these outliers, in conjunction with the corresponding normalizations (\textit{e.g.}, softmax attention and RMSNorm), effectively rescale other non-outlier components. We term this phenomenon \textit{outlier-driven rescaling} and validate this hypothesis across different model architectures and training token counts. This view unifies the origin and mitigation of both sink types. Our main conclusions and observations include: (1) Outliers function jointly with normalization: removing normalization eliminates the corresponding outliers but degrades training stability and performance; directly clipping outliers while retaining normalization leads to degradation, indicating that outlier-driven rescaling contributes to training stability. (2) Outliers serve more as rescale factors rather than contributors, as the final contributions of attention and residual sinks are significantly smaller than those of non-outliers. (3) Outliers can be absorbed into learnable parameters or mitigated via explicit gated rescaling, leading to improved training performance (average gain of 2 points) and enhanced quantization robustness (1.2 points degradation under W4A4 quantization).
☆ Residual Context Diffusion Language Models
Diffusion Large Language Models (dLLMs) have emerged as a promising alternative to purely autoregressive language models because they can decode multiple tokens in parallel. However, state-of-the-art block-wise dLLMs rely on a "remasking" mechanism that decodes only the most confident tokens and discards the rest, effectively wasting computation. We demonstrate that recycling computation from the discarded tokens is beneficial, as these tokens retain contextual information useful for subsequent decoding iterations. In light of this, we propose Residual Context Diffusion (RCD), a module that converts these discarded token representations into contextual residuals and injects them back for the next denoising step. RCD uses a decoupled two-stage training pipeline to bypass the memory bottlenecks associated with backpropagation. We validate our method on both long CoT reasoning (SDAR) and short CoT instruction following (LLaDA) models. We demonstrate that a standard dLLM can be efficiently converted to the RCD paradigm with merely ~1 billion tokens. RCD consistently improves frontier dLLMs by 5-10 points in accuracy with minimal extra computation overhead across a wide range of benchmarks. Notably, on the most challenging AIME tasks, RCD nearly doubles baseline accuracy and attains up to 4-5x fewer denoising steps at equivalent accuracy levels.
☆ Perplexity Cannot Always Tell Right from Wrong
Perplexity -- a function measuring a model's overall level of "surprise" when encountering a particular output -- has gained significant traction in recent years, both as a loss function and as a simple-to-compute metric of model quality. Prior studies have pointed out several limitations of perplexity, often from an empirical manner. Here we leverage recent results on Transformer continuity to show in a rigorous manner how perplexity may be an unsuitable metric for model selection. Specifically, we prove that, if there is any sequence that a compact decoder-only Transformer model predicts accurately and confidently -- a necessary pre-requisite for strong generalisation -- it must imply existence of another sequence with very low perplexity, but not predicted correctly by that same model. Further, by analytically studying iso-perplexity plots, we find that perplexity will not always select for the more accurate model -- rather, any increase in model confidence must be accompanied by a commensurate rise in accuracy for the new model to be selected.
comment: 11 pages, 4 figures
☆ Autonomous Chain-of-Thought Distillation for Graph-Based Fraud Detection
Graph-based fraud detection on text-attributed graphs (TAGs) requires jointly modeling rich textual semantics and relational dependencies. However, existing LLM-enhanced GNN approaches are constrained by predefined prompting and decoupled training pipelines, limiting reasoning autonomy and weakening semantic-structural alignment. We propose FraudCoT, a unified framework that advances TAG-based fraud detection through autonomous, graph-aware chain-of-thought (CoT) reasoning and scalable LLM-GNN co-training. To address the limitations of predefined prompts, we introduce a fraud-aware selective CoT distillation mechanism that generates diverse reasoning paths and enhances semantic-structural understanding. These distilled CoTs are integrated into node texts, providing GNNs with enriched, multi-hop semantic and structural cues for fraud detection. Furthermore, we develop an efficient asymmetric co-training strategy that enables end-to-end optimization while significantly reducing the computational cost of naive joint training. Extensive experiments on public and industrial benchmarks demonstrate that FraudCoT achieves up to 8.8% AUPRC improvement over state-of-the-art methods and delivers up to 1,066x speedup in training throughput, substantially advancing both detection performance and efficiency.
☆ Relaxing Positional Alignment in Masked Diffusion Language Models
Masked diffusion language models (MDLMs) have emerged as a promising alternative to dominant autoregressive approaches. Although they achieve competitive performance on several tasks, a substantial gap remains in open-ended text generation. We hypothesize that one cause of this gap is that strict positional prediction makes MDLM decoding highly sensitive to token misalignment, and we show through controlled interventions that a one-position shift can severely disrupt semantics. This observation suggests that enforcing strict positional supervision during training is misaligned with the irreversible denoising dynamics of MDLM decoding. Motivated by this mismatch, we adopt an alignment-flexible supervision strategy during fine-tuning. Specifically, we introduce a special token via the connectionist temporal classification objective. We apply this approach to the widely used MDLM model and conduct experiments on five open-ended text generation benchmarks. Our method consistently outperforms the original model and improves robustness to positional shifts, indicating that relaxing strict positional supervision is an important factor in improving generation quality in MDLMs.
☆ Benchmarking Machine Translation on Chinese Social Media Texts
The prevalence of rapidly evolving slang, neologisms, and highly stylized expressions in informal user-generated text, particularly on Chinese social media, poses significant challenges for Machine Translation (MT) benchmarking. Specifically, we identify two primary obstacles: (1) data scarcity, as high-quality parallel data requires bilingual annotators familiar with platform-specific slang, and stylistic cues in both languages; and (2) metric limitations, where traditional evaluators like COMET often fail to capture stylistic fidelity and nonstandard expressions. To bridge these gaps, we introduce CSM-MTBench, a benchmark covering five Chinese-foreign language directions and consisting of two expert-curated subsets: Fun Posts, featuring context-rich, slang- and neologism-heavy content, and Social Snippets, emphasizing concise, emotion- and style- driven expressions. Furthermore, we propose tailored evaluation approaches for each subset: measuring the translation success rate of slang and neologisms in Fun Posts, while assessing tone and style preservation in Social Snippets via a hybrid of embedding-based metrics and LLM-as-a-judge. Experiments on over 20 models reveal substantial variation in how current MT systems handle semantic fidelity and informal, social-media-specific stylistic cues. CSM-MTBench thus serves as a rigorous testbed for advancing MT systems capable of mastering real-world Chinese social media texts.
comment: Work in Progress
☆ Semantic Leakage from Image Embeddings
Image embeddings are generally assumed to pose limited privacy risk. We challenge this assumption by formalizing semantic leakage as the ability to recover semantic structures from compressed image embeddings. Surprisingly, we show that semantic leakage does not require exact reconstruction of the original image. Preserving local semantic neighborhoods under embedding alignment is sufficient to expose the intrinsic vulnerability of image embeddings. Crucially, this preserved neighborhood structure allows semantic information to propagate through a sequence of lossy mappings. Based on this conjecture, we propose Semantic Leakage from Image Embeddings (SLImE), a lightweight inference framework that reveals semantic information from standalone compressed image embeddings, incorporating a locally trained semantic retriever with off-the-shelf models, without training task-specific decoders. We thoroughly validate each step of the framework empirically, from aligned embeddings to retrieved tags, symbolic representations, and grammatical and coherent descriptions. We evaluate SLImE across a range of open and closed embedding models, including GEMINI, COHERE, NOMIC, and CLIP, and demonstrate consistent recovery of semantic information across diverse inference tasks. Our results reveal a fundamental vulnerability in image embeddings, whereby the preservation of semantic neighborhoods under alignment enables semantic leakage, highlighting challenges for privacy preservation.1
comment: 20 pages, 19 figures
LLMs Explain't: A Post-Mortem on Semantic Interpretability in Transformer Models
Large Language Models (LLMs) are becoming increasingly popular in pervasive computing due to their versatility and strong performance. However, despite their ubiquitous use, the exact mechanisms underlying their outstanding performance remain unclear. Different methods for LLM explainability exist, and many are, as a method, not fully understood themselves. We started with the question of how linguistic abstraction emerges in LLMs, aiming to detect it across different LLM modules (attention heads and input embeddings). For this, we used methods well-established in the literature: (1) probing for token-level relational structures, and (2) feature-mapping using embeddings as carriers of human-interpretable properties. Both attempts failed for different methodological reasons: Attention-based explanations collapsed once we tested the core assumption that later-layer representations still correspond to tokens. Property-inference methods applied to embeddings also failed because their high predictive scores were driven by methodological artifacts and dataset structure rather than meaningful semantic knowledge. These failures matter because both techniques are widely treated as evidence for what LLMs supposedly understand, yet our results show such conclusions are unwarranted. These limitations are particularly relevant in pervasive and distributed computing settings where LLMs are deployed as system components and interpretability methods are relied upon for debugging, compression, and explaining models.
☆ DiffuSpeech: Silent Thought, Spoken Answer via Unified Speech-Text Diffusion
Current speech language models generate responses directly without explicit reasoning, leading to errors that cannot be corrected once audio is produced. We introduce \textbf{``Silent Thought, Spoken Answer''} -- a paradigm where speech LLMs generate internal text reasoning alongside spoken responses, with thinking traces informing speech quality. To realize this, we present \method{}, the first diffusion-based speech-text language model supporting both understanding and generation, unifying discrete text and tokenized speech under a single masked diffusion framework. Unlike autoregressive approaches, \method{} jointly generates reasoning traces and speech tokens through iterative denoising, with modality-specific masking schedules. We also construct \dataset{}, the first speech QA dataset with paired text reasoning traces, containing 26K samples totaling 319 hours. Experiments show \method{} achieves state-of-the-art speech-to-speech QA accuracy, outperforming the best baseline by up to 9 points, while attaining the best TTS quality among generative models (6.2\% WER) and preserving language understanding (66.2\% MMLU). Ablations confirm that both the diffusion architecture and thinking traces contribute to these gains.
☆ Should LLMs, $\textit{like}$, Generate How Users Talk? Building Dialect-Accurate Dialog[ue]s Beyond the American Default with MDial
More than 80% of the 1.6 billion English speakers do not use Standard American English (SAE) and experience higher failure rates and stereotyped responses when interacting with LLMs as a result. Yet multi-dialectal performance remains underexplored. We introduce $\textbf{MDial}$, the first large-scale framework for generating multi-dialectal conversational data encompassing the three pillars of written dialect -- lexical (vocabulary), orthographic (spelling), and morphosyntactic (grammar) features -- for nine English dialects. Partnering with native linguists, we design an annotated and scalable rule-based LLM transformation to ensure precision. Our approach challenges the assumption that models should mirror users' morphosyntactic features, showing that up to 90% of the grammatical features of a dialect should not be reproduced by models. Independent evaluations confirm data quality, with annotators preferring MDial outputs over prior methods in 98% of pairwise comparisons for dialect naturalness. Using this pipeline, we construct the dialect-parallel $\textbf{MDialBench}$mark with 50k+ dialogs, resulting in 97k+ QA pairs, and evaluate 17 LLMs on dialect identification and response generation tasks. Even frontier models achieve under 70% accuracy, fail to reach 50% for Canadian English, and systematically misclassify non-SAE dialects as American or British. As dialect identification underpins natural language understanding, these errors risk cascading failures into downstream tasks.
☆ MoVE: Mixture of Value Embeddings -- A New Axis for Scaling Parametric Memory in Autoregressive Models
Autoregressive sequence modeling stands as the cornerstone of modern Generative AI, powering results across diverse modalities ranging from text generation to image generation. However, a fundamental limitation of this paradigm is the rigid structural coupling of model capacity to computational cost: expanding a model's parametric memory -- its repository of factual knowledge or visual patterns -- traditionally requires deepening or widening the network, which incurs a proportional rise in active FLOPs. In this work, we introduce $\textbf{MoVE (Mixture of Value Embeddings)}$, a mechanism that breaks this coupling and establishes a new axis for scaling capacity. MoVE decouples memory from compute by introducing a global bank of learnable value embeddings shared across all attention layers. For every step in the sequence, the model employs a differentiable soft gating mechanism to dynamically mix retrieved concepts from this bank into the standard value projection. This architecture allows parametric memory to be scaled independently of network depth by simply increasing the number of embedding slots. We validate MoVE through strictly controlled experiments on two representative applications of autoregressive modeling: Text Generation and Image Generation. In both domains, MoVE yields consistent performance improvements over standard and layer-wise memory baselines, enabling the construction of "memory-dense" models that achieve lower perplexity and higher fidelity than their dense counterparts at comparable compute budgets.
☆ Leveraging LLMs For Turkish Skill Extraction
Skill extraction is a critical component of modern recruitment systems, enabling efficient job matching, personalized recommendations, and labor market analysis. Despite Türkiye's significant role in the global workforce, Turkish, a morphologically complex language, lacks both a skill taxonomy and a dedicated skill extraction dataset, resulting in underexplored research in skill extraction for Turkish. This article seeks the answers to three research questions: 1) How can skill extraction be effectively performed for this language, in light of its low resource nature? 2)~What is the most promising model? 3) What is the impact of different Large Language Models (LLMs) and prompting strategies on skill extraction (i.e., dynamic vs. static few-shot samples, varying context information, and encouraging causal reasoning)? The article introduces the first Turkish skill extraction dataset and performance evaluations of automated skill extraction using LLMs. The manually annotated dataset contains 4,819 labeled skill spans from 327 job postings across different occupation areas. The use of LLM outperforms supervised sequence labeling when used in an end-to-end pipeline, aligning extracted spans with standardized skills in the ESCO taxonomy more effectively. The best-performing configuration, utilizing Claude Sonnet 3.7 with dynamic few-shot prompting for skill identification, embedding-based retrieval, and LLM-based reranking for skill linking, achieves an end-to-end performance of 0.56, positioning Turkish alongside similar studies in other languages, which are few in the literature. Our findings suggest that LLMs can improve skill extraction performance in low-resource settings, and we hope that our work will accelerate similar research on skill extraction for underrepresented languages.
☆ From Labels to Facets: Building a Taxonomically Enriched Turkish Learner Corpus
In terms of annotation structure, most learner corpora rely on holistic flat label inventories which, even when extensive, do not explicitly separate multiple linguistic dimensions. This makes linguistically deep annotation difficult and complicates fine-grained analyses aimed at understanding why and how learners produce specific errors. To address these limitations, this paper presents a semi-automated annotation methodology for learner corpora, built upon a recently proposed faceted taxonomy, and implemented through a novel annotation extension framework. The taxonomy provides a theoretically grounded, multi-dimensional categorization that captures the linguistic properties underlying each error instance, thereby enabling standardized, fine-grained, and interpretable enrichment beyond flat annotations. The annotation extension tool, implemented based on the proposed extension framework for Turkish, automatically extends existing flat annotations by inferring additional linguistic and metadata information as facets within the taxonomy to provide richer learner-specific context. It was systematically evaluated and yielded promising performance results, achieving a facet-level accuracy of 95.86%. The resulting taxonomically enriched corpus offers enhanced querying capabilities and supports detailed exploratory analyses across learner corpora, enabling researchers to investigate error patterns through complex linguistic and pedagogical dimensions. This work introduces the first collaboratively annotated and taxonomically enriched Turkish Learner Corpus, a manual annotation guideline with a refined tagset, and an annotation extender. As the first corpus designed in accordance with the recently introduced taxonomy, we expect our study to pave the way for subsequent enrichment efforts of existing error-annotated learner corpora.
☆ EmoShift: Lightweight Activation Steering for Enhanced Emotion-Aware Speech Synthesis ICASSP 2026
Achieving precise and controllable emotional expression is crucial for producing natural and context-appropriate speech in text-to-speech (TTS) synthesis. However, many emotion-aware TTS systems, including large language model (LLM)-based designs, rely on scaling fixed emotion embeddings or external guidance, limiting their ability to model emotion-specific latent characteristics. To address this gap, we present EmoShift, a lightweight activation-steering framework incorporating a EmoSteer layer, which learns a steering vector for each target emotion in the output embedding space to capture its latent offset and maintain stable, appropriate expression across utterances and categories. With only 10M trainable parameters,less than 1/30 of full fine-tuning, EmoShift outperforms zero-shot and fully fine-tuned baselines in objective and subjective evaluations, enhancing emotional expressiveness while preserving naturalness and speaker similarity. Further analysis confirms the proposed EmoSteer layer's effectiveness and reveals its potential for controllable emotional intensity in speech synthesis.
comment: Activation Steering; Emotion-Aware TTS; Speech Synthesis; Accepted by ICASSP 2026
☆ Eroding the Truth-Default: A Causal Analysis of Human Susceptibility to Foundation Model Hallucinations and Disinformation in the Wild
As foundation models (FMs) approach human-level fluency, distinguishing synthetic from organic content has become a key challenge for Trustworthy Web Intelligence. This paper presents JudgeGPT and RogueGPT, a dual-axis framework that decouples "authenticity" from "attribution" to investigate the mechanisms of human susceptibility. Analyzing 918 evaluations across five FMs (including GPT-4 and Llama-2), we employ Structural Causal Models (SCMs) as a principal framework for formulating testable causal hypotheses about detection accuracy. Contrary to partisan narratives, we find that political orientation shows a negligible association with detection performance ($r=-0.10$). Instead, "fake news familiarity" emerges as a candidate mediator ($r=0.35$), suggesting that exposure may function as adversarial training for human discriminators. We identify a "fluency trap" where GPT-4 outputs (HumanMachineScore: 0.20) bypass Source Monitoring mechanisms, rendering them indistinguishable from human text. These findings suggest that "pre-bunking" interventions should target cognitive source monitoring rather than demographic segmentation to ensure trustworthy information ecosystems.
comment: Accepted at ACM TheWebConf '26 Companion
☆ When Meanings Meet: Investigating the Emergence and Quality of Shared Concept Spaces during Multilingual Language Model Training EACL 2026
Training Large Language Models (LLMs) with high multilingual coverage is becoming increasingly important -- especially when monolingual resources are scarce. Recent studies have found that LLMs process multilingual inputs in shared concept spaces, thought to support generalization and cross-lingual transfer. However, these prior studies often do not use causal methods, lack deeper error analysis or focus on the final model only, leaving open how these spaces emerge during training. We investigate the development of language-agnostic concept spaces during pretraining of EuroLLM through the causal interpretability method of activation patching. We isolate cross-lingual concept representations, then inject them into a translation prompt to investigate how consistently translations can be altered, independently of the language. We find that shared concept spaces emerge early} and continue to refine, but that alignment with them is language-dependent}. Furthermore, in contrast to prior work, our fine-grained manual analysis reveals that some apparent gains in translation quality reflect shifts in behavior -- like selecting senses for polysemous words or translating instead of copying cross-lingual homographs -- rather than improved translation ability. Our findings offer new insight into the training dynamics of cross-lingual alignment and the conditions under which causal interpretability methods offer meaningful insights in multilingual contexts.
comment: Accepted to EACL 2026 Main Conference
☆ SOMBRERO: Measuring and Steering Boundary Placement in End-to-End Hierarchical Sequence Models
Hierarchical sequence models replace fixed tokenization with learned segmentations that compress long byte sequences for efficient autoregressive modeling. While recent end-to-end methods can learn meaningful boundaries from the language-modeling objective alone, it remains difficult to quantitatively assess and systematically steer where compute is spent. We introduce a router-agnostic metric of boundary quality, boundary enrichment B, which measures how strongly chunk starts concentrate on positions with high next-byte surprisal. Guided by this metric, we propose Sombrero, which steers boundary placement toward predictive difficulty via a confidence-alignment boundary loss and stabilizes boundary learning by applying confidence-weighted smoothing at the input level rather than on realized chunks. On 1B scale, across UTF-8 corpora covering English and German text as well as code and mathematical content, Sombrero improves the accuracy-efficiency trade-off and yields boundaries that more consistently align compute with hard-to-predict positions.
☆ Sparse or Dense? A Mechanistic Estimation of Computation Density in Transformer-based LLMs
Transformer-based large language models (LLMs) are comprised of billions of parameters arranged in deep and wide computational graphs. Several studies on LLM efficiency optimization argue that it is possible to prune a significant portion of the parameters, while only marginally impacting performance. This suggests that the computation is not uniformly distributed across the parameters. We introduce here a technique to systematically quantify computation density in LLMs. In particular, we design a density estimator drawing on mechanistic interpretability. We experimentally test our estimator and find that: (1) contrary to what has been often assumed, LLM processing generally involves dense computation; (2) computation density is dynamic, in the sense that models shift between sparse and dense processing regimes depending on the input; (3) per-input density is significantly correlated across LLMs, suggesting that the same inputs trigger either low or high density. Investigating the factors influencing density, we observe that predicting rarer tokens requires higher density, and increasing context length often decreases the density. We believe that our computation density estimator will contribute to a better understanding of the processing at work in LLMs, challenging their symbolic interpretation.
☆ CALM: Joint Contextual Acoustic-Linguistic Modeling for Personalization of Multi-Speaker ASR ICASSP 2026
We present CALM, a joint Contextual Acoustic-Linguistic Modeling framework for multi-speaker automatic speech recognition (ASR). In personalized AI scenarios, the joint availability of acoustic and linguistic cues naturally motivates the integration of target-speaker conditioning with contextual biasing in overlapping conversations. CALM implements this integration in an end-to-end framework through speaker embedding-driven target-speaker extraction and dynamic vocabulary-based contextual biasing. We evaluate CALM on simulated English (LibriSpeechMix) and Japanese (Corpus of Spontaneous Japanese mixtures, CSJMix). On two-speaker mixtures, CALM reduces biased word error rate (B-WER) from 12.7 to 4.7 on LibriSpeech2Mix and biased character error rate (B-CER) from 16.6 to 8.4 on CSJMix2 (eval3), demonstrating the effectiveness of joint acoustic-linguistic modeling across languages. We additionally report results on the AMI corpus (IHM-mix condition) to validate performance on standardized speech mixtures.
comment: Accepted to IEEE ICASSP 2026
☆ RASST: Fast Cross-modal Retrieval-Augmented Simultaneous Speech Translation
Simultaneous speech translation (SST) produces target text incrementally from partial speech input. Recent speech large language models (Speech LLMs) have substantially improved SST quality, yet they still struggle to correctly translate rare and domain-specific terminology. While retrieval augmentation has been effective for terminology translation in machine translation, bringing retrieval to SST is non-trivial: it requires fast and accurate cross-modal (speech-to-text) retrieval under partial, continually arriving input, and the model must decide whether and when to apply retrieved terms during incremental generation. We propose Retrieval-Augmented Simultaneous Speech Translation (RASST), which tightly integrates cross-modal retrieval into the SST pipeline. RASST trains a lightweight speech-text retriever and performs efficient sliding-window retrieval, providing chunkwise terminology hints to the Speech LLM. We further synthesize training data that teaches the Speech LLM to leverage retrieved terms precisely. Experiments on three language directions of the ACL 60/60 dev set show that RASST improves terminology translation accuracy by up to 16% and increases overall translation quality by up to 3 BLEU points, with ablations confirming the contribution of each component.
☆ AR-BENCH: Benchmarking Legal Reasoning with Judgment Error Detection, Classification and Correction
Legal judgments may contain errors due to the complexity of case circumstances and the abstract nature of legal concepts, while existing appellate review mechanisms face efficiency pressures from a surge in case volumes. Although current legal AI research focuses on tasks like judgment prediction and legal document generation, the task of judgment review differs fundamentally in its objectives and paradigm: it centers on detecting, classifying, and correcting errors after a judgment is issued, constituting anomaly detection rather than prediction or generation. To address this research gap, we introduce a novel task APPELLATE REVIEW, aiming to assess models' diagnostic reasoning and reliability in legal practice. We also construct a novel dataset benchmark AR-BENCH, which comprises 8,700 finely annotated decisions and 34,617 supplementary corpora. By evaluating 14 large language models, we reveal critical limitations in existing models' ability to identify legal application errors, providing empirical evidence for future improvements.
☆ MM-THEBench: Do Reasoning MLLMs Think Reasonably?
Recent advances in multimodal large language models (MLLMs) mark a shift from non-thinking models to post-trained reasoning models capable of solving complex problems through thinking. However, whether such thinking mitigates hallucinations in multimodal perception and reasoning remains unclear. Self-reflective reasoning enhances robustness but introduces additional hallucinations, and subtle perceptual errors still result in incorrect or coincidentally correct answers. Existing benchmarks primarily focus on models before the emergence of reasoning MLLMs, neglecting the internal thinking process and failing to measure the hallucinations that occur during thinking. To address these challenges, we introduce MM-THEBench, a comprehensive benchmark for assessing hallucinations of intermediate CoTs in reasoning MLLMs. MM-THEBench features a fine-grained taxonomy grounded in cognitive dimensions, diverse data with verified reasoning annotations, and a multi-level automated evaluation framework. Extensive experiments on mainstream reasoning MLLMs reveal insights into how thinking affects hallucination and reasoning capability in various multimodal tasks.
☆ AlienLM: Alienization of Language for API-Boundary Privacy in Black-Box LLMs
Modern LLMs are increasingly accessed via black-box APIs, requiring users to transmit sensitive prompts, outputs, and fine-tuning data to external providers, creating a critical privacy risk at the API boundary. We introduce AlienLM, a deployable API-only privacy layer that protects text by translating it into an Alien Language via a vocabulary-scale bijection, enabling lossless recovery on the client side. Using only standard fine-tuning APIs, Alien Adaptation Training (AAT) adapts target models to operate directly on alienized inputs. Across four LLM backbones and seven benchmarks, AlienLM retains over 81\% of plaintext-oracle performance on average, substantially outperforming random-bijection and character-level baselines. Under adversaries with access to model weights, corpus statistics, and learning-based inverse translation, recovery attacks reconstruct fewer than 0.22\% of alienized tokens. Our results demonstrate a practical pathway for privacy-preserving LLM deployment under API-only access, substantially reducing plaintext exposure while maintaining task performance.
☆ A Unified Study of LoRA Variants: Taxonomy, Review, Codebase, and Empirical Evaluation
Low-Rank Adaptation (LoRA) is a fundamental parameter-efficient fine-tuning method that balances efficiency and performance in large-scale neural networks. However, the proliferation of LoRA variants has led to fragmentation in methodology, theory, code, and evaluation. To this end, this work presents the first unified study of LoRA variants, offering a systematic taxonomy, unified theoretical review, structured codebase, and standardized empirical assessment. First, we categorize LoRA variants along four principal axes: rank, optimization dynamics, initialization, and integration with Mixture-of-Experts. Then, we review their relationships and evolution within a common theoretical framework focused on low-rank update dynamics. Further, we introduce LoRAFactory, a modular codebase that implements variants through a unified interface, supporting plug-and-play experimentation and fine-grained analysis. Last, using this codebase, we conduct a large-scale evaluation across natural language generation, natural language understanding, and image classification tasks, systematically exploring key hyperparameters. Our results uncover several findings, notably: LoRA and its variants exhibit pronounced sensitivity to the choices of learning rate compared to other hyperparameters; moreover, with proper hyperparameter configurations, LoRA consistently matches or surpasses the performance of most of its variants.
comment: Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence, Under Review
☆ Models Know Models Best: Evaluation via Model-Preferred Formats
Performance of Large Language Models (LLMs) on multiple-choice tasks differs markedly between symbol-based and cloze-style evaluation formats. The observed discrepancies are systematically attributable to task characteristics: natural language continuation benefits from likelihood scoring, whereas explicit comparison is better suited to symbol-based selection. These trends are consistent across various decoder-based LLMs, indicating model-agnostic effects. To address these inconsistencies, a dynamic format-alignment strategy is introduced that employs a lightweight classifier trained on latent model-preference signals. In contrast to human-designed heuristics, which often degrade performance, this approach uses model-generated signals to determine the optimal format for each problem instance. The proposed method achieves substantial and consistent improvements in zero-shot accuracy across reasoning and knowledge benchmarks, better revealing the models' latent capabilities.
☆ FNF: Functional Network Fingerprint for Large Language Models
The development of large language models (LLMs) is costly and has significant commercial value. Consequently, preventing unauthorized appropriation of open-source LLMs and protecting developers' intellectual property rights have become critical challenges. In this work, we propose the Functional Network Fingerprint (FNF), a training-free, sample-efficient method for detecting whether a suspect LLM is derived from a victim model, based on the consistency between their functional network activity. We demonstrate that models that share a common origin, even with differences in scale or architecture, exhibit highly consistent patterns of neuronal activity within their functional networks across diverse input samples. In contrast, models trained independently on distinct data or with different objectives fail to preserve such activity alignment. Unlike conventional approaches, our method requires only a few samples for verification, preserves model utility, and remains robust to common model modifications (such as fine-tuning, pruning, and parameter permutation), as well as to comparisons across diverse architectures and dimensionalities. FNF thus provides model owners and third parties with a simple, non-invasive, and effective tool for protecting LLM intellectual property. The code is available at https://github.com/WhatAboutMyStar/LLM_ACTIVATION.
comment: 13 pages, 4 figures
☆ TSLM: Tree-Structured Language Modeling for Divergent Thinking
Language models generate reasoning sequentially, preventing them from decoupling irrelevant exploration paths during search. We introduce Tree-Structured Language Modeling (TSLM), which uses special tokens to encode branching structure, enabling models to generate and selectively expand multiple search paths within a single generation process. By training on complete search trees including both successful and failed attempts, TSLM learns to internalize systematic exploration without redundant recomputation of shared prefixes. TSLM achieves robust performance and superior inference efficiency by avoiding the multiple independent forward passes required by external search methods. These results suggest a new paradigm of inference-time scaling for robust reasoning, demonstrating that supervised learning on complete tree-structured traces provides an efficient alternative for developing systematic exploration capabilities in language models.
☆ NAG: A Unified Native Architecture for Encoder-free Text-Graph Modeling in Language Models
Prevailing methods for integrating graphs into Language Models (LMs) typically rely on a segregated architecture: external Graph Neural Networks (GNNs) encode structural topology, while LMs process textual semantics. We argue this approach is suboptimal for text-graphs: it creates a conceptually disjointed interaction paradigm. By segregating structural encoding from semantic processing, these systems must perform a complex implicit alignment between abstract graph tokens and concrete textual elements. Challenging the necessity of external encoders, we propose NAG (Native Architecture for Graphs), a unified framework that internalizes graph processing within the LM's native manifold. Instead of bridging disparate embedding spaces, NAG repurposes the self-attention mechanism to enforce topological dependencies and recalibrates positional IDs to ensure structural equivalence. This allows the model to harness its intrinsic linguistic capability to simultaneously comprehend node and edge content alongside structural topology. We introduce two efficient implementations: NAG-Zero for absolute preservation of the base model's linguistic capabilities, and NAG-LoRA for enhanced structural adaptation. Experiments across diverse graph tasks validate that NAG achieves robust graph comprehension without the overhead of external encoders, offering a simpler, more coherent paradigm for text-graph modeling.
☆ DART-ing Through the Drift: Dynamic Tracing of Knowledge Neurons for Adaptive Inference-Time Pruning
Large Language Models (LLMs) exhibit substantial parameter redundancy, particularly in Feed-Forward Networks (FFNs). Existing pruning methods suffer from two primary limitations. First, reliance on dataset-specific calibration introduces significant data dependency and computational overhead. Second, being predominantly static, they fail to account for the evolving subset of knowledge neurons in LLMs during autoregressive generation as the context evolves. To address this, we introduce DART, i.e., Dynamic Attention-Guided Runtime Tracing), a lightweight, training-free method that performs on-the-fly context-based pruning. DART monitors shifts in attention score distributions to infer context changes, dynamically updating neuron-level masks to retain salient parameters. Across ten benchmarks, DART outperforms prior dynamic baseline, achieving accuracy gains of up to 14.5% on LLAMA-3.1-8B at 70% FFN sparsity. Furthermore, DART achieves up to 3x better ROUGE-L scores with respect to static-masked pruning on summarization tasks, with its performance comparable to the original dense models. We conclusively demonstrate that the proposed framework effectively adapts to diverse semantic contexts, preserves model capabilities across both general and domain-specific tasks while running at less than 10MBs of memory for LLAMA-3.1-8B(16GBs) with 0.1% FLOPs overhead. The code is available at https://github.com/seeder-research/DART.
☆ Time-Annealed Perturbation Sampling: Diverse Generation for Diffusion Language Models
Diffusion language models (Diffusion-LMs) introduce an explicit temporal dimension into text generation, yet how this structure can be leveraged to control generation diversity for exploring multiple valid semantic or reasoning paths remains underexplored. In this paper, we show that Diffusion-LMs, like diffusion models in image generation, exhibit a temporal division of labor: early denoising steps largely determine the global semantic structure, while later steps focus on local lexical refinement. Building on this insight, we propose Time-Annealed Perturbation Sampling (TAPS), a training-free inference strategy that encourages semantic branching early in the diffusion process while progressively reducing perturbations to preserve fluency and instruction adherence. TAPS is compatible with both non-autoregressive and semi-autoregressive Diffusion backbones, demonstrated on LLaDA and TraDo in our paper, and consistently improves output diversity across creative writing and reasoning benchmarks without compromising generation quality.
☆ TTCS: Test-Time Curriculum Synthesis for Self-Evolving
Test-Time Training offers a promising way to improve the reasoning ability of large language models (LLMs) by adapting the model using only the test questions. However, existing methods struggle with difficult reasoning problems for two reasons: raw test questions are often too difficult to yield high-quality pseudo-labels, and the limited size of test sets makes continuous online updates prone to instability. To address these limitations, we propose TTCS, a co-evolving test-time training framework. Specifically, TTCS initializes two policies from the same pretrained model: a question synthesizer and a reasoning solver. These policies evolve through iterative optimization: the synthesizer generates progressively challenging question variants conditioned on the test questions, creating a structured curriculum tailored to the solver's current capability, while the solver updates itself using self-consistency rewards computed from multiple sampled responses on both original test and synthetic questions. Crucially, the solver's feedback guides the synthesizer to generate questions aligned with the model's current capability, and the generated question variants in turn stabilize the solver's test-time training. Experiments show that TTCS consistently strengthens the reasoning ability on challenging mathematical benchmarks and transfers to general-domain tasks across different LLM backbones, highlighting a scalable path towards dynamically constructing test-time curricula for self-evolving. Our code and implementation details are available at https://github.com/XMUDeepLIT/TTCS.
comment: 10 pages, 4 figures, Our code and implementation details are available at https://github.com/XMUDeepLIT/TTCS
☆ Layer-wise Swapping for Generalizable Multilingual Safety
Despite the rapid advancements of Large Language Models (LLMs), safety risks remain a critical challenge for low-resource languages. Existing safety datasets are predominantly English centric, limiting progress in multilingual safety alignment. As a result, low resource expert models, finetuned on their respective instruction datasets, tend to exhibit higher unsafety rates compared to their high resource counterparts. In this work, we propose a safety aware layer swapping method that transfers safety alignment from an English safety expert to low resource language experts without additional training. To further enhance transfer ability, our method adaptively selects or blends modules based on their degree of specialization. Our approach preserves performance on general language understanding tasks while enhancing safety in the target languages. Experimental results show that the proposed method achieves comparable performance to the language expert on general benchmarks such as MMMLU, BELEBELE, and MGSM, while producing more aligned and less harmful responses on the MultiJail safety benchmark.
☆ From Self-Evolving Synthetic Data to Verifiable-Reward RL: Post-Training Multi-turn Interactive Tool-Using Agents ICML 2026
Interactive tool-using agents must solve real-world tasks via multi-turn interaction with both humans and external environments, requiring dialogue state tracking, multi-step tool execution, while following complex instructions. Post-training such agents is challenging because synthesis for high-quality multi-turn tool-use data is difficult to scale, and reinforcement learning (RL) could face noisy signals caused by user simulation, leading to degraded training efficiency. We propose a unified framework that combines a self-evolving data agent with verifier-based RL. Our system, EigenData, is a hierarchical multi-agent engine that synthesizes tool-grounded dialogues together with executable per-instance checkers, and improves generation reliability via closed-loop self-evolving process that updates prompts and workflow. Building on the synthetic data, we develop an RL recipe that first fine-tunes the user model and then applies GRPO-style training with trajectory-level group-relative advantages and dynamic filtering, yielding consistent improvements beyond SFT. Evaluated on tau^2-bench, our best model reaches 73.0% pass^1 on Airline and 98.3% pass^1 on Telecom, matching or exceeding frontier models. Overall, our results suggest a scalable pathway for bootstrapping complex tool-using behaviors without expensive human annotation.
comment: Submitted to ICML 2026
☆ TimeMachine-bench: A Benchmark for Evaluating Model Capabilities in Repository-Level Migration Tasks EACL 2026
With the advancement of automated software engineering, research focus is increasingly shifting toward practical tasks reflecting the day-to-day work of software engineers. Among these tasks, software migration, a critical process of adapting code to evolving environments, has been largely overlooked. In this study, we introduce TimeMachine-bench, a benchmark designed to evaluate software migration in real-world Python projects. Our benchmark consists of GitHub repositories whose tests begin to fail in response to dependency updates. The construction process is fully automated, enabling live updates of the benchmark. Furthermore, we curated a human-verified subset to ensure problem solvability. We evaluated agent-based baselines built on top of 11 models, including both strong open-weight and state-of-the-art LLMs on this verified subset. Our results indicated that, while LLMs show some promise for migration tasks, they continue to face substantial reliability challenges, including spurious solutions that exploit low test coverage and unnecessary edits stemming from suboptimal tool-use strategies. Our dataset and implementation are available at https://github.com/tohoku-nlp/timemachine-bench.
comment: Accepted to EACL 2026 Main, camera-ready
☆ Language Model Circuits Are Sparse in the Neuron Basis
The high-level concepts that a neural network uses to perform computation need not be aligned to individual neurons (Smolensky, 1986). Language model interpretability research has thus turned to techniques such as \textit{sparse autoencoders} (SAEs) to decompose the neuron basis into more interpretable units of model computation, for tasks such as \textit{circuit tracing}. However, not all neuron-based representations are uninterpretable. For the first time, we empirically show that \textbf{MLP neurons are as sparse a feature basis as SAEs}. We use this finding to develop an end-to-end pipeline for circuit tracing on the MLP neuron basis, which locates causal circuitry on a variety of tasks using gradient-based attribution. On a standard subject-verb agreement benchmark (Marks et al., 2025), a circuit of $\approx 10^2$ MLP neurons is enough to control model behaviour. On the multi-hop city $\to$ state $\to$ capital task from Lindsey et al., 2025, we find a circuit in which small sets of neurons encode specific latent reasoning steps (e.g.~`map city to its state'), and can be steered to change the model's output. This work thus advances automated interpretability of language models without additional training costs.
comment: 8 pages main text, 41 pages total
☆ Rethinking LLM-as-a-Judge: Representation-as-a-Judge with Small Language Models via Semantic Capacity Asymmetry
Large language models (LLMs) are widely used as reference-free evaluators via prompting, but this "LLM-as-a-Judge" paradigm is costly, opaque, and sensitive to prompt design. In this work, we investigate whether smaller models can serve as efficient evaluators by leveraging internal representations instead of surface generation. We uncover a consistent empirical pattern: small LMs, despite with weak generative ability, encode rich evaluative signals in their hidden states. This motivates us to propose the Semantic Capacity Asymmetry Hypothesis: evaluation requires significantly less semantic capacity than generation and can be grounded in intermediate representations, suggesting that evaluation does not necessarily need to rely on large-scale generative models but can instead leverage latent features from smaller ones. Our findings motivate a paradigm shift from LLM-as-a-Judge to Representation-as-a-Judge, a decoding-free evaluation strategy that probes internal model structure rather than relying on prompted output. We instantiate this paradigm through INSPECTOR, a probing-based framework that predicts aspect-level evaluation scores from small model representations. Experiments on reasoning benchmarks (GSM8K, MATH, GPQA) show that INSPECTOR substantially outperforms prompting-based small LMs and closely approximates full LLM judges, while offering a more efficient, reliable, and interpretable alternative for scalable evaluation.
☆ SpanNorm: Reconciling Training Stability and Performance in Deep Transformers
The success of Large Language Models (LLMs) hinges on the stable training of deep Transformer architectures. A critical design choice is the placement of normalization layers, leading to a fundamental trade-off: the ``PreNorm'' architecture ensures training stability at the cost of potential performance degradation in deep models, while the ``PostNorm'' architecture offers strong performance but suffers from severe training instability. In this work, we propose SpanNorm, a novel technique designed to resolve this dilemma by integrating the strengths of both paradigms. Structurally, SpanNorm establishes a clean residual connection that spans the entire transformer block to stabilize signal propagation, while employing a PostNorm-style computation that normalizes the aggregated output to enhance model performance. We provide a theoretical analysis demonstrating that SpanNorm, combined with a principled scaling strategy, maintains bounded signal variance throughout the network, preventing the gradient issues that plague PostNorm models, and also alleviating the representation collapse of PreNorm. Empirically, SpanNorm consistently outperforms standard normalization schemes in both dense and Mixture-of-Experts (MoE) scenarios, paving the way for more powerful and stable Transformer architectures.
☆ PhoStream: Benchmarking Real-World Streaming for Omnimodal Assistants in Mobile Scenarios
Multimodal Large Language Models excel at offline audio-visual understanding, but their ability to serve as mobile assistants in continuous real-world streams remains underexplored. In daily phone use, mobile assistants must track streaming audio-visual inputs and respond at the right time, yet existing benchmarks are often restricted to multiple-choice questions or use shorter videos. In this paper, we introduce PhoStream, the first mobile-centric streaming benchmark that unifies on-screen and off-screen scenarios to evaluate video, audio, and temporal reasoning. PhoStream contains 5,572 open-ended QA pairs from 578 videos across 4 scenarios and 10 capabilities. We build it with an Automated Generative Pipeline backed by rigorous human verification, and evaluate models using a realistic Online Inference Pipeline and LLM-as-a-Judge evaluation for open-ended responses. Experiments reveal a temporal asymmetry in LLM-judged scores (0-100): models perform well on Instant and Backward tasks (Gemini 3 Pro exceeds 80), but drop sharply on Forward tasks (16.40), largely due to early responses before the required visual and audio cues appear. This highlights a fundamental limitation: current MLLMs struggle to decide when to speak, not just what to say. Code and datasets used in this work will be made publicly accessible at https://github.com/Lucky-Lance/PhoStream.
comment: 18 pages
☆ Are LLM Evaluators Really Narcissists? Sanity Checking Self-Preference Evaluations
Recent research has shown that large language models (LLM) favor own outputs when acting as judges, undermining the integrity of automated post-training and evaluation workflows. However, it is difficult to disentangle which evaluation biases are explained by narcissism versus general experimental confounds, distorting measurements of self-preference bias. We discover a core methodological confound which could reduce measurement error by 89.6%. Specifically, LLM evaluators may deliver self-preferring verdicts when the judge responds to queries which they completed incorrectly themselves; this would be true regardless of whether one of their responses is their own. To decouple self-preference signals from noisy outputs on hard problems, we introduce an Evaluator Quality Baseline, which compares the probability that a judge incorrectly votes for itself against the probability that it votes for an incorrect response from another model. Evaluating this simple baseline on 37,448 queries, only 51% of initial findings retain statistical significance. Finally, we turn towards characterizing the entropy of "easy" versus "hard" evaluation votes from LLM judges. Our corrective baseline enables future research on self-preference by eliminating noisy data from potential solutions. More widely, this work contributes to the growing body of work on cataloging and isolating judge-bias effects.
☆ Towards the Holographic Characteristic of LLMs for Efficient Short-text Generation
The recent advancements in Large Language Models (LLMs) have attracted interest in exploring their in-context learning abilities and chain-of-thought capabilities. However, there are few studies investigating the specific traits related to the powerful generation capacity of LLMs. This paper aims to delve into the generation characteristics exhibited by LLMs. Through our investigation, we have discovered that language models tend to capture target-side keywords at the beginning of the generation process. We name this phenomenon the Holographic Characteristic of language models. For the purpose of exploring this characteristic and further improving the inference efficiency of language models, we propose a plugin called HOLO, which leverages the Holographic Characteristic to extract target-side keywords from language models within a limited number of generation steps and complements the sentence with a parallel lexically constrained text generation method. To verify the effectiveness of HOLO, we conduct massive experiments on language models of varying architectures and scales in the short-text generation scenario. The results demonstrate that HOLO achieves comparable performance to the baselines in terms of both automatic and human-like evaluation metrics and highlight the potential of the Holographic Characteristic.
☆ $ρ$-$\texttt{EOS}$: Training-free Bidirectional Variable-Length Control for Masked Diffusion LLMs
Beyond parallel generation and global context modeling, current masked diffusion large language models (dLLMs) suffer from a fundamental limitation: they require a predefined, fixed generation length, which lacks flexibility and forces an inevitable trade-off between output quality and computational efficiency. To address this, we study the denoising dynamics and find that the implicit density ($ρ$) of end-of-sequence ($\texttt{EOS}$) tokens serves as a reliable signal of generation sufficiency. In particular, the evolving implicit $\texttt{EOS}$ density during denoising reveals whether the current masked space is excessive or insufficient, thereby guiding the adjustment direction for generation length. Building on this insight, we propose $\textbf{$ρ$-$\texttt{EOS}$}$, a training-free, single-stage strategy that enables bidirectional variable-length generation for masked dLLMs. Unlike prior two-stage approaches--which require separate length adjustment and iterative mask insertion phases while supporting only unidirectional expansion--$\textbf{$ρ$-$\texttt{EOS}$}$ achieves bidirectional length adjustment within a unified denoising process by continuously estimating the implicit $\texttt{EOS}$ density: excessively high density triggers $\texttt{MASK}$ token contraction, while insufficient density induces expansion. Extensive experiments on mathematics and code benchmarks demonstrate that $\textbf{$ρ$-$\texttt{EOS}$}$ achieves comparable performance while substantially improving inference efficiency and token utilization.
comment: 11 pages,6 figures,6 tables
☆ One Ring to Rule Them All: Unifying Group-Based RL via Dynamic Power-Mean Geometry
Group-based reinforcement learning has evolved from the arithmetic mean of GRPO to the geometric mean of GMPO. While GMPO improves stability by constraining a conservative objective, it shares a fundamental limitation with GRPO: reliance on a fixed aggregation geometry that ignores the evolving and heterogeneous nature of each trajectory. In this work, we unify these approaches under Power-Mean Policy Optimization (PMPO), a generalized framework that parameterizes the aggregation geometry via the power-mean geometry exponent p. Within this framework, GRPO and GMPO are recovered as special cases. Theoretically, we demonstrate that adjusting p modulates the concentration of gradient updates, effectively reweighting tokens based on their advantage contribution. To determine p adaptively, we introduce a Clip-aware Effective Sample Size (ESS) mechanism. Specifically, we propose a deterministic rule that maps a trajectory clipping fraction to a target ESS. Then, we solve for the specific p to align the trajectory induced ESS with this target one. This allows PMPO to dynamically transition between the aggressive arithmetic mean for reliable trajectories and the conservative geometric mean for unstable ones. Experiments on multiple mathematical reasoning benchmarks demonstrate that PMPO outperforms strong baselines.
comment: 17 pages, 3 figures
☆ Mock Worlds, Real Skills: Building Small Agentic Language Models with Synthetic Tasks, Simulated Environments, and Rubric-Based Rewards
Small LLMs often struggle to match the agentic capabilities of large, costly models. While reinforcement learning can help, progress has been limited by two structural bottlenecks: existing open-source agentic training data are narrow in task variety and easily solved; real-world APIs lack diversity and are unstable for large-scale reinforcement learning rollout processes. We address these challenges with SYNTHAGENT, a framework that jointly synthesizes diverse tool-use training data and simulates complete environments. Specifically, a strong teacher model creates novel tasks and tool ecosystems, then rewrites them into intentionally underspecified instructions. This compels agents to actively query users for missing details. When handling synthetic tasks, an LLM-based user simulator provides user-private information, while a mock tool system delivers stable tool responses. For rewards, task-level rubrics are constructed based on required subgoals, user-agent interactions, and forbidden behaviors. Across 14 challenging datasets in math, search, and tool use, models trained on our synthetic data achieve substantial gains, with small models outperforming larger baselines.
☆ SSL: Sweet Spot Learning for Differentiated Guidance in Agentic Optimization
Reinforcement learning with verifiable rewards has emerged as a powerful paradigm for training intelligent agents. However, existing methods typically employ binary rewards that fail to capture quality differences among trajectories achieving identical outcomes, thereby overlooking potential diversity within the solution space. Inspired by the ``sweet spot'' concept in tennis-the racket's core region that produces optimal hitting effects, we introduce \textbf{S}weet \textbf{S}pot \textbf{L}earning (\textbf{SSL}), a novel framework that provides differentiated guidance for agent optimization. SSL follows a simple yet effective principle: progressively amplified, tiered rewards guide policies toward the sweet-spot region of the solution space. This principle naturally adapts across diverse tasks: visual perception tasks leverage distance-tiered modeling to reward proximity, while complex reasoning tasks reward incremental progress toward promising solutions. We theoretically demonstrate that SSL preserves optimal solution ordering and enhances the gradient signal-to-noise ratio, thereby fostering more directed optimization. Extensive experiments across GUI perception, short/long-term planning, and complex reasoning tasks show consistent improvements over strong baselines on 12 benchmarks, achieving up to 2.5X sample efficiency gains and effective cross-task transferability. Our work establishes SSL as a general principle for training capable and robust agents.
☆ FraudShield: Knowledge Graph Empowered Defense for LLMs against Fraud Attacks WWW 2026
Large language models (LLMs) have been widely integrated into critical automated workflows, including contract review and job application processes. However, LLMs are susceptible to manipulation by fraudulent information, which can lead to harmful outcomes. Although advanced defense methods have been developed to address this issue, they often exhibit limitations in effectiveness, interpretability, and generalizability, particularly when applied to LLM-based applications. To address these challenges, we introduce FraudShield, a novel framework designed to protect LLMs from fraudulent content by leveraging a comprehensive analysis of fraud tactics. Specifically, FraudShield constructs and refines a fraud tactic-keyword knowledge graph to capture high-confidence associations between suspicious text and fraud techniques. The structured knowledge graph augments the original input by highlighting keywords and providing supporting evidence, guiding the LLM toward more secure responses. Extensive experiments show that FraudShield consistently outperforms state-of-the-art defenses across four mainstream LLMs and five representative fraud types, while also offering interpretable clues for the model's generations.
comment: WWW 2026
☆ HeaPA: Difficulty-Aware Heap Sampling and On-Policy Query Augmentation for LLM Reinforcement Learning
RLVR is now a standard way to train LLMs on reasoning tasks with verifiable outcomes, but when rollout generation dominates the cost, efficiency depends heavily on which prompts you sample and when. In practice, prompt pools are often static or only loosely tied to the model's learning progress, so uniform sampling can't keep up with the shifting capability frontier and ends up wasting rollouts on prompts that are already solved or still out of reach. Existing approaches improve efficiency through filtering, curricula, adaptive rollout allocation, or teacher guidance, but they typically assume a fixed pool-which makes it hard to support stable on-policy pool growth-or they add extra teacher cost and latency. We introduce HeaPA (Heap Sampling and On-Policy Query Augmentation), which maintains a bounded, evolving pool, tracks the frontier using heap-based boundary sampling, expands the pool via on-policy augmentation with lightweight asynchronous validation, and stabilizes correlated queries through topology-aware re-estimation of pool statistics and controlled reinsertion. Across two training corpora, two training recipes, and seven benchmarks, HeaPA consistently improves accuracy and reaches target performance with fewer computations while keeping wall-clock time comparable. Our analyses suggest these gains come from frontier-focused sampling and on-policy pool growth, with the benefits becoming larger as model scale increases. Our code is available at https://github.com/horizon-rl/HeaPA.
☆ AI and My Values: User Perceptions of LLMs' Ability to Extract, Embody, and Explain Human Values from Casual Conversations
Does AI understand human values? While this remains an open philosophical question, we take a pragmatic stance by introducing VAPT, the Value-Alignment Perception Toolkit, for studying how LLMs reflect people's values and how people judge those reflections. 20 participants texted a human-like chatbot over a month, then completed a 2-hour interview with our toolkit evaluating AI's ability to extract (pull details regarding), embody (make decisions guided by), and explain (provide proof of) human values. 13 participants left our study convinced that AI can understand human values. Participants found the experience insightful for self-reflection and found themselves getting persuaded by the AI's reasoning. Thus, we warn about "weaponized empathy": a potentially dangerous design pattern that may arise in value-aligned, yet welfare-misaligned AI. VAPT offers concrete artifacts and design implications to evaluate and responsibly build value-aligned conversational agents with transparency, consent, and safeguards as AI grows more capable and human-like into the future.
comment: To appear in CHI '26
☆ Stop Jostling: Adaptive Negative Sampling Reduces the Marginalization of Low-Resource Language Tokens by Cross-Entropy Loss COLING 2025
Neural language models often struggle with low-resource languages due to the limited availability of training data, making tokens from these languages rare in the training set. This paper addresses a specific challenge during training: rare tokens are disproportionately affected by marginalization, which prevents them from learning effectively. We propose a thresholding technique that reduces the impact of this marginalization, allowing rare tokens to benefit from more meaningful alignment. Through experiments with a character-level language model, we demonstrate that this method significantly improves performance on low-resource language validation data. This work is the first to show how negative sampling can be applied to improve the representation of rare tokens by limiting the harmful influence of excessive marginalization, offering a new approach to enhancing language model performance for underrepresented languages.
comment: Accepted at LoResLM 2025 (COLING 2025 workshop). Oral presentation
☆ Towards Resiliency in Large Language Model Serving with KevlarFlow
Large Language Model (LLM) serving systems remain fundamentally fragile, where frequent hardware faults in hyperscale clusters trigger disproportionate service outages in the software stack. Current recovery mechanisms are prohibitively slow, often requiring up to 10 minutes to reinitialize resources and reload massive model weights. We introduce KevlarFlow, a fault tolerant serving architecture designed to bridge the gap between hardware unreliability and service availability. KevlarFlow leverages 1) decoupled model parallelism initialization, 2) dynamic traffic rerouting, and 3) background KV cache replication to maintain high throughput during partial failures. Our evaluation demonstrates that KevlarFlow reduces mean-time-to-recovery (MTTR) by 20x and, under failure conditions, improves average latency by 3.1x, 99th percentile (p99) latency by 2.8x, average time-to-first-token (TTFT) by 378.9x, and p99 TTFT by 574.6x with negligible runtime overhead in comparison to state-of-the-art LLM serving systems.
♻ ☆ Trajectory2Task: Training Robust Tool-Calling Agents with Synthesized Yet Verifiable Data for Complex User Intents
Tool-calling agents are increasingly deployed in real-world customer-facing workflows. Yet most studies on tool-calling agents focus on idealized settings with general, fixed, and well-specified tasks. In real-world applications, user requests are often (1) ambiguous, (2) changing over time, or (3) infeasible due to policy constraints, and training and evaluation data that cover these diverse, complex interaction patterns remain under-represented. To bridge the gap, we present Trajectory2Task, a verifiable data generation pipeline for studying tool use at scale under three realistic user scenarios: ambiguous intent, changing intent, and infeasible intents. The pipeline first conducts multi-turn exploration to produce valid tool-call trajectories. It then converts these trajectories into user-facing tasks with controlled intent adaptations. This process yields verifiable task that support closed-loop evaluation and training. We benchmark seven state-of-the-art LLMs on the generated complex user scenario tasks and observe frequent failures. Finally, using successful trajectories obtained from task rollouts, we fine-tune lightweight LLMs and find consistent improvements across all three conditions, along with better generalization to unseen tool-use domains, indicating stronger general tool-calling ability.
♻ ☆ FC-KAN: Function Combinations in Kolmogorov-Arnold Networks
In this paper, we introduce FC-KAN, a Kolmogorov-Arnold Network (KAN) that leverages combinations of popular mathematical functions such as B-splines, wavelets, and radial basis functions on low-dimensional data through element-wise operations. We explore several methods for combining the outputs of these functions, including sum, element-wise product, the addition of sum and element-wise product, representations of quadratic and cubic functions, concatenation, linear transformation of the concatenated output, and others. In our experiments, we compare FC-KAN with a multi-layer perceptron network (MLP) and other existing KANs, such as BSRBF-KAN, EfficientKAN, FastKAN, and FasterKAN, on the MNIST and Fashion-MNIST datasets. Two variants of FC-KAN, which use a combination of outputs from B-splines and Difference of Gaussians (DoG) and from B-splines and linear transformations in the form of a quadratic function, outperformed overall other models on the average of 5 independent training runs. We expect that FC-KAN can leverage function combinations to design future KANs. Our repository is publicly available at: https://github.com/hoangthangta/FC_KAN.
comment: 17 pages
♻ ☆ Tracing Multilingual Representations in LLMs with Cross-Layer Transcoders
Multilingual Large Language Models (LLMs) can process many languages, yet how they internally represent this diversity remains unclear. Do they form shared multilingual representations with language-specific decoding, and if so, why does performance favor the dominant training language? To address this, we train models on different multilingual mixtures and analyze their internal mechanisms using Cross-Layer Transcoders (CLTs) and Attribution Graphs. Our results reveal multilingual shared representations: the model employs highly similar features across languages, while language-specific decoding emerges in later layers. Training models without English shows identical multilingual shared space structures. Decoding relies partly on a small set of high-frequency features in the final layers, which linearly encode language identity from early layers. Intervening on these features allows one language to be suppressed and another substituted. Finally, to explain non-English failures, we perform a Model-Diffing experiment: underperformance arises from dim late-layer features, weak middle-layer clusters, and tokenizer bias toward English that forces early layers to specialize in word reassembly. Finetuning strengthens these features and their links, improving token assembly and language-specific decoding, providing a mechanistic explanation for multilingual gaps. Our models and CLTs are available at https://huggingface.co/collections/CausalNLP/multilingual-clts and https://huggingface.co/collections/CausalNLP/multilingual-gpt2-models. Our code is available at: https://github.com/abirharrasse/MultilingualCLTs
comment: 42 pages, 43 figures, under review. Extensive supplementary materials. Code and models available at https://huggingface.co/collections/CausalNLP/multilingual-tinystories-6862b6562414eb84d183f82a and https://huggingface.co/collections/CausalNLP/multilingual-gpt2-models and https://huggingface.co/collections/CausalNLP/multilingual-clts and https://github.com/abirharrasse/MultilingualCLTs
♻ ☆ SuperCoder: Assembly Program Superoptimization with Large Language Models
Superoptimization is the task of transforming a program into a faster one while preserving its input-output behavior. In this work, we investigate whether large language models (LLMs) can serve as superoptimizers, generating assembly programs that outperform code already optimized by industry-standard compilers. We construct the first large-scale benchmark for this problem, consisting of 8,072 assembly programs averaging 130 lines, in contrast to prior datasets restricted to 2-15 straight-line, loop-free programs. We evaluate 23 LLMs on this benchmark and find that the strongest baseline, Claude-opus-4, achieves a 51.5% test-passing rate and a 1.43x average speedup over gcc -O3. To further enhance performance, we fine-tune models with reinforcement learning, optimizing a reward function that integrates correctness and performance speedup. Starting from Qwen2.5-Coder-7B-Instruct (61.4% correctness, 1.10x speedup), the fine-tuned model SuperCoder attains 95.0% correctness and 1.46x average speedup, with additional improvement enabled by Best-of-N sampling and iterative refinement. Our results demonstrate, for the first time, that LLMs can be applied as superoptimizers for assembly programs, establishing a foundation for future research in program performance optimization beyond compiler heuristics.
♻ ☆ Geometric-disentangelment Unlearning
Large language models (LLMs) can internalize private or harmful content, motivating unlearning that removes a forget set while preserving retaining knowledge. However, forgetting updates often cause collateral degradation on retaining knowledge, creating a persistent trade-off. Existing LLM unlearning methods are often heuristic, and other theoretical approaches rely on offline feature constructions that do not capture update-time forget-retain interaction in LLMs. To address this limitation, we aim to develop an LLM unlearning method that reduces the forget-retain trade-off with theoretical guarantees. We take a first-principles view by formalizing "no side effects" as local retain invariance under small parameter updates, and prove an equivalence under optimizer-induced geometry: the retain loss is locally invariant if and only if the update direction is orthogonal to the subspace spanned by retain gradients. Based on the insight, we propose Geometric-disentanglement Unlearning (GU), a lightweight and theoretically grounded projection that can be plug-and-play to existing gradient-based unlearning methods to mitigate forget-retain side effects. Experiments on TOFU, MUSE, and WMDP-cyber show that GU strengthens forgetting while reducing retain drift. When added to SimNPO, it achieves up to 62\% improved forgetting Extraction Strength (ES) and 31\% higher retain ES. We open-sourced our code in https://github.com/Lemutisme/Geometric-Unlearning.
comment: 26 Pages
♻ ☆ LightRetriever: A LLM-based Text Retrieval Architecture with Extremely Faster Query Inference ICLR 2026
Large Language Models (LLMs)-based text retrieval retrieves documents relevant to search queries based on vector similarities. Documents are pre-encoded offline, while queries arrive in real-time, necessitating an efficient online query encoder. Although LLMs significantly enhance retrieval capabilities, serving deeply parameterized LLMs slows down query inference throughput and increases demands for online deployment resources. In this paper, we propose LightRetriever, a novel LLM-based retriever with extremely lightweight query encoders. Our method retains a full-sized LLM for document encoding, but reduces the workload of query encoding to no more than an embedding lookup. Compared to serving a full LLM on an A800 GPU, our method achieves over 1000x speedup in query encoding and over 10x increase in end-to-end retrieval throughput. Extensive experiments on large-scale retrieval benchmarks show that LightRetriever generalizes well across diverse tasks, maintaining an average of 95% retrieval performance.
comment: Accepted by ICLR 2026
♻ ☆ Just as Humans Need Vaccines, So Do Models: Model Immunization to Combat Falsehoods
Large language models (LLMs) reproduce misinformation by learning the linguistic patterns that make falsehoods persuasive, such as hedging, false presuppositions, and citation fabrication, rather than merely memorizing false facts. We propose model immunization: supervised fine-tuning on curated (false claim, correction) pairs injected as small "vaccine doses" (5-10\% of tokens) alongside truthful data. Unlike post-hoc filtering or preference-based alignment, immunization provides direct negative supervision on labeled falsehoods. Across four open-weight model families, immunization improves TruthfulQA accuracy by 12 points and misinformation rejection by 30 points with negligible capability loss. We outline design requirements, which includes, dosage, labeling, quarantine, diversity and call for standardized vaccine corpora and benchmarks that test generalization, making immunization a routine component of responsible LLM development
♻ ☆ From Next-Token to Next-Block: A Principled Adaptation Path for Diffusion LLMs
Diffusion Language Models (DLMs) enable fast generation, yet training large DLMs from scratch is costly. As a practical shortcut, adapting off-the-shelf Auto-Regressive (AR) model weights into a DLM could quickly equip the DLM with strong long-context generation capabilies. Prior "adaptation" attempts either modify logits or randomly grow attention masks to Full-Sequence diffusion, or simply transplant AR weights into a Block-Diffusion recipe, leaving two key questions unaddressed: where is the final destination of adaptation, and how to adapt better? For manifold benefits, we reframe the whole AR-to-DLM adaptation under the Block-Diffusion paradigm, transitioning from block size 1 to the final Block-Diffusion state. Concretely, the principled pathway of adaptation is designed as follows: we keep a context-causal path where causal attention is kept in the prefix, an efficient parallel adaptation procedure where an AR guidance is maintained, and gradual increment of the generation block size for a smoother transition. Built on these components, the adaptation is proved competitive on various models at different scales. With better adaptation, we propose NBDiff-7B that could inherit the long-context modeling and reasoning capabilities, and achieve state-of-the-art performance among the 7B-class DLMs. Codes: https://github.com/YuchuanTian/NBDiff.
comment: 14 pages, 5 figures
♻ ☆ RAFFLES: Reasoning-based Attribution of Faults for LLM Systems EACL 2026
The advent of complex, interconnected long-horizon LLM systems has made it incredibly tricky to identify where and when these systems break down. Evaluation capabilities that currently exist today are limited in that they often focus on simple metrics, end-to-end outcomes, and are dependent on the perspectives of humans. In order to match the increasing complexity of these many component systems, evaluation frameworks must also be able to reason, probe, iterate, and understand the nuanced logic passing through these systems. In this paper, we present RAFFLES, an offline evaluation architecture that incorporates iterative reasoning. Specifically, RAFFLES operates as an iterative, multi-component pipeline, using a central Judge to systematically identify faults and a set of specialized Evaluators to assess the quality of the candidate faults as well as rationales of the Judge. We evaluated RAFFLES with several benchmarks - the Who&When dataset to identify step-level faults in multi-agent systems and the ReasonEval datasets to diagnose step-level mathematical reasoning errors. RAFFLES outperforms strong baselines, achieving an accuracy of over 20% and 50% on the Who&When Hand-Crafted and Algorithmically-Generated datasets, and over 80% on the ReasonEval datasets. These results demonstrate a key step towards introducing automated fault detection for autonomous systems over labor-intensive manual review.
comment: Accepted at EACL 2026 Main Conference
♻ ☆ EtCon: Edit-then-Consolidate for Reliable Knowledge Editing
Knowledge editing aims to update specific facts in large language models (LLMs) without full retraining. Prior efforts sought to tune the knowledge layers of LLMs, achieving improved performance in controlled, teacher-forced evaluations. However, they still encounter challenges in real-world autoregressive generation scenarios, which greatly limit their practical applicability. Our empirical analysis reveals two issues: (1) Most methods degrade pre-trained capabilities after injecting new knowledge; (2) They may exhibit a discrepancy between stored parametric knowledge and inference-time autoregressive generation behavior. To this end, we propose EtCon, an edit-then-consolidate paradigm that couples targeted edits with post-edit consolidation. Specifically, our framework comprises two stages: (1) Targeted Proximal Supervised Fine-Tuning (TPSFT) performs a constrained targeted edit to update parametric knowledge while controlling policy drift. (2) Group Relative Policy Optimization (GRPO) consolidates the edit by aligning autoregressive trajectories with the intended fact. Extensive experiments demonstrate that our EtCon improves editing reliability and real-world generalization, while better preserving pre-trained capabilities.
♻ ☆ Transparent Semantic Change Detection with Dependency-Based Profiles
Most modern computational approaches to lexical semantic change detection (LSC) rely on embedding-based distributional word representations with neural networks. Despite the strong performance on LSC benchmarks, they are often opaque. We investigate an alternative method which relies purely on dependency co-occurrence patterns of words. We demonstrate that it is effective for semantic change detection and even outperforms a number of distributional semantic models. We provide an in-depth quantitative and qualitative analysis of the predictions, showing that they are plausible and interpretable.
♻ ☆ ARB-LLM: Alternating Refined Binarizations for Large Language Models
Large Language Models (LLMs) have greatly pushed forward advancements in natural language processing, yet their high memory and computational demands hinder practical deployment. Binarization, as an effective compression technique, can shrink model weights to just 1 bit, significantly reducing the high demands on computation and memory. However, current binarization methods struggle to narrow the distribution gap between binarized and full-precision weights, while also overlooking the column deviation in LLM weight distribution. To tackle these issues, we propose ARB-LLM, a novel 1-bit post-training quantization (PTQ) technique tailored for LLMs. To narrow the distribution shift between binarized and full-precision weights, we first design an alternating refined binarization (ARB) algorithm to progressively update the binarization parameters, which significantly reduces the quantization error. Moreover, considering the pivot role of calibration data and the column deviation in LLM weights, we further extend ARB to ARB-X and ARB-RC. In addition, we refine the weight partition strategy with column-group bitmap (CGB), which further enhance performance. Equipping ARB-X and ARB-RC with CGB, we obtain ARB-LLM$_\text{X}$ and ARB-LLM$_\text{RC}$ respectively, which significantly outperform state-of-the-art (SOTA) binarization methods for LLMs. As a binary PTQ method, our ARB-LLM$_\text{RC}$ is the first to surpass FP16 models of the same size. The code and models will be available at https://github.com/ZHITENGLI/ARB-LLM.
comment: The code and models will be available at https://github.com/ZHITENGLI/ARB-LLM
♻ ☆ Tokenization Multiplicity Leads to Arbitrary Price Variation in LLM-as-a-service
Providers of LLM-as-a-service have predominantly adopted a simple pricing model: users pay a fixed price per token. Consequently, one may think that the price two different users would pay for the same output string under the same input prompt is the same. In our work, we show that, surprisingly, this is not (always) true. We find empirical evidence that, particularly for non-english outputs, both proprietary and open-weights LLMs often generate the same (output) string with multiple different tokenizations, even under the same input prompt, and this in turn leads to arbitrary price variation. To address the problem of tokenization multiplicity, we introduce canonical generation, a type of constrained generation that restricts LLMs to only generate canonical tokenizations -- the unique tokenization in which each string is tokenized during the training process of an LLM. Further, we introduce an efficient sampling algorithm for canonical generation based on the Gumbel-Max trick. Experiments on a variety of natural language tasks demonstrate that our sampling algorithm for canonical generation is comparable to standard sampling in terms of performance and runtime, and it solves the problem of tokenization multiplicity.
♻ ☆ ATOD: An Evaluation Framework and Benchmark for Agentic Task-Oriented Dialogue Systems
Recent advances in task-oriented dialogue (TOD) systems, driven by large language models (LLMs) with extensive API and tool integration, have enabled conversational agents to coordinate interleaved goals, maintain long-horizon context, and act proactively through asynchronous execution. These capabilities extend beyond traditional TOD systems, yet existing benchmarks lack systematic support for evaluating such agentic behaviors. To address this gap, we introduce ATOD, a benchmark and synthetic dialogue generation pipeline that produces richly annotated conversations requiring long-term reasoning. ATOD captures key characteristics of advanced TOD, including multi-goal coordination, dependency management, memory, adaptability, and proactivity. Building on ATOD, we propose ATOD-Eval, a holistic evaluation framework that translates these dimensions into fine-grained metrics and supports reproducible offline and online evaluation. We further present a strong agentic memory-based evaluator for benchmarking on ATOD. Experiments show that ATOD-Eval enables comprehensive assessment across task completion, agentic capability, and response quality, and that the proposed evaluator offers a better accuracy-efficiency tradeoff compared to existing memory- and LLM-based approaches under this evaluation setting.
♻ ☆ Diverse, not Short: A Length-Controlled Data Selection Strategy for Improving Response Diversity of Language Models EMNLP 2025
Diverse language model responses are crucial for creative generation, open-ended tasks, and self-improvement training. We show that common diversity metrics, and even reward models used for preference optimization, systematically bias models toward shorter outputs, limiting expressiveness. To address this, we introduce Diverse, not Short (Diverse-NS), a length-controlled data selection strategy that improves response diversity while maintaining length parity. By generating and filtering preference data that balances diversity, quality, and length, Diverse-NS enables effective training using only 3,000 preference pairs. Applied to LLaMA-3.1-8B and the Olmo-2 family, Diverse-NS substantially enhances lexical and semantic diversity. We show consistent improvement in diversity with minor reduction or gains in response quality on four creative generation tasks: Divergent Associations, Persona Generation, Alternate Uses, and Creative Writing. Surprisingly, experiments with the Olmo-2 model family (7B, and 13B) show that smaller models like Olmo-2-7B can serve as effective "diversity teachers" for larger models. By explicitly addressing length bias, our method efficiently pushes models toward more diverse and expressive outputs.
comment: Accepted to EMNLP 2025 Main
♻ ☆ ChatInject: Abusing Chat Templates for Prompt Injection in LLM Agents ICLR 2026
The growing deployment of large language model (LLM) based agents that interact with external environments has created new attack surfaces for adversarial manipulation. One major threat is indirect prompt injection, where attackers embed malicious instructions in external environment output, causing agents to interpret and execute them as if they were legitimate prompts. While previous research has focused primarily on plain-text injection attacks, we find a significant yet underexplored vulnerability: LLMs' dependence on structured chat templates and their susceptibility to contextual manipulation through persuasive multi-turn dialogues. To this end, we introduce ChatInject, an attack that formats malicious payloads to mimic native chat templates, thereby exploiting the model's inherent instruction-following tendencies. Building on this foundation, we develop a persuasion-driven Multi-turn variant that primes the agent across conversational turns to accept and execute otherwise suspicious actions. Through comprehensive experiments across frontier LLMs, we demonstrate three critical findings: (1) ChatInject achieves significantly higher average attack success rates than traditional prompt injection methods, improving from 5.18% to 32.05% on AgentDojo and from 15.13% to 45.90% on InjecAgent, with multi-turn dialogues showing particularly strong performance at average 52.33% success rate on InjecAgent, (2) chat-template-based payloads demonstrate strong transferability across models and remain effective even against closed-source LLMs, despite their unknown template structures, and (3) existing prompt-based defenses are largely ineffective against this attack approach, especially against Multi-turn variants. These findings highlight vulnerabilities in current agent systems.
comment: ICLR 2026
♻ ☆ Surrogate Signals from Format and Length: Reinforcement Learning for Solving Mathematical Problems without Ground Truth Answers
Large Language Models (LLMs) have achieved remarkable success in natural language processing tasks, with Reinforcement Learning (RL) playing a key role in adapting them to specific applications. In mathematical problem solving, however, the reliance on ground truth answers poses significant challenges due to their high collection cost and limited availability. This work explores the use of simple surrogate signals, format and length, to guide RL training. We find that early training is dominated by format learning, where structural feedback alone accounts for most performance gains. Incorporating length-based rewards further refines outputs by discouraging overly long or short responses, enabling a GRPO approach with format-length signals to approximate, and in some cases surpass, ground-truth-based optimization. For example, our method achieves 40.0% accuracy on AIME2024 with a 7B base model, and generalizes across different model sizes and series. Beyond practical efficiency, these findings provide an inspirational perspective on RL: rather than imparting new knowledge, RL primarily activates reasoning capabilities already embedded in pre-trained models. This insight suggests that lightweight, label-efficient strategies can complement pre-training to unlock LLMs' latent potential in reasoning-intensive tasks.
♻ ☆ DeepResearch Bench II: Diagnosing Deep Research Agents via Rubrics from Expert Report
Deep Research Systems (DRS) aim to help users search the web, synthesize information, and deliver comprehensive investigative reports. However, how to rigorously evaluate these systems remains under-explored. Existing deep-research benchmarks often fall into two failure modes. Some do not adequately test a system's ability to analyze evidence and write coherent reports. Others rely on evaluation criteria that are either overly coarse or directly defined by LLMs (or both), leading to scores that can be biased relative to human experts and are hard to verify or interpret. To address these issues, we introduce Deep Research Bench II, a new benchmark for evaluating DRS-generated reports. It contains 132 grounded research tasks across 22 domains; for each task, a system must produce a long-form research report that is evaluated by a set of 9430 fine-grained binary rubrics in total, covering three dimensions: information recall, analysis, and presentation. All rubrics are derived from carefully selected expert-written investigative articles and are constructed through a four-stage LLM+human pipeline that combines automatic extraction with over 400 human-hours of expert review, ensuring that the criteria are atomic, verifiable, and aligned with human expert judgment. We evaluate several state-of-the-art deep-research systems on Deep Research Bench II and find that even the strongest models satisfy fewer than 50% of the rubrics, revealing a substantial gap between current DRSs and human experts.
♻ ☆ Which Heads Matter for Reasoning? RL-Guided KV Cache Compression
Reasoning large language models exhibit complex reasoning behaviors via extended chain-of-thought generation that are highly fragile to information loss during decoding, creating critical challenges for KV cache compression. Existing token-dropping methods directly disrupt reasoning chains by removing intermediate steps, while head-reallocation methods, designed for retrieval tasks, fail to preserve the heads essential for generative reasoning. However, no existing method can identify which attention heads genuinely maintain reasoning consistency and control generation termination. To address this, we propose RLKV, which uses reinforcement learning as a probe to discover which heads contribute to reasoning quality by directly optimizing their cache usage against actual generation outcomes. This discovery naturally leads to an efficient compression strategy: we allocate full KV cache to reasoning-critical heads while aggressively compressing others. Experiments reveal that a fraction of heads proves essential for reasoning, enabling 20--50% cache reduction with near-lossless performance and up to 1.21x speedup.
♻ ☆ Context-aware Fairness Evaluation and Mitigation in LLMs
Large language models often display undesirable behaviors embedded in their internal representations, undermining fairness, inconsistency drift, amplification of harmful content, and the propagation of unwanted patterns during extended dialogue and conversations. Although training-time or data-centric methods attempt to reduce these effects, they are computationally expensive, irreversible once deployed, and slow to adapt to new conversational contexts. Pruning-based methods provide a flexible and transparent way to reduce bias by adjusting the neurons responsible for certain behaviors. However, most existing approaches are static; once a neuron is removed, the model loses the ability to adapt when the conversation or context changes. To address this, we propose a dynamic, reversible, pruning-based framework that detects context-aware neuron activations and applies adaptive masking to modulate their influence during generation. Our inference-time solution provides fine-grained, memory-aware mitigation with knowledge-preserved, more coherent behavior across multilingual single- and multi-turn dialogues, enabling dynamic fairness control in real-world conversational AI.
comment: PrePrint
♻ ☆ CoFrGeNet: Continued Fraction Architectures for Language Generation
Transformers are arguably the preferred architecture for language generation. In this paper, inspired by continued fractions, we introduce a new function class for generative modeling. The architecture family implementing this function class is named CoFrGeNets - Continued Fraction Generative Networks. We design novel architectural components based on this function class that can replace Multi-head Attention and Feed-Forward Networks in Transformer blocks while requiring much fewer parameters. We derive custom gradient formulations to optimize the proposed components more accurately and efficiently than using standard PyTorch-based gradients. Our components are a plug-in replacement requiring little change in training or inference procedures that have already been put in place for Transformer-based models thus making our approach easy to incorporate in large industrial workflows. We experiment on two very different transformer architectures GPT2-xl (1.5B) and Llama3 (3.2B), where the former we pre-train on OpenWebText and GneissWeb, while the latter we pre-train on the docling data mix which consists of nine different datasets. Results show that the performance on downstream classification, Q\& A, reasoning and text understanding tasks of our models is competitive and sometimes even superior to the original models with $\frac{2}{3}$ to $\frac{1}{2}$ the parameters and shorter pre-training time. We believe that future implementations customized to hardware will further bring out the true potential of our architectures.
♻ ☆ FactSelfCheck: Fact-Level Black-Box Hallucination Detection for LLMs EACL 2026
Large Language Models (LLMs) frequently generate hallucinated content, posing significant challenges for applications where factuality is crucial. While existing hallucination detection methods typically operate at the sentence level or passage level, we propose FactSelfCheck, a novel zero-resource black-box sampling-based method that enables fine-grained fact-level detection. Our approach represents text as interpretable knowledge graphs consisting of facts in the form of triples, providing clearer insights into content factuality than traditional approaches. Through analyzing factual consistency across multiple LLM responses, we compute fine-grained hallucination scores without requiring external resources or training data. Our evaluation demonstrates that FactSelfCheck performs competitively with leading sentence-level sampling-based methods while providing more detailed and interpretable insights. Most notably, our fact-level approach significantly improves hallucination correction, achieving a 35.5% increase in factual content compared to the baseline, while sentence-level SelfCheckGPT yields only a 10.6% improvement. The granular nature of our detection enables more precise identification and correction of hallucinated content. Additionally, we contribute FavaMultiSamples, a novel dataset that addresses a gap in the field by providing the research community with a second dataset for evaluating sampling-based methods.
comment: Accepted for EACL 2026 (findings)
♻ ☆ AgentIF-OneDay: A Task-level Instruction-Following Benchmark for General AI Agents in Daily Scenarios
The capacity of AI agents to effectively handle tasks of increasing duration and complexity continues to grow, demonstrating exceptional performance in coding, deep research, and complex problem-solving evaluations. However, in daily scenarios, the perception of these advanced AI capabilities among general users remains limited. We argue that current evaluations prioritize increasing task difficulty without sufficiently addressing the diversity of agentic tasks necessary to cover the daily work, life, and learning activities of a broad demographic. To address this, we propose AgentIF-OneDay, aimed at determining whether general users can utilize natural language instructions and AI agents to complete a diverse array of daily tasks. These tasks require not only solving problems through dialogue but also understanding various attachment types and delivering tangible file-based results. The benchmark is structured around three user-centric categories: Open Workflow Execution, which assesses adherence to explicit and complex workflows; Latent Instruction, which requires agents to infer implicit instructions from attachments; and Iterative Refinement, which involves modifying or expanding upon ongoing work. We employ instance-level rubrics and a refined evaluation pipeline that aligns LLM-based verification with human judgment, achieving an 80.1% agreement rate using Gemini-3-Pro. AgentIF-OneDay comprises 104 tasks covering 767 scoring points. We benchmarked four leading general AI agents and found that agent products built based on APIs and ChatGPT agents based on agent RL remain in the first tier simultaneously. Leading LLM APIs and open-source models have internalized agentic capabilities, enabling AI application teams to develop cutting-edge Agent products.
comment: 17 pages, 8 figures
♻ ☆ SAFER: Probing Safety in Reward Models with Sparse Autoencoder
Reinforcement learning from human feedback (RLHF) is a key paradigm for aligning large language models (LLMs) with human values, yet the reward models at its core remain largely opaque. In this work, we present Sparse Autoencoder For Enhanced Reward model (\textbf{SAFER}), a novel framework for interpreting and improving reward models through mechanistic analysis. Leveraging Sparse Autoencoders (SAEs), we uncover human-interpretable features in reward model activations, enabling insight into safety-relevant decision-making. We apply SAFER to safety-oriented preference datasets and quantify the salience of individual features by activation differences between chosen and rejected responses. Using these feature-level signals, we design targeted data poisoning and denoising strategies. Experiments show that SAFER can precisely degrade or enhance safety alignment with minimal data modification, without sacrificing general chat performance. Our approach contributes to interpreting, auditing and refining reward models in high-stakes LLM alignment tasks. Our codes are available at https://github.com/xzy-101/SAFER-code. \textit{This paper discusses topics related to reward model safety and may include discussions or examples that highlight potential risks or unsafe outcomes.}
♻ ☆ BiasGym: Fantastic LLM Biases and How to Find (and Remove) Them
Understanding biases and stereotypes encoded in the weights of Large Language Models (LLMs) is crucial for developing effective mitigation strategies. However, biased behaviour is often subtle and non-trivial to isolate, even when deliberately elicited, making systematic analysis and debiasing particularly challenging. To address this, we introduce \texttt{BiasGym}, a simple, cost-effective, and generalizable framework for reliably and safely injecting, analyzing, and mitigating conceptual associations of biases within LLMs. \texttt{BiasGym} consists of two components: \texttt{BiasInject}, which safely injects specific biases into the model via token-based fine-tuning while keeping the model frozen, and \texttt{BiasScope}, which leverages these injected signals to identify and reliably steer the components responsible for biased behavior. Our method enables consistent bias elicitation for mechanistic analysis, supports targeted debiasing without degrading performance on downstream tasks, and generalizes to biases unseen during fine-tuning. We demonstrate the effectiveness of BiasGym in reducing real-world stereotypes (e.g., people from Italy being `reckless drivers'), showing its utility for both safety interventions and interpretability research.
comment: Under review
♻ ☆ Multi-Step Knowledge Interaction Analysis via Rank-2 Subspace Disentanglement
Natural Language Explanations (NLEs) describe how Large Language Models (LLMs) make decisions by drawing on external Context Knowledge (CK) and Parametric Knowledge (PK). Understanding the interaction between these sources is key to assessing NLE grounding, yet these dynamics remain underexplored. Prior work has largely focused on (1) single-step generation and (2) modelled PK-CK interaction as a binary choice within a rank-1 subspace. This approach overlooks richer interactions and how they unfold over longer generations, such as complementary or supportive knowledge. We propose a novel rank-2 projection subspace that disentangles PK and CK contributions more accurately and use it for the first multi-step analysis of knowledge interactions across longer NLE sequences. Experiments across four QA datasets and three open-weight LLMs demonstrate that while rank-1 subspaces struggle to represent diverse interactions, our rank-2 formulation captures them effectively, highlighting PK alignment for supportive interactions and CK alignment for conflicting ones. Our multi-step analysis reveals, among others, that hallucinated generations exhibit strong alignment with the PK direction, whereas context-faithful generations maintain a more balanced alignment between PK and CK.
comment: Under review
♻ ☆ Moral Outrage Shapes Commitments Beyond Attention: Multimodal Moral Emotions on YouTube in Korea and the US
Understanding how media rhetoric shapes audience engagement is crucial in the attention economy. This study examines how moral emotional framing by mainstream news channels on YouTube influences user behavior across Korea and the United States. To capture the platform's multimodal nature, combining thumbnail images and video titles, we develop a multimodal moral emotion classifier by fine tuning a vision language model. The model is trained on human annotated multimodal datasets in both languages and applied to approximately 400,000 videos from major news outlets. We analyze engagement levels including views, likes, and comments, representing increasing degrees of commitment. The results show that other condemning rhetoric expressions of moral outrage that criticize others morally consistently increase all forms of engagement across cultures, with effects ranging from passive viewing to active commenting. These findings suggest that moral outrage is a particularly effective emotional strategy, attracting not only attention but also active participation. We discuss concerns about the potential misuse of other condemning rhetoric, as such practices may deepen polarization by reinforcing in group and out group divisions. To facilitate future research and ensure reproducibility, we publicly release our Korean and English multimodal moral emotion classifiers.
comment: Accepted at The Web Conference 2026. We release Korean and English multimodal moral emotion classifiers
♻ ☆ SSA: Sparse Sparse Attention by Aligning Full and Sparse Attention Outputs in Feature Space
Sparse attention reduces the quadratic complexity of full self-attention but faces two challenges: (1) an attention gap, where applying sparse attention to full-attention-trained models causes performance degradation due to train-inference distribution mismatch, and (2) a capability gap, where models trained purely with sparse attention lack complete gradient flow, preventing them from matching full-attention performance. We propose SSA (Sparse Sparse Attention), a training framework that integrates both sparse and full attention with bidirectional attention-output alignment. We prove that the approximation error scales linearly with the attention mass dropped under sparse attention, and show that SSA's alignment objective substantially reduces this quantity compared to baselines. Experiments demonstrate that SSA achieves state-of-the-art performance under both inference modes, adapts smoothly to varying sparsity budgets, and demonstrates superior long-context capabilities. The code is available at https://github.com/zhenyi4/ssa.
comment: 31 pages
♻ ☆ Bounding Hallucinations: Information-Theoretic Guarantees for RAG Systems via Merlin-Arthur Protocols
Retrieval-augmented generation (RAG) relies on retrieved context to guide large language models (LLM), yet treats retrieval as a weak heuristic rather than verifiable evidence -- leading to unsupported answers, hallucinations, and reliance on spurious context. We introduce a novel training framework that treats the RAG pipeline as an interactive proof system by adapting the Merlin-Arthur (M/A) protocol: Arthur (the generator LLM) trains on questions with unknown context provenance and Merlin gives helpful evidence, while Morgana injects adversarial, misleading context. Both use an XAI method to identify and modify evidence most influential to Arthur. This trains Arthur to (1) answer when evidence supports the answer, (2) reject when evidence is insufficient, and (3) rely on the context spans that truly ground the answer. We further introduce a verification framework that disentangles explanation fidelity from model predictive errors, and introduce the Explained Information Fraction (EIF), which normalizes M/A mutual-information guarantees. Across three RAG datasets and multiple LLM families and sizes, M/A training makes LLMs more grounded in evidence, increases information theoretic measures (soundness, completeness) and reject behavior with less hallucinations, without manually annotated unanswerable samples. Finally, the retriever also improves recall and MRR via automatically generated M/A hard positives and negatives. While high accuracy does not guarantee entropy flow from context to answer, our EIF results show that autonomous interactive-proof-style supervision enables RAG systems that treat retrieved documents as verifiable evidence. % rather than suggestions.
comment: 31 pages, 22 figures
♻ ☆ Defending Large Language Models Against Jailbreak Attacks via In-Decoding Safety-Awareness Probing
Large language models (LLMs) have achieved impressive performance across natural language tasks and are increasingly deployed in real-world applications. Despite extensive safety alignment efforts, recent studies show that such alignment is often shallow and remains vulnerable to jailbreak attacks. Existing defense mechanisms, including decoding-based constraints and post-hoc content detectors, struggle against sophisticated jailbreaks, often intervening robust detection or excessively degrading model utility. In this work, we examine the decoding process of LLMs and make a key observation: even when successfully jailbroken, models internally exhibit latent safety-related signals during generation. However, these signals are overridden by the model's drive for fluent continuation, preventing timely self-correction or refusal. Building on this observation, we propose a simple yet effective approach that explicitly surfaces and leverages these latent safety signals for early detection of unsafe content during decoding. Experiments across diverse jailbreak attacks demonstrate that our approach significantly enhances safety, while maintaining low over-refusal rates on benign inputs and preserving response quality. Our results suggest that activating intrinsic safety-awareness during decoding offers a promising and complementary direction for defending against jailbreak attacks. Code is available at: https://github.com/zyz13590/SafeProbing.
♻ ☆ AnimatedLLM: Explaining LLMs with Interactive Visualizations EACL 2026
Large language models (LLMs) are becoming central to natural language processing education, yet materials showing their mechanics are sparse. We present AnimatedLLM, an interactive web application that provides step-by-step visualizations of a Transformer language model. AnimatedLLM runs entirely in the browser, using pre-computed traces of open LLMs applied on manually curated inputs. The application is available at https://animatedllm.github.io, both as a teaching aid and for self-educational purposes.
comment: Accepted to TeachNLP @ EACL 2026
♻ ☆ Unmasking Backdoors: An Explainable Defense via Gradient-Attention Anomaly Scoring for Pre-trained Language Models ICLR 2026
Pre-trained language models have achieved remarkable success across a wide range of natural language processing (NLP) tasks, particularly when fine-tuned on large, domain-relevant datasets. However, they remain vulnerable to backdoor attacks, where adversaries embed malicious behaviors using trigger patterns in the training data. These triggers remain dormant during normal usage, but, when activated, can cause targeted misclassifications. In this work, we investigate the internal behavior of backdoored pre-trained encoder-based language models, focusing on the consistent shift in attention and gradient attribution when processing poisoned inputs; where the trigger token dominates both attention and gradient signals, overriding the surrounding context. We propose an inference-time defense that constructs anomaly scores by combining token-level attention and gradient information. Extensive experiments on text classification tasks across diverse backdoor attack scenarios demonstrate that our method significantly reduces attack success rates compared to existing baselines. Furthermore, we provide an interpretability-driven analysis of the scoring mechanism, shedding light on trigger localization and the robustness of the proposed defense.
comment: 17 pages total (9 pages main text + 6 pages appendix + references), 16 figures. Preprint version; the final camera-ready version may differ. Accepted to ICLR 2026
♻ ☆ CATArena: Evaluating Evolutionary Capabilities of Code Agents via Iterative Tournaments
Current evaluation for Large Language Model (LLM) code agents predominantly focus on generating functional code in single-turn scenarios, which fails to evaluate the agent's capability for continuous code optimization and multi-turn iterative development. To bridge this gap, we introduce CATArena, a framework designed to evaluate the evolutionary capabilities of code agents via iterative tournaments. Agents engage in multi-turn tournaments and continuously refine their code through self-reflection and peer-learning based on comprehensive execution feedback. For evaluation, we propose a dual-metric system to decouple static generation proficiency from evolutionary potential. Extensive experiments reveal that an agent's evolutionary potential is not strictly correlated with its initial proficiency. Our analysis further reveals that current agents struggle to concurrently leverage both peer-learning and self-reflection for effective performance gains. Furthermore, the results validate CATArena's high extensibility and resistance to variance tasks, establishing it as a continuous and reliable standard for assessing the evolutionary capability of LLM code agents.
♻ ☆ FESTA: Functionally Equivalent Sampling for Trust Assessment of Multimodal LLMs EMNLP
The accurate trust assessment of multimodal large language models (MLLMs) generated predictions, which can enable selective prediction and improve user confidence, is challenging due to the diverse multi-modal input paradigms. We propose Functionally Equivalent Sampling for Trust Assessment (FESTA), a multimodal input sampling technique for MLLMs, that generates an uncertainty measure based on the equivalent and complementary input samplings. The proposed task-preserving sampling approach for uncertainty quantification expands the input space to probe the consistency (through equivalent samples) and sensitivity (through complementary samples) of the model. FESTA uses only input-output access of the model (black-box), and does not require ground truth (unsupervised). The experiments are conducted with various off-the-shelf multi-modal LLMs, on both visual and audio reasoning tasks. The proposed FESTA uncertainty estimate achieves significant improvement (33.3% relative improvement for vision-LLMs and 29.6% relative improvement for audio-LLMs) in selective prediction performance, based on area-under-receiver-operating-characteristic curve (AUROC) metric in detecting mispredictions. The code implementation is open-sourced.
comment: Accepted in the Findings of EMNLP, 2025
♻ ☆ The Unintended Trade-off of AI Alignment:Balancing Hallucination Mitigation and Safety in LLMs
Hallucination in large language models (LLMs) has been widely studied in recent years, with progress in both detection and mitigation aimed at improving truthfulness. Yet, a critical side effect remains largely overlooked: enhancing truthfulness can negatively impact safety alignment. In this paper, we investigate this trade-off and show that increasing factual accuracy often comes at the cost of weakened refusal behavior. Our analysis reveals that this arises from overlapping components in the model that simultaneously encode hallucination and refusal information, leading alignment methods to suppress factual knowledge unintentionally. We further examine how fine-tuning on benign datasets, even when curated for safety, can degrade alignment for the same reason. To address this, we propose a method that disentangles refusal-related features from hallucination features using sparse autoencoders, and preserves refusal behavior during fine-tuning through subspace orthogonalization. This approach prevents hallucinations from increasing while maintaining safety alignment.We evaluate our method on commonsense reasoning tasks and harmful benchmarks (AdvBench and StrongReject). Results demonstrate that our approach preserves refusal behavior and task utility, mitigating the trade-off between truthfulness and safety.
♻ ☆ Automatic Reviewers Fail to Detect Faulty Reasoning in Research Papers: A New Counterfactual Evaluation Framework ACL 2026
Large Language Models (LLMs) have great potential to accelerate and support scholarly peer review and are increasingly used as fully automatic review generators (ARGs). However, potential biases and systematic errors may pose significant risks to scientific integrity; understanding the specific capabilities and limitations of state-of-the-art ARGs is essential. We focus on a core reviewing skill that underpins high-quality peer review: detecting faulty research logic. This involves evaluating the internal consistency between a paper's results, interpretations, and claims. We present a fully automated counterfactual evaluation framework that isolates and tests this skill under controlled conditions. Testing a range of ARG approaches, we find that, contrary to expectation, flaws in research logic have no significant effect on their output reviews. Based on our findings, we derive three actionable recommendations for future work and release our counterfactual dataset and evaluation framework publicly.
comment: accepted to TACL 2026 (presented at EACL 2026)
♻ ☆ SimulSense: Sense-Driven Interpreting for Efficient Simultaneous Speech Translation
How to make human-interpreter-like read/write decisions for simultaneous speech translation (SimulST) systems? Current state-of-the-art systems formulate SimulST as a multi-turn dialogue task, requiring specialized interleaved training data and relying on computationally expensive large language model (LLM) inference for decision-making. In this paper, we propose SimulSense, a novel framework for SimulST that mimics human interpreters by continuously reading input speech and triggering write decisions to produce translation when a new sense unit is perceived. Experiments against two state-of-the-art baseline systems demonstrate that our proposed method achieves a superior quality-latency tradeoff and substantially improved real-time efficiency, where its decision-making is up to 9.6x faster than the baselines.
comment: \c{opyright} 2026 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
♻ ☆ ASTRA: Automated Synthesis of agentic Trajectories and Reinforcement Arenas
Large language models (LLMs) are increasingly used as tool-augmented agents for multi-step decision making, yet training robust tool-using agents remains challenging. Existing methods still require manual intervention, depend on non-verifiable simulated environments, rely exclusively on either supervised fine-tuning (SFT) or reinforcement learning (RL), and struggle with stable long-horizon, multi-turn learning. To address these challenges, we introduce ASTRA, a fully automated end-to-end framework for training tool-augmented language model agents via scalable data synthesis and verifiable reinforcement learning. ASTRA integrates two complementary components. First, a pipeline that leverages the static topology of tool-call graphs synthesizes diverse, structurally grounded trajectories, instilling broad and transferable tool-use competence. Second, an environment synthesis framework that captures the rich, compositional topology of human semantic reasoning converts decomposed question-answer traces into independent, code-executable, and rule-verifiable environments, enabling deterministic multi-turn RL. Based on this method, we develop a unified training methodology that integrates SFT with online RL using trajectory-level rewards to balance task completion and interaction efficiency. Experiments on multiple agentic tool-use benchmarks demonstrate that ASTRA-trained models achieve state-of-the-art performance at comparable scales, approaching closed-source systems while preserving core reasoning ability. We release the full pipelines, environments, and trained models at https://github.com/LianjiaTech/astra.
♻ ☆ Warm Up Before You Train: Unlocking General Reasoning in Resource-Constrained Settings EMNLP 2025
Designing effective reasoning-capable LLMs typically requires training using Reinforcement Learning with Verifiable Rewards (RLVR) or distillation with carefully curated Long Chain of Thoughts (CoT), both of which depend heavily on extensive training data. This creates a major challenge when the amount of quality training data is scarce. We propose a sample-efficient, two-stage training strategy to develop reasoning LLMs under limited supervision. In the first stage, we "warm up" the model by distilling Long CoTs from a toy domain, namely, Knights \& Knaves (K\&K) logic puzzles to acquire general reasoning skills. In the second stage, we apply RLVR to the warmed-up model using a limited set of target-domain examples. Our experiments demonstrate that this two-phase approach offers several benefits: $(i)$ the warmup phase alone facilitates generalized reasoning, leading to performance improvements across a range of tasks, including MATH, HumanEval$^{+}$, and MMLU-Pro; $(ii)$ When both the base model and the warmed-up model are RLVR trained on the same small dataset ($\leq100$ examples), the warmed-up model consistently outperforms the base model; $(iii)$ Warming up before RLVR training allows a model to maintain cross-domain generalizability even after training on a specific domain; $(iv)$ Introducing warmup in the pipeline improves not only accuracy but also overall sample efficiency during RLVR training. The results in this paper highlight the promise of warmup for building robust reasoning LLMs in data-scarce environments.
comment: Accepted to EMNLP 2025
♻ ☆ DeepGreen: Effective LLM-Driven Greenwashing Monitoring System Designed for Empirical Testing -- Evidence from China
Motivated by the emerging adoption of Large Language Models (LLMs) in economics and management research, this paper investigates whether LLMs can reliably identify corporate greenwashing narratives and, more importantly, whether and how the greenwashing signals extracted from textual disclosures can be used to empirically identify causal effects. To this end, this paper proposes DeepGreen, a dual-stage LLM-Driven system for detecting potential corporate greenwashing in annual reports. Applied to 9369 A-share annual reports published between 2021 and 2023, DeepGreen attains high reliability in random-sample validation at both stages. Ablation experiment shows that Retrieval-Augmented Generation (RAG) reduces hallucinations, as compared to simply lengthening the input window. Empirical tests indicate that "greenwashing" captured by DeepGreen can effectively reveal a positive relationship between greenwashing and environmental penalties, and IV, PSM, Placebo test, which enhance the robustness and causal effects of the empirical evidence. Further study suggests that the presence and number of green investors can weaken the positive correlation between greenwashing and penalties. Heterogeneity analysis shows that the positive relationship between "greenwashing - penalty" is less significant in large-sized corporations and corporations that have accumulated green assets, indicating that these green assets may be exploited as a credibility shield for greenwashing. Our findings demonstrate that LLMs can standardize ESG oversight by early warning and direct regulators' scarce attention toward the subsets of corporations where monitoring is more warranted.
comment: Major revision accepted in Computational Economics, December 31, 2025. This version incorporates extensive revisions based on the reviewers' comments, with substantial changes
♻ ☆ AgentLongBench: A Controllable Long Benchmark For Long-Contexts Agents via Environment Rollouts
The evolution of Large Language Models (LLMs) into autonomous agents necessitates the management of extensive, dynamic contexts. Current benchmarks, however, remain largely static, relying on passive retrieval tasks that fail to simulate the complexities of agent-environment interaction, such as non-linear reasoning and iterative feedback. To address this, we introduce \textbf{AgentLongBench}, which evaluates agents through simulated environment rollouts based on Lateral Thinking Puzzles. This framework generates rigorous interaction trajectories across knowledge-intensive and knowledge-free scenarios. Experiments with state-of-the-art models and memory systems (32K to 4M tokens) expose a critical weakness: while adept at static retrieval, agents struggle with the dynamic information synthesis essential for workflows. Our analysis indicates that this degradation is driven by the minimum number of tokens required to resolve a query. This factor explains why the high information density inherent in massive tool responses poses a significantly greater challenge than the memory fragmentation typical of long-turn dialogues.
comment: 26 pages
♻ ☆ Metis-SPECS: Decoupling Multimodal Learning via Self-distilled Preference-based Cold Start ICLR 2026
Reinforcement learning (RL) with verifiable rewards has recently catalyzed a wave of "MLLM-r1" approaches that bring RL to vision language models. Most representative paradigms begin with a cold start, typically employing supervised fine-tuning (SFT), to initialize the policy before RL. However, SFT-based cold start adopts the reasoning paradigm intertwined with task solution and output format, which may induce instruction-style overfitting, weakens out-of-distribution generalization, and ultimately affects downstream RL. We revisit the cold start along two views, its training method and data construction, and introduce the Generalization Factor (GF) coefficient to quantify the generalization capability under different methods. Our empirical study finds that preference-based training methods (e.g. DPO) generalizes better than SFT-based methods in cold start. Motivated by this, we propose SPECS-a Self-distilled, Preference-based Cold Start framework that decouples multimodal learning: (1) generates introspective preference data pairs via self-distillation, avoiding reliance on larger teachers or manual annotation; (2) performs preference-based training to learn, focusing on shallow, transferable surface-form criteria (format, structure, style) rather than memorizing content; and (3) hands off to RL with verifiable rewards for deep reasoning results. Experimental results across multiple multimodal benchmarks show that our decoupling learning framework yields consistent performance gains over strong baselines, improving MEGA-Bench by 4.1% and MathVista by 12.2%. Additional experiments indicate that SPECS contributes to reducing in-distribution "stuckness," improving exploration, stabilizing training, and raising the performance ceiling. Project Page: https://kwen-chen.github.io/SPECS-VL/
comment: Published as a conference paper at ICLR 2026!
♻ ☆ Thoughtbubbles: an Unsupervised Method for Parallel Thinking in Latent Space
Current approaches for scaling inference-time compute in transformers train them to emit explicit chain-of-thought tokens before producing an answer. While these methods are powerful, they are limited because they cannot be applied during pretraining and rely solely on serially-generated, natural-language verbalization. In this work, we propose Thoughtbubbles, a transformer variant that natively performs parallel adaptive computation in latent space by learning to fork or delete residual streams. Thus, tokens requiring more computation can form a "bubble" of cloned residuals in the middle of the network. Crucially, this behavior is learned during pretraining with only language modeling loss. Using half of the training budget, Thoughtbubbles outperforms the perplexity and zero-shot evals of both standard decoder LMs and those using non-adaptive parallel computation approaches. These results hold across model sizes from 150M to 1.9B. Thoughtbubbles achieves competitive GSM8K results using half of the baseline's token budget. The implicit nature of our method enables models to begin learning adaptive computation at pretraining time, paving the way to unified train-time and test-time scaling behaviors.
♻ ☆ Text-only adaptation in LLM-based ASR through text denoising ICASSP 2026
Adapting automatic speech recognition (ASR) systems based on large language models (LLMs) to new domains using text-only data is a significant yet underexplored challenge. Standard fine-tuning of the LLM on target-domain text often disrupts the critical alignment between speech and text modalities learned by the projector, degrading performance. We introduce a novel text-only adaptation method that emulates the audio projection task by treating it as a text denoising task. Our approach thus trains the LLM to recover clean transcripts from noisy inputs. This process effectively adapts the model to a target domain while preserving cross-modal alignment. Our solution is lightweight, requiring no architectural changes or additional parameters. Extensive evaluation on two datasets demonstrates up to 22.1% relative improvement, outperforming recent state-of-the-art text-only adaptation methods.
comment: Paper accepted at ICASSP 2026
♻ ☆ FLM-Audio: Natural Monologues Improves Native Full-Duplex Chatbots via Dual Training
Full-duplex dialog models aim to listen and speak simultaneously, delivering rapid responses to dynamic user input. Among different solutions to full-duplexity, a native solution merges multiple channels in each time step, achieving the lowest latency. However, prevailing designs break down the textual monologue sentences for word-level alignment with audio streams, which degrades language modeling abilities. To help address this issue, we introduce "contiguous monologues", which are composed by continuous sentences and "waiting" intervals, mimicking human-like cognitive behavior in dialogs. We find a proper training paradigm to be critical for semantically aligning contiguous monologues with audio. To this end, we develop a "dual" training paradigm that alternates the position of the monologues, either leading or trailing the audio, across different training stages. A combination of our contiguous monologue and dual training strategy is applied in developing FLM-Audio, our 7B spoken dialog chatbot with native full-duplexity. As confirmed by experimental results, FLM-Audio achieves superior response qualities and chatting experiences while requiring significantly less training data.
♻ ☆ Beyond Retrieval: A Modular Benchmark for Academic Deep Research Agents
A surge in academic publications calls for automated deep research (DR) systems, but accurately evaluating them is still an open problem. First, existing benchmarks often focus narrowly on retrieval while neglecting high-level planning and reasoning. Second, existing benchmarks favor general domains over the academic domains that are the core application for DR agents. To address these gaps, we introduce ADRA-Bank, a modular benchmark for Academic DR Agents. Grounded in academic literature, our benchmark is a human-annotated dataset of 200 instances across 10 academic domains, including both research and review papers. Furthermore, we propose a modular Evaluation Paradigm for Academic DR Agents (ADRA-Eval), which leverages the rich structure of academic papers to assess the core capabilities of planning, retrieval, and reasoning. It employs two complementary modes: an end-to-end evaluation for \task agents and an isolated evaluation for foundational LLMs as potential backbones. Results reveal uneven capabilities: while agents show specialized strengths, they struggle with multi-source retrieval and cross-field consistency. Moreover, improving high-level planning capability is the crucial factor for unlocking the reasoning potential of foundational LLMs as backbones. By exposing these actionable failure modes, ADRA-Bank provides a diagnostic tool to guide the development of more reliable automatic academic research assistants.
♻ ☆ Towards Atoms of Large Language Models
The fundamental representational units (FRUs) of large language models (LLMs) remain undefined, limiting further understanding of their underlying mechanisms. In this paper, we introduce Atom Theory to systematically define, evaluate, and identify such FRUs, which we term atoms. Building on the atomic inner product (AIP), a non-Euclidean metric that captures the underlying geometry of LLM representations, we formally define atoms and propose two key criteria for ideal atoms: faithfulness ($R^2$) and stability ($q^*$). We further prove that atoms are identifiable under threshold-activated sparse autoencoders (TSAEs). Empirically, we uncover a pervasive representation shift in LLMs and demonstrate that the AIP corrects this shift to capture the underlying representational geometry, thereby grounding Atom Theory. We find that two widely used units, neurons and features, fail to qualify as ideal atoms: neurons are faithful ($R^2=1$) but unstable ($q^*=0.5\%$), while features are more stable ($q^*=68.2\%$) but unfaithful ($R^2=48.8\%$). To find atoms of LLMs, leveraging atom identifiability under TSAEs, we show via large-scale experiments that reliable atom identification occurs only when the TSAE capacity matches the data scale. Guided by this insight, we identify FRUs with near-perfect faithfulness ($R^2=99.9\%$) and stability ($q^*=99.8\%$) across layers of Gemma2-2B, Gemma2-9B, and Llama3.1-8B, satisfying the criteria of ideal atoms statistically. Further analysis confirms that these atoms align with theoretical expectations and exhibit substantially higher monosemanticity. Overall, we propose and validate Atom Theory as a foundation for understanding the internal representations of LLMs. Code available at https://github.com/ChenhuiHu/towards_atoms.
♻ ☆ Framing Political Bias in Multilingual LLMs Across Pakistani Languages
Large Language Models (LLMs) increasingly shape public discourse, yet most evaluations of political and economic bias have focused on high-resource, Western languages and contexts. This leaves critical blind spots in low-resource, multilingual regions such as Pakistan, where linguistic identity is closely tied to political, religious, and regional ideologies. We present a systematic evaluation of political bias in 13 state-of-the-art LLMs across five Pakistani languages: Urdu, Punjabi, Sindhi, Pashto, and Balochi. Our framework integrates a culturally adapted Political Compass Test (PCT) with multi-level framing analysis, capturing both ideological stance (economic/social axes) and stylistic framing (content, tone, emphasis). Prompts are aligned with 11 socio-political themes specific to the Pakistani context. Results show that while LLMs predominantly reflect liberal-left orientations consistent with Western training data, they exhibit more authoritarian framing in regional languages, highlighting language-conditioned ideological modulation. We also identify consistent model-specific bias patterns across languages. These findings show the need for culturally grounded, multilingual bias auditing frameworks in global NLP.
comment: Preprint
♻ ☆ Dual Mechanisms of Value Expression: Intrinsic vs. Prompted Values in Large Language Models
Large language models can express values in two main ways: (1) intrinsic expression, reflecting the model's inherent values learned during training, and (2) prompted expression, elicited by explicit prompts. Given their widespread use in value alignment, it is paramount to clearly understand their underlying mechanisms, particularly whether they mostly overlap (as one might expect) or rely on distinct mechanisms, but this remains largely understudied. We analyze this at the mechanistic level using two approaches: (1) value vectors, feature directions representing value mechanisms extracted from the residual stream, and (2) value neurons, MLP neurons that contribute to value vectors. We demonstrate that intrinsic and prompted value mechanisms partly share common components crucial for inducing value expression, generalizing across languages and reconstructing theoretical inter-value correlations in the model's internal representations. Yet, as these mechanisms also possess unique elements that fulfill distinct roles, they lead to different degrees of response diversity (intrinsic > prompted) and value steerability (prompted > intrinsic). In particular, components unique to the intrinsic mechanism promote lexical diversity in responses, whereas those specific to the prompted mechanism strengthen instruction following, taking effect even in distant tasks like jailbreaking.
♻ ☆ Vulnerability of LLMs' Belief Systems? LLMs Belief Resistance Check Through Strategic Persuasive Conversation Interventions
Large Language Models (LLMs) are increasingly employed in various question-answering tasks. However, recent studies showcase that LLMs are susceptible to persuasion and could adopt counterfactual beliefs. We present a systematic evaluation of LLM susceptibility to persuasion under the Source--Message--Channel--Receiver (SMCR) communication framework. Across five mainstream Large Language Models (LLMs) and three domains (factual knowledge, medical QA, and social bias), we analyze how different persuasive strategies influence belief stability over multiple interaction turns. We further examine whether meta-cognition prompting (i.e., eliciting self-reported confidence) affects resistance to persuasion. Results show that the smallest model (Llama 3.2-3B) exhibits extreme compliance, with 82.5% of belief changes occurring at the first persuasive turn (average end turn of 1.1--1.4). Contrary to expectations, meta-cognition prompting increases vulnerability by accelerating belief erosion rather than enhancing robustness. Finally, we evaluate adversarial fine-tuning as a defense. While GPT-4o-mini achieves near-complete robustness (98.6%) and Mistral~7B improves substantially (35.7% $\rightarrow$ 79.3%), Llama models remain highly susceptible (<14%) even when fine-tuned on their own failure cases. Together, these findings highlight substantial model-dependent limits of current robustness interventions and offer guidance for developing more trustworthy LLMs.
comment: Updated Table 12 with the detailed calculation approach and its related statements
♻ ☆ Softplus Attention with Re-weighting Boosts Length Extrapolation in Large Language Models ICML 2026
Large language models have achieved remarkable success in recent years, primarily due to self-attention. However, traditional Softmax attention suffers from numerical instability and reduced performance as the number of inference tokens increases. This work addresses these issues by proposing a new design principle for attention, viewing it as a two-stage process. The first stage (normalisation) refines standard attention by replacing Softmax with the more numerically stable Softplus followed by $l_{1}$-normalisation. Furthermore, we introduce a dynamic scale factor based on invariance entropy. We show that this novel attention mechanism outperforms conventional Softmax attention, and state-of-the-art Softmax-free alternatives. Our second proposal is to introduce a second processing stage (sharpening) which consists of a re-weighting mechanism that amplifies significant attentional weights while diminishing weaker ones. This enables the model to concentrate more effectively on relevant tokens, mitigating the attention sink phenomenon, and fundamentally improving length extrapolation. This novel, two-stage, replacement for self-attention is shown to ensure numerical stability and dramatically improve length extrapolation, maintaining a nearly constant validation loss at 16$\times$ the training length while achieving superior results on challenging long-context retrieval tasks and downstream benchmarks. Furthermore, symbolic regression experiments demonstrate that our method enables models to recover Newton's gravitational law from orbital trajectory sequences, providing evidence that appropriate attention mechanisms are crucial for foundation models to develop genuine physical world models.
comment: 32 pages for ICML 2026
♻ ☆ Evaluating from Benign to Dynamic Adversarial: A Squid Game for Large Language Models
The potential data contamination issue in contemporary large language models (LLMs) benchmarks presents a fundamental challenge to establishing trustworthy evaluation frameworks. Meanwhile, they predominantly assume benign, resource-rich settings, leaving the behavior of LLMs under pressure unexplored. In this paper, we introduce \textsc{Squid Game}, a dynamic and adversarial evaluation environment with resource-constrained and asymmetric information settings elaborated to evaluate LLMs through interactive gameplay against other LLM opponents. Squid Game consists of six elimination-style levels, focusing on multi-faceted abilities, including instruction-following, code, reasoning, planning, and safety alignment. We evaluate over 50 LLMs on Squid Game, presenting the largest behavioral evaluation study of general LLMs on dynamic adversarial scenarios. We observe a clear generational phase transition in performance in the same model lineage and find evidence that some models resort to speculative shortcuts to win the game, indicating the possibility of higher-level evaluation paradigm contamination in static benchmarks. We also compare prominent LLM benchmarks and \textsc{Squid Game}, highlighting that dynamic evaluation can serve as a complementary part for static evaluations. Project page: https://github.com/zijianchen98/LLM_Squid_Game.
comment: 31 pages, 15 figures
♻ ☆ NeUQI: Near-Optimal Uniform Quantization Parameter Initialization for Low-Bit LLMs
Large language models (LLMs) achieve impressive performance across domains but face significant challenges when deployed on consumer-grade GPUs or personal devices such as laptops, due to high memory consumption and inference costs. Post-training quantization (PTQ) of LLMs offers a promising solution that reduces their memory footprint and decoding latency. In practice, PTQ with uniform quantization representation is favored due to its efficiency and ease of deployment, as uniform quantization is widely supported by mainstream hardware and software libraries. Recent studies on low-bit uniform quantization have led to noticeable improvements in post-quantization model performance; however, they mainly focus on quantization methodologies, while the initialization of quantization parameters remains underexplored and still relies on the conventional Min-Max formula. In this work, we identify the limitations of the Min-Max formula, move beyond its constraints, and propose NeUQI, a method that efficiently determines near-optimal initialization for uniform quantization. Our NeUQI simplifies the joint optimization of the scale and zero-point by deriving the zero-point for a given scale, thereby reducing the problem to a scale-only optimization. Benefiting from the improved quantization parameters, our NeUQI consistently outperforms existing methods in the experiments with the LLaMA and Qwen families on various settings and tasks. Furthermore, when combined with a lightweight distillation strategy, NeUQI even achieves superior performance to PV-tuning, a considerably more resource-intensive method.
comment: under review
♻ ☆ Quantifying Data Contamination in Psychometric Evaluations of LLMs EACL 2026
Recent studies apply psychometric questionnaires to Large Language Models (LLMs) to assess high-level psychological constructs such as values, personality, moral foundations, and dark traits. Although prior work has raised concerns about possible data contamination from psychometric inventories, which may threaten the reliability of such evaluations, there has been no systematic attempt to quantify the extent of this contamination. To address this gap, we propose a framework to systematically measure data contamination in psychometric evaluations of LLMs, evaluating three aspects: (1) item memorization, (2) evaluation memorization, and (3) target score matching. Applying this framework to 21 models from major families and four widely used psychometric inventories, we provide evidence that popular inventories such as the Big Five Inventory (BFI-44) and Portrait Values Questionnaire (PVQ-40) exhibit strong contamination, where models not only memorize items but can also adjust their responses to achieve specific target scores.
comment: EACL 2026 Findings
♻ ☆ OMGEval: An Open Multilingual Generative Evaluation Benchmark for Large Language Models
Modern large language models (LLMs) should generally benefit individuals from various cultural backgrounds around the world. However, most recent advanced generative evaluation benchmarks tailed for LLMs mainly focus on English. To this end, we introduce OMGEval, the first Open-source Multilingual Generative test set that can assess the capability of LLMs in different languages. For each language, OMGEval provides 804 open-ended questions, covering a wide range of important capabilities of LLMs, such as general knowledge, logical reasoning, and so on. Each question is rigorously verified by human annotators. Notably, to sufficiently reflect the compatibility of LLMs in different cultural backgrounds, we perform localization for each non-English language. Specifically, the current version of OMGEval includes 5 languages (i.e., Zh, Ru, Fr, Es, Ar). Following AlpacaEval, we employ GPT-4 as the adjudicator to automatically score different model outputs, which is shown closely related to human evaluation. We evaluate several representative multilingual LLMs on the proposed OMGEval, which we believe will provide a valuable reference for the community to further understand and improve the multilingual capability of LLMs. OMGEval is available at https://github.com/blcuicall/OMGEval.
♻ ☆ Breaking the Adversarial Robustness-Performance Trade-off in Text Classification via Manifold Purification AAAI 2026
A persistent challenge in text classification (TC) is that enhancing model robustness against adversarial attacks typically degrades performance on clean data. We argue that this challenge can be resolved by modeling the distribution of clean samples in the encoder embedding manifold. To this end, we propose the Manifold-Correcting Causal Flow (MC^2F), a two-module system that operates directly on sentence embeddings. A Stratified Riemannian Continuous Normalizing Flow (SR-CNF) learns the density of the clean data manifold. It identifies out-of-distribution embeddings, which are then corrected by a Geodesic Purification Solver. This solver projects adversarial points back onto the learned manifold via the shortest path, restoring a clean, semantically coherent representation. We conducted extensive evaluations on text classification (TC) across three datasets and multiple adversarial attacks. The results demonstrate that our method, MC^2F, not only establishes a new state-of-the-art in adversarial robustness but also fully preserves performance on clean data, even yielding modest gains in accuracy.
comment: 9 pages,3 figures, AAAI 2026 Poster
♻ ☆ HumanLLM: Benchmarking and Improving LLM Anthropomorphism via Human Cognitive Patterns
Large Language Models (LLMs) have demonstrated remarkable capabilities in reasoning and generation, serving as the foundation for advanced persona simulation and Role-Playing Language Agents (RPLAs). However, achieving authentic alignment with human cognitive and behavioral patterns remains a critical challenge for these agents. We present HumanLLM, a framework treating psychological patterns as interacting causal forces. We construct 244 patterns from ~12,000 academic papers and synthesize 11,359 scenarios where 2-5 patterns reinforce, conflict, or modulate each other, with multi-turn conversations expressing inner thoughts, actions, and dialogue. Our dual-level checklists evaluate both individual pattern fidelity and emergent multi-pattern dynamics, achieving strong human alignment (r=0.91) while revealing that holistic metrics conflate simulation accuracy with social desirability. HumanLLM-8B outperforms Qwen3-32B on multi-pattern dynamics despite 4x fewer parameters, demonstrating that authentic anthropomorphism requires cognitive modeling--simulating not just what humans do, but the psychological processes generating those behaviors.
comment: change "reinforce" to "improve"
♻ ☆ Mechanistic evaluation of Transformers and state space models
State space models (SSMs) for language modelling promise an efficient and performant alternative to quadratic-attention Transformers, yet show variable performance on recalling basic information from the context. While performance on synthetic tasks like Associative Recall (AR) can point to this deficiency, behavioural metrics provide little information as to \textit{why} -- on a mechanistic level -- certain architectures fail and others succeed. To address this, we conduct experiments on AR, and find that only Transformers and Based SSM models fully succeed at AR, with Mamba and DeltaNet close behind, while the other SSMs (H3, Hyena) fail. We then use causal interventions to explain why. We find that Transformers and Based learn to store key-value associations in-context using induction. By contrast, the SSMs seem to compute these associations only at the last state using a single layer. We further investigate the mechanism underlying the success of Mamba, and find novel evidence that Mamba \textit{does} implement induction: not via the SSM, but instead via short convolutions. Further experiments on a new hierarchical retrieval task, Associative Treecall (ATR), show that all architectures learn the same mechanism as they did for AR. Furthermore, we show that Mamba can learn Attention-like induction on ATR when short convolutions are removed. These results reveal that architectures with similar accuracy may still have substantive differences, motivating the adoption of mechanistic evaluations.
comment: 9 page main text, 22 pages total
♻ ☆ Synthetic Socratic Debates: Examining Persona Effects on Moral Decision and Persuasion Dynamics
As large language models (LLMs) are increasingly used in morally sensitive domains, it is crucial to understand how persona traits affect their moral reasoning and persuasive behavior. We present the first large-scale study of multi-dimensional persona effects in AI-AI debates over real-world moral dilemmas. Using a 6-dimensional persona space (age, gender, country, class, ideology, and personality), we simulate structured debates between AI agents over 131 relationship-based cases. Our results show that personas affect initial moral stances and debate outcomes, with political ideology and personality traits exerting the strongest influence. Persuasive success varies across traits, with liberal and open personalities reaching higher consensus and win rates. While logit-based confidence grows during debates, emotional and credibility-based appeals diminish, indicating more tempered argumentation over time. These trends mirror findings from psychology and cultural studies, reinforcing the need for persona-aware evaluation frameworks for AI moral reasoning.
♻ ☆ Studying the Soupability of Documents in State Space Models
We investigate whether hidden states from Structured State Space Models (SSMs) can be merged post hoc to support downstream reasoning. Inspired by model souping, we study document souping, a strategy where documents are encoded independently, and their representations are pooled, via simple operations like averaging, into a single context state. This approach enables modular encoding and reuse without reprocessing the full input for each query. We demonstrate that finetuned Mamba2 models with souped representations achieve competitive or superior performance across multi-hop QA, sparse retrieval, and long-document reasoning tasks compared to the standard monolithic encoding approach. For example, on the RACE and QuALITY benchmarks for long document question answering, this method substantially outperforms a traditional concatenation approach. Crucially, this modular design scales to hundreds of documents while delivering substantial savings in inference cost, unlocking new possibilities for large-scale corpus reasoning.
♻ ☆ DialectGen: Benchmarking and Improving Dialect Robustness in Multimodal Generation
Contact languages like English exhibit rich regional variations in the form of dialects, which are often used by dialect speakers interacting with generative models. However, can multimodal generative models effectively produce content given dialectal textual input? In this work, we study this question by constructing a new large-scale benchmark spanning six common English dialects. We work with dialect speakers to collect and verify over 4200 unique prompts and evaluate on 17 image and video generative models. Our automatic and human evaluation results show that current state-of-the-art multimodal generative models exhibit 32.26% to 48.17% performance degradation when a single dialect word is used in the prompt. Common mitigation methods such as fine-tuning and prompt rewriting can only improve dialect performance by small margins (< 7%), while potentially incurring significant performance degradation in Standard American English (SAE). To this end, we design a general encoder-based mitigation strategy for multimodal generative models. Our method teaches the model to recognize new dialect features while preserving SAE performance. Experiments on models such as Stable Diffusion 1.5 show that our method is able to simultaneously raise performance on five dialects to be on par with SAE (+34.4%), while incurring near zero cost to SAE performance.
♻ ☆ Debating Truth: Debate-driven Claim Verification with Multiple Large Language Model Agents WWW 2026
State-of-the-art single-agent claim verification methods struggle with complex claims that require nuanced analysis of multifaceted evidence. Inspired by real-world professional fact-checkers, we propose \textbf{DebateCV}, the first debate-driven claim verification framework powered by multiple LLM agents. In DebateCV, two \textit{Debaters} argue opposing stances to surface subtle errors in single-agent assessments. A decisive \textit{Moderator} is then required to weigh the evidential strength of conflicting arguments to deliver an accurate verdict. Yet, zero-shot Moderators are biased toward neutral judgments, and no datasets exist for training them. To bridge this gap, we propose \textbf{Debate-SFT}, a post-training framework that leverages synthetic data to enhance agents' ability to effectively adjudicate debates for claim verification. Results show that our methods surpass state-of-the-art non-debate approaches in both accuracy (across various evidence conditions) and justification quality.
comment: Accepted by the ACM Web Conference 2026 (WWW 2026)
♻ ☆ Knowing What's Missing: Assessing Information Sufficiency in Question Answering EACL
Determining whether a provided context contains sufficient information to answer a question is a critical challenge for building reliable question-answering systems. While simple prompting strategies have shown success on factual questions, they frequently fail on inferential ones that require reasoning beyond direct text extraction. We hypothesize that asking a model to first reason about what specific information is missing provides a more reliable, implicit signal for assessing overall sufficiency. To this end, we propose a structured Identify-then-Verify framework for robust sufficiency modeling. Our method first generates multiple hypotheses about missing information and establishes a semantic consensus. It then performs a critical verification step, forcing the model to re-examine the source text to confirm whether this information is truly absent. We evaluate our method against established baselines across diverse multi-hop and factual QA datasets. The results demonstrate that by guiding the model to justify its claims about missing information, our framework produces more accurate sufficiency judgments while clearly articulating any information gaps.
comment: Accepted to EACL Findings 2026
♻ ☆ VScan: Rethinking Visual Token Reduction for Efficient Large Vision-Language Models
Recent Large Vision-Language Models (LVLMs) have advanced multi-modal understanding by incorporating finer-grained visual perception and encoding. However, such methods incur significant computational costs due to longer visual token sequences, posing challenges for real-time deployment. To mitigate this, prior studies have explored pruning unimportant visual tokens either at the output layer of the visual encoder or at the early layers of the language model. In this work, we revisit these design choices and reassess their effectiveness through comprehensive empirical studies of how visual tokens are processed throughout the visual encoding and language decoding stages. Guided by these insights, we propose VScan, a two-stage visual token reduction framework that addresses token redundancy by: (1) integrating complementary global and local scans with token merging during visual encoding, and (2) introducing pruning at intermediate layers of the language model. Extensive experimental results across four LVLMs validate the effectiveness of VScan in accelerating inference and demonstrate its superior performance over current state-of-the-arts on sixteen benchmarks. Notably, when applied to LLaVA-NeXT-7B, VScan achieves a 2.91$\times$ speedup in prefilling and a 10$\times$ reduction in FLOPs, while retaining 95.4\% of the original performance. Code is available at https://github.com/Tencent/SelfEvolvingAgent/tree/main/VScan.
comment: Accepted at TMLR 2026. Project page: https://zhangce01.github.io/VScan/
♻ ☆ Post-LayerNorm Is Back: Stable, ExpressivE, and Deep
Large language model (LLM) scaling is hitting a wall. Widening models yields diminishing returns, and extending context length does not improve fundamental expressivity. In contrast, depth scaling offers theoretically superior expressivity, yet current Transformer architectures struggle to train reliably at extreme depths. We revisit the Post-LayerNorm (Post-LN) formulation, whose instability at scale caused its replacement by Pre-LN in modern LLMs. We show that the central failure mode of Post-LN arises from the ResNet-style residual pathway, which introduces gradient vanishing in deep networks. We present Keel, a Post-LN Transformer that replaces this residual path with a Highway-style connection. This modification preserves the gradient flow through the residual branch, preventing signal vanishing from the top layers to the bottom. Unlike prior methods, Keel enables stable training at extreme depths without requiring specialized initialization or complex optimization tricks. Keel trains robustly at depths exceeding 1000 layers and consistently improves perplexity and depth-scaling characteristics over Pre-LN. These findings indicate that Post-LN, when paired with a Highway-style connection, provides a simple and effective foundation for building deeply scalable LLMs, opening the possibility for future infinite-depth architectures.
♻ ☆ Toward Culturally Aligned LLMs through Ontology-Guided Multi-Agent Reasoning
Large Language Models (LLMs) increasingly support culturally sensitive decision making, yet often exhibit misalignment due to skewed pretraining data and the absence of structured value representations. Existing methods can steer outputs, but often lack demographic grounding and treat values as independent, unstructured signals, reducing consistency and interpretability. We propose OG-MAR, an Ontology-Guided Multi-Agent Reasoning framework. OG-MAR summarizes respondent-specific values from the World Values Survey (WVS) and constructs a global cultural ontology by eliciting relations over a fixed taxonomy via competency questions. At inference time, it retrieves ontology-consistent relations and demographically similar profiles to instantiate multiple value-persona agents, whose outputs are synthesized by a judgment agent that enforces ontology consistency and demographic proximity. Experiments on regional social-survey benchmarks across four LLM backbones show that OG-MAR improves cultural alignment and robustness over competitive baselines, while producing more transparent reasoning traces.
comment: 35 pages
♻ ☆ LogicScore: Fine-grained Logic Evaluation of Conciseness, Completeness, and Determinateness in Attributed Question Answering
Current evaluation methods for Attributed Question Answering (AQA) suffer from \textit{attribution myopia}: they emphasize verification of isolated statements and their attributions but overlook the global logical integrity of long-form answers. Consequently, Large Language Models (LLMs) often produce factually grounded yet logically incoherent responses with elusive deductive gaps. To mitigate this limitation, we present \textsc{LogicScore}, a unified evaluation framework that shifts the paradigm from local assessment to global reasoning scrutiny. Grounded in Horn Rules, our approach integrates a backward verification mechanism to systematically evaluate three key reasoning dimensions: \textit{Completeness} (logically sound deduction), \textit{Conciseness} (non-redundancy), and \textit{Determinateness} (consistent answer entailment). Extensive experiments across three multi-hop QA datasets (HotpotQA, MusiQue, and 2WikiMultiHopQA) and over 20 LLMs (including GPT-5, Gemini-3-Pro, LLaMA3, and task-specific tuned models) reveal a critical capability gap: leading models often achieve high attribution scores (e.g., 92.85\% precision for Gemini-3 Pro) but struggle with global reasoning quality (e.g., 35.11\% Conciseness for Gemini-3 Pro). Our work establishes a robust standard for logical evaluation, highlighting the need to prioritize reasoning coherence alongside factual grounding in LLM development. Codes are available at: https://github.com/zhichaoyan11/LogicScore.
♻ ☆ Think Less, Label Better: Multi-Stage Domain-Grounded Synthetic Data Generation for Fine-Tuning Large Language Models in Telecommunications
The success of large language models (LLMs) depends heavily on large-scale, high-quality instruction-following and reinforcement datasets. However, generating such data through human annotation is prohibitively time-consuming particularly for domain-specific tasks like telecom network troubleshooting, where accurate responses require deep technical expertise and contextual understanding. In this paper, we present a fully automated, retrieval-augmented pipeline for generating synthetic question-answer (QA) pairs grounded in structured domain knowledge. Our multi-stage framework integrates a retriever, base generator, and refinement model to synthesize and enhance QA pairs using documents retrieved from a domain-specific knowledge graph. To ensure data quality, we employ customized RAGAS-based scoring to filter low-quality samples, producing a high-quality dataset suitable for reinforcement fine-tuning (RFT). We demonstrate our approach in a real-world telecom scenario focused on radio access network (RAN) troubleshooting. The resulting pipeline generates complex, context-rich troubleshooting solution plans without human intervention. This work offers a scalable solution for building instruction and reinforcement datasets in specialized domains, significantly reducing dependence on manual labeling while maintaining high technical fidelity.
comment: 6 pages, 6 figures, 5 tables, IEEE ICC 2026
♻ ☆ Are LLMs Stable Formal Logic Translators in Logical Reasoning Across Linguistically Diversified Texts? WWW2026
Logical reasoning with large language models (LLMs) has received growing attention. One mainstream approach translates natural language into formal logic and then applies symbolic solvers for deduction. While effective in many tasks, these LLM-based translators often fail to generate consistent symbolic representations when the same concept appears in different linguistic forms. Such inconsistencies break logical coherence and lead to solver errors. However, most existing benchmarks lack this type of linguistic variation, which frequently occurs in real-world text, leaving the problem underexplored. To address this gap, we present SoLT, a benchmark that systematically rewrites reasoning datasets into diverse yet logically equivalent forms across multiple levels. Beyond evaluation, SoLT also provides a general method to enrich any dataset with linguistic diversity while preserving both meaning and logic. To further enhance the stability of LLM-based reasoning, we propose MenTaL, which explicitly guides models to build a concept-symbol mapping table during translation. By linking equivalent expressions to shared symbols, MenTaL maintains consistency and mitigates symbol drift. Experiments on SoLT demonstrate that LLMs indeed suffer from inconsistent symbol mapping under linguistic variation, leading to significant drops in reasoning accuracy. Meanwhile, applying MenTaL brings clear and stable performance improvements across diverse inputs. Overall, our findings reveal that overlooking linguistic diversity hides key weaknesses in LLM-based translators, and our work offers a step toward more reliable logical reasoning in varied real-world scenarios. Our code is available at https://github.com/wufeiwuwoshihua/LinguDiver.
comment: Accepted by WWW2026
♻ ☆ LLM Latent Reasoning as Chain of Superposition
Latent reasoning offers a computation-efficient alternative to Chain-of-Thought but often suffers from performance degradation due to distributional misalignment and ambiguous chain definitions. Ideally, latent reasoning should function as a superposition of multiple reasoning paths. To realize this, we introduce Latent-SFT, a unified framework addressing challenges at three levels: token, chain, and learning. First, we define the Latent-Vocab to constrain hidden states within the pre-trained vocab-space. Second, we construct the Latent-Chain via Induction-Supervision Masking to ensure semantic compactness and sufficiency. Third, we employ Latent-Optim with stochastic Gumbel-Softmax to guide the model toward generalizable solutions. Empirical results demonstrate that Latent-SFT consistently outperforms explicit SFT across six mathematical benchmarks (e.g., GSM8k, AIME24) while achieving a 2.7x to 5.5x reduction in reasoning length. Analysis confirms that our method effectively captures a superposition of diverse reasoning trajectories rather than merely compressing a single path.
♻ ☆ Token-Guard: Towards Token-Level Hallucination Control via Self-Checking Decoding ICLR 2026
Large Language Models (LLMs) often hallucinate, generating content inconsistent with the input. Retrieval-Augmented Generation (RAG) and Reinforcement Learning with Human Feedback (RLHF) can mitigate hallucinations but require resource-intensive retrieval or large-scale fine-tuning. Decoding-based methods are lighter yet lack explicit hallucination control. To address this, we present Token-Guard, a token-level hallucination control method based on self-checking decoding. Token-Guard performs internal verification at each reasoning step to detect hallucinated tokens before they propagate. Candidate fragments are further evaluated in a latent space with explicit hallucination risk scoring, while iterative pruning and regeneration dynamically correct detected errors. Experiments on HALU datasets show Token-Guard substantially reduces hallucinations and improves generation accuracy, offering a scalable, modular solution for reliable LLM outputs. Our code is publicly available.
comment: Accepted by ICLR 2026 main conference
♻ ☆ Qwen3-ASR Technical Report
In this report, we introduce Qwen3-ASR family, which includes two powerful all-in-one speech recognition models and a novel non-autoregressive speech forced alignment model. Qwen3-ASR-1.7B and Qwen3-ASR-0.6B are ASR models that support language identification and ASR for 52 languages and dialects. Both of them leverage large-scale speech training data and the strong audio understanding ability of their foundation model Qwen3-Omni. We conduct comprehensive internal evaluation besides the open-sourced benchmarks as ASR models might differ little on open-sourced benchmark scores but exhibit significant quality differences in real-world scenarios. The experiments reveal that the 1.7B version achieves SOTA performance among open-sourced ASR models and is competitive with the strongest proprietary APIs while the 0.6B version offers the best accuracy-efficiency trade-off. Qwen3-ASR-0.6B can achieve an average TTFT as low as 92ms and transcribe 2000 seconds speech in 1 second at a concurrency of 128. Qwen3-ForcedAligner-0.6B is an LLM based NAR timestamp predictor that is able to align text-speech pairs in 11 languages. Timestamp accuracy experiments show that the proposed model outperforms the three strongest force alignment models and takes more advantages in efficiency and versatility. To further accelerate the community research of ASR and audio understanding, we release these models under the Apache 2.0 license.
comment: https://github.com/QwenLM/Qwen3-ASR
♻ ☆ GOLD PANNING: Iterative Bayesian Signal Anchoring for Many-Document Needle-in-Haystack Reasoning
Large language models (LLMs) exhibit pronounced position bias in long-context needle-in-haystack problems, systematically prioritizing the location of information over its relevance. While current mitigations rely on white-box access, this is effectively impossible for many state-of-the-art models. We introduce GOLD PANNING, a black-box Bayesian framework that performs inference-time active search over long contexts by (i) reordering documents to concentrate high-belief items in highly diagnostic positions (signal anchoring) and (ii) updating beliefs over document relevance from model outputs. Unlike conventional active learning, which prioritizes uncertainty reduction, GOLD PANNING leverages anchoring -- once flagged, keep it in sight -- to preserve weak cues. We implement this using iterative assignment derived from the model's diagnosticity profile, which provably identifies a target among $N$ documents in $O(\log N)$ rounds, ensuring scalability to many-document settings.On needle-in-a-haystack retrieval and long-context QA, GOLD PANNING matches Permutation Self-Consistency's target identification with $30--65%$ fewer queries and remains effective under calibration mismatch, suggesting coarse positional ordering drives performance gains. These results demonstrate that inherent model biases need not be failures, but can be used as tools for control.
comment: 15 pages, 6 figures
♻ ☆ ElectriQ: A Benchmark for Assessing the Response Capability of Large Language Models in Power Marketing
As power systems decarbonise and digitalise, high penetrations of distributed energy resources and flexible tariffs make electric power marketing (EPM) a key interface between regulation, system operation and sustainable-energy deployment. Many utilities still rely on human agents and rule- or intent-based chatbots with fragmented knowledge bases that struggle with long, cross-scenario dialogues and fall short of requirements for compliant, verifiable and DR-ready interactions. Meanwhile, frontier large language models (LLMs) show strong conversational ability but are evaluated on generic benchmarks that underweight sector-specific terminology, regulatory reasoning and multi-turn process stability. To address this gap, we present ElectriQ, a large-scale benchmark and evaluation framework for LLMs in EPM. ElectriQ contains over 550k dialogues across six service domains and 24 sub-scenarios and defines a unified protocol that combines human ratings, automatic metrics and two compliance stress tests-Statutory Citation Correctness and Long-Dialogue Consistency. Building on ElectriQ, we propose SEEK-RAG, a retrieval-augmented method that injects policy and domain knowledge during finetuning and inference. Experiments on 13 LLMs show that domain-aligned 7B models with SEEK-RAG match or surpass much larger models while reducing computational cost, providing an auditable, regulation-aware basis for deploying LLM-based EPM assistants that support demand-side management, renewable integration and resilient grid operation.
♻ ☆ Emotions Where Art Thou: Understanding and Characterizing the Emotional Latent Space of Large Language Models
This work investigates how large language models (LLMs) internally represent emotion by analyzing the geometry of their hidden-state space. The paper identifies a low-dimensional emotional manifold and shows that emotional representations are directionally encoded, distributed across layers, and aligned with interpretable dimensions. These structures are stable across depth and generalize to eight real-world emotion datasets spanning five languages. Cross-domain alignment yields low error and strong linear probe performance, indicating a universal emotional subspace. Within this space, internal emotion perception can be steered while preserving semantics using a learned intervention module, with especially strong control for basic emotions across languages. These findings reveal a consistent and manipulable affective geometry in LLMs and offer insight into how they internalize and process emotion.
♻ ☆ DNACHUNKER: Learnable Tokenization for DNA Language Models
DNA language models are increasingly used to represent genomic sequence, yet their effectiveness depends critically on how raw nucleotides are converted into model inputs. Unlike natural language, DNA offers no canonical boundaries, making fixed tokenizations a brittle design choice under shifts, indels, and local repeats. We introduce \modelname{}, a masked DNA language model that incorporates a learnable adaptive segmentation module to produce context-dependent, variable-length units. Building on a dynamic segmentation procedure, \modelname{} learns to allocate finer granularity to functionally enriched regions while compressing repetitive or redundant sequence. We pre-train \modelname{} on the human reference genome (HG38) and evaluate it on the Nucleotide Transformer and Genomic Benchmarks, where it consistently improves over strong fixed-tokenization baselines. Further analyses and ablations indicate that the learned segmentation is structured rather than incidental: the model preferentially uses shorter units around promoters and exons, and longer units in repetitive regions, yielding representations that are both mutation-resilient and biologically-informed.
♻ ☆ Zero-Shot Open-Schema Entity Structure Discovery EACL 2026
Entity structure extraction, which aims to extract entities and their associated attribute-value structures from text, is an essential task for text understanding and knowledge graph construction. Existing methods based on large language models (LLMs) typically rely heavily on predefined entity attribute schemas or annotated datasets, often leading to incomplete extraction results. To address these challenges, we introduce Zero-Shot Open-schema Entity Structure Discovery (ZOES), a novel approach to entity structure extraction that does not require any schema or annotated samples. ZOES operates via a principled mechanism of enrichment, refinement, and unification, based on the insight that an entity and its associated structure are mutually reinforcing. Experiments demonstrate that ZOES consistently enhances LLMs' ability to extract more complete entity structures across three different domains, showcasing both the effectiveness and generalizability of the method. These findings suggest that such an enrichment, refinement, and unification mechanism may serve as a principled approach to improving the quality of LLM-based entity structure discovery in various scenarios.
comment: EACL 2026 camera-ready
♻ ☆ It Takes Two: Your GRPO Is Secretly DPO
Group Relative Policy Optimization (GRPO) has emerged as a prominent reinforcement learning algorithm for post-training Large Language Models. Different from critic-based methods such as PPO, GRPO estimates the advantage function using group-level statistics to reduce the variance of policy gradient estimators. While the prevailing view attributes GRPO's effectiveness to large group sizes for accurate advantage estimation, we propose a different perspective. We demonstrate that the efficacy of GRPO stems from its implicit contrastive objective in the optimization, which helps reduce variance via the control variate method. This perspective establishes a fundamental connection between GRPO and DPO, wherein group size influences only the Monte Carlo estimators of the contrastive objective. To validate this, we investigate the minimal two-rollout case (2-GRPO), a configuration permissible under the contrastive framework but typically considered insufficient for reward normalization. We provide a rigorous theoretical analysis of 2-GRPO and empirically validate its effectiveness: 2-GRPO retains 98.1% of the performance of 16-GRPO, while requiring only 12.5% of the rollouts and 21% of the training time. This study offers a new perspective for future algorithm design in LLM post-training.
Computer Vision and Pattern Recognition 150
☆ VideoGPA: Distilling Geometry Priors for 3D-Consistent Video Generation
While recent video diffusion models (VDMs) produce visually impressive results, they fundamentally struggle to maintain 3D structural consistency, often resulting in object deformation or spatial drift. We hypothesize that these failures arise because standard denoising objectives lack explicit incentives for geometric coherence. To address this, we introduce VideoGPA (Video Geometric Preference Alignment), a data-efficient self-supervised framework that leverages a geometry foundation model to automatically derive dense preference signals that guide VDMs via Direct Preference Optimization (DPO). This approach effectively steers the generative distribution toward inherent 3D consistency without requiring human annotations. VideoGPA significantly enhances temporal stability, physical plausibility, and motion coherence using minimal preference pairs, consistently outperforming state-of-the-art baselines in extensive experiments.
☆ User Prompting Strategies and Prompt Enhancement Methods for Open-Set Object Detection in XR Environments
Open-set object detection (OSOD) localizes objects while identifying and rejecting unknown classes at inference. While recent OSOD models perform well on benchmarks, their behavior under realistic user prompting remains underexplored. In interactive XR settings, user-generated prompts are often ambiguous, underspecified, or overly detailed. To study prompt-conditioned robustness, we evaluate two OSOD models, GroundingDINO and YOLO-E, on real-world XR images and simulate diverse user prompting behaviors using vision-language models. We consider four prompt types: standard, underdetailed, overdetailed, and pragmatically ambiguous, and examine the impact of two enhancement strategies on these prompts. Results show that both models exhibit stable performance under underdetailed and standard prompts, while they suffer degradation under ambiguous prompts. Overdetailed prompts primarily affect GroundingDINO. Prompt enhancement substantially improves robustness under ambiguity, yielding gains exceeding 55% mIoU and 41% average confidence. Based on the findings, we propose several prompting strategies and prompt enhancement methods for OSOD models in XR environments.
comment: Accepted by IEEE VR 2026: GenAI-XR workshop
☆ Denoising the Deep Sky: Physics-Based CCD Noise Formation for Astronomical Imaging
Astronomical imaging remains noise-limited under practical observing constraints, while standard calibration pipelines mainly remove structured artifacts and leave stochastic noise largely unresolved. Learning-based denoising is promising, yet progress is hindered by scarce paired training data and the need for physically interpretable and reproducible models in scientific workflows. We propose a physics-based noise synthesis framework tailored to CCD noise formation. The pipeline models photon shot noise, photo-response non-uniformity, dark-current noise, readout effects, and localized outliers arising from cosmic-ray hits and hot pixels. To obtain low-noise inputs for synthesis, we average multiple unregistered exposures to produce high-SNR bases. Realistic noisy counterparts synthesized from these bases using our noise model enable the construction of abundant paired datasets for supervised learning. We further introduce a real-world dataset across multi-bands acquired with two twin ground-based telescopes, providing paired raw frames and instrument-pipeline calibrated frames, together with calibration data and stacked high-SNR bases for real-world evaluation.
☆ PaperBanana: Automating Academic Illustration for AI Scientists
Despite rapid advances in autonomous AI scientists powered by language models, generating publication-ready illustrations remains a labor-intensive bottleneck in the research workflow. To lift this burden, we introduce PaperBanana, an agentic framework for automated generation of publication-ready academic illustrations. Powered by state-of-the-art VLMs and image generation models, PaperBanana orchestrates specialized agents to retrieve references, plan content and style, render images, and iteratively refine via self-critique. To rigorously evaluate our framework, we introduce PaperBananaBench, comprising 292 test cases for methodology diagrams curated from NeurIPS 2025 publications, covering diverse research domains and illustration styles. Comprehensive experiments demonstrate that PaperBanana consistently outperforms leading baselines in faithfulness, conciseness, readability, and aesthetics. We further show that our method effectively extends to the generation of high-quality statistical plots. Collectively, PaperBanana paves the way for the automated generation of publication-ready illustrations.
☆ Training-Free Test-Time Adaptation with Brownian Distance Covariance in Vision-Language Models ICASSP 2026
Vision-language models suffer performance degradation under domain shift, limiting real-world applicability. Existing test-time adaptation methods are computationally intensive, rely on back-propagation, and often focus on single modalities. To address these issues, we propose Training-free Test-Time Adaptation with Brownian Distance Covariance (TaTa). TaTa leverages Brownian Distance Covariance-a powerful statistical measure that captures both linear and nonlinear dependencies via pairwise distances-to dynamically adapt VLMs to new domains without training or back-propagation. This not only improves efficiency but also enhances stability by avoiding disruptive weight updates. TaTa further integrates attribute-enhanced prompting to improve vision-language inference with descriptive visual cues. Combined with dynamic clustering and pseudo-label refinement, it effectively recalibrates the model for novel visual contexts. Experiments across diverse datasets show that TaTa significantly reduces computational cost while achieving state-of-the-art performance in domain and cross-dataset generalization.
comment: Accepted in ICASSP 2026
☆ Structured Over Scale: Learning Spatial Reasoning from Educational Video
Vision-language models (VLMs) demonstrate impressive performance on standard video understanding benchmarks yet fail systematically on simple reasoning tasks that preschool children can solve, including counting, spatial reasoning, and compositional understanding. We hypothesize that the pedagogically-structured content of educational videos provides an ideal training signal for improving these capabilities. We introduce DoraVQA, a dataset of 5,344 question-answer pairs automatically extracted from 8 seasons of Dora the Explorer with precise timestamp alignment. Each episode follows a consistent \textit{context-question-pause-answer} structure that creates a self-contained learning environment analogous to interactive tutoring. We fine-tune both Qwen2 and Qwen3 using Group Relative Policy Optimization (GRPO), leveraging the clear correctness signals and structured reasoning traces inherent in educational content. Despite training exclusively on 38 hours of children's educational videos, our approach achieves improvements of 8-14 points on DoraVQA and state-of-the-art 86.16\% on CVBench, with strong transfer to Video-MME and NExT-QA, demonstrating effective generalization from narrow pedagogical content to broad multimodal understanding. Through cross-domain benchmarks, we show that VLMs can perform tasks that require robust reasoning learned from structured educational content, suggesting that content structure matters as much as content scale.
☆ ShotFinder: Imagination-Driven Open-Domain Video Shot Retrieval via Web Search
In recent years, large language models (LLMs) have made rapid progress in information retrieval, yet existing research has mainly focused on text or static multimodal settings. Open-domain video shot retrieval, which involves richer temporal structure and more complex semantics, still lacks systematic benchmarks and analysis. To fill this gap, we introduce ShotFinder, a benchmark that formalizes editing requirements as keyframe-oriented shot descriptions and introduces five types of controllable single-factor constraints: Temporal order, Color, Visual style, Audio, and Resolution. We curate 1,210 high-quality samples from YouTube across 20 thematic categories, using large models for generation with human verification. Based on the benchmark, we propose ShotFinder, a text-driven three-stage retrieval and localization pipeline: (1) query expansion via video imagination, (2) candidate video retrieval with a search engine, and (3) description-guided temporal localization. Experiments on multiple closed-source and open-source models reveal a significant gap to human performance, with clear imbalance across constraints: temporal localization is relatively tractable, while color and visual style remain major challenges. These results reveal that open-domain video shot retrieval is still a critical capability that multimodal large models have yet to overcome.
comment: 28 pages, 7 figures
☆ Video-o3: Native Interleaved Clue Seeking for Long Video Multi-Hop Reasoning
Existing multimodal large language models for long-video understanding predominantly rely on uniform sampling and single-turn inference, limiting their ability to identify sparse yet critical evidence amid extensive redundancy. We introduce Video-o3, a novel framework that supports iterative discovery of salient visual clues, fine-grained inspection of key segments, and adaptive termination once sufficient evidence is acquired. Technically, we address two core challenges in interleaved tool invocation. First, to mitigate attention dispersion induced by the heterogeneity of reasoning and tool-calling, we propose Task-Decoupled Attention Masking, which isolates per-step concentration while preserving shared global context. Second, to control context length growth in multi-turn interactions, we introduce a Verifiable Trajectory-Guided Reward that balances exploration coverage with reasoning efficiency. To support training at scale, we further develop a data synthesis pipeline and construct Seeker-173K, comprising 173K high-quality tool-interaction trajectories for effective supervised and reinforcement learning. Extensive experiments show that Video-o3 substantially outperforms state-of-the-art methods, achieving 72.1% accuracy on MLVU and 46.5% on Video-Holmes. These results demonstrate Video-o3's strong multi-hop evidence-seeking and reasoning capabilities, and validate the effectiveness of native tool invocation in long-video scenarios.
comment: 24 pages, 15 figures, 11 tables
☆ Region-Normalized DPO for Medical Image Segmentation under Noisy Judges
While dense pixel-wise annotations remain the gold standard for medical image segmentation, they are costly to obtain and limit scalability. In contrast, many deployed systems already produce inexpensive automatic quality-control (QC) signals like model agreement, uncertainty measures, or learned mask-quality scores which can be used for further model training without additional ground-truth annotation. However, these signals can be noisy and biased, making preference-based fine-tuning susceptible to harmful updates. We study Direct Preference Optimization (DPO) for segmentation from such noisy judges using proposals generated by a supervised base segmenter trained on a small labeled set. We find that outcomes depend strongly on how preference pairs are mined: selecting the judge's top-ranked proposal can improve peak performance when the judge is reliable, but can amplify harmful errors under weaker judges. We propose Region-Normalized DPO (RN-DPO), a segmentation-aware objective which normalizes preference updates by the size of the disagreement region between masks, reducing the leverage of harmful comparisons and improving optimization stability. Across two medical datasets and multiple regimes, RN-DPO improves sustained performance and stabilizes preference-based fine-tuning, outperforming standard DPO and strong baselines without requiring additional pixel annotations.
☆ Med-Scout: Curing MLLMs' Geometric Blindness in Medical Perception via Geometry-Aware RL Post-Training
Despite recent Multimodal Large Language Models (MLLMs)' linguistic prowess in medical diagnosis, we find even state-of-the-art MLLMs suffer from a critical perceptual deficit: geometric blindness. This failure to ground outputs in objective geometric constraints leads to plausible yet factually incorrect hallucinations, rooted in training paradigms that prioritize linguistic fluency over geometric fidelity. This paper introduces Med-Scout, a novel framework that "cures" this blindness via Reinforcement Learning (RL) that leverages the intrinsic geometric logic latent within unlabeled medical images. Instead of relying on costly expert annotations, Med-Scout derives verifiable supervision signals through three strategic proxy tasks: Hierarchical Scale Localization, Topological Jigsaw Reconstruction, and Anomaly Consistency Detection. To rigorously quantify this deficit, we present Med-Scout-Bench, a new benchmark specifically designed to evaluate geometric perception. Extensive evaluations show that Med-Scout significantly mitigates geometric blindness, outperforming leading proprietary and open-source MLLMs by over 40% on our benchmark. Furthermore, this enhanced geometric perception generalizes to broader medical understanding, achieving superior results on radiological and comprehensive medical VQA tasks.
☆ Scale-Cascaded Diffusion Models for Super-Resolution in Medical Imaging
Diffusion models have been increasingly used as strong generative priors for solving inverse problems such as super-resolution in medical imaging. However, these approaches typically utilize a diffusion prior trained at a single scale, ignoring the hierarchical scale structure of image data. In this work, we propose to decompose images into Laplacian pyramid scales and train separate diffusion priors for each frequency band. We then develop an algorithm to perform super-resolution that utilizes these priors to progressively refine reconstructions across different scales. Evaluated on brain, knee, and prostate MRI data, our approach both improves perceptual quality over baselines and reduces inference time through smaller coarse-scale networks. Our framework unifies multiscale reconstruction and diffusion priors for medical image super-resolution.
comment: Accepted at IEEE International Symposium for Biomedical Imaging (ISBI) 2026
☆ Hi-Light: A Path to high-fidelity, high-resolution video relighting with a Novel Evaluation Paradigm
Video relighting offers immense creative potential and commercial value but is hindered by challenges, including the absence of an adequate evaluation metric, severe light flickering, and the degradation of fine-grained details during editing. To overcome these challenges, we introduce Hi-Light, a novel, training-free framework for high-fidelity, high-resolution, robust video relighting. Our approach introduces three technical innovations: lightness prior anchored guided relighting diffusion that stabilises intermediate relit video, a Hybrid Motion-Adaptive Lighting Smoothing Filter that leverages optical flow to ensure temporal stability without introducing motion blur, and a LAB-based Detail Fusion module that preserves high-frequency detail information from the original video. Furthermore, to address the critical gap in evaluation, we propose the Light Stability Score, the first quantitative metric designed to specifically measure lighting consistency. Extensive experiments demonstrate that Hi-Light significantly outperforms state-of-the-art methods in both qualitative and quantitative comparisons, producing stable, highly detailed relit videos.
☆ Segment Any Events with Language ICLR 2026
Scene understanding with free-form language has been widely explored within diverse modalities such as images, point clouds, and LiDAR. However, related studies on event sensors are scarce or narrowly centered on semantic-level understanding. We introduce SEAL, the first Semantic-aware Segment Any Events framework that addresses Open-Vocabulary Event Instance Segmentation (OV-EIS). Given the visual prompt, our model presents a unified framework to support both event segmentation and open-vocabulary mask classification at multiple levels of granularity, including instance-level and part-level. To enable thorough evaluation on OV-EIS, we curate four benchmarks that cover label granularity from coarse to fine class configurations and semantic granularity from instance-level to part-level understanding. Extensive experiments show that our SEAL largely outperforms proposed baselines in terms of performance and inference speed with a parameter-efficient architecture. In the Appendix, we further present a simple variant of our SEAL achieving generic spatiotemporal OV-EIS that does not require any visual prompts from users in the inference. Check out our project page in https://0nandon.github.io/SEAL
comment: ICLR 2026. Project Page: https://0nandon.github.io/SEAL
☆ FlowCalib: LiDAR-to-Vehicle Miscalibration Detection using Scene Flows
Accurate sensor-to-vehicle calibration is essential for safe autonomous driving. Angular misalignments of LiDAR sensors can lead to safety-critical issues during autonomous operation. However, current methods primarily focus on correcting sensor-to-sensor errors without considering the miscalibration of individual sensors that cause these errors in the first place. We introduce FlowCalib, the first framework that detects LiDAR-to-vehicle miscalibration using motion cues from the scene flow of static objects. Our approach leverages the systematic bias induced by rotational misalignment in the flow field generated from sequential 3D point clouds, eliminating the need for additional sensors. The architecture integrates a neural scene flow prior for flow estimation and incorporates a dual-branch detection network that fuses learned global flow features with handcrafted geometric descriptors. These combined representations allow the system to perform two complementary binary classification tasks: a global binary decision indicating whether misalignment is present and separate, axis-specific binary decisions indicating whether each rotational axis is misaligned. Experiments on the nuScenes dataset demonstrate FlowCalib's ability to robustly detect miscalibration, establishing a benchmark for sensor-to-vehicle miscalibration detection.
☆ Vision-Language Controlled Deep Unfolding for Joint Medical Image Restoration and Segmentation
We propose VL-DUN, a principled framework for joint All-in-One Medical Image Restoration and Segmentation (AiOMIRS) that bridges the gap between low-level signal recovery and high-level semantic understanding. While standard pipelines treat these tasks in isolation, our core insight is that they are fundamentally synergistic: restoration provides clean anatomical structures to improve segmentation, while semantic priors regularize the restoration process. VL-DUN resolves the sub-optimality of sequential processing through two primary innovations. (1) We formulate AiOMIRS as a unified optimization problem, deriving an interpretable joint unfolding mechanism where restoration and segmentation are mathematically coupled for mutual refinement. (2) We introduce a frequency-aware Mamba mechanism to capture long-range dependencies for global segmentation while preserving the high-frequency textures necessary for restoration. This allows for efficient global context modeling with linear complexity, effectively mitigating the spectral bias of standard architectures. As a pioneering work in the AiOMIRS task, VL-DUN establishes a new state-of-the-art across multi-modal benchmarks, improving PSNR by 0.92 dB and the Dice coefficient by 9.76\%. Our results demonstrate that joint collaborative learning offers a superior, more robust solution for complex clinical workflows compared to isolated task processing. The codes are provided in https://github.com/cipi666/VLDUN.
comment: 18 pages, medical image
☆ Rethinking Transferable Adversarial Attacks on Point Clouds from a Compact Subspace Perspective
Transferable adversarial attacks on point clouds remain challenging, as existing methods often rely on model-specific gradients or heuristics that limit generalization to unseen architectures. In this paper, we rethink adversarial transferability from a compact subspace perspective and propose CoSA, a transferable attack framework that operates within a shared low-dimensional semantic space. Specifically, each point cloud is represented as a compact combination of class-specific prototypes that capture shared semantic structure, while adversarial perturbations are optimized within a low-rank subspace to induce coherent and architecture-agnostic variations. This design suppresses model-dependent noise and constrains perturbations to semantically meaningful directions, thereby improving cross-model transferability without relying on surrogate-specific artifacts. Extensive experiments on multiple datasets and network architectures demonstrate that CoSA consistently outperforms state-of-the-art transferable attacks, while maintaining competitive imperceptibility and robustness under common defense strategies. Codes will be made public upon paper acceptance.
☆ EAG-PT: Emission-Aware Gaussians and Path Tracing for Indoor Scene Reconstruction and Editing
Recent reconstruction methods based on radiance field such as NeRF and 3DGS reproduce indoor scenes with high visual fidelity, but break down under scene editing due to baked illumination and the lack of explicit light transport. In contrast, physically based inverse rendering relies on mesh representations and path tracing, which enforce correct light transport but place strong requirements on geometric fidelity, becoming a practical bottleneck for real indoor scenes. In this work, we propose Emission-Aware Gaussians and Path Tracing (EAG-PT), aiming for physically based light transport with a unified 2D Gaussian representation. Our design is based on three cores: (1) using 2D Gaussians as a unified scene representation and transport-friendly geometry proxy that avoids reconstructed mesh, (2) explicitly separating emissive and non-emissive components during reconstruction for further scene editing, and (3) decoupling reconstruction from final rendering by using efficient single-bounce optimization and high-quality multi-bounce path tracing after scene editing. Experiments on synthetic and real indoor scenes show that EAG-PT produces more natural and physically consistent renders after editing than radiant scene reconstructions, while preserving finer geometric detail and avoiding mesh-induced artifacts compared to mesh-based inverse path tracing. These results suggest promising directions for future use in interior design, XR content creation, and embodied AI.
comment: project page: https://eag-pt.github.io
☆ HierLoc: Hyperbolic Entity Embeddings for Hierarchical Visual Geolocation
Visual geolocalization, the task of predicting where an image was taken, remains challenging due to global scale, visual ambiguity, and the inherently hierarchical structure of geography. Existing paradigms rely on either large-scale retrieval, which requires storing a large number of image embeddings, grid-based classifiers that ignore geographic continuity, or generative models that diffuse over space but struggle with fine detail. We introduce an entity-centric formulation of geolocation that replaces image-to-image retrieval with a compact hierarchy of geographic entities embedded in Hyperbolic space. Images are aligned directly to country, region, subregion, and city entities through Geo-Weighted Hyperbolic contrastive learning by directly incorporating haversine distance into the contrastive objective. This hierarchical design enables interpretable predictions and efficient inference with 240k entity embeddings instead of over 5 million image embeddings on the OSV5M benchmark, on which our method establishes a new state-of-the-art performance. Compared to the current methods in the literature, it reduces mean geodesic error by 19.5\%, while improving the fine-grained subregion accuracy by 43%. These results demonstrate that geometry-aware hierarchical embeddings provide a scalable and conceptually new alternative for global image geolocation.
☆ One-shot Optimized Steering Vector for Hallucination Mitigation for VLMs
Vision Language Models (VLMs) achieve strong performance on multimodal tasks but still suffer from hallucination and safety-related failures that persist even at scale. Steering offers a lightweight technique to improve model performance. However, steering, whether input-dependent or input-independent, achieves a meaningful trade-off between efficiency and effectiveness. In this work, we observe that steering vectors can generalize across inputs when tasks share aligned semantic intent. Based on this insight, we propose \textbf{OSGA} (\textbf{O}ne-shot \textbf{S}teering with \textbf{G}enerative \textbf{A}nchor), an input-independent framework that improves model performance with a single optimization instance. OSGA first selects an informative sample via a variance-based data selection strategy and learns a single steering vector with a contrastive objective with generative anchor regularization. The resulting vector can be universally applied at a certain layer during inference time without modifying model parameters. Experiments across multiple benchmarks show that a single OSGA-optimized steering vector consistently improves hallucination mitigation and safety enhancement with negligible overhead, highlighting one-shot steering as a practical and scalable solution for reliable VLMs.
☆ Scale Equivariance Regularization and Feature Lifting in High Dynamic Range Modulo Imaging
Modulo imaging enables high dynamic range (HDR) acquisition by cyclically wrapping saturated intensities, but accurate reconstruction remains challenging due to ambiguities between natural image edges and artificial wrap discontinuities. This work proposes a learning-based HDR restoration framework that incorporates two key strategies: (i) a scale-equivariant regularization that enforces consistency under exposure variations, and (ii) a feature lifting input design combining the raw modulo image, wrapped finite differences, and a closed-form initialization. Together, these components enhance the network's ability to distinguish true structure from wrapping artifacts, yielding state-of-the-art performance across perceptual and linear HDR quality metrics.
☆ Leveraging Multi-Rater Annotations to Calibrate Object Detectors in Microscopy Imaging
Deep learning-based object detectors have achieved impressive performance in microscopy imaging, yet their confidence estimates often lack calibration, limiting their reliability for biomedical applications. In this work, we introduce a new approach to improve model calibration by leveraging multi-rater annotations. We propose to train separate models on the annotations from single experts and aggregate their predictions to emulate consensus. This improves upon label sampling strategies, where models are trained on mixed annotations, and offers a more principled way to capture inter-rater variability. Experiments on a colorectal organoid dataset annotated by two experts demonstrate that our rater-specific ensemble strategy improves calibration performance while maintaining comparable detection accuracy. These findings suggest that explicitly modelling rater disagreement can lead to more trustworthy object detectors in biomedical imaging.
comment: Accepted as a conference paper at ISBI 2026
Self-Supervised Slice-to-Volume Reconstruction with Gaussian Representations for Fetal MRI
Reconstructing 3D fetal MR volumes from motion-corrupted stacks of 2D slices is a crucial and challenging task. Conventional slice-to-volume reconstruction (SVR) methods are time-consuming and require multiple orthogonal stacks for reconstruction. While learning-based SVR approaches have significantly reduced the time required at the inference stage, they heavily rely on ground truth information for training, which is inaccessible in practice. To address these challenges, we propose GaussianSVR, a self-supervised framework for slice-to-volume reconstruction. GaussianSVR represents the target volume using 3D Gaussian representations to achieve high-fidelity reconstruction. It leverages a simulated forward slice acquisition model to enable self-supervised training, alleviating the need for ground-truth volumes. Furthermore, to enhance both accuracy and efficiency, we introduce a multi-resolution training strategy that jointly optimizes Gaussian parameters and spatial transformations across different resolution levels. Experiments show that GaussianSVR outperforms the baseline methods on fetal MR volumetric reconstruction. Code will be available upon acceptance.
☆ About an Automating Annotation Method for Robot Markers
Factory automation has become increasingly important due to labor shortages, leading to the introduction of autonomous mobile robots for tasks such as material transportation. Markers are commonly used for robot self-localization and object identification. In the RoboCup Logistics League (RCLL), ArUco markers are employed both for robot localization and for identifying processing modules. Conventional recognition relies on OpenCV-based image processing, which detects black-and-white marker patterns. However, these methods often fail under noise, motion blur, defocus, or varying illumination conditions. Deep-learning-based recognition offers improved robustness under such conditions, but requires large amounts of annotated data. Annotation must typically be done manually, as the type and position of objects cannot be detected automatically, making dataset preparation a major bottleneck. In contrast, ArUco markers include built-in recognition modules that provide both ID and positional information, enabling automatic annotation. This paper proposes an automated annotation method for training deep-learning models on ArUco marker images. By leveraging marker detection results obtained from the ArUco module, the proposed approach eliminates the need for manual labeling. A YOLO-based model is trained using the automatically annotated dataset, and its performance is evaluated under various conditions. Experimental results demonstrate that the proposed method improves recognition performance compared with conventional image-processing techniques, particularly for images affected by blur or defocus. Automatic annotation also reduces human effort and ensures consistent labeling quality. Future work will investigate the relationship between confidence thresholds and recognition performance.
☆ Improving Supervised Machine Learning Performance in Optical Quality Control via Generative AI for Dataset Expansion
Supervised machine learning algorithms play a crucial role in optical quality control within industrial production. These approaches require representative datasets for effective model training. However, while non-defective components are frequent, defective parts are rare in production, resulting in highly imbalanced datasets that adversely impact model performance. Existing strategies to address this challenge, such as specialized loss functions or traditional data augmentation techniques, have limitations, including the need for careful hyperparameter tuning or the alteration of only simple image features. Therefore, this work explores the potential of generative artificial intelligence (GenAI) as an alternative method for expanding limited datasets and enhancing supervised machine learning performance. Specifically, we investigate Stable Diffusion and CycleGAN as image generation models, focusing on the segmentation of combine harvester components in thermal images for subsequent defect detection. Our results demonstrate that dataset expansion using Stable Diffusion yields the most significant improvement, enhancing segmentation performance by 4.6 %, resulting in a Mean Intersection over Union (Mean IoU) of 84.6 %.
comment: Accepted at 19th CIRP Conference on Intelligent Computation in Manufacturing Engineering
☆ Triage: Hierarchical Visual Budgeting for Efficient Video Reasoning in Vision-Language Models ICASSP 2026
Vision-Language Models (VLMs) face significant computational challenges in video processing due to massive data redundancy, which creates prohibitively long token sequences. To address this, we introduce Triage, a training-free, plug-and-play framework that reframes video reasoning as a resource allocation problem via hierarchical visual budgeting. Its first stage, Frame-Level Budgeting, identifies keyframes by evaluating their visual dynamics and relevance, generating a strategic prior based on their importance scores. Guided by this prior, the second stage, Token-Level Budgeting, allocates tokens in two phases: it first secures high-relevance Core Tokens, followed by diverse Context Tokens selected with an efficient batched Maximal Marginal Relevance (MMR) algorithm. Extensive experiments demonstrate that Triage improves inference speed and reduces memory footprint, while maintaining or surpassing the performance of baselines and other methods on various video reasoning benchmarks.
comment: Accepted to 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2026)
☆ Semantic Leakage from Image Embeddings
Image embeddings are generally assumed to pose limited privacy risk. We challenge this assumption by formalizing semantic leakage as the ability to recover semantic structures from compressed image embeddings. Surprisingly, we show that semantic leakage does not require exact reconstruction of the original image. Preserving local semantic neighborhoods under embedding alignment is sufficient to expose the intrinsic vulnerability of image embeddings. Crucially, this preserved neighborhood structure allows semantic information to propagate through a sequence of lossy mappings. Based on this conjecture, we propose Semantic Leakage from Image Embeddings (SLImE), a lightweight inference framework that reveals semantic information from standalone compressed image embeddings, incorporating a locally trained semantic retriever with off-the-shelf models, without training task-specific decoders. We thoroughly validate each step of the framework empirically, from aligned embeddings to retrieved tags, symbolic representations, and grammatical and coherent descriptions. We evaluate SLImE across a range of open and closed embedding models, including GEMINI, COHERE, NOMIC, and CLIP, and demonstrate consistent recovery of semantic information across diverse inference tasks. Our results reveal a fundamental vulnerability in image embeddings, whereby the preservation of semantic neighborhoods under alignment enables semantic leakage, highlighting challenges for privacy preservation.1
comment: 20 pages, 19 figures
☆ Q-Hawkeye: Reliable Visual Policy Optimization for Image Quality Assessment
Image Quality Assessment (IQA) predicts perceptual quality scores consistent with human judgments. Recent RL-based IQA methods built on MLLMs focus on generating visual quality descriptions and scores, ignoring two key reliability limitations: (i) although the model's prediction stability varies significantly across training samples, existing GRPO-based methods apply uniform advantage weighting, thereby amplifying noisy signals from unstable samples in gradient updates; (ii) most works emphasize text-grounded reasoning over images while overlooking the model's visual perception ability of image content. In this paper, we propose Q-Hawkeye, an RL-based reliable visual policy optimization framework that redesigns the learning signal through unified Uncertainty-Aware Dynamic Optimization and Perception-Aware Optimization. Q-Hawkeye estimates predictive uncertainty using the variance of predicted scores across multiple rollouts and leverages this uncertainty to reweight each sample's update strength, stabilizing policy optimization. To strengthen perceptual reliability, we construct paired inputs of degraded images and their original images and introduce an Implicit Perception Loss that constrains the model to ground its quality judgments in genuine visual evidence. Extensive experiments demonstrate that Q-Hawkeye outperforms state-of-the-art methods and generalizes better across multiple datasets. The code and models will be made available.
☆ Deep in the Jungle: Towards Automating Chimpanzee Population Estimation
The estimation of abundance and density in unmarked populations of great apes relies on statistical frameworks that require animal-to-camera distance measurements. In practice, acquiring these distances depends on labour-intensive manual interpretation of animal observations across large camera trap video corpora. This study introduces and evaluates an only sparsely explored alternative: the integration of computer vision-based monocular depth estimation (MDE) pipelines directly into ecological camera trap workflows for great ape conservation. Using a real-world dataset of 220 camera trap videos documenting a wild chimpanzee population, we combine two MDE models, Dense Prediction Transformers and Depth Anything, with multiple distance sampling strategies. These components are used to generate detection distance estimates, from which population density and abundance are inferred. Comparative analysis against manually derived ground-truth distances shows that calibrated DPT consistently outperforms Depth Anything. This advantage is observed in both distance estimation accuracy and downstream density and abundance inference. Nevertheless, both models exhibit systematic biases. We show that, given complex forest environments, they tend to overestimate detection distances and consequently underestimate density and abundance relative to conventional manual approaches. We further find that failures in animal detection across distance ranges are a primary factor limiting estimation accuracy. Overall, this work provides a case study that shows MDE-driven camera trap distance sampling is a viable and practical alternative to manual distance estimation. The proposed approach yields population estimates within 22% of those obtained using traditional methods.
☆ Multi-Cue Anomaly Detection and Localization under Data Contamination
Visual anomaly detection in real-world industrial settings faces two major limitations. First, most existing methods are trained on purely normal data or on unlabeled datasets assumed to be predominantly normal, presuming the absence of contamination, an assumption that is rarely satisfied in practice. Second, they assume no access to labeled anomaly samples, limiting the model from learning discriminative characteristics of true anomalies. Therefore, these approaches often struggle to distinguish anomalies from normal instances, resulting in reduced detection and weak localization performance. In real-world applications, where training data are frequently contaminated with anomalies, such methods fail to deliver reliable performance. In this work, we propose a robust anomaly detection framework that integrates limited anomaly supervision into the adaptive deviation learning paradigm. We introduce a composite anomaly score that combines three complementary components: a deviation score capturing statistical irregularity, an entropy-based uncertainty score reflecting predictive inconsistency, and a segmentation-based score highlighting spatial abnormality. This unified scoring mechanism enables accurate detection and supports gradient-based localization, providing intuitive and explainable visual evidence of anomalous regions. Following the few-anomaly paradigm, we incorporate a small set of labeled anomalies during training while simultaneously mitigating the influence of contaminated samples through adaptive instance weighting. Extensive experiments on the MVTec and VisA benchmarks demonstrate that our framework outperforms state-of-the-art baselines and achieves strong detection and localization performance, interpretability, and robustness under various levels of data contamination.
comment: 12 pages total (10 pages main text + references), 6 figures. Preprint version; the final camera-ready version may differ
☆ DINO-SAE: DINO Spherical Autoencoder for High-Fidelity Image Reconstruction and Generation
Recent studies have explored using pretrained Vision Foundation Models (VFMs) such as DINO for generative autoencoders, showing strong generative performance. Unfortunately, existing approaches often suffer from limited reconstruction fidelity due to the loss of high-frequency details. In this work, we present the DINO Spherical Autoencoder (DINO-SAE), a framework that bridges semantic representation and pixel-level reconstruction. Our key insight is that semantic information in contrastive representations is primarily encoded in the direction of feature vectors, while forcing strict magnitude matching can hinder the encoder from preserving fine-grained details. To address this, we introduce Hierarchical Convolutional Patch Embedding module that enhances local structure and texture preservation, and Cosine Similarity Alignment objective that enforces semantic consistency while allowing flexible feature magnitudes for detail retention. Furthermore, leveraging the observation that SSL-based foundation model representations intrinsically lie on a hypersphere, we employ Riemannian Flow Matching to train a Diffusion Transformer (DiT) directly on this spherical latent manifold. Experiments on ImageNet-1K demonstrate that our approach achieves state-of-the-art reconstruction quality, reaching 0.37 rFID and 26.2 dB PSNR, while maintaining strong semantic alignment to the pretrained VFM. Notably, our Riemannian Flow Matching-based DiT exhibits efficient convergence, achieving a gFID of 3.47 at 80 epochs.
comment: 17 pages, and 11 figures
☆ MoVE: Mixture of Value Embeddings -- A New Axis for Scaling Parametric Memory in Autoregressive Models
Autoregressive sequence modeling stands as the cornerstone of modern Generative AI, powering results across diverse modalities ranging from text generation to image generation. However, a fundamental limitation of this paradigm is the rigid structural coupling of model capacity to computational cost: expanding a model's parametric memory -- its repository of factual knowledge or visual patterns -- traditionally requires deepening or widening the network, which incurs a proportional rise in active FLOPs. In this work, we introduce $\textbf{MoVE (Mixture of Value Embeddings)}$, a mechanism that breaks this coupling and establishes a new axis for scaling capacity. MoVE decouples memory from compute by introducing a global bank of learnable value embeddings shared across all attention layers. For every step in the sequence, the model employs a differentiable soft gating mechanism to dynamically mix retrieved concepts from this bank into the standard value projection. This architecture allows parametric memory to be scaled independently of network depth by simply increasing the number of embedding slots. We validate MoVE through strictly controlled experiments on two representative applications of autoregressive modeling: Text Generation and Image Generation. In both domains, MoVE yields consistent performance improvements over standard and layer-wise memory baselines, enabling the construction of "memory-dense" models that achieve lower perplexity and higher fidelity than their dense counterparts at comparable compute budgets.
☆ Development of Domain-Invariant Visual Enhancement and Restoration (DIVER) Approach for Underwater Images
Underwater images suffer severe degradation due to wavelength-dependent attenuation, scattering, and illumination non-uniformity that vary across water types and depths. We propose an unsupervised Domain-Invariant Visual Enhancement and Restoration (DIVER) framework that integrates empirical correction with physics-guided modeling for robust underwater image enhancement. DIVER first applies either IlluminateNet for adaptive luminance enhancement or a Spectral Equalization Filter for spectral normalization. An Adaptive Optical Correction Module then refines hue and contrast using channel-adaptive filtering, while Hydro-OpticNet employs physics-constrained learning to compensate for backscatter and wavelength-dependent attenuation. The parameters of IlluminateNet and Hydro-OpticNet are optimized via unsupervised learning using a composite loss function. DIVER is evaluated on eight diverse datasets covering shallow, deep, and highly turbid environments, including both naturally low-light and artificially illuminated scenes, using reference and non-reference metrics. While state-of-the-art methods such as WaterNet, UDNet, and Phaseformer perform reasonably in shallow water, their performance degrades in deep, unevenly illuminated, or artificially lit conditions. In contrast, DIVER consistently achieves best or near-best performance across all datasets, demonstrating strong domain-invariant capability. DIVER yields at least a 9% improvement over SOTA methods in UCIQE. On the low-light SeaThru dataset, where color-palette references enable direct evaluation of color restoration, DIVER achieves at least a 4.9% reduction in GPMAE compared to existing methods. Beyond visual quality, DIVER also improves robotic perception by enhancing ORB-based keypoint repeatability and matching performance, confirming its robustness across diverse underwater environments.
comment: Submitted to IEEE Journal of Oceanic Engineering
☆ When Anomalies Depend on Context: Learning Conditional Compatibility for Anomaly Detection ICML 2026
Anomaly detection is often formulated under the assumption that abnormality is an intrinsic property of an observation, independent of context. This assumption breaks down in many real-world settings, where the same object or action may be normal or anomalous depending on latent contextual factors (e.g., running on a track versus on a highway). We revisit \emph{contextual anomaly detection}, classically defined as context-dependent abnormality, and operationalize it in the visual domain, where anomaly labels depend on subject--context compatibility rather than intrinsic appearance. To enable systematic study of this setting, we introduce CAAD-3K, a benchmark that isolates contextual anomalies by controlling subject identity while varying context. We further propose a conditional compatibility learning framework that leverages vision--language representations to model subject--context relationships under limited supervision. Our method substantially outperforms existing approaches on CAAD-3K and achieves state-of-the-art performance on MVTec-AD and VisA, demonstrating that modeling context dependence complements traditional structural anomaly detection. Our code and dataset will be publicly released.
comment: Preprint. Submitted to ICML 2026. 8 pages main text, plus appendix
☆ Under-Canopy Terrain Reconstruction in Dense Forests Using RGB Imaging and Neural 3D Reconstruction WACV 2026
Mapping the terrain and understory hidden beneath dense forest canopies is of great interest for numerous applications such as search and rescue, trail mapping, forest inventory tasks, and more. Existing solutions rely on specialized sensors: either heavy, costly airborne LiDAR, or Airborne Optical Sectioning (AOS), which uses thermal synthetic aperture photography and is tailored for person detection. We introduce a novel approach for the reconstruction of canopy-free, photorealistic ground views using only conventional RGB images. Our solution is based on the celebrated Neural Radiance Fields (NeRF), a recent 3D reconstruction method. Additionally, we include specific image capture considerations, which dictate the needed illumination to successfully expose the scene beneath the canopy. To better cope with the poorly lit understory, we employ a low light loss. Finally, we propose two complementary approaches to remove occluding canopy elements by controlling per-ray integration procedure. To validate the value of our approach, we present two possible downstream tasks. For the task of search and rescue (SAR), we demonstrate that our method enables person detection which achieves promising results compared to thermal AOS (using only RGB images). Additionally, we show the potential of our approach for forest inventory tasks like tree counting. These results position our approach as a cost-effective, high-resolution alternative to specialized sensors for SAR, trail mapping, and forest-inventory tasks.
comment: WACV 2026 CV4EO
☆ Inference-Time Dynamic Modality Selection for Incomplete Multimodal Classification ICLR 2026
Multimodal deep learning (MDL) has achieved remarkable success across various domains, yet its practical deployment is often hindered by incomplete multimodal data. Existing incomplete MDL methods either discard missing modalities, risking the loss of valuable task-relevant information, or recover them, potentially introducing irrelevant noise, leading to the discarding-imputation dilemma. To address this dilemma, in this paper, we propose DyMo, a new inference-time dynamic modality selection framework that adaptively identifies and integrates reliable recovered modalities, fully exploring task-relevant information beyond the conventional discard-or-impute paradigm. Central to DyMo is a novel selection algorithm that maximizes multimodal task-relevant information for each test sample. Since direct estimation of such information at test time is intractable due to the unknown data distribution, we theoretically establish a connection between information and the task loss, which we compute at inference time as a tractable proxy. Building on this, a novel principled reward function is proposed to guide modality selection. In addition, we design a flexible multimodal network architecture compatible with arbitrary modality combinations, alongside a tailored training strategy for robust representation learning. Extensive experiments on diverse natural and medical image datasets show that DyMo significantly outperforms state-of-the-art incomplete/dynamic MDL methods across various missing-data scenarios. Our code is available at https://github.com//siyi-wind/DyMo.
comment: 27 pages (including appendix), accepted by ICLR 2026
☆ How Much of a Model Do We Need? Redundancy and Slimmability in Remote Sensing Foundation Models
Large-scale foundation models (FMs) in remote sensing (RS) are developed based on the paradigms established in computer vision (CV) and have shown promise for various Earth observation applications. However, the direct transfer of scaling assumptions from CV to RS has not been adequately examined. We hypothesize that RS FMs enter an overparameterized regime at substantially smaller scales than their CV counterparts, where increasing parameter count primarily induces redundant representations rather than qualitatively new abstractions. To test this hypothesis, we use post-hoc slimming, where we uniformly reduce the width of pretrained encoder, as a tool to measure representational redundancy across six state-of-the-art RS FMs on four downstream classification tasks. Our findings reveal a significant contrast with those in the CV domain: while a post-hoc slimmed masked autoencoder (MAE) trained on ImageNet retains less than 10% accuracy at 1% FLOPs, RS FMs maintain over 71% relative accuracy at the same budget. This sevenfold difference provides strong empirical support for our hypothesis. We further demonstrate that learned slimmable training can improve both Momentum Contrast (MoCo)- and MAE- based models. In addition, through the explained variance ratio and the feature correlation analysis, we provide mechanistic explanations showing that RS FMs distribute task-relevant information with high redundancy. Our findings establish post-hoc slimmability as both a practical deployment strategy for resource-constrained environments and a diagnostic tool that challenges the prevailing scaling paradigm in RS. Upon acceptance, we will publish all code.
☆ Neural Clothing Tryer: Customized Virtual Try-On via Semantic Enhancement and Controlling Diffusion Model
This work aims to address a novel Customized Virtual Try-ON (Cu-VTON) task, enabling the superimposition of a specified garment onto a model that can be customized in terms of appearance, posture, and additional attributes. Compared with traditional VTON task, it enables users to tailor digital avatars to their individual preferences, thereby enhancing the virtual fitting experience with greater flexibility and engagement. To address this task, we introduce a Neural Clothing Tryer (NCT) framework, which exploits the advanced diffusion models equipped with semantic enhancement and controlling modules to better preserve semantic characterization and textural details of the garment and meanwhile facilitating the flexible editing of the model's postures and appearances. Specifically, NCT introduces a semantic-enhanced module to take semantic descriptions of garments and utilizes a visual-language encoder to learn aligned features across modalities. The aligned features are served as condition input to the diffusion model to enhance the preservation of the garment's semantics. Then, a semantic controlling module is designed to take the garment image, tailored posture image, and semantic description as input to maintain garment details while simultaneously editing model postures, expressions, and various attributes. Extensive experiments on the open available benchmark demonstrate the superior performance of the proposed NCT framework.
comment: Accepted by Expert Systems with Applications. 16 pages, 10 figures
☆ NativeTok: Native Visual Tokenization for Improved Image Generation
VQ-based image generation typically follows a two-stage pipeline: a tokenizer encodes images into discrete tokens, and a generative model learns their dependencies for reconstruction. However, improved tokenization in the first stage does not necessarily enhance the second-stage generation, as existing methods fail to constrain token dependencies. This mismatch forces the generative model to learn from unordered distributions, leading to bias and weak coherence. To address this, we propose native visual tokenization, which enforces causal dependencies during tokenization. Building on this idea, we introduce NativeTok, a framework that achieves efficient reconstruction while embedding relational constraints within token sequences. NativeTok consists of: (1) a Meta Image Transformer (MIT) for latent image modeling, and (2) a Mixture of Causal Expert Transformer (MoCET), where each lightweight expert block generates a single token conditioned on prior tokens and latent features. We further design a Hierarchical Native Training strategy that updates only new expert blocks, ensuring training efficiency. Extensive experiments demonstrate the effectiveness of NativeTok.
☆ A Comparative Evaluation of Large Vision-Language Models for 2D Object Detection under SOTIF Conditions
Reliable environmental perception remains one of the main obstacles for safe operation of automated vehicles. Safety of the Intended Functionality (SOTIF) concerns safety risks from perception insufficiencies, particularly under adverse conditions where conventional detectors often falter. While Large Vision-Language Models (LVLMs) demonstrate promising semantic reasoning, their quantitative effectiveness for safety-critical 2D object detection is underexplored. This paper presents a systematic evaluation of ten representative LVLMs using the PeSOTIF dataset, a benchmark specifically curated for long-tail traffic scenarios and environmental degradations. Performance is quantitatively compared against the classical perception approach, a YOLO-based detector. Experimental results reveal a critical trade-off: top-performing LVLMs (e.g., Gemini 3, Doubao) surpass the YOLO baseline in recall by over 25% in complex natural scenarios, exhibiting superior robustness to visual degradation. Conversely, the baseline retains an advantage in geometric precision for synthetic perturbations. These findings highlight the complementary strengths of semantic reasoning versus geometric regression, supporting the use of LVLMs as high-level safety validators in SOTIF-oriented automated driving systems.
comment: 6 pages, 11 figures
☆ Decomposing and Composing: Towards Efficient Vision-Language Continual Learning via Rank-1 Expert Pool in a Single LoRA
Continual learning (CL) in vision-language models (VLMs) faces significant challenges in improving task adaptation and avoiding catastrophic forgetting. Existing methods usually have heavy inference burden or rely on external knowledge, while Low-Rank Adaptation (LoRA) has shown potential in reducing these issues by enabling parameter-efficient tuning. However, considering directly using LoRA to alleviate the catastrophic forgetting problem is non-trivial, we introduce a novel framework that restructures a single LoRA module as a decomposable Rank-1 Expert Pool. Our method learns to dynamically compose a sparse, task-specific update by selecting from this expert pool, guided by the semantics of the [CLS] token. In addition, we propose an Activation-Guided Orthogonal (AGO) loss that orthogonalizes critical parts of LoRA weights across tasks. This sparse composition and orthogonalization enable fewer parameter updates, resulting in domain-aware learning while minimizing inter-task interference and maintaining downstream task performance. Extensive experiments across multiple settings demonstrate state-of-the-art results in all metrics, surpassing zero-shot upper bounds in generalization. Notably, it reduces trainable parameters by 96.7% compared to the baseline method, eliminating reliance on external datasets or task-ID discriminators. The merged LoRAs retain less weights and incur no inference latency, making our method computationally lightweight.
☆ FarmMind: Reasoning-Query-Driven Dynamic Segmentation for Farmland Remote Sensing Images
Existing methods for farmland remote sensing image (FRSI) segmentation generally follow a static segmentation paradigm, where analysis relies solely on the limited information contained within a single input patch. Consequently, their reasoning capability is limited when dealing with complex scenes characterized by ambiguity and visual uncertainty. In contrast, human experts, when interpreting remote sensing images in such ambiguous cases, tend to actively query auxiliary images (such as higher-resolution, larger-scale, or temporally adjacent data) to conduct cross-verification and achieve more comprehensive reasoning. Inspired by this, we propose a reasoning-query-driven dynamic segmentation framework for FRSIs, named FarmMind. This framework breaks through the limitations of the static segmentation paradigm by introducing a reasoning-query mechanism, which dynamically and on-demand queries external auxiliary images to compensate for the insufficient information in a single input image. Unlike direct queries, this mechanism simulates the thinking process of human experts when faced with segmentation ambiguity: it first analyzes the root causes of segmentation ambiguities through reasoning, and then determines what type of auxiliary image needs to be queried based on this analysis. Extensive experiments demonstrate that FarmMind achieves superior segmentation performance and stronger generalization ability compared with existing methods. The source code and dataset used in this work are publicly available at: https://github.com/WithoutOcean/FarmMind.
☆ Diachronic Stereo Matching for Multi-Date Satellite Imagery
Recent advances in image-based satellite 3D reconstruction have progressed along two complementary directions. On one hand, multi-date approaches using NeRF or Gaussian-splatting jointly model appearance and geometry across many acquisitions, achieving accurate reconstructions on opportunistic imagery with numerous observations. On the other hand, classical stereoscopic reconstruction pipelines deliver robust and scalable results for simultaneous or quasi-simultaneous image pairs. However, when the two images are captured months apart, strong seasonal, illumination, and shadow changes violate standard stereoscopic assumptions, causing existing pipelines to fail. This work presents the first Diachronic Stereo Matching method for satellite imagery, enabling reliable 3D reconstruction from temporally distant pairs. Two advances make this possible: (1) fine-tuning a state-of-the-art deep stereo network that leverages monocular depth priors, and (2) exposing it to a dataset specifically curated to include a diverse set of diachronic image pairs. In particular, we start from a pretrained MonSter model, trained initially on a mix of synthetic and real datasets such as SceneFlow and KITTI, and fine-tune it on a set of stereo pairs derived from the DFC2019 remote sensing challenge. This dataset contains both synchronic and diachronic pairs under diverse seasonal and illumination conditions. Experiments on multi-date WorldView-3 imagery demonstrate that our approach consistently surpasses classical pipelines and unadapted deep stereo models on both synchronic and diachronic settings. Fine-tuning on temporally diverse images, together with monocular priors, proves essential for enabling 3D reconstruction from previously incompatible acquisition dates. Left image (winter) Right image (autumn) DSM geometry Ours (1.23 m) Zero-shot (3.99 m) LiDAR GT Figure 1. Output geometry for a winter-autumn image pair from Omaha (OMA 331 test scene). Our method recovers accurate geometry despite the diachronic nature of the pair, exhibiting strong appearance changes, which cause existing zero-shot methods to fail. Missing values due to perspective shown in black. Mean altitude error in parentheses; lower is better.
☆ HeatMat: Simulation of City Material Impact on Urban Heat Island Effect
The Urban Heat Island (UHI) effect, defined as a significant increase in temperature in urban environments compared to surrounding areas, is difficult to study in real cities using sensor data (satellites or in-situ stations) due to their coarse spatial and temporal resolution. Among the factors contributing to this effect are the properties of urban materials, which differ from those in rural areas. To analyze their individual impact and to test new material configurations, a high-resolution simulation at the city scale is required. Estimating the current materials used in a city, including those on building facades, is also challenging. We propose HeatMat, an approach to analyze at high resolution the individual impact of urban materials on the UHI effect in a real city, relying only on open data. We estimate building materials using street-view images and a pre-trained vision-language model (VLM) to supplement existing OpenStreetMap data, which describes the 2D geometry and features of buildings. We further encode this information into a set of 2D maps that represent the city's vertical structure and material characteristics. These maps serve as inputs for our 2.5D simulator, which models coupled heat transfers and enables random-access surface temperature estimation at multiple resolutions, reaching an x20 speedup compared to an equivalent simulation in 3D.
☆ Compact Hypercube Embeddings for Fast Text-based Wildlife Observation Retrieval
Large-scale biodiversity monitoring platforms increasingly rely on multimodal wildlife observations. While recent foundation models enable rich semantic representations across vision, audio, and language, retrieving relevant observations from massive archives remains challenging due to the computational cost of high-dimensional similarity search. In this work, we introduce compact hypercube embeddings for fast text-based wildlife observation retrieval, a framework that enables efficient text-based search over large-scale wildlife image and audio databases using compact binary representations. Building on the cross-view code alignment hashing framework, we extend lightweight hashing beyond a single-modality setup to align natural language descriptions with visual or acoustic observations in a shared Hamming space. Our approach leverages pretrained wildlife foundation models, including BioCLIP and BioLingual, and adapts them efficiently for hashing using parameter-efficient fine-tuning. We evaluate our method on large-scale benchmarks, including iNaturalist2024 for text-to-image retrieval and iNatSounds2024 for text-to-audio retrieval, as well as multiple soundscape datasets to assess robustness under domain shift. Results show that retrieval using discrete hypercube embeddings achieves competitive, and in several cases superior, performance compared to continuous embeddings, while drastically reducing memory and search cost. Moreover, we observe that the hashing objective consistently improves the underlying encoder representations, leading to stronger retrieval and zero-shot generalization. These results demonstrate that binary, language-based retrieval enables scalable and efficient search over large wildlife archives for biodiversity monitoring systems.
☆ Color Matters: Demosaicing-Guided Color Correlation Training for Generalizable AI-Generated Image Detection
As realistic AI-generated images threaten digital authenticity, we address the generalization failure of generative artifact-based detectors by exploiting the intrinsic properties of the camera imaging pipeline. Concretely, we investigate color correlations induced by the color filter array (CFA) and demosaicing, and propose a Demosaicing-guided Color Correlation Training (DCCT) framework for AI-generated image detection. By simulating the CFA sampling pattern, we decompose each color image into a single-channel input (as the condition) and the remaining two channels as the ground-truth targets (for prediction). A self-supervised U-Net is trained to model the conditional distribution of the missing channels from the given one, parameterized via a mixture of logistic functions. Our theoretical analysis reveals that DCCT targets a provable distributional difference in color-correlation features between photographic and AI-generated images. By leveraging these distinct features to construct a binary classifier, DCCT achieves state-of-the-art generalization and robustness, significantly outperforming prior methods across over 20 unseen generators.
☆ Is Training Necessary for Anomaly Detection?
Current state-of-the-art multi-class unsupervised anomaly detection (MUAD) methods rely on training encoder-decoder models to reconstruct anomaly-free features. We first show these approaches have an inherent fidelity-stability dilemma in how they detect anomalies via reconstruction residuals. We then abandon the reconstruction paradigm entirely and propose Retrieval-based Anomaly Detection (RAD). RAD is a training-free approach that stores anomaly-free features in a memory and detects anomalies through multi-level retrieval, matching test patches against the memory. Experiments demonstrate that RAD achieves state-of-the-art performance across four established benchmarks (MVTec-AD, VisA, Real-IAD, 3D-ADAM) under both standard and few-shot settings. On MVTec-AD, RAD reaches 96.7\% Pixel AUROC with just a single anomaly-free image compared to 98.5\% of RAD's full-data performance. We further prove that retrieval-based scores theoretically upper-bound reconstruction-residual scores. Collectively, these findings overturn the assumption that MUAD requires task-specific training, showing that state-of-the-art anomaly detection is feasible with memory-based retrieval. Our code is available at https://github.com/longkukuhi/RAD.
☆ Procedural Knowledge Extraction from Industrial Troubleshooting Guides Using Vision Language Models
Industrial troubleshooting guides encode diagnostic procedures in flowchart-like diagrams where spatial layout and technical language jointly convey meaning. To integrate this knowledge into operator support systems, which assist shop-floor personnel in diagnosing and resolving equipment issues, the information must first be extracted and structured for machine interpretation. However, when performed manually, this extraction is labor-intensive and error-prone. Vision Language Models offer potential to automate this process by jointly interpreting visual and textual meaning, yet their performance on such guides remains underexplored. This paper evaluates two VLMs on extracting structured knowledge, comparing two prompting strategies: standard instruction-guided versus an augmented approach that cues troubleshooting layout patterns. Results reveal model-specific trade-offs between layout sensitivity and semantic robustness, informing practical deployment decisions.
☆ Beauty and the Beast: Imperceptible Perturbations Against Diffusion-Based Face Swapping via Directional Attribute Editing
Diffusion-based face swapping achieves state-of-the-art performance, yet it also exacerbates the potential harm of malicious face swapping to violate portraiture right or undermine personal reputation. This has spurred the development of proactive defense methods. However, existing approaches face a core trade-off: large perturbations distort facial structures, while small ones weaken protection effectiveness. To address these issues, we propose FaceDefense, an enhanced proactive defense framework against diffusion-based face swapping. Our method introduces a new diffusion loss to strengthen the defensive efficacy of adversarial examples, and employs a directional facial attribute editing to restore perturbation-induced distortions, thereby enhancing visual imperceptibility. A two-phase alternating optimization strategy is designed to generate final perturbed face images. Extensive experiments show that FaceDefense significantly outperforms existing methods in both imperceptibility and defense effectiveness, achieving a superior trade-off.
☆ StreamSense: Streaming Social Task Detection with Selective Vision-Language Model Routing
Live streaming platforms require real-time monitoring and reaction to social signals, utilizing partial and asynchronous evidence from video, text, and audio. We propose StreamSense, a streaming detector that couples a lightweight streaming encoder with selective routing to a Vision-Language Model (VLM) expert. StreamSense handles most timestamps with the lightweight streaming encoder, escalates hard/ambiguous cases to the VLM, and defers decisions when context is insufficient. The encoder is trained using (i) a cross-modal contrastive term to align visual/audio cues with textual signals, and (ii) an IoU-weighted loss that down-weights poorly overlapping target segments, mitigating label interference across segment boundaries. We evaluate StreamSense on multiple social streaming detection tasks (e.g., sentiment classification and hate content moderation), and the results show that StreamSense achieves higher accuracy than VLM-only streaming while only occasionally invoking the VLM, thereby reducing average latency and compute. Our results indicate that selective escalation and deferral are effective primitives for understanding streaming social tasks. Code is publicly available on GitHub.
comment: 10 pages, 4 figures, The Web Conference 2026
☆ Lingua-SafetyBench: A Benchmark for Safety Evaluation of Multilingual Vision-Language Models
Robust safety of vision-language large models (VLLMs) under joint multilingual and multimodal inputs remains underexplored. Existing benchmarks are typically multilingual but text-only, or multimodal but monolingual. Recent multilingual multimodal red-teaming efforts render harmful prompts into images, yet rely heavily on typography-style visuals and lack semantically grounded image-text pairs, limiting coverage of realistic cross-modal interactions. We introduce Lingua-SafetyBench, a benchmark of 100,440 harmful image-text pairs across 10 languages, explicitly partitioned into image-dominant and text-dominant subsets to disentangle risk sources. Evaluating 11 open-source VLLMs reveals a consistent asymmetry: image-dominant risks yield higher ASR in high-resource languages, while text-dominant risks are more severe in non-high-resource languages. A controlled study on the Qwen series shows that scaling and version upgrades reduce Attack Success Rate (ASR) overall but disproportionately benefit HRLs, widening the gap between HRLs and Non-HRLs under text-dominant risks. This underscores the necessity of language- and modality-aware safety alignment beyond mere scaling.To facilitate reproducibility and future research, we will publicly release our benchmark, model checkpoints, and source code.The code and dataset will be available at https://github.com/zsxr15/Lingua-SafetyBench.Warning: this paper contains examples with unsafe content.
☆ Active Learning-Driven Lightweight YOLOv9: Enhancing Efficiency in Smart Agriculture
This study addresses the demand for real-time detection of tomatoes and tomato flowers by agricultural robots deployed on edge devices in greenhouse environments. Under practical imaging conditions, object detection systems often face challenges such as large scale variations caused by varying camera distances, severe occlusion from plant structures, and highly imbalanced class distributions. These factors make conventional object detection approaches that rely on fully annotated datasets difficult to simultaneously achieve high detection accuracy and deployment efficiency. To overcome these limitations, this research proposes an active learning driven lightweight object detection framework, integrating data analysis, model design, and training strategy. First, the size distribution of objects in raw agricultural images is analyzed to redefine an operational target range, thereby improving learning stability under real-world conditions. Second, an efficient feature extraction module is incorporated to reduce computational cost, while a lightweight attention mechanism is introduced to enhance feature representation under multi-scale and occluded scenarios. Finally, an active learning strategy is employed to iteratively select high-information samples for annotation and training under a limited labeling budget, effectively improving the recognition performance of minority and small-object categories. Experimental results demonstrate that, while maintaining a low parameter count and inference cost suitable for edge-device deployment, the proposed method effectively improves the detection performance of tomatoes and tomato flowers in raw images. Under limited annotation conditions, the framework achieves an overall detection accuracy of 67.8% mAP, validating its practicality and feasibility for intelligent agricultural applications.
☆ ImgCoT: Compressing Long Chain of Thought into Compact Visual Tokens for Efficient Reasoning of Large Language Model
Compressing long chains of thought (CoT) into compact latent tokens is crucial for efficient reasoning with large language models (LLMs). Recent studies employ autoencoders to achieve this by reconstructing textual CoT from latent tokens, thus encoding CoT semantics. However, treating textual CoT as the reconstruction target forces latent tokens to preserve surface-level linguistic features (e.g., word choice and syntax), introducing a strong linguistic inductive bias that prioritizes linguistic form over reasoning structure and limits logical abstraction. Thus, we propose ImgCoT that replaces the reconstruction target from textual CoT to the visual CoT obtained by rendering CoT into images. This substitutes linguistic bias with spatial inductive bias, i.e., a tendency to model spatial layouts of the reasoning steps in visual CoT, enabling latent tokens to better capture global reasoning structure. Moreover, although visual latent tokens encode abstract reasoning structure, they may blur reasoning details. We thus propose a loose ImgCoT, a hybrid reasoning that augments visual latent tokens with a few key textual reasoning steps, selected based on low token log-likelihood. This design allows LLMs to retain both global reasoning structure and fine-grained reasoning details with fewer tokens than the complete CoT. Extensive experiments across multiple datasets and LLMs demonstrate the effectiveness of the two versions of ImgCoT.
☆ GaussianOcc3D: A Gaussian-Based Adaptive Multi-modal 3D Occupancy Prediction
3D semantic occupancy prediction is a pivotal task in autonomous driving, providing a dense and fine-grained understanding of the surrounding environment, yet single-modality methods face trade-offs between camera semantics and LiDAR geometry. Existing multi-modal frameworks often struggle with modality heterogeneity, spatial misalignment, and the representation crisis--where voxels are computationally heavy and BEV alternatives are lossy. We present GaussianOcc3D, a multi-modal framework bridging camera and LiDAR through a memory-efficient, continuous 3D Gaussian representation. We introduce four modules: (1) LiDAR Depth Feature Aggregation (LDFA), using depth-wise deformable sampling to lift sparse signals onto Gaussian primitives; (2) Entropy-Based Feature Smoothing (EBFS) to mitigate domain noise; (3) Adaptive Camera-LiDAR Fusion (ACLF) with uncertainty-aware reweighting for sensor reliability; and (4) a Gauss-Mamba Head leveraging Selective State Space Models for global context with linear complexity. Evaluations on Occ3D, SurroundOcc, and SemanticKITTI benchmarks demonstrate state-of-the-art performance, achieving mIoU scores of 49.4%, 28.9%, and 25.2% respectively. GaussianOcc3D exhibits superior robustness across challenging rainy and nighttime conditions.
☆ OpenVTON-Bench: A Large-Scale High-Resolution Benchmark for Controllable Virtual Try-On Evaluation
Recent advances in diffusion models have significantly elevated the visual fidelity of Virtual Try-On (VTON) systems, yet reliable evaluation remains a persistent bottleneck. Traditional metrics struggle to quantify fine-grained texture details and semantic consistency, while existing datasets fail to meet commercial standards in scale and diversity. We present OpenVTON-Bench, a large-scale benchmark comprising approximately 100K high-resolution image pairs (up to $1536 \times 1536$). The dataset is constructed using DINOv3-based hierarchical clustering for semantically balanced sampling and Gemini-powered dense captioning, ensuring a uniform distribution across 20 fine-grained garment categories. To support reliable evaluation, we propose a multi-modal protocol that measures VTON quality along five interpretable dimensions: background consistency, identity fidelity, texture fidelity, shape plausibility, and overall realism. The protocol integrates VLM-based semantic reasoning with a novel Multi-Scale Representation Metric based on SAM3 segmentation and morphological erosion, enabling the separation of boundary alignment errors from internal texture artifacts. Experimental results show strong agreement with human judgments (Kendall's $τ$ of 0.833 vs. 0.611 for SSIM), establishing a robust benchmark for VTON evaluation.
☆ Vision-Language Models Unlock Task-Centric Latent Actions
Latent Action Models (LAMs) have rapidly gained traction as an important component in the pre-training pipelines of leading Vision-Language-Action models. However, they fail when observations contain action-correlated distractors, often encoding noise instead of meaningful latent actions. Humans, on the other hand, can effortlessly distinguish task-relevant motions from irrelevant details in any video given only a brief task description. In this work, we propose to utilize the common-sense reasoning abilities of Vision-Language Models (VLMs) to provide promptable representations, effectively separating controllable changes from the noise in unsupervised way. We use these representations as targets during LAM training and benchmark a wide variety of popular VLMs, revealing substantial variation in the quality of promptable representations as well as their robustness to different prompts and hyperparameters. Interestingly, we find that more recent VLMs may perform worse than older ones. Finally, we show that simply asking VLMs to ignore distractors can substantially improve latent action quality, yielding up to a six-fold increase in downstream success rates on Distracting MetaWorld.
comment: Preprint
☆ SQUAD: Scalable Quorum Adaptive Decisions via ensemble of early exit neural networks
Early-exit neural networks have become popular for reducing inference latency by allowing intermediate predictions when sufficient confidence is achieved. However, standard approaches typically rely on single-model confidence thresholds, which are frequently unreliable due to inherent calibration issues. To address this, we introduce SQUAD (Scalable Quorum Adaptive Decisions), the first inference scheme that integrates early-exit mechanisms with distributed ensemble learning, improving uncertainty estimation while reducing the inference time. Unlike traditional methods that depend on individual confidence scores, SQUAD employs a quorum-based stopping criterion on early-exit learners by collecting intermediate predictions incrementally in order of computational complexity until a consensus is reached and halting the computation at that exit if the consensus is statistically significant. To maximize the efficacy of this voting mechanism, we also introduce QUEST (Quorum Search Technique), a Neural Architecture Search method to select early-exit learners with optimized hierarchical diversity, ensuring learners are complementary at every intermediate layer. This consensus-driven approach yields statistically robust early exits, improving the test accuracy up to 5.95% compared to state-of-the-art dynamic solutions with a comparable computational cost and reducing the inference latency up to 70.60% compared to static ensembles while maintaining a good accuracy.
☆ Gated Relational Alignment via Confidence-based Distillation for Efficient VLMs ICML
Vision-Language Models (VLMs) achieve strong multimodal performance but are costly to deploy, and post-training quantization often causes significant accuracy loss. Despite its potential, quantization-aware training for VLMs remains underexplored. We propose GRACE, a framework unifying knowledge distillation and QAT under the Information Bottleneck principle: quantization constrains information capacity while distillation guides what to preserve within this budget. Treating the teacher as a proxy for task-relevant information, we introduce confidence-gated decoupled distillation to filter unreliable supervision, relational centered kernel alignment to transfer visual token structures, and an adaptive controller via Lagrangian relaxation to balance fidelity against capacity constraints. Across extensive benchmarks on LLaVA and Qwen families, our INT4 models consistently outperform FP16 baselines (e.g., LLaVA-1.5-7B: 70.1 vs. 66.8 on SQA; Qwen2-VL-2B: 76.9 vs. 72.6 on MMBench), nearly matching teacher performance. Using real INT4 kernel, we achieve 3$\times$ throughput with 54% memory reduction. This principled framework significantly outperforms existing quantization methods, making GRACE a compelling solution for resource-constrained deployment.
comment: This paper is currently under review for the 2026 International Conference on Machine Learning (ICML)
☆ DAVIS: OOD Detection via Dominant Activations and Variance for Increased Separation
Detecting out-of-distribution (OOD) inputs is a critical safeguard for deploying machine learning models in the real world. However, most post-hoc detection methods operate on penultimate feature representations derived from global average pooling (GAP) -- a lossy operation that discards valuable distributional statistics from activation maps prior to global average pooling. We contend that these overlooked statistics, particularly channel-wise variance and dominant (maximum) activations, are highly discriminative for OOD detection. We introduce DAVIS, a simple and broadly applicable post-hoc technique that enriches feature vectors by incorporating these crucial statistics, directly addressing the information loss from GAP. Extensive evaluations show DAVIS sets a new benchmark across diverse architectures, including ResNet, DenseNet, and EfficientNet. It achieves significant reductions in the false positive rate (FPR95), with improvements of 48.26\% on CIFAR-10 using ResNet-18, 38.13\% on CIFAR-100 using ResNet-34, and 26.83\% on ImageNet-1k benchmarks using MobileNet-v2. Our analysis reveals the underlying mechanism for this improvement, providing a principled basis for moving beyond the mean in OOD detection.
☆ Bi-MCQ: Reformulating Vision-Language Alignment for Negation Understanding ICPR 2026
Recent vision-language models (VLMs) achieve strong zero-shot performance via large-scale image-text pretraining and have been widely adopted in medical image analysis. However, existing VLMs remain notably weak at understanding negated clinical statements, largely due to contrastive alignment objectives that treat negation as a minor linguistic variation rather than a meaning-inverting operator. In multi-label settings, prompt-based InfoNCE fine-tuning further reinforces easy-positive image-prompt alignments, limiting effective learning of disease absence. To overcome these limitations, we reformulate vision-language alignment as a conditional semantic comparison problem, which is instantiated through a bi-directional multiple-choice learning framework(Bi-MCQ). By jointly training Image-to-Text and Text-to-Image MCQ tasks with affirmative, negative, and mixed prompts, our method implements fine-tuning as conditional semantic comparison instead of global similarity maximization. We further introduce direction-specific Cross-Attention fusion modules to address asymmetric cues required by bi-directional reasoning and reduce alignment interference. Experiments on ChestXray14, Open-I, CheXpert, and PadChest show that Bi-MCQ improves negation understanding by up to 0.47 AUC over the zero-shot performance of the state-of-the-art CARZero model, while achieving up to a 0.08 absolute gain on positive-negative combined (PNC) evaluation. Additionally, Bi-MCQ reduces the affirmative-negative AUC gap by an average of 0.12 compared to InfoNCE-based fine-tuning, demonstrating that objective reformulation can substantially enhance negation understanding in medical VLMs.
comment: 15 pages, 4 figures, Submitted to ICPR 2026 (under review)
☆ PEAR: Pixel-aligned Expressive humAn mesh Recovery
Reconstructing detailed 3D human meshes from a single in-the-wild image remains a fundamental challenge in computer vision. Existing SMPLX-based methods often suffer from slow inference, produce only coarse body poses, and exhibit misalignments or unnatural artifacts in fine-grained regions such as the face and hands. These issues make current approaches difficult to apply to downstream tasks. To address these challenges, we propose PEAR-a fast and robust framework for pixel-aligned expressive human mesh recovery. PEAR explicitly tackles three major limitations of existing methods: slow inference, inaccurate localization of fine-grained human pose details, and insufficient facial expression capture. Specifically, to enable real-time SMPLX parameter inference, we depart from prior designs that rely on high resolution inputs or multi-branch architectures. Instead, we adopt a clean and unified ViT-based model capable of recovering coarse 3D human geometry. To compensate for the loss of fine-grained details caused by this simplified architecture, we introduce pixel-level supervision to optimize the geometry, significantly improving the reconstruction accuracy of fine-grained human details. To make this approach practical, we further propose a modular data annotation strategy that enriches the training data and enhances the robustness of the model. Overall, PEAR is a preprocessing-free framework that can simultaneously infer EHM-s (SMPLX and scaled-FLAME) parameters at over 100 FPS. Extensive experiments on multiple benchmark datasets demonstrate that our method achieves substantial improvements in pose estimation accuracy compared to previous SMPLX-based approaches. Project page: https://wujh2001.github.io/PEAR
comment: 23 pages
☆ OOVDet: Low-Density Prior Learning for Zero-Shot Out-of-Vocabulary Object Detection
Zero-shot out-of-vocabulary detection (ZS-OOVD) aims to accurately recognize objects of in-vocabulary (IV) categories provided at zero-shot inference, while simultaneously rejecting undefined ones (out-of-vocabulary, OOV) that lack corresponding category prompts. However, previous methods are prone to overfitting the IV classes, leading to the OOV or undefined classes being misclassified as IV ones with a high confidence score. To address this issue, this paper proposes a zero-shot OOV detector (OOVDet), a novel framework that effectively detects predefined classes while reliably rejecting undefined ones in zero-shot scenes. Specifically, due to the model's lack of prior knowledge about the distribution of OOV data, we synthesize region-level OOV prompts by sampling from the low-likelihood regions of the class-conditional Gaussian distributions in the hidden space, motivated by the assumption that unknown semantics are more likely to emerge in low-density areas of the latent space. For OOV images, we further propose a Dirichlet-based gradient attribution mechanism to mine pseudo-OOV image samples, where the attribution gradients are interpreted as Dirichlet evidence to estimate prediction uncertainty, and samples with high uncertainty are selected as pseudo-OOV images. Building on these synthesized OOV prompts and pseudo-OOV images, we construct the OOV decision boundary through a low-density prior constraint, which regularizes the optimization of OOV classes using Gaussian kernel density estimation in accordance with the above assumption. Experimental results show that our method significantly improves the OOV detection performance in zero-shot scenes. The code is available at https://github.com/binyisu/OOV-detector.
☆ Visual Personalization Turing Test
We introduce the Visual Personalization Turing Test (VPTT), a new paradigm for evaluating contextual visual personalization based on perceptual indistinguishability, rather than identity replication. A model passes the VPTT if its output (image, video, 3D asset, etc.) is indistinguishable to a human or calibrated VLM judge from content a given person might plausibly create or share. To operationalize VPTT, we present the VPTT Framework, integrating a 10k-persona benchmark (VPTT-Bench), a visual retrieval-augmented generator (VPRAG), and the VPTT Score, a text-only metric calibrated against human and VLM judgments. We show high correlation across human, VLM, and VPTT evaluations, validating the VPTT Score as a reliable perceptual proxy. Experiments demonstrate that VPRAG achieves the best alignment-originality balance, offering a scalable and privacy-safe foundation for personalized generative AI.
comment: Webpage: https://snap-research.github.io/vptt
☆ Stabilizing Consistency Training: A Flow Map Analysis and Self-Distillation
Consistency models have been proposed for fast generative modeling, achieving results competitive with diffusion and flow models. However, these methods exhibit inherent instability and limited reproducibility when training from scratch, motivating subsequent work to explain and stabilize these issues. While these efforts have provided valuable insights, the explanations remain fragmented, and the theoretical relationships remain unclear. In this work, we provide a theoretical examination of consistency models by analyzing them from a flow map-based perspective. This joint analysis clarifies how training stability and convergence behavior can give rise to degenerate solutions. Building on these insights, we revisit self-distillation as a practical remedy for certain forms of suboptimal convergence and reformulate it to avoid excessive gradient norms for stable optimization. We further demonstrate that our strategy extends beyond image generation to diffusion-based policy learning, without reliance on a pretrained diffusion model for initialization, thereby illustrating its broader applicability.
☆ Fire on Motion: Optimizing Video Pass-bands for Efficient Spiking Action Recognition
Spiking neural networks (SNNs) have gained traction in vision due to their energy efficiency, bio-plausibility, and inherent temporal processing. Yet, despite this temporal capacity, most progress concentrates on static image benchmarks, and SNNs still underperform on dynamic video tasks compared to artificial neural networks (ANNs). In this work, we diagnose a fundamental pass-band mismatch: Standard spiking dynamics behave as a temporal low pass that emphasizes static content while attenuating motion bearing bands, where task relevant information concentrates in dynamic tasks. This phenomenon explains why SNNs can approach ANNs on static tasks yet fall behind on tasks that demand richer temporal understanding.To remedy this, we propose the Pass-Bands Optimizer (PBO), a plug-and-play module that optimizes the temporal pass-band toward task-relevant motion bands. PBO introduces only two learnable parameters, and a lightweight consistency constraint that preserves semantics and boundaries, incurring negligible computational overhead and requires no architectural changes. PBO deliberately suppresses static components that contribute little to discrimination, effectively high passing the stream so that spiking activity concentrates on motion bearing content. On UCF101, PBO yields over ten percentage points improvement. On more complex multi-modal action recognition and weakly supervised video anomaly detection, PBO delivers consistent and significant gains, offering a new perspective for SNN based video processing and understanding.
☆ VisionTrim: Unified Vision Token Compression for Training-Free MLLM Acceleration ICLR2026
Multimodal large language models (MLLMs) suffer from high computational costs due to excessive visual tokens, particularly in high-resolution and video-based scenarios. Existing token reduction methods typically focus on isolated pipeline components and often neglect textual alignment, leading to performance degradation. In this paper, we propose VisionTrim, a unified framework for training-free MLLM acceleration, integrating two effective plug-and-play modules: 1) the Dominant Vision Token Selection (DVTS) module, which preserves essential visual tokens via a global-local view, and 2) the Text-Guided Vision Complement (TGVC) module, which facilitates context-aware token merging guided by textual cues. Extensive experiments across diverse image and video multimodal benchmarks demonstrate the performance superiority of our VisionTrim, advancing practical MLLM deployment in real-world applications. The code is available at: https://github.com/hanxunyu/VisionTrim.
comment: ICLR2026, Code Link: https://github.com/hanxunyu/VisionTrim
☆ ExpAlign: Expectation-Guided Vision-Language Alignment for Open-Vocabulary Grounding
Open-vocabulary grounding requires accurate vision-language alignment under weak supervision, yet existing methods either rely on global sentence embeddings that lack fine-grained expressiveness or introduce token-level alignment with explicit supervision or heavy cross-attention designs. We propose ExpAlign, a theoretically grounded vision-language alignment framework built on a principled multiple instance learning formulation. ExpAlign introduces an Expectation Alignment Head that performs attention-based soft MIL pooling over token-region similarities, enabling implicit token and instance selection without additional annotations. To further stabilize alignment learning, we develop an energy-based multi-scale consistency regularization scheme, including a Top-K multi-positive contrastive objective and a Geometry-Aware Consistency Objective derived from a Lagrangian-constrained free-energy minimization. Extensive experiments show that ExpAlign consistently improves open-vocabulary detection and zero-shot instance segmentation, particularly on long-tail categories. Most notably, it achieves 36.2 AP$_r$ on the LVIS minival split, outperforming other state-of-the-art methods at comparable model scale, while remaining lightweight and inference-efficient.
comment: 20 pages, 6 figures
☆ Unsupervised Synthetic Image Attribution: Alignment and Disentanglement
As the quality of synthetic images improves, identifying the underlying concepts of model-generated images is becoming increasingly crucial for copyright protection and ensuring model transparency. Existing methods achieve this attribution goal by training models using annotated pairs of synthetic images and their original training sources. However, obtaining such paired supervision is challenging, as it requires either well-designed synthetic concepts or precise annotations from millions of training sources. To eliminate the need for costly paired annotations, in this paper, we explore the possibility of unsupervised synthetic image attribution. We propose a simple yet effective unsupervised method called Alignment and Disentanglement. Specifically, we begin by performing basic concept alignment using contrastive self-supervised learning. Next, we enhance the model's attribution ability by promoting representation disentanglement with the Infomax loss. This approach is motivated by an interesting observation: contrastive self-supervised models, such as MoCo and DINO, inherently exhibit the ability to perform simple cross-domain alignment. By formulating this observation as a theoretical assumption on cross-covariance, we provide a theoretical explanation of how alignment and disentanglement can approximate the concept-matching process through a decomposition of the canonical correlation analysis objective. On the real-world benchmarks, AbC, we show that our unsupervised method surprisingly outperforms the supervised methods. As a starting point, we expect our intuitive insights and experimental findings to provide a fresh perspective on this challenging task.
☆ Training Beyond Convergence: Grokking nnU-Net for Glioma Segmentation in Sub-Saharan MRI
Gliomas are placing an increasingly clinical burden on Sub-Saharan Africa (SSA). In the region, the median survival for patients remains under two years, and access to diagnostic imaging is extremely limited. These constraints highlight an urgent need for automated tools that can extract the maximum possible information from each available scan, tools that are specifically trained on local data, rather than adapted from high-income settings where conditions are vastly different. We utilize the Brain Tumor Segmentation (BraTS) Africa 2025 Challenge dataset, an expert annotated collection of glioma MRIs. Our objectives are: (i) establish a strong baseline with nnUNet on this dataset, and (ii) explore whether the celebrated "grokking" phenomenon an abrupt, late training jump from memorization to superior generalization can be triggered to push performance without extra labels. We evaluate two training regimes. The first is a fast, budget-conscious approach that limits optimization to just a few epochs, reflecting the constrained GPU resources typically available in African institutions. Despite this limitation, nnUNet achieves strong Dice scores: 92.3% for whole tumor (WH), 86.6% for tumor core (TC), and 86.3% for enhancing tumor (ET). The second regime extends training well beyond the point of convergence, aiming to trigger a grokking-driven performance leap. With this approach, we were able to achieve grokking and enhanced our results to higher Dice scores: 92.2% for whole tumor (WH), 90.1% for tumor core (TC), and 90.2% for enhancing tumor (ET).
☆ What can Computer Vision learn from Ranganathan?
The Semantic Gap Problem (SGP) in Computer Vision (CV) arises from the misalignment between visual and lexical semantics leading to flawed CV dataset design and CV benchmarks. This paper proposes that classification principles of S.R. Ranganathan can offer a principled starting point to address SGP and design high-quality CV datasets. We elucidate how these principles, suitably adapted, underpin the vTelos CV annotation methodology. The paper also briefly presents experimental evidence showing improvements in CV annotation and accuracy, thereby, validating vTelos.
comment: Accepted @ DRTC-ISI Conference 2026, Indian Statistical Institute (ISI), Bangalore, India
☆ LINA: Linear Autoregressive Image Generative Models with Continuous Tokens
Autoregressive models with continuous tokens form a promising paradigm for visual generation, especially for text-to-image (T2I) synthesis, but they suffer from high computational cost. We study how to design compute-efficient linear attention within this framework. Specifically, we conduct a systematic empirical analysis of scaling behavior with respect to parameter counts under different design choices, focusing on (1) normalization paradigms in linear attention (division-based vs. subtraction-based) and (2) depthwise convolution for locality augmentation. Our results show that although subtraction-based normalization is effective for image classification, division-based normalization scales better for linear generative transformers. In addition, incorporating convolution for locality modeling plays a crucial role in autoregressive generation, consistent with findings in diffusion models. We further extend gating mechanisms, commonly used in causal linear attention, to the bidirectional setting and propose a KV gate. By introducing data-independent learnable parameters to the key and value states, the KV gate assigns token-wise memory weights, enabling flexible memory management similar to forget gates in language models. Based on these findings, we present LINA, a simple and compute-efficient T2I model built entirely on linear attention, capable of generating high-fidelity 1024x1024 images from user instructions. LINA achieves competitive performance on both class-conditional and T2I benchmarks, obtaining 2.18 FID on ImageNet (about 1.4B parameters) and 0.74 on GenEval (about 1.5B parameters). A single linear attention module reduces FLOPs by about 61 percent compared to softmax attention. Code and models are available at: https://github.com/techmonsterwang/LINA.
comment: 20 pages, 9 figures
☆ UniGeo: A Unified 3D Indoor Object Detection Framework Integrating Geometry-Aware Learning and Dynamic Channel Gating
The growing adoption of robotics and augmented reality in real-world applications has driven considerable research interest in 3D object detection based on point clouds. While previous methods address unified training across multiple datasets, they fail to model geometric relationships in sparse point cloud scenes and ignore the feature distribution in significant areas, which ultimately restricts their performance. To deal with this issue, a unified 3D indoor detection framework, called UniGeo, is proposed. To model geometric relations in scenes, we first propose a geometry-aware learning module that establishes a learnable mapping from spatial relationships to feature weights, which enabes explicit geometric feature enhancement. Then, to further enhance point cloud feature representation, we propose a dynamic channel gating mechanism that leverages learnable channel-wise weighting. This mechanism adaptively optimizes features generated by the sparse 3D U-Net network, significantly enhancing key geometric information. Extensive experiments on six different indoor scene datasets clearly validate the superior performance of our method.
☆ TTSA3R: Training-Free Temporal-Spatial Adaptive Persistent State for Streaming 3D Reconstruction
Streaming recurrent models enable efficient 3D reconstruction by maintaining persistent state representations. However, they suffer from catastrophic memory forgetting over long sequences due to balancing historical information with new observations. Recent methods alleviate this by deriving adaptive signals from attention perspective, but they operate on single dimensions without considering temporal and spatial consistency. To this end, we propose a training-free framework termed TTSA3R that leverages both temporal state evolution and spatial observation quality for adaptive state updates in 3D reconstruction. In particular, we devise a Temporal Adaptive Update Module that regulates update magnitude by analyzing temporal state evolution patterns. Then, a Spatial Contextual Update Module is introduced to localize spatial regions that require updates through observation-state alignment and scene dynamics. These complementary signals are finally fused to determine the state updating strategies. Extensive experiments demonstrate the effectiveness of TTSA3R in diverse 3D tasks. Moreover, our method exhibits only 15% error increase compared to over 200% degradation in baseline models on extended sequences, significantly improving long-term reconstruction stability. Our codes will be available soon.
☆ FOTBCD: A Large-Scale Building Change Detection Benchmark from French Orthophotos and Topographic Data
We introduce FOTBCD, a large-scale building change detection dataset derived from authoritative French orthophotos and topographic building data provided by IGN France. Unlike existing benchmarks that are geographically constrained to single cities or limited regions, FOTBCD spans 28 departments across mainland France, with 25 used for training and three geographically disjoint departments held out for evaluation. The dataset covers diverse urban, suburban, and rural environments at 0.2m/pixel resolution. We publicly release FOTBCD-Binary, a dataset comprising approximately 28,000 before/after image pairs with pixel-wise binary building change masks, each associated with patch-level spatial metadata. The dataset is designed for large-scale benchmarking and evaluation under geographic domain shift, with validation and test samples drawn from held-out departments and manually verified to ensure label quality. In addition, we publicly release FOTBCD-Instances, a publicly available instance-level annotated subset comprising several thousand image pairs, which illustrates the complete annotation schema used in the full instance-level version of FOTBCD. Using a fixed reference baseline, we benchmark FOTBCD-Binary against LEVIR-CD+ and WHU-CD, providing strong empirical evidence that geographic diversity at the dataset level is associated with improved cross-domain generalization in building change detection.
☆ Cross-Domain Few-Shot Learning for Hyperspectral Image Classification Based on Mixup Foundation Model
Although cross-domain few-shot learning (CDFSL) for hyper-spectral image (HSI) classification has attracted significant research interest, existing works often rely on an unrealistic data augmentation procedure in the form of external noise to enlarge the sample size, thus greatly simplifying the issue of data scarcity. They involve a large number of parameters for model updates, being prone to the overfitting problem. To the best of our knowledge, none has explored the strength of the foundation model, having strong generalization power to be quickly adapted to downstream tasks. This paper proposes the MIxup FOundation MOdel (MIFOMO) for CDFSL of HSI classifications. MIFOMO is built upon the concept of a remote sensing (RS) foundation model, pre-trained across a large scale of RS problems, thus featuring generalizable features. The notion of coalescent projection (CP) is introduced to quickly adapt the foundation model to downstream tasks while freezing the backbone network. The concept of mixup domain adaptation (MDM) is proposed to address the extreme domain discrepancy problem. Last but not least, the label smoothing concept is implemented to cope with noisy pseudo-label problems. Our rigorous experiments demonstrate the advantage of MIFOMO, where it beats prior arts with up to 14% margin. The source code of MIFOMO is open-sourced in https://github.com/Naeem- Paeedeh/MIFOMO for reproducibility and convenient further study.
☆ Bonnet: Ultra-fast whole-body bone segmentation from CT scans
This work proposes Bonnet, an ultra-fast sparse-volume pipeline for whole-body bone segmentation from CT scans. Accurate bone segmentation is important for surgical planning and anatomical analysis, but existing 3D voxel-based models such as nnU-Net and STU-Net require heavy computation and often take several minutes per scan, which limits time-critical use. The proposed Bonnet addresses this by integrating a series of novel framework components including HU-based bone thresholding, patch-wise inference with a sparse spconv-based U-Net, and multi-window fusion into a full-volume prediction. Trained on TotalSegmentator and evaluated without additional tuning on RibSeg, CT-Pelvic1K, and CT-Spine1K, Bonnet achieves high Dice across ribs, pelvis, and spine while running in only 2.69 seconds per scan on an RTX A6000. Compared to strong voxel baselines, Bonnet attains a similar accuracy but reduces inference time by roughly 25x on the same hardware and tiling setup. The toolkit and pre-trained models will be released at https://github.com/HINTLab/Bonnet.
comment: 5 pages, 2 figures. Accepted for publication at the 2026 IEEE International Symposium on Biomedical Imaging (ISBI 2026)
☆ PhoStream: Benchmarking Real-World Streaming for Omnimodal Assistants in Mobile Scenarios
Multimodal Large Language Models excel at offline audio-visual understanding, but their ability to serve as mobile assistants in continuous real-world streams remains underexplored. In daily phone use, mobile assistants must track streaming audio-visual inputs and respond at the right time, yet existing benchmarks are often restricted to multiple-choice questions or use shorter videos. In this paper, we introduce PhoStream, the first mobile-centric streaming benchmark that unifies on-screen and off-screen scenarios to evaluate video, audio, and temporal reasoning. PhoStream contains 5,572 open-ended QA pairs from 578 videos across 4 scenarios and 10 capabilities. We build it with an Automated Generative Pipeline backed by rigorous human verification, and evaluate models using a realistic Online Inference Pipeline and LLM-as-a-Judge evaluation for open-ended responses. Experiments reveal a temporal asymmetry in LLM-judged scores (0-100): models perform well on Instant and Backward tasks (Gemini 3 Pro exceeds 80), but drop sharply on Forward tasks (16.40), largely due to early responses before the required visual and audio cues appear. This highlights a fundamental limitation: current MLLMs struggle to decide when to speak, not just what to say. Code and datasets used in this work will be made publicly accessible at https://github.com/Lucky-Lance/PhoStream.
comment: 18 pages
☆ Mitigating Hallucinations in Video Large Language Models via Spatiotemporal-Semantic Contrastive Decoding
Although Video Large Language Models perform remarkably well across tasks such as video understanding, question answering, and reasoning, they still suffer from the problem of hallucination, which refers to generating outputs that are inconsistent with explicit video content or factual evidence. However, existing decoding methods for mitigating video hallucinations, while considering the spatiotemporal characteristics of videos, mostly rely on heuristic designs. As a result, they fail to precisely capture the root causes of hallucinations and their fine-grained temporal and semantic correlations, leading to limited robustness and generalization in complex scenarios. To more effectively mitigate video hallucinations, we propose a novel decoding strategy termed Spatiotemporal-Semantic Contrastive Decoding. This strategy constructs negative features by deliberately disrupting the spatiotemporal consistency and semantic associations of video features, and suppresses video hallucinations through contrastive decoding against the original video features during inference. Extensive experiments demonstrate that our method not only effectively mitigates the occurrence of hallucinations, but also preserves the general video understanding and reasoning capabilities of the model.
comment: Preprint
☆ DELNet: Continuous All-in-One Weather Removal via Dynamic Expert Library ICASSP
All-in-one weather image restoration methods are valuable in practice but depend on pre-collected data and require retraining for unseen degradations, leading to high cost. We propose DELNet, a continual learning framework for weather image restoration. DELNet integrates a judging valve that measures task similarity to distinguish new from known tasks, and a dynamic expert library that stores experts trained on different degradations. For new tasks, the valve selects top-k experts for knowledge transfer while adding new experts to capture task-specific features; for known tasks, the corresponding experts are directly reused. This design enables continuous optimization without retraining existing models. Experiments on OTS, Rain100H, and Snow100K demonstrate that DELNet surpasses state-of-the-art continual learning methods, achieving PSNR gains of 16\%, 11\%, and 12\%, respectively. These results highlight the effectiveness, robustness, and efficiency of DELNet, which reduces retraining cost and enables practical deployment in real-world scenarios.
comment: Accepted by the ICASSP conference, not yet officially published
☆ Leveraging Data to Say No: Memory Augmented Plug-and-Play Selective Prediction ICLR 2026
Selective prediction aims to endow predictors with a reject option, to avoid low confidence predictions. However, existing literature has primarily focused on closed-set tasks, such as visual question answering with predefined options or fixed-category classification. This paper considers selective prediction for visual language foundation models, addressing a taxonomy of tasks ranging from closed to open set and from finite to unbounded vocabularies, as in image captioning. We seek training-free approaches of low-complexity, applicable to any foundation model and consider methods based on external vision-language model embeddings, like CLIP. This is denoted as Plug-and-Play Selective Prediction (PaPSP). We identify two key challenges: (1) instability of the visual-language representations, leading to high variance in image-text embeddings, and (2) poor calibration of similarity scores. To address these issues, we propose a memory augmented PaPSP (MA-PaPSP) model, which augments PaPSP with a retrieval dataset of image-text pairs. This is leveraged to reduce embedding variance by averaging retrieved nearest-neighbor pairs and is complemented by the use of contrastive normalization to improve score calibration. Through extensive experiments on multiple datasets, we show that MA-PaPSP outperforms PaPSP and other selective prediction baselines for selective captioning, image-text matching, and fine-grained classification. Code is publicly available at https://github.com/kingston-aditya/MA-PaPSP.
comment: ICLR 2026
☆ Hybrid Cross-Device Localization via Neural Metric Learning and Feature Fusion
We present a hybrid cross-device localization pipeline developed for the CroCoDL 2025 Challenge. Our approach integrates a shared retrieval encoder and two complementary localization branches: a classical geometric branch using feature fusion and PnP, and a neural feed-forward branch (MapAnything) for metric localization conditioned on geometric inputs. A neural-guided candidate pruning strategy further filters unreliable map frames based on translation consistency, while depth-conditioned localization refines metric scale and translation precision on Spot scenes. These components jointly lead to significant improvements in recall and accuracy across both HYDRO and SUCCU benchmarks. Our method achieved a final score of 92.62 (R@0.5m, 5°) during the challenge.
comment: 3 pages
EndoCaver: Handling Fog, Blur and Glare in Endoscopic Images via Joint Deblurring-Segmentation ICASSP
Endoscopic image analysis is vital for colorectal cancer screening, yet real-world conditions often suffer from lens fogging, motion blur, and specular highlights, which severely compromise automated polyp detection. We propose EndoCaver, a lightweight transformer with a unidirectional-guided dual-decoder architecture, enabling joint multi-task capability for image deblurring and segmentation while significantly reducing computational complexity and model parameters. Specifically, it integrates a Global Attention Module (GAM) for cross-scale aggregation, a Deblurring-Segmentation Aligner (DSA) to transfer restoration cues, and a cosine-based scheduler (LoCoS) for stable multi-task optimisation. Experiments on the Kvasir-SEG dataset show that EndoCaver achieves 0.922 Dice on clean data and 0.889 under severe image degradation, surpassing state-of-the-art methods while reducing model parameters by 90%. These results demonstrate its efficiency and robustness, making it well-suited for on-device clinical deployment. Code is available at https://github.com/ReaganWu/EndoCaver.
comment: Accepted for publication at IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2026
☆ SHED Light on Segmentation for Dense Prediction
Dense prediction infers per-pixel values from a single image and is fundamental to 3D perception and robotics. Although real-world scenes exhibit strong structure, existing methods treat it as an independent pixel-wise prediction, often resulting in structural inconsistencies. We propose SHED, a novel encoder-decoder architecture that enforces geometric prior explicitly by incorporating segmentation into dense prediction. By bidirectional hierarchical reasoning, segment tokens are hierarchically pooled in the encoder and unpooled in the decoder to reverse the hierarchy. The model is supervised only at the final output, allowing the segment hierarchy to emerge without explicit segmentation supervision. SHED improves depth boundary sharpness and segment coherence, while demonstrating strong cross-domain generalization from synthetic to the real-world environments. Its hierarchy-aware decoder better captures global 3D scene layouts, leading to improved semantic segmentation performance. Moreover, SHED enhances 3D reconstruction quality and reveals interpretable part-level structures that are often missed by conventional pixel-wise methods.
☆ Can 3D point cloud data improve automated body condition score prediction in dairy cattle?
Body condition score (BCS) is a widely used indicator of body energy status and is closely associated with metabolic status, reproductive performance, and health in dairy cattle; however, conventional visual scoring is subjective and labor-intensive. Computer vision approaches have been applied to BCS prediction, with depth images widely used because they capture geometric information independent of coat color and texture. More recently, three-dimensional point cloud data have attracted increasing interest due to their ability to represent richer geometric characteristics of animal morphology, but direct head-to-head comparisons with depth image-based approaches remain limited. In this study, we compared top-view depth image and point cloud data for BCS prediction under four settings: 1) unsegmented raw data, 2) segmented full-body data, 3) segmented hindquarter data, and 4) handcrafted feature data. Prediction models were evaluated using data from 1,020 dairy cows collected on a commercial farm, with cow-level cross-validation to prevent data leakage. Depth image-based models consistently achieved higher accuracy than point cloud-based models when unsegmented raw data and segmented full-body data were used, whereas comparable performance was observed when segmented hindquarter data were used. Both depth image and point cloud approaches showed reduced accuracy when handcrafted feature data were employed compared with the other settings. Overall, point cloud-based predictions were more sensitive to noise and model architecture than depth image-based predictions. Taken together, these results indicate that three-dimensional point clouds do not provide a consistent advantage over depth images for BCS prediction in dairy cattle under the evaluated conditions.
☆ DNA: Uncovering Universal Latent Forgery Knowledge
As generative AI achieves hyper-realism, superficial artifact detection has become obsolete. While prevailing methods rely on resource-intensive fine-tuning of black-box backbones, we propose that forgery detection capability is already encoded within pre-trained models rather than requiring end-to-end retraining. To elicit this intrinsic capability, we propose the discriminative neural anchors (DNA) framework, which employs a coarse-to-fine excavation mechanism. First, by analyzing feature decoupling and attention distribution shifts, we pinpoint critical intermediate layers where the focus of the model logically transitions from global semantics to local anomalies. Subsequently, we introduce a triadic fusion scoring metric paired with a curvature-truncation strategy to strip away semantic redundancy, precisely isolating the forgery-discriminative units (FDUs) inherently imprinted with sensitivity to forgery traces. Moreover, we introduce HIFI-Gen, a high-fidelity synthetic benchmark built upon the very latest models, to address the lag in existing datasets. Experiments demonstrate that by solely relying on these anchors, DNA achieves superior detection performance even under few-shot conditions. Furthermore, it exhibits remarkable robustness across diverse architectures and against unseen generative models, validating that waking up latent neurons is more effective than extensive fine-tuning.
☆ CoVA: Text-Guided Composed Video Retrieval for Audio-Visual Content
Composed Video Retrieval (CoVR) aims to retrieve a target video from a large gallery using a reference video and a textual query specifying visual modifications. However, existing benchmarks consider only visual changes, ignoring videos that differ in audio despite visual similarity. To address this limitation, we introduce Composed retrieval for Video with its Audio CoVA, a new retrieval task that accounts for both visual and auditory variations. To support this, we construct AV-Comp, a benchmark consisting of video pairs with cross-modal changes and corresponding textual queries that describe the differences. We also propose AVT Compositional Fusion (AVT), which integrates video, audio, and text features by selectively aligning the query to the most relevant modality. AVT outperforms traditional unimodal fusion and serves as a strong baseline for CoVA. Examples from the proposed dataset, including both visual and auditory information, are available at https://perceptualai-lab.github.io/CoVA/.
comment: Please visit our project page at https://perceptualai-lab.github.io/CoVA/
☆ DreamVAR: Taming Reinforced Visual Autoregressive Model for High-Fidelity Subject-Driven Image Generation ICASSP 2026
Recent advances in subject-driven image generation using diffusion models have attracted considerable attention for their remarkable capabilities in producing high-quality images. Nevertheless, the potential of Visual Autoregressive (VAR) models, despite their unified architecture and efficient inference, remains underexplored. In this work, we present DreamVAR, a novel framework for subject-driven image synthesis built upon a VAR model that employs next-scale prediction. Technically, multi-scale features of the reference subject are first extracted by a visual tokenizer. Instead of interleaving these conditional features with target image tokens across scales, our DreamVAR pre-fills the full subject feature sequence prior to predicting target image tokens. This design simplifies autoregressive dependencies and mitigates the train-test discrepancy in multi-scale conditioning scenario within the VAR paradigm. DreamVAR further incorporates reinforcement learning to jointly enhance semantic alignment and subject consistency. Extensive experiments demonstrate that DreamVAR achieves superior appearance preservation compared to leading diffusion-based methods.
comment: Accepted By ICASSP 2026
☆ MIRRORTALK: Forging Personalized Avatars Via Disentangled Style and Hierarchical Motion Control ICASSP 2026
Synthesizing personalized talking faces that uphold and highlight a speaker's unique style while maintaining lip-sync accuracy remains a significant challenge. A primary limitation of existing approaches is the intrinsic confounding of speaker-specific talking style and semantic content within facial motions, which prevents the faithful transfer of a speaker's unique persona to arbitrary speech. In this paper, we propose MirrorTalk, a generative framework based on a conditional diffusion model, combined with a Semantically-Disentangled Style Encoder (SDSE) that can distill pure style representations from a brief reference video. To effectively utilize this representation, we further introduce a hierarchical modulation strategy within the diffusion process. This mechanism guides the synthesis by dynamically balancing the contributions of audio and style features across distinct facial regions, ensuring both precise lip-sync accuracy and expressive full-face dynamics. Extensive experiments demonstrate that MirrorTalk achieves significant improvements over state-of-the-art methods in terms of lip-sync accuracy and personalization preservation.
comment: Accepted to 2026 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2026)
PromptMAD: Cross-Modal Prompting for Multi-Class Visual Anomaly Localization ICASSP 2026
Visual anomaly detection in multi-class settings poses significant challenges due to the diversity of object categories, the scarcity of anomalous examples, and the presence of camouflaged defects. In this paper, we propose PromptMAD, a cross-modal prompting framework for unsupervised visual anomaly detection and localization that integrates semantic guidance through vision-language alignment. By leveraging CLIP-encoded text prompts describing both normal and anomalous class-specific characteristics, our method enriches visual reconstruction with semantic context, improving the detection of subtle and textural anomalies. To further address the challenge of class imbalance at the pixel level, we incorporate Focal loss function, which emphasizes hard-to-detect anomalous regions during training. Our architecture also includes a supervised segmentor that fuses multi-scale convolutional features with Transformer-based spatial attention and diffusion iterative refinement, yielding precise and high-resolution anomaly maps. Extensive experiments on the MVTec-AD dataset demonstrate that our method achieves state-of-the-art pixel-level performance, improving mean AUC to 98.35% and AP to 66.54%, while maintaining efficiency across diverse categories.
comment: Accepted to ICASSP 2026
♻ ☆ From Cold Start to Active Learning: Embedding-Based Scan Selection for Medical Image Segmentation
Accurate segmentation annotations are critical for disease monitoring, yet manual labeling remains a major bottleneck due to the time and expertise required. Active learning (AL) alleviates this burden by prioritizing informative samples for annotation, typically through a diversity-based cold-start phase followed by uncertainty-driven selection. We propose a novel cold-start sampling strategy that combines foundation-model embeddings with clustering, including automatic selection of the number of clusters and proportional sampling across clusters, to construct a diverse and representative initial training. This is followed by an uncertainty-based AL framework that integrates spatial diversity to guide sample selection. The proposed method is intuitive and interpretable, enabling visualization of the feature-space distribution of candidate samples. We evaluate our approach on three datasets spanning X-ray and MRI modalities. On the CheXmask dataset, the cold-start strategy outperforms random selection, improving Dice from 0.918 to 0.929 and reducing the Hausdorff distance from 32.41 to 27.66 mm. In the AL setting, combined entropy and diversity selection improves Dice from 0.919 to 0.939 and reduces the Hausdorff distance from 30.10 to 19.16 mm. On the Montgomery dataset, cold-start gains are substantial, with Dice improving from 0.928 to 0.950 and Hausdorff distance decreasing from 14.22 to 9.38 mm. On the SynthStrip dataset, cold-start selection slightly affects Dice but reduces the Hausdorff distance from 9.43 to 8.69 mm, while active learning improves Dice from 0.816 to 0.826 and reduces the Hausdorff distance from 7.76 to 6.38 mm. Overall, the proposed framework consistently outperforms baseline methods in low-data regimes, improving segmentation accuracy.
comment: 19 pages without references
♻ ☆ Benchmarking Foundation Models for Mitotic Figure Classification
The performance of deep learning models is known to scale with data quantity and diversity. In pathology, as in many other medical imaging domains, the availability of labeled images for a specific task is often limited. Self-supervised learning techniques have enabled the use of vast amounts of unlabeled data to train large-scale neural networks, i.e., foundation models, that can address the limited data problem by providing semantically rich feature vectors that can generalize well to new tasks with minimal training effort increasing model performance and robustness. In this work, we investigate the use of foundation models for mitotic figure classification. The mitotic count, which can be derived from this classification task, is an independent prognostic marker for specific tumors and part of certain tumor grading systems. In particular, we investigate the data scaling laws on multiple current foundation models and evaluate their robustness to unseen tumor domains. Next to the commonly used linear probing paradigm, we also adapt the models using low-rank adaptation (LoRA) of their attention mechanisms. We compare all models against end-to-end-trained baselines, both CNNs and Vision Transformers. Our results demonstrate that LoRA-adapted foundation models provide superior performance to those adapted with standard linear probing, reaching performance levels close to 100% data availability with only 10% of training data. Furthermore, LoRA-adaptation of the most recent foundation models almost closes the out-of-domain performance gap when evaluated on unseen tumor domains. However, full fine-tuning of traditional architectures still yields competitive performance.
♻ ☆ FastGHA: Generalized Few-Shot 3D Gaussian Head Avatars with Real-Time Animation ICLR 2026
Despite recent progress in 3D Gaussian-based head avatar modeling, efficiently generating high fidelity avatars remains a challenge. Current methods typically rely on extensive multi-view capture setups or monocular videos with per-identity optimization during inference, limiting their scalability and ease of use on unseen subjects. To overcome these efficiency drawbacks, we propose FastGHA, a feed-forward method to generate high-quality Gaussian head avatars from only a few input images while supporting real-time animation. Our approach directly learns a per-pixel Gaussian representation from the input images, and aggregates multi-view information using a transformer-based encoder that fuses image features from both DINOv3 and Stable Diffusion VAE. For real-time animation, we extend the explicit Gaussian representations with per-Gaussian features and introduce a lightweight MLP-based dynamic network to predict 3D Gaussian deformations from expression codes. Furthermore, to enhance geometric smoothness of the 3D head, we employ point maps from a pre-trained large reconstruction model as geometry supervision. Experiments show that our approach significantly outperforms existing methods in both rendering quality and inference efficiency, while supporting real-time dynamic avatar animation.
comment: Accepted to ICLR 2026
♻ ☆ Open-Vocabulary Functional 3D Human-Scene Interaction Generation
Generating 3D humans that functionally interact with 3D scenes remains an open problem with applications in embodied AI, robotics, and interactive content creation. The key challenge involves reasoning about both the semantics of functional elements in 3D scenes and the 3D human poses required to achieve functionality-aware interaction. Unfortunately, existing methods typically lack explicit reasoning over object functionality and the corresponding human-scene contact, resulting in implausible or functionally incorrect interactions. In this work, we propose FunHSI, a training-free, functionality-driven framework that enables functionally correct human-scene interactions from open-vocabulary task prompts. Given a task prompt, FunHSI performs functionality-aware contact reasoning to identify functional scene elements, reconstruct their 3D geometry, and model high-level interactions via a contact graph. We then leverage vision-language models to synthesize a human performing the task in the image and estimate proposed 3D body and hand poses. Finally, the proposed 3D body configuration is refined via stage-wise optimization to ensure physical plausibility and functional correctness. In contrast to existing methods, FunHSI not only synthesizes more plausible general 3D interactions, such as "sitting on a sofa'', while supporting fine-grained functional human-scene interactions, e.g., "increasing the room temperature''. Extensive experiments demonstrate that FunHSI consistently generates functionally correct and physically plausible human-scene interactions across diverse indoor and outdoor scenes.
comment: 18 pages
♻ ☆ Are Pose Estimators Ready for the Open World? STAGE: A GenAI Toolkit for Auditing 3D Human Pose Estimators 3DV 2026
For safety-critical applications, it is crucial to audit 3D human pose estimators before deployment. Will the system break down if the weather or the clothing changes? Is it robust regarding gender and age? To answer these questions and more, we need controlled studies with images that differ in a single attribute, but real benchmarks cannot provide such pairs. We thus present STAGE, a GenAI data toolkit for auditing 3D human pose estimators. For STAGE, we develop the first GenAI image creator with accurate 3D pose control and propose a novel evaluation strategy to isolate and quantify the effects of single factors such as gender, ethnicity, age, clothing, location, and weather. Enabled by STAGE, we generate a series of benchmarks to audit, for the first time, the sensitivity of popular pose estimators towards such factors. Our results show that natural variations can severely degrade pose estimator performance, raising doubts about their readiness for open-world deployment. We aim to highlight these robustness issues and establish STAGE as a benchmark to quantify them.
comment: International Conference on 3D Vision 2026(3DV 2026)
♻ ☆ Monocular pose estimation of articulated open surgery tools -- in the wild
This work presents a framework for monocular 6D pose estimation of surgical instruments in open surgery, addressing challenges such as object articulations, specularity, occlusions, and synthetic-to-real domain adaptation. The proposed approach consists of three main components: $(1)$ synthetic data generation pipeline that incorporates 3D scanning of surgical tools with articulation rigging and physically-based rendering; $(2)$ a tailored pose estimation framework combining tool detection with pose and articulation estimation; and $(3)$ a training strategy on synthetic and real unannotated video data, employing domain adaptation with automatically generated pseudo-labels. Evaluations conducted on real data of open surgery demonstrate the good performance and real-world applicability of the proposed framework, highlighting its potential for integration into medical augmented reality and robotic systems. The approach eliminates the need for extensive manual annotation of real surgical data.
comment: Author Accepted Manuscript (AAM)
♻ ☆ CaLiV: LiDAR-to-Vehicle Calibration of Arbitrary Sensor Setups
In autonomous systems, sensor calibration is essential for safe and efficient navigation in dynamic environments. Accurate calibration is a prerequisite for reliable perception and planning tasks such as object detection and obstacle avoidance. Many existing LiDAR calibration methods require overlapping fields of view, while others use external sensing devices or postulate a feature-rich environment. In addition, Sensor-to-Vehicle calibration is not supported by the vast majority of calibration algorithms. In this work, we propose a novel target-based technique for extrinsic Sensor-to-Sensor and Sensor-to-Vehicle calibration of multi-LiDAR systems called CaLiV. This algorithm works for non-overlapping fields of view and does not require any external sensing devices. First, we apply motion to produce field of view overlaps and utilize a simple Unscented Kalman Filter to obtain vehicle poses. Then, we use the Gaussian mixture model-based registration framework GMMCalib to align the point clouds in a common calibration frame. Finally, we reduce the task of recovering the sensor extrinsics to a minimization problem. We show that both translational and rotational Sensor-to-Sensor errors can be solved accurately by our method. In addition, all Sensor-to-Vehicle rotation angles can also be calibrated with high accuracy. We validate the simulation results in real-world experiments. The code is open-source and available on https://github.com/TUMFTM/CaLiV.
♻ ☆ ARB-LLM: Alternating Refined Binarizations for Large Language Models
Large Language Models (LLMs) have greatly pushed forward advancements in natural language processing, yet their high memory and computational demands hinder practical deployment. Binarization, as an effective compression technique, can shrink model weights to just 1 bit, significantly reducing the high demands on computation and memory. However, current binarization methods struggle to narrow the distribution gap between binarized and full-precision weights, while also overlooking the column deviation in LLM weight distribution. To tackle these issues, we propose ARB-LLM, a novel 1-bit post-training quantization (PTQ) technique tailored for LLMs. To narrow the distribution shift between binarized and full-precision weights, we first design an alternating refined binarization (ARB) algorithm to progressively update the binarization parameters, which significantly reduces the quantization error. Moreover, considering the pivot role of calibration data and the column deviation in LLM weights, we further extend ARB to ARB-X and ARB-RC. In addition, we refine the weight partition strategy with column-group bitmap (CGB), which further enhance performance. Equipping ARB-X and ARB-RC with CGB, we obtain ARB-LLM$_\text{X}$ and ARB-LLM$_\text{RC}$ respectively, which significantly outperform state-of-the-art (SOTA) binarization methods for LLMs. As a binary PTQ method, our ARB-LLM$_\text{RC}$ is the first to surpass FP16 models of the same size. The code and models will be available at https://github.com/ZHITENGLI/ARB-LLM.
comment: The code and models will be available at https://github.com/ZHITENGLI/ARB-LLM
♻ ☆ SLIM-Brain: A Data- and Training-Efficient Foundation Model for fMRI Data Analysis
Foundation models are emerging as a powerful paradigm for fMRI analysis, but current approaches face a dual bottleneck of data- and training-efficiency. Atlas-based methods aggregate voxel signals into fixed regions of interest, reducing data dimensionality but discarding fine-grained spatial details, and requiring extremely large cohorts to train effectively as general-purpose foundation models. Atlas-free methods, on the other hand, operate directly on voxel-level information - preserving spatial fidelity but are prohibitively memory- and compute-intensive, making large-scale pre-training infeasible. We introduce SLIM-Brain (Sample-efficient, Low-memory fMRI Foundation Model for Human Brain), a new atlas-free foundation model that simultaneously improves both data- and training-efficiency. SLIM-Brain adopts a two-stage adaptive design: (i) a lightweight temporal extractor captures global context across full sequences and ranks data windows by saliency, and (ii) a 4D hierarchical encoder (Hiera-JEPA) learns fine-grained voxel-level representations only from the top-$k$ selected windows, while deleting about 70% masked patches. Extensive experiments across seven public benchmarks show that SLIM-Brain establishes new state-of-the-art performance on diverse tasks, while requiring only 4 thousand pre-training sessions and approximately 30% of GPU memory comparing to traditional voxel-level methods.
comment: release code
♻ ☆ The Narrow Gate: Localized Image-Text Communication in Native Multimodal Models NeurIPS 2025
Recent advances in multimodal training have significantly improved the integration of image understanding and generation within a unified model. This study investigates how vision-language models (VLMs) handle image-understanding tasks, focusing on how visual information is processed and transferred to the textual domain. We compare native multimodal VLMs, models trained from scratch on multimodal data to generate both text and images, and non-native multimodal VLMs, models adapted from pre-trained large language models or capable of generating only text, highlighting key differences in information flow. We find that in native multimodal VLMs, image and text embeddings are more separated within the residual stream. Moreover, VLMs differ in how visual information reaches text: non-native multimodal VLMs exhibit a distributed communication pattern, where information is exchanged through multiple image tokens, whereas models trained natively for joint image and text generation tend to rely on a single post-image token that acts as a narrow gate for visual information. We show that ablating this single token significantly deteriorates image-understanding performance, whereas targeted, token-level interventions reliably steer image semantics and downstream text with fine-grained control.
comment: NeurIPS 2025
♻ ☆ SPEED: Scalable, Precise, and Efficient Concept Erasure for Diffusion Models ICLR 2026
Erasing concepts from large-scale text-to-image (T2I) diffusion models has become increasingly crucial due to the growing concerns over copyright infringement, offensive content, and privacy violations. In scalable applications, fine-tuning-based methods are time-consuming to precisely erase multiple target concepts, while real-time editing-based methods often degrade the generation quality of non-target concepts due to conflicting optimization objectives. To address this dilemma, we introduce SPEED, an efficient concept erasure approach that directly edits model parameters. SPEED searches for a null space, a model editing space where parameter updates do not affect non-target concepts, to achieve scalable and precise erasure. To facilitate accurate null space optimization, we incorporate three complementary strategies: Influence-based Prior Filtering (IPF) to selectively retain the most affected non-target concepts, Directed Prior Augmentation (DPA) to enrich the filtered retain set with semantically consistent variations, and Invariant Equality Constraints (IEC) to preserve key invariants during the T2I generation process. Extensive evaluations across multiple concept erasure tasks demonstrate that SPEED consistently outperforms existing methods in non-target preservation while achieving efficient and high-fidelity concept erasure, successfully erasing 100 concepts within only 5 seconds. Our code and models are available at: https://github.com/Ouxiang-Li/SPEED.
comment: Accepted to ICLR 2026
♻ ☆ Video Unlearning via Low-Rank Refusal Vector
Video generative models achieve high-quality synthesis from natural-language prompts by leveraging large-scale web data. However, this training paradigm inherently exposes them to unsafe biases and harmful concepts, introducing the risk of generating undesirable or illicit content. To mitigate unsafe generations, existing machine unlearning approaches either rely on filtering, and can therefore be bypassed, or they update model weights, but with costly fine-tuning or training-free closed-form edits. We propose the first training-free weight update framework for concept removal in video diffusion models. From five paired safe/unsafe prompts, our method estimates a refusal vector and integrates it into the model weights as a closed-form update. A contrastive low-rank factorization further disentangles the target concept from unrelated semantics, it ensures a selective concept suppression and it does not harm generation quality. Our approach reduces unsafe generations on the Open-Sora and ZeroScopeT2V models across the T2VSafetyBench and SafeSora benchmarks, with average reductions of 36.3% and 58.2% respectively, while preserving prompt alignment and video quality. This establishes an efficient and scalable solution for safe video generation without retraining nor any inference overhead. Project page: https://www.pinlab.org/video-unlearning.
♻ ☆ Symmetrical Flow Matching: Unified Image Generation, Segmentation, and Classification with Score-Based Generative Models AAAI 2026
Flow Matching has emerged as a powerful framework for learning continuous transformations between distributions, enabling high-fidelity generative modeling. This work introduces Symmetrical Flow Matching (SymmFlow), a new formulation that unifies semantic segmentation, classification, and image generation within a single model. Using a symmetric learning objective, SymmFlow models forward and reverse transformations jointly, ensuring bi-directional consistency, while preserving sufficient entropy for generative diversity. A new training objective is introduced to explicitly retain semantic information across flows, featuring efficient sampling while preserving semantic structure, allowing for one-step segmentation and classification without iterative refinement. Unlike previous approaches that impose strict one-to-one mapping between masks and images, SymmFlow generalizes to flexible conditioning, supporting both pixel-level and image-level class labels. Experimental results on various benchmarks demonstrate that SymmFlow achieves state-of-the-art performance on semantic image synthesis, obtaining FID scores of 11.9 on CelebAMask-HQ and 7.0 on COCO-Stuff with only 25 inference steps. Additionally, it delivers competitive results on semantic segmentation and shows promising capabilities in classification tasks.
comment: AAAI 2026
♻ ☆ MemoryVLA: Perceptual-Cognitive Memory in Vision-Language-Action Models for Robotic Manipulation ICLR 2026
Temporal context is essential for robotic manipulation because such tasks are inherently non-Markovian, yet mainstream VLA models typically overlook it and struggle with long-horizon, temporally dependent tasks. Cognitive science suggests that humans rely on working memory to buffer short-lived representations for immediate control, while the hippocampal system preserves verbatim episodic details and semantic gist of past experience for long-term memory. Inspired by these mechanisms, we propose MemoryVLA, a Cognition-Memory-Action framework for long-horizon robotic manipulation. A pretrained VLM encodes the observation into perceptual and cognitive tokens that form working memory, while a Perceptual-Cognitive Memory Bank stores low-level details and high-level semantics consolidated from it. Working memory retrieves decision-relevant entries from the bank, adaptively fuses them with current tokens, and updates the bank by merging redundancies. Using these tokens, a memory-conditioned diffusion action expert yields temporally aware action sequences. We evaluate MemoryVLA on 150+ simulation and real-world tasks across three robots. On SimplerEnv-Bridge, Fractal, LIBERO-5 suites and Mikasa-Robo, it achieves 71.9%, 72.7%, 96.5%, and 41.2% success rates, respectively, all outperforming state-of-the-art baselines CogACT and pi-0, with a notable +14.6 gain on Bridge and +11.8 gain on Mikasa-Robo. On 12 real-world tasks spanning general skills and long-horizon temporal dependencies, MemoryVLA achieves 84.0% success rate, with long-horizon tasks showing a +26 improvement over state-of-the-art baseline. Project Page: https://shihao1895.github.io/MemoryVLA
comment: ICLR 2026 | The project is available at https://shihao1895.github.io/MemoryVLA
♻ ☆ TwinBrainVLA: Unleashing the Potential of Generalist VLMs for Embodied Tasks via Asymmetric Mixture-of-Transformers
The fundamental premise of Vision-Language-Action (VLA) models is to harness the extensive general capabilities of pre-trained Vision-Language Models (VLMs) for generalized embodied intelligence. However, standard robotic fine-tuning inevitably disrupts the pre-trained feature space, leading to "catastrophic forgetting" that compromises the general visual understanding we aim to leverage. To effectively utilize the uncorrupted general capabilities of VLMs for robotic tasks, we propose TwinBrainVLA, which coordinates two isomorphic VLM pathways: a frozen generalist (also called "Left Brain") and a trainable specialist (also called "Right Brain"). Our architecture utilizes a Asymmetric Mixture-of-Transformers (AsyMoT) mechanism, enabling the Right Brain to dynamically query and fuse intact semantic knowledge from the Left Brain with proprioceptive states. This fused representation conditions a flow-matching action expert for precise continuous control. Empirical results on SimplerEnv and RoboCasa benchmarks demonstrate that by explicitly retaining general capabilities, TwinBrainVLA achieves substantial performance gains over baseline models in complex manipulation tasks.
comment: GitHub: https://github.com/ZGC-EmbodyAI/TwinBrainVLA
♻ ☆ From Label Error Detection to Correction: A Modular Framework and Benchmark for Object Detection Datasets
Object detection has advanced rapidly in recent years, driven by increasingly large and diverse datasets. However, label errors often compromise the quality of these datasets and affect the outcomes of training and benchmark evaluations. Although label error detection methods for object detection datasets now exist, they are typically validated only on synthetic benchmarks or via limited manual inspection. How to correct such errors systematically and at scale remains an open problem. We introduce a semi-automated framework for label error correction called Rechecked. Building on existing label error detection methods, their error proposals are reviewed with lightweight, crowd-sourced microtasks. We apply Rechecked to the class pedestrian in the KITTI dataset, for which we crowdsourced high-quality corrected annotations. We detect 18% of missing and inaccurate labels in the original ground truth. We show that current label error detection methods, when combined with our correction framework, can recover hundreds of errors with little human effort compared to annotation from scratch. However, even the best methods still miss up to 66% of the label errors, which motivates further research, now enabled by our released benchmark.
♻ ☆ An Automated Framework for Large-Scale Graph-Based Cerebrovascular Analysis
We present CaravelMetrics, a computational framework for automated cerebrovascular analysis that models vessel morphology through skeletonization-derived graph representations. The framework integrates atlas-based regional parcellation, centerline extraction, and graph construction to compute fifteen morphometric, topological, fractal, and geometric features. The features can be estimated globally from the complete vascular network or regionally within arterial territories, enabling multiscale characterization of cerebrovascular organization. Applied to 570 3D TOF-MRA scans from the IXI dataset (ages 20-86), CaravelMetrics yields reproducible vessel graphs capturing age- and sex-related variations and education-associated increases in vascular complexity, consistent with findings reported in the literature. The framework provides a scalable and fully automated approach for quantitative cerebrovascular feature extraction, supporting normative modeling and population-level studies of vascular health and aging.
comment: Submitted to ISBI 2026. 6 pages, 6 figures
♻ ☆ Accurate and Efficient Low-Rank Model Merging in Core Space NeurIPS 2025
In this paper, we address the challenges associated with merging low-rank adaptations of large neural networks. With the rise of parameter-efficient adaptation techniques, such as Low-Rank Adaptation (LoRA), model fine-tuning has become more accessible. While fine-tuning models with LoRA is highly efficient, existing merging methods often sacrifice this efficiency by merging fully-sized weight matrices. We propose the Core Space merging framework, which enables the merging of LoRA-adapted models within a common alignment basis, thereby preserving the efficiency of low-rank adaptation while substantially improving accuracy across tasks. We further provide a formal proof that projection into Core Space ensures no loss of information and provide a complexity analysis showing the efficiency gains. Extensive empirical results demonstrate that Core Space significantly improves existing merging techniques and achieves state-of-the-art results on both vision and language tasks while utilizing a fraction of the computational resources. Codebase is available at https://github.com/apanariello4/core-space-merging.
comment: Accepted at 39th Conference on Neural Information Processing Systems (NeurIPS 2025), San Diego, USA
♻ ☆ SpiderNets: Vision Models Predict Human Fear From Aversive Images
Phobias are common and impairing, and exposure therapy, which involves confronting patients with fear-provoking visual stimuli, is the most effective treatment. Scalable computerized exposure therapy requires automated prediction of fear directly from image content to adapt stimulus selection and treatment intensity. Whether such predictions can be made reliably and generalize across individuals and stimuli, however, remains unknown. Here we show that pretrained convolutional and transformer vision models, adapted via transfer learning, accurately predict group-level perceived fear for spider-related images, even when evaluated on new people and new images, achieving a mean absolute error (MAE) below 10 units on the 0-100 fear scale. Visual explanation analyses indicate that predictions are driven by spider-specific regions in the images. Learning-curve analyses show that transformer models are data efficient and approach performance saturation with the available data (~300 images). Prediction errors increase for very low and very high fear levels and within specific categories of images. These results establish transparent, data-driven fear estimation from images, laying the groundwork for adaptive digital mental health tools.
comment: 65 pages (32 main text, 33 appendix), 20 figures (5 in main text, 15 in appendix)
♻ ☆ From Street View to Visibility Network: Mapping Urban Visual Relationships with Vision-Language Models
Visibility analysis is one of the fundamental analytics methods in urban planning and landscape research, traditionally conducted through computational simulations based on the Line-of-Sight (LoS) principle. However, when assessing the visibility of named urban objects such as landmarks, geometric intersection alone fails to capture the contextual and perceptual dimensions of visibility as experienced in the real world. The study challenges the traditional LoS-based approaches by introducing a new, image-based visibility analysis method. Specifically, a Vision Language Model (VLM) is applied to detect the target object within a direction-zoomed Street View Image (SVI). Successful detection represents the object's visibility at the corresponding SVI location. Further, a heterogeneous visibility graph is constructed to address the complex interaction between observers and target objects. In the first case study, the method proves its reliability in detecting the visibility of six tall landmark constructions in global cities, with an overall accuracy of 87%. Furthermore, it reveals broader contextual differences when the landmarks are perceived and experienced. In the second case, the proposed visibility graph uncovers the form and strength of connections for multiple landmarks along the River Thames in London, as well as the places where these connections occur. Notably, bridges on the River Thames account for approximately 30% of total connections. Our method complements and enhances traditional LoS-based visibility analysis, and showcases the possibility of revealing the prevalent connection of any visual objects in the urban environment. It opens up new research perspectives for urban planning, heritage conservation, and computational social science.
♻ ☆ Token Entropy Regularization for Multi-modal Antenna Affiliation Identification
Accurate antenna affiliation identification is crucial for optimizing and maintaining communication networks. Current practice, however, relies on the cumbersome and error-prone process of manual tower inspections. We propose a novel paradigm shift that fuses video footage of base stations, antenna geometric features, and Physical Cell Identity (PCI) signals, transforming antenna affiliation identification into multi-modal classification and matching tasks. Publicly available pretrained transformers struggle with this unique task due to a lack of analogous data in the communications domain, which hampers cross-modal alignment. To address this, we introduce a dedicated training framework that aligns antenna images with corresponding PCI signals. To tackle the representation alignment challenge, we propose a novel Token Entropy Regularization module in the pretraining stage. Our experiments demonstrate that TER accelerates convergence and yields significant performance gains. Further analysis reveals that the entropy of the first token is modality-dependent. Code will be made available upon publication.
♻ ☆ Stretching Beyond the Obvious: A Gradient-Free Framework to Unveil the Hidden Landscape of Visual Invariance
Uncovering which feature combinations are encoded by visual units is critical to understanding how images are transformed into representations that support recognition. While existing feature visualization approaches typically infer a unit's most exciting images, this is insufficient to reveal the manifold of transformations under which responses remain invariant, which is critical to generalization in vision. Here we introduce Stretch-and-Squeeze (SnS), a model-agnostic, gradient-free framework to systematically characterize a unit's maximally invariant stimuli, and its vulnerability to adversarial perturbations, in both biological and artificial visual systems. SnS frames these transformations as bi-objective optimization problems. To probe invariance, SnS seeks image perturbations that maximally alter (stretch) the representation of a reference stimulus in a given processing stage while preserving unit activation downstream (squeeze). To probe adversarial sensitivity, stretching and squeezing are reversed to maximally perturb unit activation while minimizing changes to the upstream representation. Applied to CNNs, SnS revealed invariant transformations that were farther from a reference image in pixel-space than those produced by affine transformations, while more strongly preserving the target unit's response. The discovered invariant images differed depending on the stage of the image representation used for optimization: pixel-level changes primarily affected luminance and contrast, while stretching mid- and late-layer representations mainly altered texture and pose. By measuring how well the hierarchical invariant images obtained for L2 robust networks were classified by humans and other observer networks, we discovered a substantial drop in their interpretability when the representation was stretched in deep layers, while the opposite trend was found for standard models.
comment: 34 pages, 15 figures
♻ ☆ AccidentSim: Generating Vehicle Collision Videos with Physically Realistic Collision Trajectories from Real-World Accident Reports
Collecting real-world vehicle accident videos for autonomous driving research is challenging due to their rarity and complexity. While existing driving video generation methods may produce visually realistic videos, they often fail to deliver physically realistic simulations because they lack the capability to generate accurate post-collision trajectories. In this paper, we introduce AccidentSim, a novel framework that generates physically realistic vehicle collision videos by extracting and utilizing the physical clues and contextual information available in real-world vehicle accident reports. Specifically, AccidentSim leverages a reliable physical simulator to replicate post-collision vehicle trajectories from the physical and contextual information in the accident reports and to build a vehicle collision trajectory dataset. This dataset is then used to fine-tune a language model, enabling it to respond to user prompts and predict physically consistent post-collision trajectories across various driving scenarios based on user descriptions. Finally, we employ Neural Radiance Fields (NeRF) to render high-quality backgrounds, merging them with the foreground vehicles that exhibit physically realistic trajectories to generate vehicle collision videos. Experimental results demonstrate that the videos produced by AccidentSim excel in both visual and physical authenticity.
♻ ☆ Entropy-Guided k-Guard Sampling for Long-Horizon Autoregressive Video Generation
Autoregressive (AR) architectures have achieved significant successes in LLMs, inspiring explorations for video generation. In LLMs, top-p/top-k sampling strategies work exceptionally well: language tokens have high semantic density and low redundancy, so a fixed size of token candidates already strikes a balance between semantic accuracy and generation diversity. In contrast, video tokens have low semantic density and high spatio-temporal redundancy. This mismatch makes static top-k/top-p strategies ineffective for video decoders: they either introduce unnecessary randomness for low-uncertainty regions (static backgrounds) or get stuck in early errors for high-uncertainty regions (foreground objects). Prediction errors will accumulate as more frames are generated and eventually severely degrade long-horizon quality. To address this, we propose Entropy-Guided k-Guard (ENkG) sampling, a simple yet effective strategy that adapts sampling to token-wise dispersion, quantified by the entropy of each token's predicted distribution. ENkG uses adaptive token candidate sizes: for low-entropy regions, it employs fewer candidates to suppress redundant noise and preserve structural integrity; for high-entropy regions, it uses more candidates to mitigate error compounding. ENkG is model-agnostic, training-free, and adds negligible overhead. Experiments demonstrate consistent improvements in perceptual quality and structural stability compared to static top-k/top-p strategies.
♻ ☆ Bi-Anchor Interpolation Solver for Accelerating Generative Modeling
Flow Matching (FM) models have emerged as a leading paradigm for high-fidelity synthesis. However, their reliance on iterative Ordinary Differential Equation (ODE) solving creates a significant latency bottleneck. Existing solutions face a dichotomy: training-free solvers suffer from significant performance degradation at low Neural Function Evaluations (NFEs), while training-based one- or few-steps generation methods incur prohibitive training costs and lack plug-and-play versatility. To bridge this gap, we propose the Bi-Anchor Interpolation Solver (BA-solver). BA-solver retains the versatility of standard training-free solvers while achieving significant acceleration by introducing a lightweight SideNet (1-2% backbone size) alongside the frozen backbone. Specifically, our method is founded on two synergistic components: \textbf{1) Bidirectional Temporal Perception}, where the SideNet learns to approximate both future and historical velocities without retraining the heavy backbone; and 2) Bi-Anchor Velocity Integration, which utilizes the SideNet with two anchor velocities to efficiently approximate intermediate velocities for batched high-order integration. By utilizing the backbone to establish high-precision ``anchors'' and the SideNet to densify the trajectory, BA-solver enables large interval sizes with minimized error. Empirical results on ImageNet-256^2 demonstrate that BA-solver achieves generation quality comparable to 100+ NFEs Euler solver in just 10 NFEs and maintains high fidelity in as few as 5 NFEs, incurring negligible training costs. Furthermore, BA-solver ensures seamless integration with existing generative pipelines, facilitating downstream tasks such as image editing.
♻ ☆ From Tokens to Photons: Test-Time Physical Prompting for Vision-Language Models
To extend the application of vision-language models (VLMs) from web images to sensor-mediated physical environments, we propose Multi-View Physical-prompt for Test-Time Adaptation (MVP), a forward-only framework that moves test-time adaptation (TTA) from tokens to photons by treating the camera exposure triangle--ISO, shutter speed, and aperture--as physical prompts. At inference, MVP acquires a library of physical views per scene, selects the top-k sensor settings using a source-affinity score, evaluates each retained view under lightweight digital augmentations, filters the lowest-entropy subset of augmented views, and aggregates predictions with Zero-temperature softmax (i.e., hard voting). This selection-then-vote design is simple, calibration-friendly, and requires no gradients or model modifications. On ImageNet-ES and ImageNet-ES-Diverse, MVP consistently outperforms digital-only TTA on single Auto-Exposure captures, by up to 25.6 percentage points (pp), and delivers up to 3.4 pp additional gains over pipelines that combine conventional sensor control with TTA. MVP remains effective under reduced parameter candidate sets that lower capture latency, demonstrating practicality. These results support the main claim that, beyond post-capture prompting, measurement-time control--selecting and combining real physical views--substantially improves robustness for VLMs.
♻ ☆ TorchCP: A Python Library for Conformal Prediction
Conformal prediction (CP) is a powerful statistical framework that generates prediction intervals or sets with guaranteed coverage probability. While CP algorithms have evolved beyond traditional classifiers and regressors to sophisticated deep learning models like deep neural networks (DNNs), graph neural networks (GNNs), and large language models (LLMs), existing CP libraries often lack the model support and scalability for large-scale deep learning (DL) scenarios. This paper introduces TorchCP, a PyTorch-native library designed to integrate state-of-the-art CP algorithms into DL techniques, including DNN-based classifiers/regressors, GNNs, and LLMs. Released under the LGPL-3.0 license, TorchCP comprises about 16k lines of code, validated with 100\% unit test coverage and detailed documentation. Notably, TorchCP enables CP-specific training algorithms, online prediction, and GPU-accelerated batch processing, achieving up to 90\% reduction in inference time on large datasets. With its low-coupling design, comprehensive suite of advanced methods, and full GPU scalability, TorchCP empowers researchers and practitioners to enhance uncertainty quantification across cutting-edge applications.
♻ ☆ Causal-Adapter: Taming Text-to-Image Diffusion for Faithful Counterfactual Generation
We present Causal-Adapter, a modular framework that adapts frozen text-to-image diffusion backbones for counterfactual image generation. Our method enables causal interventions on target attributes, consistently propagating their effects to causal dependents without altering the core identity of the image. In contrast to prior approaches that rely on prompt engineering without explicit causal structure, Causal-Adapter leverages structural causal modeling augmented with two attribute regularization strategies: prompt-aligned injection, which aligns causal attributes with textual embeddings for precise semantic control, and a conditioned token contrastive loss to disentangle attribute factors and reduce spurious correlations. Causal-Adapter achieves state-of-the-art performance on both synthetic and real-world datasets, with up to 91% MAE reduction on Pendulum for accurate attribute control and 87% FID reduction on ADNI for high-fidelity MRI image generation. These results show that our approach enables robust, generalizable counterfactual editing with faithful attribute modification and strong identity preservation.
comment: 8 pages, 26 figures
♻ ☆ Generation Enhances Understanding in Unified Multimodal Models via Multi-Representation Generation
Unified Multimodal Models (UMMs) integrate both visual understanding and generation within a single framework. Their ultimate aspiration is to create a cycle where understanding and generation mutually reinforce each other. While recent post-training methods have successfully leveraged understanding to enhance generation, the reverse direction of utilizing generation to improve understanding remains largely unexplored. In this work, we propose UniMRG (Unified Multi-Representation Generation), a simple yet effective architecture-agnostic post-training method. UniMRG enhances the understanding capabilities of UMMs by incorporating auxiliary generation tasks. Specifically, we train UMMs to generate multiple intrinsic representations of input images, namely pixel (reconstruction), depth (geometry), and segmentation (structure), alongside standard visual understanding objectives. By synthesizing these diverse representations, UMMs capture complementary information regarding appearance, spatial relations, and structural layout. Consequently, UMMs develop a deeper and more comprehensive understanding of visual inputs. Extensive experiments across diverse UMM architectures demonstrate that our method notably enhances fine-grained perception, reduces hallucinations, and improves spatial understanding, while simultaneously boosting generation capabilities.
♻ ☆ FlashFace: Human Image Personalization with High-fidelity Identity Preservation
This work presents FlashFace, a practical tool with which users can easily personalize their own photos on the fly by providing one or a few reference face images and a text prompt. Our approach is distinguishable from existing human photo customization methods by higher-fidelity identity preservation and better instruction following, benefiting from two subtle designs. First, we encode the face identity into a series of feature maps instead of one image token as in prior arts, allowing the model to retain more details of the reference faces (e.g., scars, tattoos, and face shape ). Second, we introduce a disentangled integration strategy to balance the text and image guidance during the text-to-image generation process, alleviating the conflict between the reference faces and the text prompts (e.g., personalizing an adult into a "child" or an "elder"). Extensive experimental results demonstrate the effectiveness of our method on various applications, including human image personalization, face swapping under language prompts, making virtual characters into real people, etc. Project Page: https://jshilong.github.io/flashface-page.
comment: Project Page:https://jshilong.github.io/flashface-page
♻ ☆ NegoCollab: A Common Representation Negotiation Approach for Heterogeneous Collaborative Perception NeurIPS 2025
Collaborative perception improves task performance by expanding the perception range through information sharing among agents. . Immutable heterogeneity poses a significant challenge in collaborative perception, as participating agents may employ different and fixed perception models. This leads to domain gaps in the intermediate features shared among agents, consequently degrading collaborative performance. Aligning the features of all agents to a common representation can eliminate domain gaps with low training cost. However, in existing methods, the common representation is designated as the representation of a specific agent, making it difficult for agents with significant domain discrepancies from this specific agent to achieve proper alignment. This paper proposes NegoCollab, a heterogeneous collaboration method based on the negotiated common representation. It introduces a negotiator during training to derive the common representation from the local representations of each modality's agent, effectively reducing the inherent domain gap with the various local representations. In NegoCollab, the mutual transformation of features between the local representation space and the common representation space is achieved by a pair of sender and receiver. To better align local representations to the common representation containing multimodal information, we introduce structural alignment loss and pragmatic alignment loss in addition to the distribution alignment loss to supervise the training. This enables the knowledge in the common representation to be fully distilled into the sender.
comment: 23 pages, Accepted by NeurIPS 2025
♻ ☆ Metis-SPECS: Decoupling Multimodal Learning via Self-distilled Preference-based Cold Start ICLR 2026
Reinforcement learning (RL) with verifiable rewards has recently catalyzed a wave of "MLLM-r1" approaches that bring RL to vision language models. Most representative paradigms begin with a cold start, typically employing supervised fine-tuning (SFT), to initialize the policy before RL. However, SFT-based cold start adopts the reasoning paradigm intertwined with task solution and output format, which may induce instruction-style overfitting, weakens out-of-distribution generalization, and ultimately affects downstream RL. We revisit the cold start along two views, its training method and data construction, and introduce the Generalization Factor (GF) coefficient to quantify the generalization capability under different methods. Our empirical study finds that preference-based training methods (e.g. DPO) generalizes better than SFT-based methods in cold start. Motivated by this, we propose SPECS-a Self-distilled, Preference-based Cold Start framework that decouples multimodal learning: (1) generates introspective preference data pairs via self-distillation, avoiding reliance on larger teachers or manual annotation; (2) performs preference-based training to learn, focusing on shallow, transferable surface-form criteria (format, structure, style) rather than memorizing content; and (3) hands off to RL with verifiable rewards for deep reasoning results. Experimental results across multiple multimodal benchmarks show that our decoupling learning framework yields consistent performance gains over strong baselines, improving MEGA-Bench by 4.1% and MathVista by 12.2%. Additional experiments indicate that SPECS contributes to reducing in-distribution "stuckness," improving exploration, stabilizing training, and raising the performance ceiling. Project Page: https://kwen-chen.github.io/SPECS-VL/
comment: Published as a conference paper at ICLR 2026!
♻ ☆ Online Navigation Refinement: Achieving Lane-Level Guidance by Associating Standard-Definition and Online Perception Maps
Lane-level navigation is critical for geographic information systems and navigation-based tasks, offering finer-grained guidance than road-level navigation by standard definition (SD) maps. However, it currently relies on expansive global HD maps that cannot adapt to dynamic road conditions. Recently, online perception (OP) maps have become research hotspots, providing real-time geometry as an alternative, but lack the global topology needed for navigation. To address these issues, Online Navigation Refinement (ONR), a new mission is introduced that refines SD-map-based road-level routes into accurate lane-level navigation by associating SD maps with OP maps. The map-to-map association to handle many-to-one lane-to-road mappings under two key challenges: (1) no public dataset provides lane-to-road correspondences; (2) severe misalignment from spatial fluctuations, semantic disparities, and OP map noise invalidates traditional map matching. For these challenges, We contribute: (1) Online map association dataset (OMA), the first ONR benchmark with 30K scenarios and 2.6M annotated lane vectors; (2) MAT, a transformer with path-aware attention to aligns topology despite spatial fluctuations and semantic disparities and spatial attention for integrates noisy OP features via global context; and (3) NR P-R, a metric evaluating geometric and semantic alignment. Experiments show that MAT outperforms existing methods at 34 ms latency, enabling low-cost and up-to-date lane-level navigation.
comment: Author Affiliation Standardization
♻ ☆ ObjectVisA-120: Object-based Visual Attention Prediction in Interactive Street-crossing Environments
The object-based nature of human visual attention is well-known in cognitive science, but has only played a minor role in computational visual attention models so far. This is mainly due to a lack of suitable datasets and evaluation metrics for object-based attention. To address these limitations, we present ObjectVisA-120 -- a novel 120-participant dataset of spatial street-crossing navigation in virtual reality specifically geared to object-based attention evaluations. The uniqueness of the presented dataset lies in the ethical and safety affiliated challenges that make collecting comparable data in real-world environments highly difficult. ObjectVisA-120 not only features accurate gaze data and a complete state-space representation of objects in the virtual environment, but it also offers variable scenario complexities and rich annotations, including panoptic segmentation, depth information, and vehicle keypoints. We further propose object-based similarity (oSIM) as a novel metric to evaluate the performance of object-based visual attention models, a previously unexplored performance characteristic. Our evaluations show that explicitly optimising for object-based attention not only improves oSIM performance but also leads to an improved model performance on common metrics. In addition, we present SUMGraph, a Mamba U-Net-based model, which explicitly encodes critical scene objects (vehicles) in a graph representation, leading to further performance improvements over several state-of-the-art visual attention prediction methods. The dataset, code and models will be publicly released.
comment: Accepted for publication at the IEEE Intelligent Vehicles Symposium (IV), 2026
♻ ☆ DanQing: An Up-to-Date Large-Scale Chinese Vision-Language Pre-training Dataset
Vision-Language Pre-training (VLP) models have achieved remarkable success by leveraging large-scale image-text pairs. While English-centric models like CLIP and SigLIP benefit from massive datasets (e.g., LAION-400M), the development of Chinese VLP remains bottlenecked by the lack of high-quality, large-scale open-source data. In this paper, we present DanQing, a large-scale Chinese cross-modal dataset containing 100 million high-quality image-text pairs curated from Common Crawl. To ensure superior data quality, we develop an effective systematic pipeline comprising data source selection, text refinement, visual diversification, and cross-modal cross-batch filtering, thereby effectively mitigating the intrinsic noise prevalent in web data. Notably, DanQing incorporates data from 2024-2025, enabling models to capture contemporary semantic trends and emerging concepts. Extensive experiments via continued pretraining of SigLIP2 models demonstrate that DanQing consistently outperforms existing Chinese datasets across diverse downstream tasks, including zero-shot classification, cross-modal retrieval, and Chinese-centric large multimodal model tasks. Furthermore, in-depth analysis of DanQing reveals that it exhibits a more balanced semantic distribution and superior scaling capability compared to existing datasets. To facilitate further research in Chinese vision-language pre-training, we will open-source the DanQing dataset under the Creative Common CC-BY 4.0 license.
comment: 19 pages, 11 figures, 7 tables
♻ ☆ Spatially-Adaptive Gradient Re-parameterization for 3D Large Kernel Optimization
Large kernel convolutions offer a scalable alternative to vision transformers for high-resolution 3D volumetric analysis, yet naively increasing kernel size often leads to optimization instability. Motivated by the spatial bias inherent in effective receptive fields (ERFs), we theoretically demonstrate that structurally re-parameterized blocks induce spatially varying learning rates that are crucial for convergence. Leveraging this insight, we introduce Rep3D, a framework that employs a lightweight modulation network to generate receptive-biased scaling masks, adaptively re-weighting kernel updates within a plain encoder architecture. This approach unifies spatial inductive bias with optimization-aware learning, avoiding the complexity of multi-branch designs while ensuring robust local-to-global convergence. Extensive evaluations on five 3D segmentation benchmarks demonstrate that Rep3D consistently outperforms state-of-the-art transformer and fixed-prior baselines. The source code is publicly available at https://github.com/leeh43/Rep3D.
comment: 17 pages
♻ ☆ FlashVideo: Flowing Fidelity to Detail for Efficient High-Resolution Video Generation
DiT models have achieved great success in text-to-video generation, leveraging their scalability in model capacity and data scale. High content and motion fidelity aligned with text prompts, however, often require large model parameters and a substantial number of function evaluations (NFEs). Realistic and visually appealing details are typically reflected in high-resolution outputs, further amplifying computational demands-especially for single-stage DiT models. To address these challenges, we propose a novel two-stage framework, FlashVideo, which strategically allocates model capacity and NFEs across stages to balance generation fidelity and quality. In the first stage, prompt fidelity is prioritized through a low-resolution generation process utilizing large parameters and sufficient NFEs to enhance computational efficiency. The second stage achieves a nearly straight ODE trajectory between low and high resolutions via flow matching, effectively generating fine details and fixing artifacts with minimal NFEs. To ensure a seamless connection between the two independently trained stages during inference, we carefully design degradation strategies during the second-stage training. Quantitative and visual results demonstrate that FlashVideo achieves state-of-the-art high-resolution video generation with superior computational efficiency. Additionally, the two-stage design enables users to preview the initial output and accordingly adjust the prompt before committing to full-resolution generation, thereby significantly reducing computational costs and wait times as well as enhancing commercial viability.
comment: Model and Weight: https://github.com/FoundationVision/FlashVideo
♻ ☆ PLANING: A Loosely Coupled Triangle-Gaussian Framework for Streaming 3D Reconstruction
Streaming reconstruction from monocular image sequences remains challenging, as existing methods typically favor either high-quality rendering or accurate geometry, but rarely both. We present PLANING, an efficient on-the-fly reconstruction framework built on a hybrid representation that loosely couples explicit geometric primitives with neural Gaussians, enabling geometry and appearance to be modeled in a decoupled manner. This decoupling supports an online initialization and optimization strategy that separates geometry and appearance updates, yielding stable streaming reconstruction with substantially reduced structural redundancy. PLANING improves dense mesh Chamfer-L2 by 18.52% over PGSR, surpasses ARTDECO by 1.31 dB PSNR, and reconstructs ScanNetV2 scenes in under 100 seconds, over 5x faster than 2D Gaussian Splatting, while matching the quality of offline per-scene optimization. Beyond reconstruction quality, the structural clarity and computational efficiency of PLANING make it well suited for a broad range of downstream applications, such as enabling large-scale scene modeling and simulation-ready environments for embodied AI. Project page: https://city-super.github.io/PLANING/ .
comment: Project page: https://city-super.github.io/PLANING/
♻ ☆ On The Relationship Between Continual Learning and Long-Tailed Recognition
Real-world datasets often exhibit long-tailed distributions, where a few dominant "Head" classes have abundant samples while most "Tail" classes are severely underrepresented, leading to biased learning and poor generalization for the Tail. We present a theoretical framework that reveals a previously undescribed connection between Long-Tailed Recognition (LTR) and Continual Learning (CL), the process of learning sequential tasks without forgetting prior knowledge. Our analysis demonstrates that, for models trained on imbalanced datasets, the weights converge to a bounded neighborhood of those trained exclusively on the Head, with the bound scaling as the inverse square root of the imbalance factor. Leveraging this insight, we introduce Continual Learning for Long-Tailed Recognition (CLTR), a principled approach that employs standard off-the-shelf CL methods to address LTR problems by sequentially learning Head and Tail classes without forgetting the Head. Our theoretical analysis further suggests that CLTR mitigates gradient saturation and improves Tail learning while maintaining strong Head performance. Extensive experiments on CIFAR100-LT, CIFAR10-LT, ImageNet-LT, and Caltech256 validate our theoretical predictions, achieving strong results across various LTR benchmarks. Our work bridges the gap between LTR and CL, providing a principled way to tackle imbalanced data challenges with standard existing CL strategies.
♻ ☆ AlignGemini: Generalizable AI-Generated Image Detection Through Task-Model Alignment
Vision Language Models (VLMs) are increasingly used for detecting AI-generated images (AIGI). However, converting VLMs into reliable detectors is resource-intensive, and the resulting models often suffer from hallucination and poor generalization. To investigate the root cause, we conduct an empirical analysis and identify two consistent behaviors. First, fine-tuning VLMs with semantic supervision improves semantic discrimination and generalizes well to unseen data. Second, fine-tuning VLMs with pixel-artifact supervision leads to weak generalization. These findings reveal a fundamental task-model misalignment. VLMs are optimized for high-level semantic reasoning and lack inductive bias toward low-level pixel artifacts. In contrast, conventional vision models effectively capture pixel-level artifacts but are less sensitive to semantic inconsistencies. This indicates that different models are naturally suited to different subtasks. Based on this insight, we formulate AIGI detection as two orthogonal subtasks: semantic consistency checking and pixel-artifact detection. Neglecting either subtask leads to systematic detection failures. We further propose the Task-Model Alignment principle and instantiate it in a two-branch detector, AlignGemini. The detector combines a VLM trained with pure semantic supervision and a vision model trained with pure pixel-artifact supervision. By enforcing clear specialization, each branch captures complementary cues. Experiments on in-the-wild benchmarks show that AlignGemini improves average accuracy by 9.5 percent using simplified training data. These results demonstrate that task-model alignment is an effective principle for generalizable AIGI detection.
♻ ☆ Beyond Inpainting: Unleash 3D Understanding for Precise Camera-Controlled Video Generation
Camera control has been extensively studied in conditioned video generation; however, performing precisely altering the camera trajectories while faithfully preserving the video content remains a challenging task. The mainstream approach to achieving precise camera control is warping a 3D representation according to the target trajectory. However, such methods fail to fully leverage the 3D priors of video diffusion models (VDMs) and often fall into the Inpainting Trap, resulting in subject inconsistency and degraded generation quality. To address this problem, we propose DepthDirector, a video re-rendering framework with precise camera controllability. By leveraging the depth video from explicit 3D representation as camera-control guidance, our method can faithfully reproduce the dynamic scene of an input video under novel camera trajectories. Specifically, we design a View-Content Dual-Stream Condition mechanism that injects both the source video and the warped depth sequence rendered under the target viewpoint into the pretrained video generation model. This geometric guidance signal enables VDMs to comprehend camera movements and leverage their 3D understanding capabilities, thereby facilitating precise camera control and consistent content generation. Next, we introduce a lightweight LoRA-based video diffusion adapter to train our framework, fully preserving the knowledge priors of VDMs. Additionally, we construct a large-scale multi-camera synchronized dataset named MultiCam-WarpData using Unreal Engine 5, containing 8K videos across 1K dynamic scenes. Extensive experiments show that DepthDirector outperforms existing methods in both camera controllability and visual quality. Our code and dataset will be publicly available.
comment: Project page: https://eleanor6725.github.io/DepthDirector/
♻ ☆ FMIR, a foundation model-based Image Registration Framework for Robust Image Registration
Deep learning has revolutionized medical image registration by achieving unprecedented speeds, yet its clinical application is hindered by a limited ability to generalize beyond the training domain, a critical weakness given the typically small scale of medical datasets. In this paper, we introduce FMIR, a foundation model-based registration framework that overcomes this limitation.Combining a foundation model-based feature encoder for extracting anatomical structures with a general registration head, and trained with a channel regularization strategy on just a single dataset, FMIR achieves state-of-the-art(SOTA) in-domain performance while maintaining robust registration on out-of-domain images.Our approach demonstrates a viable path toward building generalizable medical imaging foundation models with limited resources. The code is available at https://github.com/Monday0328/FMIR.git.
comment: Accepted to the International Symposium on Biomedical Imaging (ISBI 2026)
♻ ☆ Omni-View: Unlocking How Generation Facilitates Understanding in Unified 3D Model based on Multiview images ICLR 2026
This paper presents Omni-View, which extends the unified multimodal understanding and generation to 3D scenes based on multiview images, exploring the principle that "generation facilitates understanding". Consisting of understanding model, texture module, and geometry module, Omni-View jointly models scene understanding, novel view synthesis, and geometry estimation, enabling synergistic interaction between 3D scene understanding and generation tasks. By design, it leverages the spatiotemporal modeling capabilities of its texture module responsible for appearance synthesis, alongside the explicit geometric constraints provided by its dedicated geometry module, thereby enriching the model's holistic understanding of 3D scenes. Trained with a two-stage strategy, Omni-View achieves a state-of-the-art score of 55.4 on the VSI-Bench benchmark, outperforming existing specialized 3D understanding models, while simultaneously delivering strong performance in both novel view synthesis and 3D scene generation. The code and pretraiend models are open-sourced at https://github.com/AIDC-AI/Omni-View.
comment: Accepted by ICLR 2026
♻ ☆ CacheFlow: Fast Human Motion Prediction by Cached Normalizing Flow
Many density estimation techniques for 3D human motion prediction require a significant amount of inference time, often exceeding the duration of the predicted time horizon. To address the need for faster density estimation for 3D human motion prediction, we introduce a novel flow-based method for human motion prediction called CacheFlow. Unlike previous conditional generative models that suffer from poor time efficiency, CacheFlow takes advantage of an unconditional flow-based generative model that transforms a Gaussian mixture into the density of future motions. The results of the computation of the flow-based generative model can be precomputed and cached. Then, for conditional prediction, we seek a mapping from historical trajectories to samples in the Gaussian mixture. This mapping can be done by a much more lightweight model, thus saving significant computation overhead compared to a typical conditional flow model. In such a two-stage fashion and by caching results from the slow flow model computation, we build our CacheFlow without loss of prediction accuracy and model expressiveness. This inference process is completed in approximately one millisecond, making it 4 times faster than previous VAE methods and 30 times faster than previous diffusion-based methods on standard benchmarks such as Human3.6M and AMASS datasets. Furthermore, our method demonstrates improved density estimation accuracy and comparable prediction accuracy to a SOTA method on Human3.6M. Our code and models are available at https://github.com/meaten/CacheFlow.
comment: Accepted at Transactions on Machine Learning Research (TMLR). See https://openreview.net/forum?id=icq5659pQt
♻ ☆ Learning to Pose Problems: Reasoning-Driven and Solver-Adaptive Data Synthesis for Large Reasoning Models
Data synthesis for training large reasoning models offers a scalable alternative to limited, human-curated datasets, enabling the creation of high-quality data. However, existing approaches face several challenges: (i) indiscriminate generation that ignores the solver's ability and yields low-value problems, or reliance on complex data pipelines to balance problem difficulty; and (ii) a lack of reasoning in problem generation, leading to shallow problem variants. In this paper, we develop a problem generator that reasons explicitly to plan problem directions before synthesis and adapts difficulty to the solver's ability. Specifically, we construct related problem pairs and augment them with intermediate problem-design CoT produced by a reasoning model. These data are used to bootstrap problem-design strategies in the generator. Then, we treat the solver's feedback on synthetic problems as a reward signal, enabling the generator to calibrate difficulty and produce complementary problems near the edge of the solver's competence. Extensive experiments on 10 mathematical and general reasoning benchmarks show that our proposed framework achieves a cumulative average improvement of 3.4%, demonstrating robust generalization across both language and vision-language models.
♻ ☆ FaVChat: Hierarchical Prompt-Query Guided Facial Video Understanding with Data-Efficient GRPO
Existing video large language models (VLLMs) primarily leverage prompt agnostic visual encoders, which extract untargeted facial representations without awareness of the queried information, leading to the loss of task critical cues. To address this challenge, we propose FaVChat, the first VLLM designed for reasoning over subtle visual and dynamic facial cues. FaVChat introduces a hierarchical, prompt guided visual feature extraction framework that emphasizes question relevant information at three complementary levels. These multi level features are dynamically fused and injected into the LLM, enabling more accurate facial details reasoning To further improve learning efficiency under data scarcity, we propose Data Efficient GRPO, a reinforcement learning strategy that iteratively identifies high utility samples and maximizes the contribution of each instance via per instance utility estimation, substantially enhancing performance gains under limited supervision. We construct a large scale benchmark dataset FaVChat 170K, comprising approximately 60K high quality facial videos and 170K question answer pairs focusing on fine grained facial details. Extensive experiments, including zero shot evaluations on four facial understanding tasks, demonstrate that FaVChat consistently outperforms existing VLLMs.
♻ ☆ VideoNSA: Native Sparse Attention Scales Video Understanding ICLR 2026
Video understanding in multimodal language models remains limited by context length: models often miss key transition frames and struggle to maintain coherence across long time scales. To address this, we adapt Native Sparse Attention (NSA) to video-language models. Our method, VideoNSA, adapts Qwen2.5-VL through end-to-end training on a 216K video instruction dataset. We employ a hardware-aware hybrid approach to attention, preserving dense attention for text, while employing NSA for video. Compared to token-compression and training-free sparse baselines, VideoNSA achieves improved performance on long-video understanding, temporal reasoning, and spatial benchmarks. Further ablation analysis reveals four key findings: (1) reliable scaling to 128K tokens; (2) an optimal global-local attention allocation at a fixed budget; (3) task-dependent branch usage patterns; and (4) the learnable combined sparse attention help induce dynamic attention sinks. Project Page: https://enxinsong.com/VideoNSA-web/, Code: https://github.com/Espere-1119-Song/VideoNSA
comment: ICLR 2026
♻ ☆ GMOR: A Lightweight Robust Point Cloud Registration Framework via Geometric Maximum Overlapping
Point cloud registration based on correspondences computes the rigid transformation that maximizes the number of inliers constrained within the noise threshold. Current state-of-the-art (SOTA) methods employing spatial compatibility graphs or branch-and-bound (BnB) search mainly focus on registration under high outlier ratios. However, graph-based methods require at least quadratic space and time complexity for graph construction, while multi-stage BnB search methods often suffer from inaccuracy due to local optima between decomposed stages. This paper proposes a geometric maximum overlapping registration framework via rotation-only BnB search. The rigid transformation is decomposed using Chasles' theorem into a translation along rotation axis and a 2D rigid transformation. The optimal rotation axis and angle are searched via BnB, with residual parameters formulated as range maximum query (RMQ) problems. Firstly, the top-k candidate rotation axes are searched within a hemisphere parameterized by cube mapping, and the translation along each axis is estimated through interval stabbing of the correspondences projected onto that axis. Secondly, the 2D registration is relaxed to 1D rotation angle search with 2D RMQ of geometric overlapping for axis-aligned rectangles, which is solved deterministically in polynomial time using sweep line algorithm with segment tree. Experimental results on indoor 3DMatch/3DLoMatch scanning and outdoor KITTI LiDAR datasets demonstrate superior accuracy and efficiency over SOTA methods, while the time complexity is polynomial and the space complexity increases linearly with the number of points, even in the worst case.
♻ ☆ ReGlove: A Soft Pneumatic Glove for Activities of Daily Living Assistance via Wrist-Mounted Vision
This paper presents ReGlove, a system that converts low-cost commercial pneumatic rehabilitation gloves into vision-guided assistive orthoses. Chronic upper-limb impairment affects millions worldwide, yet existing assistive technologies remain prohibitively expensive or rely on unreliable biological signals. Our platform integrates a wrist-mounted camera with an edge-computing inference engine (Raspberry Pi 5) to enable context-aware grasping without requiring reliable muscle signals. By adapting real-time YOLO-based computer vision models, the system achieves 96.73% grasp classification accuracy with sub-40.00 millisecond end-to-end latency. Physical validation using standardized benchmarks shows 82.71% success on YCB object manipulation and reliable performance across 27 Activities of Daily Living (ADL) tasks. With a total cost under $250 and exclusively commercial components, ReGlove provides a technical foundation for accessible, vision-based upper-limb assistance that could benefit populations excluded from traditional EMG-controlled devices.
♻ ☆ MACEval: A Multi-Agent Continual Evaluation Network for Large Models
Hundreds of benchmarks dedicated to evaluating large models have been presented over the past few years. However, most of them remain closed-ended and are prone to overfitting due to the potential data contamination. Moreover, the increasing scale and scope of current benchmarks with transient metrics, as well as the heavily human-dependent curation procedure, pose significant challenges for timely maintenance and adaptation. In this paper, we introduce MACEval, a Multi-Agent Continual Evaluation network for dynamic evaluation of large models, and define new metrics to quantify performance longitudinally. MACEval employs an interactive and autonomous evaluation mode, utilizing role assignment, in-process data generation, and evaluation routing through a cascaded agent network. Extensive experiments on 23 large models demonstrate the effectiveness of MACEval, which also lightens the evaluation process and reduces a considerable amount of overhead. We hope that MACEval can broaden future directions of large model evaluation. Project page: https://github.com/zijianchen98/MACEval.
comment: 32 pages, 14 figures
♻ ☆ LoCoT2V-Bench: Benchmarking Long-Form and Complex Text-to-Video Generation
Recent advances in text-to-video generation have achieved impressive performance on short clips, yet evaluating long-form generation under complex textual inputs remains a significant challenge. In response to this challenge, we present LoCoT2V-Bench, a benchmark for long video generation (LVG) featuring multi-scene prompts with hierarchical metadata (e.g., character settings and camera behaviors), constructed from collected real-world videos. We further propose LoCoT2V-Eval, a multi-dimensional framework covering perceptual quality, text-video alignment, temporal quality, dynamic quality, and Human Expectation Realization Degree (HERD), with an emphasis on aspects such as fine-grained text-video alignment and temporal character consistency. Experiments on 13 representative LVG models reveal pronounced capability disparities across evaluation dimensions, with strong perceptual quality and background consistency but markedly weaker fine-grained text-video alignment and character consistency. These findings suggest that improving prompt faithfulness and identity preservation remains a key challenge for long-form video generation.
♻ ☆ FrameOracle: Learning What to See and How Much to See in Videos
Vision-language models (VLMs) advance video understanding but operate under tight computational budgets, making performance dependent on selecting a small, high-quality subset of frames. Existing frame sampling strategies, such as uniform or fixed-budget selection, fail to adapt to variations in content density or task complexity. To address this, we present FrameOracle, a lightweight, plug-and-play module that predicts both (1) which frames are most relevant to a given query and (2) how many frames are needed. FrameOracle is trained via a curriculum that progresses from weak proxy signals, such as cross-modal similarity, to stronger supervision with FrameOracle-41K, the first large-scale VideoQA dataset with validated keyframe annotations specifying minimal sufficient frames per question. Extensive experiments across five VLMs and six benchmarks show that FrameOracle reduces 16-frame inputs to an average of 10.4 frames without accuracy loss. When starting from 64-frame candidates, it reduces inputs to 13.9 frames on average while improving accuracy by 1.5%, achieving state-of-the-art efficiency-accuracy trade-offs for scalable video understanding.
♻ ☆ Vision Calorimeter for Anti-neutron Reconstruction: A Baseline
In high-energy physics, anti-neutrons ($\bar{n}$) are fundamental particles that frequently appear as final-state particles, and the reconstruction of their kinematic properties provides an important probe for understanding the governing principles. However, this confronts significant challenges instrumentally with the electromagnetic calorimeter (EMC), a typical experimental sensor but recovering the information of incident $\bar{n}$ insufficiently. In this study, we introduce Vision Calorimeter (ViC), a baseline method for anti-neutron reconstruction that leverages deep learning detectors to analyze the implicit relationships between EMC responses and incident $\bar{n}$ characteristics. Our motivation lies in that energy distributions of $\bar{n}$ samples deposited in the EMC cell arrays embody rich contextual information. Converted to 2-D images, such contextual energy distributions can be used to predict the status of $\bar{n}$ ($i.e.$, incident position and momentum) through a deep learning detector along with pseudo bounding boxes and a specified training objective. Experimental results demonstrate that ViC substantially outperforms the conventional reconstruction approach, reducing the prediction error of incident position by 42.81% (from 17.31$^{\circ}$ to 9.90$^{\circ}$). More importantly, this study for the first time realizes the measurement of incident $\bar{n}$ momentum, underscoring the potential of deep learning detectors for particle reconstruction. Code is available at https://github.com/yuhongtian17/ViC.
comment: This manuscript has undergone significant modifications and improvements (2601.22097)
♻ ☆ Learning Hierarchical Sparse Transform Coding for 3DGS Compression
Current 3DGS compression methods largely forego the neural analysis-synthesis transform, which is a crucial component in learned signal compression systems. As a result, redundancy removal is left solely to the entropy coder, overburdening the entropy coding module and reducing rate-distortion (R-D) performance. To fix this critical omission, we propose a training-time transform coding (TTC) method that adds the analysis-synthesis transform and optimizes it jointly with the 3DGS representation and entropy model. Concretely, we adopt a hierarchical design: a channel-wise KLT for decorrelation and energy compaction, followed by a sparsity-aware neural transform that reconstructs the KLT residuals with minimal parameter and computational overhead. Experiments show that our method delivers strong R-D performance with fast decoding, offering a favorable BD-rate-decoding-time trade-off over SOTA 3DGS compressors.
comment: Our code will be released at \href{https://github.com/hxu160/SHTC_for_3DGS_compression}{here}
♻ ☆ DialectGen: Benchmarking and Improving Dialect Robustness in Multimodal Generation
Contact languages like English exhibit rich regional variations in the form of dialects, which are often used by dialect speakers interacting with generative models. However, can multimodal generative models effectively produce content given dialectal textual input? In this work, we study this question by constructing a new large-scale benchmark spanning six common English dialects. We work with dialect speakers to collect and verify over 4200 unique prompts and evaluate on 17 image and video generative models. Our automatic and human evaluation results show that current state-of-the-art multimodal generative models exhibit 32.26% to 48.17% performance degradation when a single dialect word is used in the prompt. Common mitigation methods such as fine-tuning and prompt rewriting can only improve dialect performance by small margins (< 7%), while potentially incurring significant performance degradation in Standard American English (SAE). To this end, we design a general encoder-based mitigation strategy for multimodal generative models. Our method teaches the model to recognize new dialect features while preserving SAE performance. Experiments on models such as Stable Diffusion 1.5 show that our method is able to simultaneously raise performance on five dialects to be on par with SAE (+34.4%), while incurring near zero cost to SAE performance.
♻ ☆ MARE: Multimodal Alignment and Reinforcement for Explainable Deepfake Detection via Vision-Language Models
Deepfake detection is a widely researched topic that is crucial for combating the spread of malicious content, with existing methods mainly modeling the problem as classification or spatial localization. The rapid advancements in generative models impose new demands on Deepfake detection. In this paper, we propose multimodal alignment and reinforcement for explainable Deepfake detection via vision-language models, termed MARE, which aims to enhance the accuracy and reliability of Vision-Language Models (VLMs) in Deepfake detection and reasoning. Specifically, MARE designs comprehensive reward functions, incorporating reinforcement learning from human feedback (RLHF), to incentivize the generation of text-spatially aligned reasoning content that adheres to human preferences. Besides, MARE introduces a forgery disentanglement module to capture intrinsic forgery traces from high-level facial semantics, thereby improving its authenticity detection capability. We conduct thorough evaluations on the reasoning content generated by MARE. Both quantitative and qualitative experimental results demonstrate that MARE achieves state-of-the-art performance in terms of accuracy and reliability.
♻ ☆ DiffusionLight-Turbo: Accelerated Light Probes for Free via Single-Pass Chrome Ball Inpainting
We introduce a simple yet effective technique for estimating lighting from a single low-dynamic-range (LDR) image by reframing the task as a chrome ball inpainting problem. This approach leverages a pre-trained diffusion model, Stable Diffusion XL, to overcome the generalization failures of existing methods that rely on limited HDR panorama datasets. While conceptually simple, the task remains challenging because diffusion models often insert incorrect or inconsistent content and cannot readily generate chrome balls in HDR format. Our analysis reveals that the inpainting process is highly sensitive to the initial noise in the diffusion process, occasionally resulting in unrealistic outputs. To address this, we first introduce DiffusionLight, which uses iterative inpainting to compute a median chrome ball from multiple outputs to serve as a stable, low-frequency lighting prior that guides the generation of a high-quality final result. To generate high-dynamic-range (HDR) light probes, an Exposure LoRA is fine-tuned to create LDR images at multiple exposure values, which are then merged. While effective, DiffusionLight is time-intensive, requiring approximately 30 minutes per estimation. To reduce this overhead, we introduce DiffusionLight-Turbo, which reduces the runtime to about 30 seconds with minimal quality loss. This 60x speedup is achieved by training a Turbo LoRA to directly predict the averaged chrome balls from the iterative process. Inference is further streamlined into a single denoising pass using a LoRA swapping technique. Experimental results that show our method produces convincing light estimates across diverse settings and demonstrates superior generalization to in-the-wild scenarios. Our code is available at https://diffusionlight.github.io/turbo
comment: arXiv admin note: substantial text overlap with arXiv:2312.09168
♻ ☆ VScan: Rethinking Visual Token Reduction for Efficient Large Vision-Language Models
Recent Large Vision-Language Models (LVLMs) have advanced multi-modal understanding by incorporating finer-grained visual perception and encoding. However, such methods incur significant computational costs due to longer visual token sequences, posing challenges for real-time deployment. To mitigate this, prior studies have explored pruning unimportant visual tokens either at the output layer of the visual encoder or at the early layers of the language model. In this work, we revisit these design choices and reassess their effectiveness through comprehensive empirical studies of how visual tokens are processed throughout the visual encoding and language decoding stages. Guided by these insights, we propose VScan, a two-stage visual token reduction framework that addresses token redundancy by: (1) integrating complementary global and local scans with token merging during visual encoding, and (2) introducing pruning at intermediate layers of the language model. Extensive experimental results across four LVLMs validate the effectiveness of VScan in accelerating inference and demonstrate its superior performance over current state-of-the-arts on sixteen benchmarks. Notably, when applied to LLaVA-NeXT-7B, VScan achieves a 2.91$\times$ speedup in prefilling and a 10$\times$ reduction in FLOPs, while retaining 95.4\% of the original performance. Code is available at https://github.com/Tencent/SelfEvolvingAgent/tree/main/VScan.
comment: Accepted at TMLR 2026. Project page: https://zhangce01.github.io/VScan/
♻ ☆ Test-Time Anchoring for Discrete Diffusion Posterior Sampling
While continuous diffusion models have achieved remarkable success, discrete diffusion offers a unified framework for jointly modeling text and images. Beyond unification, discrete diffusion provides faster inference, finer control, and principled training-free guidance, making it well-suited for posterior sampling. Existing approaches to posterior sampling using discrete diffusion face severe challenges: derivative-free guidance yields sparse signals, continuous relaxations limit applicability, and split Gibbs samplers suffer from the curse of dimensionality. To overcome these limitations, we introduce Anchored Posterior Sampling (APS), built on two key innovations: quantized expectation for gradient-like guidance in discrete embedding space, and anchored remasking for adaptive decoding. APS achieves state-of-the-art performance among discrete diffusion samplers on both linear and nonlinear inverse problems across the standard image benchmarks. We demonstrate the generality of APS through training-free stylization and text-guided editing. We further apply APS to a large-scale diffusion language model, showing consistent improvement in question answering.
comment: Preprint
♻ ☆ DF-LLaVA: Unlocking MLLMs for Synthetic Image Detection via Knowledge Injection and Conflict-Driven Self-Reflection
With the increasing prevalence of synthetic images, evaluating image authenticity and locating forgeries accurately while maintaining human interpretability remains a challenging task. Existing detection models primarily focus on simple authenticity classification, ultimately providing only a forgery probability or binary judgment, which offers limited explanatory insights into image authenticity. Moreover, while MLLM-based detection methods can provide more interpretable results, they still lag behind expert models in terms of pure authenticity classification accuracy. To address this, we propose DF-LLaVA, a novel and effective framework that unlocks the intrinsic discrimination potential of MLLMs. Our approach first mines latent knowledge from the MLLM itself and then injects it into the model via fine-tuning. During inference, conflict signals arising from the model's predictions activate a self-reflection process, leading to the final refined responses. This framework allows LLaVA to achieve outstanding detection accuracy exceeding expert models while still maintaining the interpretability offered by MLLMs. Extensive experiments confirm the superiority of DF-LLaVA, achieving both high accuracy and explainability in synthetic image detection. Code is available online at: https://github.com/Eliot-Shen/DF-LLaVA.
comment: Under review
♻ ☆ A2GC: Asymmetric Aggregation with Geometric Constraints for Locally Aggregated Descriptors
Visual Place Recognition (VPR) aims to match query images against a database using visual cues. State-of-the-art methods aggregate features from deep backbones to form global descriptors. Optimal transport-based aggregation methods reformulate feature-to-cluster assignment as a transport problem, but the standard Sinkhorn algorithm symmetrically treats source and target marginals, limiting effectiveness when image features and cluster centers exhibit substantially different distributions. We propose an asymmetric aggregation VPR method with geometric constraints for locally aggregated descriptors, called $A^2$GC-VPR. Our method employs row-column normalization averaging with separate marginal calibration, enabling asymmetric matching that adapts to distributional discrepancies in visual place recognition. Geometric constraints are incorporated through learnable coordinate embeddings, computing compatibility scores fused with feature similarities, thereby promoting spatially proximal features to the same cluster and enhancing spatial awareness. Experimental results on MSLS, NordLand, and Pittsburgh datasets demonstrate superior performance, validating the effectiveness of our approach in improving matching accuracy and robustness.
comment: 8 pages, 4figures
♻ ☆ Interpretable and backpropagation-free Green Learning for efficient multi-task echocardiographic segmentation and classification
Echocardiography is a cornerstone for managing heart failure (HF), with Left Ventricular Ejection Fraction (LVEF) being a critical metric for guiding therapy. However, manual LVEF assessment suffers from high inter-observer variability, while existing Deep Learning (DL) models are often computationally intensive and data-hungry "black boxes" that impede clinical trust and adoption. Here, we propose a backpropagation-free multi-task Green Learning (MTGL) framework that performs simultaneous Left Ventricle (LV) segmentation and LVEF classification. Our framework integrates an unsupervised VoxelHop encoder for hierarchical spatio-temporal feature extraction with a multi-level regression decoder and an XG-Boost classifier. On the EchoNet-Dynamic dataset, our MTGL model achieves state-of-the-art classification and segmentation performance, attaining a classification accuracy of 94.3% and a Dice Similarity Coefficient (DSC) of 0.912, significantly outperforming several advanced 3D DL models. Crucially, our model achieves this with over an order of magnitude fewer parameters, demonstrating exceptional computational efficiency. This work demonstrates that the GL paradigm can deliver highly accurate, efficient, and interpretable solutions for complex medical image analysis, paving the way for more sustainable and trustworthy artificial intelligence in clinical practice.
comment: Jyun-Ping Kao and Jiaxing Yang contributed equally to this work. C.-C. Jay Kuo and Jonghye Woo are the senior authors
Artificial Intelligence 150
☆ VideoGPA: Distilling Geometry Priors for 3D-Consistent Video Generation
While recent video diffusion models (VDMs) produce visually impressive results, they fundamentally struggle to maintain 3D structural consistency, often resulting in object deformation or spatial drift. We hypothesize that these failures arise because standard denoising objectives lack explicit incentives for geometric coherence. To address this, we introduce VideoGPA (Video Geometric Preference Alignment), a data-efficient self-supervised framework that leverages a geometry foundation model to automatically derive dense preference signals that guide VDMs via Direct Preference Optimization (DPO). This approach effectively steers the generative distribution toward inherent 3D consistency without requiring human annotations. VideoGPA significantly enhances temporal stability, physical plausibility, and motion coherence using minimal preference pairs, consistently outperforming state-of-the-art baselines in extensive experiments.
☆ End-to-end Optimization of Belief and Policy Learning in Shared Autonomy Paradigms
Shared autonomy systems require principled methods for inferring user intent and determining appropriate assistance levels. This is a central challenge in human-robot interaction, where systems must be successful while being mindful of user agency. Previous approaches relied on static blending ratios or separated goal inference from assistance arbitration, leading to suboptimal performance in unstructured environments. We introduce BRACE (Bayesian Reinforcement Assistance with Context Encoding), a novel framework that fine-tunes Bayesian intent inference and context-adaptive assistance through an architecture enabling end-to-end gradient flow between intent inference and assistance arbitration. Our pipeline conditions collaborative control policies on environmental context and complete goal probability distributions. We provide analysis showing (1) optimal assistance levels should decrease with goal uncertainty and increase with environmental constraint severity, and (2) integrating belief information into policy learning yields a quadratic expected regret advantage over sequential approaches. We validated our algorithm against SOTA methods (IDA, DQN) using a three-part evaluation progressively isolating distinct challenges of end-effector control: (1) core human-interaction dynamics in a 2D human-in-the-loop cursor task, (2) non-linear dynamics of a robotic arm, and (3) integrated manipulation under goal ambiguity and environmental constraints. We demonstrate improvements over SOTA, achieving 6.3% higher success rates and 41% increased path efficiency, and 36.3% success rate and 87% path efficiency improvement over unassisted control. Our results confirmed that integrated optimization is most beneficial in complex, goal-ambiguous scenarios, and is generalizable across robotic domains requiring goal-directed assistance, advancing the SOTA for adaptive shared autonomy.
☆ IRL-DAL: Safe and Adaptive Trajectory Planning for Autonomous Driving via Energy-Guided Diffusion Models
This paper proposes a novel inverse reinforcement learning framework using a diffusion-based adaptive lookahead planner (IRL-DAL) for autonomous vehicles. Training begins with imitation from an expert finite state machine (FSM) controller to provide a stable initialization. Environment terms are combined with an IRL discriminator signal to align with expert goals. Reinforcement learning (RL) is then performed with a hybrid reward that combines diffuse environmental feedback and targeted IRL rewards. A conditional diffusion model, which acts as a safety supervisor, plans safe paths. It stays in its lane, avoids obstacles, and moves smoothly. Then, a learnable adaptive mask (LAM) improves perception. It shifts visual attention based on vehicle speed and nearby hazards. After FSM-based imitation, the policy is fine-tuned with Proximal Policy Optimization (PPO). Training is run in the Webots simulator with a two-stage curriculum. A 96\% success rate is reached, and collisions are reduced to 0.05 per 1k steps, marking a new benchmark for safe navigation. By applying the proposed approach, the agent not only drives in lane but also handles unsafe conditions at an expert level, increasing robustness.We make our code publicly available.
☆ TEON: Tensorized Orthonormalization Beyond Layer-Wise Muon for Large Language Model Pre-Training
The Muon optimizer has demonstrated strong empirical performance in pre-training large language models by performing matrix-level gradient (or momentum) orthogonalization in each layer independently. In this work, we propose TEON, a principled generalization of Muon that extends orthogonalization beyond individual layers by modeling the gradients of a neural network as a structured higher-order tensor. We present TEON's improved convergence guarantee over layer-wise Muon, and further develop a practical instantiation of TEON based on the theoretical analysis with corresponding ablation. We evaluate our approach on two widely adopted architectures: GPT-style models, ranging from 130M to 774M parameters, and LLaMA-style models, ranging from 60M to 1B parameters. Experimental results show that TEON consistently improves training and validation perplexity across model scales and exhibits strong robustness under various approximate SVD schemes.
☆ Agnostic Language Identification and Generation
Recent works on language identification and generation have established tight statistical rates at which these tasks can be achieved. These works typically operate under a strong realizability assumption: that the input data is drawn from an unknown distribution necessarily supported on some language in a given collection. In this work, we relax this assumption of realizability entirely, and impose no restrictions on the distribution of the input data. We propose objectives to study both language identification and generation in this more general "agnostic" setup. Across both problems, we obtain novel interesting characterizations and nearly tight rates.
☆ Now You Hear Me: Audio Narrative Attacks Against Large Audio-Language Models EACL 2026
Large audio-language models increasingly operate on raw speech inputs, enabling more seamless integration across domains such as voice assistants, education, and clinical triage. This transition, however, introduces a distinct class of vulnerabilities that remain largely uncharacterized. We examine the security implications of this modality shift by designing a text-to-audio jailbreak that embeds disallowed directives within a narrative-style audio stream. The attack leverages an advanced instruction-following text-to-speech (TTS) model to exploit structural and acoustic properties, thereby circumventing safety mechanisms primarily calibrated for text. When delivered through synthetic speech, the narrative format elicits restricted outputs from state-of-the-art models, including Gemini 2.0 Flash, achieving a 98.26% success rate that substantially exceeds text-only baselines. These results highlight the need for safety frameworks that jointly reason over linguistic and paralinguistic representations, particularly as speech-based interfaces become more prevalent.
comment: to be published at EACL 2026 main conference
☆ YuriiFormer: A Suite of Nesterov-Accelerated Transformers
We propose a variational framework that interprets transformer layers as iterations of an optimization algorithm acting on token embeddings. In this view, self-attention implements a gradient step of an interaction energy, while MLP layers correspond to gradient updates of a potential energy. Standard GPT-style transformers emerge as vanilla gradient descent on the resulting composite objective, implemented via Lie--Trotter splitting between these two energy functionals. This perspective enables principled architectural design using classical optimization ideas. As a proof of concept, we introduce a Nesterov-style accelerated transformer that preserves the same attention and MLP oracles. The resulting architecture consistently outperforms a nanoGPT baseline on TinyStories and OpenWebText, demonstrating that optimization-theoretic insights can translate into practical gains.
☆ ShotFinder: Imagination-Driven Open-Domain Video Shot Retrieval via Web Search
In recent years, large language models (LLMs) have made rapid progress in information retrieval, yet existing research has mainly focused on text or static multimodal settings. Open-domain video shot retrieval, which involves richer temporal structure and more complex semantics, still lacks systematic benchmarks and analysis. To fill this gap, we introduce ShotFinder, a benchmark that formalizes editing requirements as keyframe-oriented shot descriptions and introduces five types of controllable single-factor constraints: Temporal order, Color, Visual style, Audio, and Resolution. We curate 1,210 high-quality samples from YouTube across 20 thematic categories, using large models for generation with human verification. Based on the benchmark, we propose ShotFinder, a text-driven three-stage retrieval and localization pipeline: (1) query expansion via video imagination, (2) candidate video retrieval with a search engine, and (3) description-guided temporal localization. Experiments on multiple closed-source and open-source models reveal a significant gap to human performance, with clear imbalance across constraints: temporal localization is relatively tractable, while color and visual style remain major challenges. These results reveal that open-domain video shot retrieval is still a critical capability that multimodal large models have yet to overcome.
comment: 28 pages, 7 figures
☆ Strongly Polynomial Time Complexity of Policy Iteration for $L_\infty$ Robust MDPs
Markov decision processes (MDPs) are a fundamental model in sequential decision making. Robust MDPs (RMDPs) extend this framework by allowing uncertainty in transition probabilities and optimizing against the worst-case realization of that uncertainty. In particular, $(s, a)$-rectangular RMDPs with $L_\infty$ uncertainty sets form a fundamental and expressive model: they subsume classical MDPs and turn-based stochastic games. We consider this model with discounted payoffs. The existence of polynomial and strongly-polynomial time algorithms is a fundamental problem for these optimization models. For MDPs, linear programming yields polynomial-time algorithms for any arbitrary discount factor, and the seminal work of Ye established strongly--polynomial time for a fixed discount factor. The generalization of such results to RMDPs has remained an important open problem. In this work, we show that a robust policy iteration algorithm runs in strongly-polynomial time for $(s, a)$-rectangular $L_\infty$ RMDPs with a constant (fixed) discount factor, resolving an important algorithmic question.
☆ Scaling Multiagent Systems with Process Rewards
While multiagent systems have shown promise for tackling complex tasks via specialization, finetuning multiple agents simultaneously faces two key challenges: (1) credit assignment across agents, and (2) sample efficiency of expensive multiagent rollouts. In this work, we propose finetuning multiagent systems with per-action process rewards from AI feedback (MAPPA) to address both. Through assigning credit to individual agent actions rather than only at task completion, MAPPA enables fine-grained supervision without ground truth labels while extracting maximal training signal from each rollout. We demonstrate our approach on competition math problems and tool-augmented data analysis tasks. On unseen math problems, MAPPA achieves +5.0--17.5pp on AIME and +7.8--17.2pp on AMC. For data analysis tasks, our method improves success rate by +12.5pp while quality metrics improve by up to 30%, validating that per-action supervision can lead to improvements across different multiagent system on various domains. By addressing these challenges, our work takes a first step toward scaling multiagent systems for complex, long-horizon tasks with minimal human supervision.
☆ Agile Reinforcement Learning through Separable Neural Architecture
Deep reinforcement learning (RL) is increasingly deployed in resource-constrained environments, yet the go-to function approximators - multilayer perceptrons (MLPs) - are often parameter-inefficient due to an imperfect inductive bias for the smooth structure of many value functions. This mismatch can also hinder sample efficiency and slow policy learning in this capacity-limited regime. Although model compression techniques exist, they operate post-hoc and do not improve learning efficiency. Recent spline-based separable architectures - such as Kolmogorov-Arnold Networks (KANs) - have been shown to offer parameter efficiency but are widely reported to exhibit significant computational overhead, especially at scale. In seeking to address these limitations, this work introduces SPAN (SPline-based Adaptive Networks), a novel function approximation approach to RL. SPAN adapts the low rank KHRONOS framework by integrating a learnable preprocessing layer with a separable tensor product B-spline basis. SPAN is evaluated across discrete (PPO) and high-dimensional continuous (SAC) control tasks, as well as offline settings (Minari/D4RL). Empirical results demonstrate that SPAN achieves a 30-50% improvement in sample efficiency and 1.3-9 times higher success rates across benchmarks compared to MLP baselines. Furthermore, SPAN demonstrates superior anytime performance and robustness to hyperparameter variations, suggesting it as a viable, high performance alternative for learning intrinsically efficient policies in resource-limited settings.
☆ Med-Scout: Curing MLLMs' Geometric Blindness in Medical Perception via Geometry-Aware RL Post-Training
Despite recent Multimodal Large Language Models (MLLMs)' linguistic prowess in medical diagnosis, we find even state-of-the-art MLLMs suffer from a critical perceptual deficit: geometric blindness. This failure to ground outputs in objective geometric constraints leads to plausible yet factually incorrect hallucinations, rooted in training paradigms that prioritize linguistic fluency over geometric fidelity. This paper introduces Med-Scout, a novel framework that "cures" this blindness via Reinforcement Learning (RL) that leverages the intrinsic geometric logic latent within unlabeled medical images. Instead of relying on costly expert annotations, Med-Scout derives verifiable supervision signals through three strategic proxy tasks: Hierarchical Scale Localization, Topological Jigsaw Reconstruction, and Anomaly Consistency Detection. To rigorously quantify this deficit, we present Med-Scout-Bench, a new benchmark specifically designed to evaluate geometric perception. Extensive evaluations show that Med-Scout significantly mitigates geometric blindness, outperforming leading proprietary and open-source MLLMs by over 40% on our benchmark. Furthermore, this enhanced geometric perception generalizes to broader medical understanding, achieving superior results on radiological and comprehensive medical VQA tasks.
☆ MonoScale: Scaling Multi-Agent System with Monotonic Improvement
In recent years, LLM-based multi-agent systems (MAS) have advanced rapidly, using a router to decompose tasks and delegate subtasks to specialized agents. A natural way to expand capability is to scale up the agent pool by continually integrating new functional agents or tool interfaces, but naive expansion can trigger performance collapse when the router cold-starts on newly added, heterogeneous, and unreliable agents. We propose MonoScale, an expansion-aware update framework that proactively generates a small set of agent-conditioned familiarization tasks, harvests evidence from both successful and failed interactions, and distills it into auditable natural-language memory to guide future routing. We formalize sequential augmentation as a contextual bandit and perform trust-region memory updates, yielding a monotonic non-decreasing performance guarantee across onboarding rounds. Experiments on GAIA and Humanity's Last Exam show stable gains as the agent pool grows, outperforming naive scale-up and strong-router fixed-pool baselines.
☆ Disentangling multispecific antibody function with graph neural networks
Multispecific antibodies offer transformative therapeutic potential by engaging multiple epitopes simultaneously, yet their efficacy is an emergent property governed by complex molecular architectures. Rational design is often bottlenecked by the inability to predict how subtle changes in domain topology influence functional outcomes, a challenge exacerbated by the scarcity of comprehensive experimental data. Here, we introduce a computational framework to address part of this gap. First, we present a generative method for creating large-scale, realistic synthetic functional landscapes that capture non-linear interactions where biological activity depends on domain connectivity. Second, we propose a graph neural network architecture that explicitly encodes these topological constraints, distinguishing between format configurations that appear identical to sequence-only models. We demonstrate that this model, trained on synthetic landscapes, recapitulates complex functional properties and, via transfer learning, has the potential to achieve high predictive accuracy on limited biological datasets. We showcase the model's utility by optimizing trade-offs between efficacy and toxicity in trispecific T-cell engagers and retrieving optimal common light chains. This work provides a robust benchmarking environment for disentangling the combinatorial complexity of multispecifics, accelerating the design of next-generation therapeutics.
comment: 16 pages, 5 figures, code available at https://github.com/prescient-design/synapse
☆ Learning to Execute Graph Algorithms Exactly with Graph Neural Networks
Understanding what graph neural networks can learn, especially their ability to learn to execute algorithms, remains a central theoretical challenge. In this work, we prove exact learnability results for graph algorithms under bounded-degree and finite-precision constraints. Our approach follows a two-step process. First, we train an ensemble of multi-layer perceptrons (MLPs) to execute the local instructions of a single node. Second, during inference, we use the trained MLP ensemble as the update function within a graph neural network (GNN). Leveraging Neural Tangent Kernel (NTK) theory, we show that local instructions can be learned from a small training set, enabling the complete graph algorithm to be executed during inference without error and with high probability. To illustrate the learning power of our setting, we establish a rigorous learnability result for the LOCAL model of distributed computation. We further demonstrate positive learnability results for widely studied algorithms such as message flooding, breadth-first and depth-first search, and Bellman-Ford.
☆ High-quality generation of dynamic game content via small language models: A proof of concept
Large language models (LLMs) offer promise for dynamic game content generation, but they face critical barriers, including narrative incoherence and high operational costs. Due to their large size, they are often accessed in the cloud, limiting their application in offline games. Many of these practical issues are solved by pivoting to small language models (SLMs), but existing studies using SLMs have resulted in poor output quality. We propose a strategy of achieving high-quality SLM generation through aggressive fine-tuning on deliberately scoped tasks with narrow context, constrained structure, or both. In short, more difficult tasks require narrower scope and higher specialization to the training corpus. Training data is synthetically generated via a DAG-based approach, grounding models in the specific game world. Such models can form the basis for agentic networks designed around the narratological framework at hand, representing a more practical and robust solution than cloud-dependent LLMs. To validate this approach, we present a proof-of-concept focusing on a single specialized SLM as the fundamental building block. We introduce a minimal RPG loop revolving around rhetorical battles of reputations, powered by this model. We demonstrate that a simple retry-until-success strategy reaches adequate quality (as defined by an LLM-as-a-judge scheme) with predictable latency suitable for real-time generation. While local quality assessment remains an open question, our results demonstrate feasibility for real-time generation under typical game engine constraints.
☆ TSAQA: Time Series Analysis Question And Answering Benchmark
Time series data are integral to critical applications across domains such as finance, healthcare, transportation, and environmental science. While recent work has begun to explore multi-task time series question answering (QA), current benchmarks remain limited to forecasting and anomaly detection tasks. We introduce TSAQA, a novel unified benchmark designed to broaden task coverage and evaluate diverse temporal analysis capabilities. TSAQA integrates six diverse tasks under a single framework ranging from conventional analysis, including anomaly detection and classification, to advanced analysis, such as characterization, comparison, data transformation, and temporal relationship analysis. Spanning 210k samples across 13 domains, the dataset employs diverse formats, including true-or-false (TF), multiple-choice (MC), and a novel puzzling (PZ), to comprehensively assess time series analysis. Zero-shot evaluation demonstrates that these tasks are challenging for current Large Language Models (LLMs): the best-performing commercial LLM, Gemini-2.5-Flash, achieves an average score of only 65.08. Although instruction tuning boosts open-source performance: the best-performing open-source model, LLaMA-3.1-8B, shows significant room for improvement, highlighting the complexity of temporal analysis for LLMs.
comment: 35 pages, 7 figures
☆ Make Anything Match Your Target: Universal Adversarial Perturbations against Closed-Source MLLMs via Multi-Crop Routed Meta Optimization
Targeted adversarial attacks on closed-source multimodal large language models (MLLMs) have been increasingly explored under black-box transfer, yet prior methods are predominantly sample-specific and offer limited reusability across inputs. We instead study a more stringent setting, Universal Targeted Transferable Adversarial Attacks (UTTAA), where a single perturbation must consistently steer arbitrary inputs toward a specified target across unknown commercial MLLMs. Naively adapting existing sample-wise attacks to this universal setting faces three core difficulties: (i) target supervision becomes high-variance due to target-crop randomness, (ii) token-wise matching is unreliable because universality suppresses image-specific cues that would otherwise anchor alignment, and (iii) few-source per-target adaptation is highly initialization-sensitive, which can degrade the attainable performance. In this work, we propose MCRMO-Attack, which stabilizes supervision via Multi-Crop Aggregation with an Attention-Guided Crop, improves token-level reliability through alignability-gated Token Routing, and meta-learns a cross-target perturbation prior that yields stronger per-target solutions. Across commercial MLLMs, we boost unseen-image attack success rate by +23.7\% on GPT-4o and +19.9\% on Gemini-2.0 over the strongest universal baseline.
☆ Beyond Fixed Frames: Dynamic Character-Aligned Speech Tokenization
Neural audio codecs are at the core of modern conversational speech technologies, converting continuous speech into sequences of discrete tokens that can be processed by LLMs. However, existing codecs typically operate at fixed frame rates, allocating tokens uniformly in time and producing unnecessarily long sequences. In this work, we introduce DyCAST, a Dynamic Character-Aligned Speech Tokenizer that enables variable-frame-rate tokenization through soft character-level alignment and explicit duration modeling. DyCAST learns to associate tokens with character-level linguistic units during training and supports alignment-free inference with direct control over token durations at decoding time. To improve speech resynthesis quality at low frame rates, we further introduce a retrieval-augmented decoding mechanism that enhances reconstruction fidelity without increasing bitrate. Experiments show that DyCAST achieves competitive speech resynthesis quality and downstream performance while using significantly fewer tokens than fixed-frame-rate codecs.
comment: 18 pages, 3 figures
☆ Probing the Trajectories of Reasoning Traces in Large Language Models
Large language models (LLMs) increasingly solve difficult problems by producing "reasoning traces" before emitting a final response. However, it remains unclear how accuracy and decision commitment evolve along a reasoning trajectory, and whether intermediate trace segments provide answer-relevant information beyond generic length or stylistic effects. Here, we propose a protocol to systematically probe the trajectories of reasoning traces in LLMs by 1) generating a model's reasoning trace, 2) truncating it at fixed token-percentiles, and 3) injecting each partial trace back into the model (or a different model) to measure the induced distribution over answer choices via next-token probabilities. We apply this protocol to the open-source Qwen3-4B/-8B/-14B and gpt-oss-20b/-120b models across the multiple-choice GPQA Diamond and MMLU-Pro benchmarks. We find that accuracy and decision commitment consistently increase as the percentage of provided reasoning tokens grows. These gains are primarily driven by relevant content in the model generation rather than context length or generic "reasoning style" effects. Stronger models often backtrack successfully from incorrect partial traces, but immediate answers often remain anchored in the weaker model's incorrect response. More broadly, we show that trajectory probing provides diagnostics for efficient and safer deployment of reasoning models as the measurements can inform practical trace-handling and monitoring policies that improve reliability without assuming intermediate tokens are inherently faithful explanations.
comment: 33 pages, 20 figures, 4 tables
☆ SPICE: Submodular Penalized Information-Conflict Selection for Efficient Large Language Model Training
Information-based data selection for instruction tuning is compelling: maximizing the log-determinant of the Fisher information yields a monotone submodular objective, enabling greedy algorithms to achieve a $(1-1/e)$ approximation under a cardinality budget. In practice, however, we identify alleviating gradient conflicts, misalignment between per-sample gradients, is a key factor that slows down the decay of marginal log-determinant information gains, thereby preventing significant loss of information. We formalize this via an $\varepsilon$-decomposition that quantifies the deviation from ideal submodularity as a function of conflict statistics, yielding data-dependent approximation factors that tighten as conflicts diminish. Guided by this analysis, we propose SPICE, a conflict-aware selector that maximizes information while penalizing misalignment, and that supports early stopping and proxy models for efficiency. Empirically, SPICE selects subsets with higher log-determinant information than original criteria, and these informational gains translate into performance improvements: across 8 benchmarks with LLaMA2-7B and Qwen2-7B, SPICE uses only 10% of the data, yet matches or exceeds 6 methods including full-data tuning. This achieves performance improvements with substantially lower training cost.
comment: 39 pages, 9 figures, 15 tables (including appendices)
☆ On Safer Reinforcement Learning Policies for Sedation and Analgesia in Intensive Care
Pain management in intensive care usually involves complex trade-offs between therapeutic goals and patient safety, since both inadequate and excessive treatment may induce serious sequelae. Reinforcement learning can help address this challenge by learning medication dosing policies from retrospective data. However, prior work on sedation and analgesia has optimized for objectives that do not value patient survival while relying on algorithms unsuitable for imperfect information settings. We investigated the risks of these design choices by implementing a deep reinforcement learning framework to suggest hourly medication doses under partial observability. Using data from 47,144 ICU stays in the MIMIC-IV database, we trained policies to prescribe opioids, propofol, benzodiazepines, and dexmedetomidine according to two goals: reduce pain or jointly reduce pain and mortality. We found that, although the two policies were associated with lower pain, actions from the first policy were positively correlated with mortality, while those proposed by the second policy were negatively correlated. This suggests that valuing long-term outcomes could be critical for safer treatment policies, even if a short-term goal remains the primary objective.
comment: Submitted to the 48th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (IEEE EMBC 2026)
☆ Securing Time in Energy IoT: A Clock-Dynamics-Aware Spatio-Temporal Graph Attention Network for Clock Drift Attacks and Y2K38 Failures
The integrity of time in distributed Internet of Things (IoT) devices is crucial for reliable operation in energy cyber-physical systems, such as smart grids and microgrids. However, IoT systems are vulnerable to clock drift, time-synchronization manipulation, and timestamp discontinuities, such as the Year 2038 (Y2K38) Unix overflow, all of which disrupt temporal ordering. Conventional anomaly-detection models, which assume reliable timestamps, fail to capture temporal inconsistencies. This paper introduces STGAT (Spatio-Temporal Graph Attention Network), a framework that models both temporal distortion and inter-device consistency in energy IoT systems. STGAT combines drift-aware temporal embeddings and temporal self-attention to capture corrupted time evolution at individual devices, and uses graph attention to model spatial propagation of timing errors. A curvature-regularized latent representation geometrically separates normal clock evolution from anomalies caused by drift, synchronization offsets, and overflow events. Experimental results on energy IoT telemetry with controlled timing perturbations show that STGAT achieves 95.7% accuracy, outperforming recurrent, transformer, and graph-based baselines with significant improvements (d > 1.8, p < 0.001). Additionally, STGAT reduces detection delay by 26%, achieving a 2.3-time-step delay while maintaining stable performance under overflow, drift, and physical inconsistencies.
☆ THINKSAFE: Self-Generated Safety Alignment for Reasoning Models
Large reasoning models (LRMs) achieve remarkable performance by leveraging reinforcement learning (RL) on reasoning tasks to generate long chain-of-thought (CoT) reasoning. However, this over-optimization often prioritizes compliance, making models vulnerable to harmful prompts. To mitigate this safety degradation, recent approaches rely on external teacher distillation, yet this introduces a distributional discrepancy that degrades native reasoning. We propose ThinkSafe, a self-generated alignment framework that restores safety alignment without external teachers. Our key insight is that while compliance suppresses safety mechanisms, models often retain latent knowledge to identify harm. ThinkSafe unlocks this via lightweight refusal steering, guiding the model to generate in-distribution safety reasoning traces. Fine-tuning on these self-generated responses effectively realigns the model while minimizing distribution shift. Experiments on DeepSeek-R1-Distill and Qwen3 show ThinkSafe significantly improves safety while preserving reasoning proficiency. Notably, it achieves superior safety and comparable reasoning to GRPO, with significantly reduced computational cost. Code, models, and datasets are available at https://github.com/seanie12/ThinkSafe.git.
comment: 17 pages, 13 figures
☆ Machine Learning for Energy-Performance-aware Scheduling
In the post-Dennard era, optimizing embedded systems requires navigating complex trade-offs between energy efficiency and latency. Traditional heuristic tuning is often inefficient in such high-dimensional, non-smooth landscapes. In this work, we propose a Bayesian Optimization framework using Gaussian Processes to automate the search for optimal scheduling configurations on heterogeneous multi-core architectures. We explicitly address the multi-objective nature of the problem by approximating the Pareto Frontier between energy and time. Furthermore, by incorporating Sensitivity Analysis (fANOVA) and comparing different covariance kernels (e.g., Matérn vs. RBF), we provide physical interpretability to the black-box model, revealing the dominant hardware parameters driving system performance.
comment: Zheyuan Hu and Yifei Shi contributed equally to this work
☆ RAudit: A Blind Auditing Protocol for Large Language Model Reasoning
Inference-time scaling can amplify reasoning pathologies: sycophancy, rung collapse, and premature certainty. We present RAudit, a diagnostic protocol for auditing LLM reasoning without ground truth access. The key constraint is blindness: the auditor evaluates only whether derivation steps support conclusions, enabling detection of trace-output inconsistency and, when latent competence exists, its recovery. RAudit measures process quality via CRIT-based reasonableness scores and varies critique formulation to study how social framing affects model response. We prove bounded correction and $O(\log(1/ε))$ termination. Experiments on mathematical reasoning (CAP-GSM8K) and causal judgment (CausalL2) reveal four mechanisms explaining model unreliability: (1) Latent Competence Suppression, where models derive correct answers then overwrite them under social pressure; (2) The False Competence Trap, where weaker judges mask sycophancy that stronger judges expose; (3) The Complexity-Vulnerability Tradeoff, where causal tasks induce more than 10 times higher sycophancy than mathematical tasks; and (4) Iatrogenic Critique, where authoritative correction harms weaker models. These findings challenge assumptions that capability implies robustness and that stronger feedback yields better outputs.
comment: 24 pages, 21 tables, 3 figures
☆ Secure Tool Manifest and Digital Signing Solution for Verifiable MCP and LLM Pipelines
Large Language Models (LLMs) are increasingly adopted in sensitive domains such as healthcare and financial institutions' data analytics; however, their execution pipelines remain vulnerable to manipulation and unverifiable behavior. Existing control mechanisms, such as the Model Context Protocol (MCP), define compliance policies for tool invocation but lack verifiable enforcement and transparent validation of model actions. To address this gap, we propose a novel Secure Tool Manifest and Digital Signing Framework, a structured and security-aware extension of Model Context Protocols. The framework enforces cryptographically signed manifests, integrates transparent verification logs, and isolates model-internal execution metadata from user-visible components to ensure verifiable execution integrity. Furthermore, the evaluation demonstrates that the framework scales nearly linearly (R-squared = 0.998), achieves near-perfect acceptance of valid executions while consistently rejecting invalid ones, and maintains balanced model utilization across execution pipelines.
☆ Regularisation in neural networks: a survey and empirical analysis of approaches
Despite huge successes on a wide range of tasks, neural networks are known to sometimes struggle to generalise to unseen data. Many approaches have been proposed over the years to promote the generalisation ability of neural networks, collectively known as regularisation techniques. These are used as common practice under the assumption that any regularisation added to the pipeline would result in a performance improvement. In this study, we investigate whether this assumption holds in practice. First, we provide a broad review of regularisation techniques, including modern theories such as double descent. We propose a taxonomy of methods under four broad categories, namely: (1) data-based strategies, (2) architecture strategies, (3) training strategies, and (4) loss function strategies. Notably, we highlight the contradictions and correspondences between the approaches in these broad classes. Further, we perform an empirical comparison of the various regularisation techniques on classification tasks for ten numerical and image datasets applied to the multi-layer perceptron and convolutional neural network architectures. Results show that the efficacy of regularisation is dataset-dependent. For example, the use of a regularisation term only improved performance on numeric datasets, whereas batch normalisation improved performance on image datasets only. Generalisation is crucial to machine learning; thus, understanding the effects of applying regularisation techniques, and considering the connections between them is essential to the appropriate use of these methods in practice.
comment: 15 pages, 4 figures, 4 tables and for associated to the code, see https://github.com/Christo08/Benchmarks-of-regularisation-techniques.git
☆ To See Far, Look Close: Evolutionary Forecasting for Long-term Time Series
The prevailing Direct Forecasting (DF) paradigm dominates Long-term Time Series Forecasting (LTSF) by forcing models to predict the entire future horizon in a single forward pass. While efficient, this rigid coupling of output and evaluation horizons necessitates computationally prohibitive re-training for every target horizon. In this work, we uncover a counter-intuitive optimization anomaly: models trained on short horizons-when coupled with our proposed Evolutionary Forecasting (EF) paradigm-significantly outperform those trained directly on long horizons. We attribute this success to the mitigation of a fundamental optimization pathology inherent in DF, where conflicting gradients from distant futures cripple the learning of local dynamics. We establish EF as a unified generative framework, proving that DF is merely a degenerate special case of EF. Extensive experiments demonstrate that a singular EF model surpasses task-specific DF ensembles across standard benchmarks and exhibits robust asymptotic stability in extreme extrapolation. This work propels a paradigm shift in LTSF: moving from passive Static Mapping to autonomous Evolutionary Reasoning.
☆ WiFiPenTester: Advancing Wireless Ethical Hacking with Governed GenAI
Wireless ethical hacking relies heavily on skilled practitioners manually interpreting reconnaissance results and executing complex, time-sensitive sequences of commands to identify vulnerable targets, capture authentication handshakes, and assess password resilience; a process that is inherently labour-intensive, difficult to scale, and prone to subjective judgement and human error. To help address these limitations, we propose WiFiPenTester, an experimental, governed, and reproducible system for GenAI-enabled wireless ethical hacking. The system integrates large language models into the reconnaissance and decision-support phases of wireless security assessment, enabling intelligent target ranking, attack feasibility estimation, and strategy recommendation, while preserving strict human-in-the-loop control and budget-aware execution. We describe the system architecture, threat model, governance mechanisms, and prompt-engineering methodology, and empirical experiments conducted across multiple wireless environments. The results demonstrate that GenAI assistance improves target selection accuracy and overall assessment efficiency, while maintaining auditability and ethical safeguards. This indicates that WiFiPenTester is a meaningful step toward practical, safe, and scalable GenAI-assisted wireless penetration testing, while reinforcing the necessity of bounded autonomy, human oversight, and rigorous governance mechanisms when deploying GenAI in ethical hacking.
comment: 35 pages, 10 figures
☆ From Similarity to Vulnerability: Key Collision Attack on LLM Semantic Caching
Semantic caching has emerged as a pivotal technique for scaling LLM applications, widely adopted by major providers including AWS and Microsoft. By utilizing semantic embedding vectors as cache keys, this mechanism effectively minimizes latency and redundant computation for semantically similar queries. In this work, we conceptualize semantic cache keys as a form of fuzzy hashes. We demonstrate that the locality required to maximize cache hit rates fundamentally conflicts with the cryptographic avalanche effect necessary for collision resistance. Our conceptual analysis formalizes this inherent trade-off between performance (locality) and security (collision resilience), revealing that semantic caching is naturally vulnerable to key collision attacks. While prior research has focused on side-channel and privacy risks, we present the first systematic study of integrity risks arising from cache collisions. We introduce CacheAttack, an automated framework for launching black-box collision attacks. We evaluate CacheAttack in security-critical tasks and agentic workflows. It achieves a hit rate of 86\% in LLM response hijacking and can induce malicious behaviors in LLM agent, while preserving strong transferability across different embedding models. A case study on a financial agent further illustrates the real-world impact of these vulnerabilities. Finally, we discuss mitigation strategies.
☆ Chain-of-thought obfuscation learned from output supervision can generalise to unseen tasks
Chain-of-thought (CoT) reasoning provides a significant performance uplift to LLMs by enabling planning, exploration, and deliberation of their actions. CoT is also a powerful tool for monitoring the behaviours of these agents: when faithful, they offer interpretations of the model's decision making process, and an early warning sign for dangerous behaviours. However, optimisation pressures placed on the CoT may cause the model to obfuscate reasoning traces, losing this beneficial property. We show that obfuscation can generalise across tasks; models that learn to obfuscate reasoning involving reward hacking (e.g. accessing and utilising leaked information) generalise both the reward hacking behaviour and its obfuscation in CoT to unseen reward hacking settings. Most worryingly, we show that obfuscation of CoT reasoning, and its generalisation across tasks, also follows when we penalise only the model's final actions after closing its CoT. Our findings suggest that current practices of penalising harmful generations may inadvertently lead to a reduction in the broader monitorability of LLMs in unpredictable ways.
☆ OrLog: Resolving Complex Queries with LLMs and Probabilistic Reasoning ECIR 2026
Resolving complex information needs that come with multiple constraints should consider enforcing the logical operators encoded in the query (i.e., conjunction, disjunction, negation) on the candidate answer set. Current retrieval systems either ignore these constraints in neural embeddings or approximate them in a generative reasoning process that can be inconsistent and unreliable. Although well-suited to structured reasoning, existing neuro-symbolic approaches remain confined to formal logic or mathematics problems as they often assume unambiguous queries and access to complete evidence, conditions rarely met in information retrieval. To bridge this gap, we introduce OrLog, a neuro-symbolic retrieval framework that decouples predicate-level plausibility estimation from logical reasoning: a large language model (LLM) provides plausibility scores for atomic predicates in one decoding-free forward pass, from which a probabilistic reasoning engine derives the posterior probability of query satisfaction. We evaluate OrLog across multiple backbone LLMs, varying levels of access to external knowledge, and a range of logical constraints, and compare it against base retrievers and LLM-as-reasoner methods. Provided with entity descriptions, OrLog can significantly boost top-rank precision compared to LLM reasoning with larger gains on disjunctive queries. OrLog is also more efficient, cutting mean tokens by $\sim$90\% per query-entity pair. These results demonstrate that generation-free predicate plausibility estimation combined with probabilistic reasoning enables constraint-aware retrieval that outperforms monolithic reasoning while using far fewer tokens.
comment: Accepted to ECIR 2026
☆ Character as a Latent Variable in Large Language Models: A Mechanistic Account of Emergent Misalignment and Conditional Safety Failures
Emergent Misalignment refers to a failure mode in which fine-tuning large language models (LLMs) on narrowly scoped data induces broadly misaligned behavior. Prior explanations mainly attribute this phenomenon to the generalization of erroneous or unsafe content. In this work, we show that this view is incomplete. Across multiple domains and model families, we find that fine-tuning models on data exhibiting specific character-level dispositions induces substantially stronger and more transferable misalignment than incorrect-advice fine-tuning, while largely preserving general capabilities. This indicates that emergent misalignment arises from stable shifts in model behavior rather than from capability degradation or corrupted knowledge. We further show that such behavioral dispositions can be conditionally activated by both training-time triggers and inference-time persona-aligned prompts, revealing shared structure across emergent misalignment, backdoor activation, and jailbreak susceptibility. Overall, our results identify character formation as a central and underexplored alignment risk, suggesting that robust alignment must address behavioral dispositions rather than isolated errors or prompt-level defenses.
☆ ExplainerPFN: Towards tabular foundation models for model-free zero-shot feature importance estimations
Computing the importance of features in supervised classification tasks is critical for model interpretability. Shapley values are a widely used approach for explaining model predictions, but require direct access to the underlying model, an assumption frequently violated in real-world deployments. Further, even when model access is possible, their exact computation may be prohibitively expensive. We investigate whether meaningful Shapley value estimations can be obtained in a zero-shot setting, using only the input data distribution and no evaluations of the target model. To this end, we introduce ExplainerPFN, a tabular foundation model built on TabPFN that is pretrained on synthetic datasets generated from random structural causal models and supervised using exact or near-exact Shapley values. Once trained, ExplainerPFN predicts feature attributions for unseen tabular datasets without model access, gradients, or example explanations. Our contributions are fourfold: (1) we show that few-shot learning-based explanations can achieve high fidelity to SHAP values with as few as two reference observations; (2) we propose ExplainerPFN, the first zero-shot method for estimating Shapley values without access to the underlying model or reference explanations; (3) we provide an open-source implementation of ExplainerPFN, including the full training pipeline and synthetic data generator; and (4) through extensive experiments on real and synthetic datasets, we show that ExplainerPFN achieves performance competitive with few-shot surrogate explainers that rely on 2-10 SHAP examples.
comment: 18 pages, 7 figures
☆ Towards Explicit Acoustic Evidence Perception in Audio LLMs for Speech Deepfake Detection
Speech deepfake detection (SDD) focuses on identifying whether a given speech signal is genuine or has been synthetically generated. Existing audio large language model (LLM)-based methods excel in content understanding; however, their predictions are often biased toward semantically correlated cues, which results in fine-grained acoustic artifacts being overlooked during the decisionmaking process. Consequently, fake speech with natural semantics can bypass detectors despite harboring subtle acoustic anomalies; this suggests that the challenge stems not from the absence of acoustic data, but from its inadequate accessibility when semantic-dominant reasoning prevails. To address this issue, we investigate SDD within the audio LLM paradigm and introduce SDD with Auditory Perception-enhanced Audio Large Language Model (SDD-APALLM), an acoustically enhanced framework designed to explicitly expose fine-grained time-frequency evidence as accessible acoustic cues. By combining raw audio with structured spectrograms, the proposed framework empowers audio LLMs to more effectively capture subtle acoustic inconsistencies without compromising their semantic understanding. Experimental results indicate consistent gains in detection accuracy and robustness, especially in cases where semantic cues are misleading. Further analysis reveals that these improvements stem from a coordinated utilization of semantic and acoustic information, as opposed to simple modality aggregation.
comment: 9 pages, 4 figures
☆ HierLoc: Hyperbolic Entity Embeddings for Hierarchical Visual Geolocation
Visual geolocalization, the task of predicting where an image was taken, remains challenging due to global scale, visual ambiguity, and the inherently hierarchical structure of geography. Existing paradigms rely on either large-scale retrieval, which requires storing a large number of image embeddings, grid-based classifiers that ignore geographic continuity, or generative models that diffuse over space but struggle with fine detail. We introduce an entity-centric formulation of geolocation that replaces image-to-image retrieval with a compact hierarchy of geographic entities embedded in Hyperbolic space. Images are aligned directly to country, region, subregion, and city entities through Geo-Weighted Hyperbolic contrastive learning by directly incorporating haversine distance into the contrastive objective. This hierarchical design enables interpretable predictions and efficient inference with 240k entity embeddings instead of over 5 million image embeddings on the OSV5M benchmark, on which our method establishes a new state-of-the-art performance. Compared to the current methods in the literature, it reduces mean geodesic error by 19.5\%, while improving the fine-grained subregion accuracy by 43%. These results demonstrate that geometry-aware hierarchical embeddings provide a scalable and conceptually new alternative for global image geolocation.
☆ On the Impact of Code Comments for Automated Bug-Fixing: An Empirical Study
Large Language Models (LLMs) are increasingly relevant in Software Engineering research and practice, with Automated Bug Fixing (ABF) being one of their key applications. ABF involves transforming a buggy method into its fixed equivalent. A common preprocessing step in ABF involves removing comments from code prior to training. However, we hypothesize that comments may play a critical role in fixing certain types of bugs by providing valuable design and implementation insights. In this study, we investigate how the presence or absence of comments, both during training and at inference time, impacts the bug-fixing capabilities of LLMs. We conduct an empirical evaluation comparing two model families, each evaluated under all combinations of training and inference conditions (with and without comments), and thereby revisiting the common practice of removing comments during training. To address the limited availability of comments in state-of-the-art datasets, we use an LLM to automatically generate comments for methods lacking them. Our findings show that comments improve ABF accuracy by up to threefold when present in both phases, while training with comments does not degrade performance when instances lack them. Additionally, an interpretability analysis identifies that comments detailing method implementation are particularly effective in aiding LLMs to fix bugs accurately.
comment: Accepted at the 34th IEEE/ACM International Conference on Program Comprehension (ICPC 2026)
☆ Adaptive Edge Learning for Density-Aware Graph Generation
Generating realistic graph-structured data is challenging due to discrete structures, variable sizes, and class-specific connectivity patterns that resist conventional generative modelling. While recent graph generation methods employ generative adversarial network (GAN) frameworks to handle permutation invariance and irregular topologies, they typically rely on random edge sampling with fixed probabilities, limiting their capacity to capture complex structural dependencies between nodes. We propose a density-aware conditional graph generation framework using Wasserstein GANs (WGAN) that replaces random sampling with a learnable distance-based edge predictor. Our approach embeds nodes into a latent space where proximity correlates with edge likelihood, enabling the generator to learn meaningful connectivity patterns. A differentiable edge predictor determines pairwise relationships directly from node embeddings, while a density-aware selection mechanism adaptively controls edge density to match class-specific sparsity distributions observed in real graphs. We train the model using a WGAN with gradient penalty, employing a GCN-based critic to ensure generated graphs exhibit realistic topology and align with target class distributions. Experiments on benchmark datasets demonstrate that our method produces graphs with superior structural coherence and class-consistent connectivity compared to existing baselines. The learned edge predictor captures complex relational patterns beyond simple heuristics, generating graphs whose density and topology closely match real structural distributions. Our results show improved training stability and controllable synthesis, making the framework effective for realistic graph generation and data augmentation. Source code is publicly available at https://github.com/ava-12/Density_Aware_WGAN.git.
comment: Accepted at the 39th Canadian Conference on Artificial Intelligence
☆ MedMCP-Calc: Benchmarking LLMs for Realistic Medical Calculator Scenarios via MCP Integration
Medical calculators are fundamental to quantitative, evidence-based clinical practice. However, their real-world use is an adaptive, multi-stage process, requiring proactive EHR data acquisition, scenario-dependent calculator selection, and multi-step computation, whereas current benchmarks focus only on static single-step calculations with explicit instructions. To address these limitations, we introduce MedMCP-Calc, the first benchmark for evaluating LLMs in realistic medical calculator scenarios through Model Context Protocol (MCP) integration. MedMCP-Calc comprises 118 scenario tasks across 4 clinical domains, featuring fuzzy task descriptions mimicking natural queries, structured EHR database interaction, external reference retrieval, and process-level evaluation. Our evaluation of 23 leading models reveals critical limitations: even top performers like Claude Opus 4.5 exhibit substantial gaps, including difficulty selecting appropriate calculators for end-to-end workflows given fuzzy queries, poor performance in iterative SQL-based database interactions, and marked reluctance to leverage external tools for numerical computation. Performance also varies considerably across clinical domains. Building on these findings, we develop CalcMate, a fine-tuned model incorporating scenario planning and tool augmentation, achieving state-of-the-art performance among open-source models. Benchmark and Codes are available in https://github.com/SPIRAL-MED/MedMCP-Calc.
☆ From Abstract to Contextual: What LLMs Still Cannot Do in Mathematics ICLR 2026
Large language models now solve many benchmark math problems at near-expert levels, yet this progress has not fully translated into reliable performance in real-world applications. We study this gap through contextual mathematical reasoning, where the mathematical core must be formulated from descriptive scenarios. We introduce ContextMATH, a benchmark that repurposes AIME and MATH-500 problems into two contextual settings: Scenario Grounding (SG), which embeds abstract problems into realistic narratives without increasing reasoning complexity, and Complexity Scaling (CS), which transforms explicit conditions into sub-problems to capture how constraints often appear in practice. Evaluating 61 proprietary and open-source models, we observe sharp drops: on average, open-source models decline by 13 and 34 points on SG and CS, while proprietary models drop by 13 and 20. Error analysis shows that errors are dominated by incorrect problem formulation, with formulation accuracy declining as original problem difficulty increases. Correct formulation emerges as a prerequisite for success, and its sufficiency improves with model scale, indicating that larger models advance in both understanding and reasoning. Nevertheless, formulation and reasoning remain two complementary bottlenecks that limit contextual mathematical problem solving. Finally, we find that fine-tuning with scenario data improves performance, whereas formulation-only training is ineffective. However, performance gaps are only partially alleviated, highlighting contextual mathematical reasoning as a central unsolved challenge for LLMs.
comment: ICLR 2026
☆ The Hot Mess of AI: How Does Misalignment Scale With Model Intelligence and Task Complexity? ICLR 2026
As AI becomes more capable, we entrust it with more general and consequential tasks. The risks from failure grow more severe with increasing task scope. It is therefore important to understand how extremely capable AI models will fail: Will they fail by systematically pursuing goals we do not intend? Or will they fail by being a hot mess, and taking nonsensical actions that do not further any goal? We operationalize this question using a bias-variance decomposition of the errors made by AI models: An AI's \emph{incoherence} on a task is measured over test-time randomness as the fraction of its error that stems from variance rather than bias in task outcome. Across all tasks and frontier models we measure, the longer models spend reasoning and taking actions, \emph{the more incoherent} their failures become. Incoherence changes with model scale in a way that is experiment dependent. However, in several settings, larger, more capable models are more incoherent than smaller models. Consequently, scale alone seems unlikely to eliminate incoherence. Instead, as more capable AIs pursue harder tasks, requiring more sequential action and thought, our results predict failures to be accompanied by more incoherent behavior. This suggests a future where AIs sometimes cause industrial accidents (due to unpredictable misbehavior), but are less likely to exhibit consistent pursuit of a misaligned goal. This increases the relative importance of alignment research targeting reward hacking or goal misspecification.
comment: ICLR 2026
☆ Avoiding Premature Collapse: Adaptive Annealing for Entropy-Regularized Structural Inference
Differentiable matching layers, often implemented via entropy-regularized Optimal Transport, serve as a critical approximate inference mechanism in structural prediction. However, recovering discrete permutations via annealing $ε\to 0$ is notoriously unstable. We identify a fundamental mechanism for this failure: \textbf{Premature Mode Collapse}. By analyzing the non-normal dynamics of the Sinkhorn fixed-point map, we reveal a theoretical \textbf{thermodynamic speed limit}. Under standard exponential cooling, the shift in the target posterior ($O(1)$) outpaces the contraction rate of the inference operator, which degrades as $O(1/ε)$. This mismatch inevitably forces the inference trajectory into spurious local basins. To address this, we propose \textbf{Efficient PH-ASC}, an adaptive scheduling algorithm that monitors the stability of the inference process. By enforcing a linear stability law, we decouple expensive spectral diagnostics from the training loop, reducing overhead from $O(N^3)$ to amortized $O(1)$. Our implementation and interactive demo are available at https://github.com/xxx0438/torch-sinkhorn-asc and https://huggingface.co/spaces/leon0923/torch-sinkhorn-asc-demo. bounded away from zero in generic training dynamics unless the feature extractor converges unrealistically fast.
☆ Guided by Trajectories: Repairing and Rewarding Tool-Use Trajectories for Tool-Integrated Reasoning
Tool-Integrated Reasoning (TIR) enables large language models (LLMs) to solve complex tasks by interacting with external tools, yet existing approaches depend on high-quality synthesized trajectories selected by scoring functions and sparse outcome-based rewards, providing limited and biased supervision for learning TIR. To address these challenges, in this paper, we propose AutoTraj, a two-stage framework that automatically learns TIR by repairing and rewarding tool-use trajectories. Specifically, in the supervised fine-tuning (SFT) stage, AutoTraj generates multiple candidate tool-use trajectories for each query and evaluates them along multiple dimensions. High-quality trajectories are directly retained, while low-quality ones are repaired using a LLM (i.e., LLM-as-Repairer). The resulting repaired and high-quality trajectories form a synthetic SFT dataset, while each repaired trajectory paired with its original low-quality counterpart constitutes a dataset for trajectory preference modeling. In the reinforcement learning (RL) stage, based on the preference dataset, we train a trajectory-level reward model to assess the quality of reasoning paths and combine it with outcome and format rewards, thereby explicitly guiding the optimization toward reliable TIR behaviors. Experiments on real-world benchmarks demonstrate the effectiveness of AutoTraj in TIR.
☆ Leveraging Convolutional Sparse Autoencoders for Robust Movement Classification from Low-Density sEMG
Reliable control of myoelectric prostheses is often hindered by high inter-subject variability and the clinical impracticality of high-density sensor arrays. This study proposes a deep learning framework for accurate gesture recognition using only two surface electromyography (sEMG) channels. The method employs a Convolutional Sparse Autoencoder (CSAE) to extract temporal feature representations directly from raw signals, eliminating the need for heuristic feature engineering. On a 6-class gesture set, our model achieved a multi-subject F1-score of 94.3% $\pm$ 0.3%. To address subject-specific differences, we present a few-shot transfer learning protocol that improved performance on unseen subjects from a baseline of 35.1% $\pm$ 3.1% to 92.3% $\pm$ 0.9% with minimal calibration data. Furthermore, the system supports functional extensibility through an incremental learning strategy, allowing for expansion to a 10-class set with a 90.0% $\pm$ 0.2% F1-score without full model retraining. By combining high precision with minimal computational and sensor overhead, this framework provides a scalable and efficient approach for the next generation of affordable and adaptive prosthetic systems.
☆ Automatic Constraint Policy Optimization based on Continuous Constraint Interpolation Framework for Offline Reinforcement Learning
Offline Reinforcement Learning (RL) relies on policy constraints to mitigate extrapolation error, where both the constraint form and constraint strength critically shape performance. However, most existing methods commit to a single constraint family: weighted behavior cloning, density regularization, or support constraints, without a unified principle that explains their connections or trade-offs. In this work, we propose Continuous Constraint Interpolation (CCI), a unified optimization framework in which these three constraint families arise as special cases along a common constraint spectrum. The CCI framework introduces a single interpolation parameter that enables smooth transitions and principled combinations across constraint types. Building on CCI, we develop Automatic Constraint Policy Optimization (ACPO), a practical primal--dual algorithm that adapts the interpolation parameter via a Lagrangian dual update. Moreover, we establish a maximum-entropy performance difference lemma and derive performance lower bounds for both the closed-form optimal policy and its parametric projection. Experiments on D4RL and NeoRL2 demonstrate robust gains across diverse domains, achieving state-of-the-art performance overall.
☆ Bias Beyond Borders: Political Ideology Evaluation and Steering in Multilingual LLMs
Large Language Models (LLMs) increasingly shape global discourse, making fairness and ideological neutrality essential for responsible AI deployment. Despite growing attention to political bias in LLMs, prior work largely focuses on high-resource, Western languages or narrow multilingual settings, leaving cross-lingual consistency and safe post-hoc mitigation underexplored. To address this gap, we present a large-scale multilingual evaluation of political bias spanning 50 countries and 33 languages. We introduce a complementary post-hoc mitigation framework, Cross-Lingual Alignment Steering (CLAS), designed to augment existing steering methods by aligning ideological representations across languages and dynamically regulating intervention strength. This method aligns latent ideological representations induced by political prompts into a shared ideological subspace, ensuring cross lingual consistency, with the adaptive mechanism prevents over correction and preserves coherence. Experiments demonstrate substantial bias reduction along both economic and social axes with minimal degradation in response quality. The proposed framework establishes a scalable and interpretable paradigm for fairness-aware multilingual LLM governance, balancing ideological neutrality with linguistic and cultural diversity.
comment: PrePrint
☆ Mano: Restriking Manifold Optimization for LLM Training
While large language models (LLMs) have emerged as a significant advancement in artificial intelligence, the hardware and computational costs for training LLMs are also significantly burdensome. Among the state-of-the-art optimizers, AdamW relies on diagonal curvature estimates and ignores structural properties, while Muon applies global spectral normalization at the expense of losing curvature information. In this study, we restriked manifold optimization methods for training LLMs, which may address both optimizers' limitations, while conventional manifold optimization methods have been largely overlooked due to the poor performance in large-scale model optimization. By innovatively projecting the momentum onto the tangent space of model parameters and constraining it on a rotational Oblique manifold, we propose a novel, powerful, and efficient optimizer **Mano** that is the first to bridge the performance gap between manifold optimization and modern optimizers. Extensive experiments on the LLaMA and Qwen3 models demonstrate that Mano consistently and significantly outperforms AdamW and Muon even with less memory consumption and computational complexity, respectively, suggesting an expanded Pareto frontier in terms of space and time efficiency.
☆ TriCEGAR: A Trace-Driven Abstraction Mechanism for Agentic AI
Agentic AI systems act through tools and evolve their behavior over long, stochastic interaction traces. This setting complicates assurance, because behavior depends on nondeterministic environments and probabilistic model outputs. Prior work introduced runtime verification for agentic AI via Dynamic Probabilistic Assurance (DPA), learning an MDP online and model checking quantitative properties. A key limitation is that developers must manually define the state abstraction, which couples verification to application-specific heuristics and increases adoption friction. This paper proposes TriCEGAR, a trace-driven abstraction mechanism that automates state construction from execution logs and supports online construction of an agent behavioral MDP. TriCEGAR represents abstractions as predicate trees learned from traces and refined using counterexamples. We describe a framework-native implementation that (i) captures typed agent lifecycle events, (ii) builds abstractions from traces, (iii) constructs an MDP, and (iv) performs probabilistic model checking to compute bounds such as Pmax(success) and Pmin(failure). We also show how run likelihoods enable anomaly detection as a guardrailing signal.
Self-Supervised Slice-to-Volume Reconstruction with Gaussian Representations for Fetal MRI
Reconstructing 3D fetal MR volumes from motion-corrupted stacks of 2D slices is a crucial and challenging task. Conventional slice-to-volume reconstruction (SVR) methods are time-consuming and require multiple orthogonal stacks for reconstruction. While learning-based SVR approaches have significantly reduced the time required at the inference stage, they heavily rely on ground truth information for training, which is inaccessible in practice. To address these challenges, we propose GaussianSVR, a self-supervised framework for slice-to-volume reconstruction. GaussianSVR represents the target volume using 3D Gaussian representations to achieve high-fidelity reconstruction. It leverages a simulated forward slice acquisition model to enable self-supervised training, alleviating the need for ground-truth volumes. Furthermore, to enhance both accuracy and efficiency, we introduce a multi-resolution training strategy that jointly optimizes Gaussian parameters and spatial transformations across different resolution levels. Experiments show that GaussianSVR outperforms the baseline methods on fetal MR volumetric reconstruction. Code will be available upon acceptance.
Why Your Deep Research Agent Fails? On Hallucination Evaluation in Full Research Trajectory
Diagnosing the failure mechanisms of Deep Research Agents (DRAs) remains a critical challenge. Existing benchmarks predominantly rely on end-to-end evaluation, obscuring critical intermediate hallucinations, such as flawed planning, that accumulate throughout the research trajectory. To bridge this gap, we propose a shift from outcome-based to process-aware evaluation by auditing the full research trajectory. We introduce the PIES Taxonomy to categorize hallucinations along functional components (Planning vs. Summarization) and error properties (Explicit vs. Implicit). We instantiate this taxonomy into a fine-grained evaluation framework that decomposes the trajectory to rigorously quantify these hallucinations. Leveraging this framework to isolate 100 distinctively hallucination-prone tasks including adversarial scenarios, we curate DeepHalluBench. Experiments on six state-of-theart DRAs reveal that no system achieves robust reliability. Furthermore, our diagnostic analysis traces the etiology of these failures to systemic deficits, specifically hallucination propagation and cognitive biases, providing foundational insights to guide future architectural optimization. Data and code are available at https://github.com/yuhao-zhan/DeepHalluBench.
☆ About an Automating Annotation Method for Robot Markers
Factory automation has become increasingly important due to labor shortages, leading to the introduction of autonomous mobile robots for tasks such as material transportation. Markers are commonly used for robot self-localization and object identification. In the RoboCup Logistics League (RCLL), ArUco markers are employed both for robot localization and for identifying processing modules. Conventional recognition relies on OpenCV-based image processing, which detects black-and-white marker patterns. However, these methods often fail under noise, motion blur, defocus, or varying illumination conditions. Deep-learning-based recognition offers improved robustness under such conditions, but requires large amounts of annotated data. Annotation must typically be done manually, as the type and position of objects cannot be detected automatically, making dataset preparation a major bottleneck. In contrast, ArUco markers include built-in recognition modules that provide both ID and positional information, enabling automatic annotation. This paper proposes an automated annotation method for training deep-learning models on ArUco marker images. By leveraging marker detection results obtained from the ArUco module, the proposed approach eliminates the need for manual labeling. A YOLO-based model is trained using the automatically annotated dataset, and its performance is evaluated under various conditions. Experimental results demonstrate that the proposed method improves recognition performance compared with conventional image-processing techniques, particularly for images affected by blur or defocus. Automatic annotation also reduces human effort and ensures consistent labeling quality. Future work will investigate the relationship between confidence thresholds and recognition performance.
☆ Quantifying Model Uniqueness in Heterogeneous AI Ecosystems
As AI systems evolve from isolated predictors into complex, heterogeneous ecosystems of foundation models and specialized adapters, distinguishing genuine behavioral novelty from functional redundancy becomes a critical governance challenge. Here, we introduce a statistical framework for auditing model uniqueness based on In-Silico Quasi-Experimental Design (ISQED). By enforcing matched interventions across models, we isolate intrinsic model identity and quantify uniqueness as the Peer-Inexpressible Residual (PIER), i.e. the component of a target's behavior strictly irreducible to any stochastic convex combination of its peers, with vanishing PIER characterizing when such a routing-based substitution becomes possible. We establish the theoretical foundations of ecosystem auditing through three key contributions. First, we prove a fundamental limitation of observational logs: uniqueness is mathematically non-identifiable without intervention control. Second, we derive a scaling law for active auditing, showing that our adaptive query protocol achieves minimax-optimal sample efficiency ($dσ^2γ^{-2}\log(Nd/δ)$). Third, we demonstrate that cooperative game-theoretic methods, such as Shapley values, fundamentally fail to detect redundancy. We implement this framework via the DISCO (Design-Integrated Synthetic Control) estimator and deploy it across diverse ecosystems, including computer vision models (ResNet/ConvNeXt/ViT), large language models (BERT/RoBERTa), and city-scale traffic forecasters. These results move trustworthy AI beyond explaining single models: they establish a principled, intervention-based science of auditing and governing heterogeneous model ecosystems.
☆ Golden Goose: A Simple Trick to Synthesize Unlimited RLVR Tasks from Unverifiable Internet Text
Reinforcement Learning with Verifiable Rewards (RLVR) has become a cornerstone for unlocking complex reasoning in Large Language Models (LLMs). Yet, scaling up RL is bottlenecked by limited existing verifiable data, where improvements increasingly saturate over prolonged training. To overcome this, we propose Golden Goose, a simple trick to synthesize unlimited RLVR tasks from unverifiable internet text by constructing a multiple-choice question-answering version of the fill-in-the-middle task. Given a source text, we prompt an LLM to identify and mask key reasoning steps, then generate a set of diverse, plausible distractors. This enables us to leverage reasoning-rich unverifiable corpora typically excluded from prior RLVR data construction (e.g., science textbooks) to synthesize GooseReason-0.7M, a large-scale RLVR dataset with over 0.7 million tasks spanning mathematics, programming, and general scientific domains. Empirically, GooseReason effectively revives models saturated on existing RLVR data, yielding robust, sustained gains under continuous RL and achieving new state-of-the-art results for 1.5B and 4B-Instruct models across 15 diverse benchmarks. Finally, we deploy Golden Goose in a real-world setting, synthesizing RLVR tasks from raw FineWeb scrapes for the cybersecurity domain, where no prior RLVR data exists. Training Qwen3-4B-Instruct on the resulting data GooseReason-Cyber sets a new state-of-the-art in cybersecurity, surpassing a 7B domain-specialized model with extensive domain-specific pre-training and post-training. This highlights the potential of automatically scaling up RLVR data by exploiting abundant, reasoning-rich, unverifiable internet text.
☆ Stabilizing the Q-Gradient Field for Policy Smoothness in Actor-Critic
Policies learned via continuous actor-critic methods often exhibit erratic, high-frequency oscillations, making them unsuitable for physical deployment. Current approaches attempt to enforce smoothness by directly regularizing the policy's output. We argue that this approach treats the symptom rather than the cause. In this work, we theoretically establish that policy non-smoothness is fundamentally governed by the differential geometry of the critic. By applying implicit differentiation to the actor-critic objective, we prove that the sensitivity of the optimal policy is bounded by the ratio of the Q-function's mixed-partial derivative (noise sensitivity) to its action-space curvature (signal distinctness). To empirically validate this theoretical insight, we introduce PAVE (Policy-Aware Value-field Equalization), a critic-centric regularization framework that treats the critic as a scalar field and stabilizes its induced action-gradient field. PAVE rectifies the learning signal by minimizing the Q-gradient volatility while preserving local curvature. Experimental results demonstrate that PAVE achieves smoothness and robustness comparable to policy-side smoothness regularization methods, while maintaining competitive task performance, without modifying the actor.
☆ EvoClinician: A Self-Evolving Agent for Multi-Turn Medical Diagnosis via Test-Time Evolutionary Learning
Prevailing medical AI operates on an unrealistic ''one-shot'' model, diagnosing from a complete patient file. However, real-world diagnosis is an iterative inquiry where Clinicians sequentially ask questions and order tests to strategically gather information while managing cost and time. To address this, we first propose Med-Inquire, a new benchmark designed to evaluate an agent's ability to perform multi-turn diagnosis. Built upon a dataset of real-world clinical cases, Med-Inquire simulates the diagnostic process by hiding a complete patient file behind specialized Patient and Examination agents. They force the agent to proactively ask questions and order tests to gather information piece by piece. To tackle the challenges posed by Med-Inquire, we then introduce EvoClinician, a self-evolving agent that learns efficient diagnostic strategies at test time. Its core is a ''Diagnose-Grade-Evolve'' loop: an Actor agent attempts a diagnosis; a Process Grader agent performs credit assignment by evaluating each action for both clinical yield and resource efficiency; finally, an Evolver agent uses this feedback to update the Actor's strategy by evolving its prompt and memory. Our experiments show EvoClinician outperforms continual learning baselines and other self-evolving agents like memory agents. The code is available at https://github.com/yf-he/EvoClinician
☆ Residual Context Diffusion Language Models
Diffusion Large Language Models (dLLMs) have emerged as a promising alternative to purely autoregressive language models because they can decode multiple tokens in parallel. However, state-of-the-art block-wise dLLMs rely on a "remasking" mechanism that decodes only the most confident tokens and discards the rest, effectively wasting computation. We demonstrate that recycling computation from the discarded tokens is beneficial, as these tokens retain contextual information useful for subsequent decoding iterations. In light of this, we propose Residual Context Diffusion (RCD), a module that converts these discarded token representations into contextual residuals and injects them back for the next denoising step. RCD uses a decoupled two-stage training pipeline to bypass the memory bottlenecks associated with backpropagation. We validate our method on both long CoT reasoning (SDAR) and short CoT instruction following (LLaDA) models. We demonstrate that a standard dLLM can be efficiently converted to the RCD paradigm with merely ~1 billion tokens. RCD consistently improves frontier dLLMs by 5-10 points in accuracy with minimal extra computation overhead across a wide range of benchmarks. Notably, on the most challenging AIME tasks, RCD nearly doubles baseline accuracy and attains up to 4-5x fewer denoising steps at equivalent accuracy levels.
☆ Perplexity Cannot Always Tell Right from Wrong
Perplexity -- a function measuring a model's overall level of "surprise" when encountering a particular output -- has gained significant traction in recent years, both as a loss function and as a simple-to-compute metric of model quality. Prior studies have pointed out several limitations of perplexity, often from an empirical manner. Here we leverage recent results on Transformer continuity to show in a rigorous manner how perplexity may be an unsuitable metric for model selection. Specifically, we prove that, if there is any sequence that a compact decoder-only Transformer model predicts accurately and confidently -- a necessary pre-requisite for strong generalisation -- it must imply existence of another sequence with very low perplexity, but not predicted correctly by that same model. Further, by analytically studying iso-perplexity plots, we find that perplexity will not always select for the more accurate model -- rather, any increase in model confidence must be accompanied by a commensurate rise in accuracy for the new model to be selected.
comment: 11 pages, 4 figures
☆ Alignment among Language, Vision and Action Representations
A fundamental question in cognitive science and AI concerns whether different learning modalities: language, vision, and action, give rise to distinct or shared internal representations. Traditional views assume that models trained on different data types develop specialized, non-transferable representations. However, recent evidence suggests unexpected convergence: models optimized for distinct tasks may develop similar representational geometries. We investigate whether this convergence extends to embodied action learning by training a transformer-based agent to execute goal-directed behaviors in response to natural language instructions. Using behavioral cloning on the BabyAI platform, we generated action-grounded language embeddings shaped exclusively by sensorimotor control requirements. We then compared these representations with those extracted from state-of-the-art large language models (LLaMA, Qwen, DeepSeek, BERT) and vision-language models (CLIP, BLIP). Despite substantial differences in training data, modality, and objectives, we observed robust cross-modal alignment. Action representations aligned strongly with decoder-only language models and BLIP (precision@15: 0.70-0.73), approaching the alignment observed among language models themselves. Alignment with CLIP and BERT was significantly weaker. These findings indicate that linguistic, visual, and action representations converge toward partially shared semantic structures, supporting modality-independent semantic organization and highlighting potential for cross-domain transfer in embodied AI systems.
☆ From Data Leak to Secret Misses: The Impact of Data Leakage on Secret Detection Models
Machine learning models are increasingly used for software security tasks. These models are commonly trained and evaluated on large Internet-derived datasets, which often contain duplicated or highly similar samples. When such samples are split across training and test sets, data leakage may occur, allowing models to memorize patterns instead of learning to generalize. We investigate duplication in a widely used benchmark dataset of hard coded secrets and show how data leakage can substantially inflate the reported performance of AI-based secret detectors, resulting in a misleading picture of their real-world effectiveness.
☆ A Real-Time Privacy-Preserving Behavior Recognition System via Edge-Cloud Collaboration
As intelligent sensing expands into high-privacy environments such as restrooms and changing rooms, the field faces a critical privacy-security paradox. Traditional RGB surveillance raises significant concerns regarding visual recording and storage, while existing privacy-preserving methods-ranging from physical desensitization to traditional cryptographic or obfuscation techniques-often compromise semantic understanding capabilities or fail to guarantee mathematical irreversibility against reconstruction attacks. To address these challenges, this study presents a novel privacy-preserving perception technology based on the AI Flow theoretical framework and an edge-cloud collaborative architecture. The proposed methodology integrates source desensitization with irreversible feature mapping. Leveraging Information Bottleneck theory, the edge device performs millisecond-level processing to transform raw imagery into abstract feature vectors via non-linear mapping and stochastic noise injection. This process constructs a unidirectional information flow that strips identity-sensitive attributes, rendering the reconstruction of original images impossible. Subsequently, the cloud platform utilizes multimodal family models to perform joint inference solely on these abstract vectors to detect abnormal behaviors. This approach fundamentally severs the path to privacy leakage at the architectural level, achieving a breakthrough from video surveillance to de-identified behavior perception and offering a robust solution for risk management in high-sensitivity public spaces.
☆ Protecting Private Code in IDE Autocomplete using Differential Privacy
Modern Integrated Development Environments (IDEs) increasingly leverage Large Language Models (LLMs) to provide advanced features like code autocomplete. While powerful, training these models on user-written code introduces significant privacy risks, making the models themselves a new type of data vulnerability. Malicious actors can exploit this by launching attacks to reconstruct sensitive training data or infer whether a specific code snippet was used for training. This paper investigates the use of Differential Privacy (DP) as a robust defense mechanism for training an LLM for Kotlin code completion. We fine-tune a \texttt{Mellum} model using DP and conduct a comprehensive evaluation of its privacy and utility. Our results demonstrate that DP provides a strong defense against Membership Inference Attacks (MIAs), reducing the attack's success rate close to a random guess (AUC from 0.901 to 0.606). Furthermore, we show that this privacy guarantee comes at a minimal cost to model performance, with the DP-trained model achieving utility scores comparable to its non-private counterpart, even when trained on 100x less data. Our findings suggest that DP is a practical and effective solution for building private and trustworthy AI-powered IDE features.
comment: 6 pages
☆ MTDrive: Multi-turn Interactive Reinforcement Learning for Autonomous Driving
Trajectory planning is a core task in autonomous driving, requiring the prediction of safe and comfortable paths across diverse scenarios. Integrating Multi-modal Large Language Models (MLLMs) with Reinforcement Learning (RL) has shown promise in addressing "long-tail" scenarios. However, existing methods are constrained to single-turn reasoning, limiting their ability to handle complex tasks requiring iterative refinement. To overcome this limitation, we present MTDrive, a multi-turn framework that enables MLLMs to iteratively refine trajectories based on environmental feedback. MTDrive introduces Multi-Turn Group Relative Policy Optimization (mtGRPO), which mitigates reward sparsity by computing relative advantages across turns. We further construct an interactive trajectory understanding dataset from closed-loop simulation to support multi-turn training. Experiments on the NAVSIM benchmark demonstrate superior performance compared to existing methods, validating the effectiveness of our multi-turn reasoning paradigm. Additionally, we implement system-level optimizations to reduce data transfer overhead caused by high-resolution images and multi-turn sequences, achieving 2.5x training throughput. Our data, models, and code will be made available soon.
☆ BEAR: Towards Beam-Search-Aware Optimization for Recommendation with Large Language Models
Recent years have witnessed a rapid surge in research leveraging Large Language Models (LLMs) for recommendation. These methods typically employ supervised fine-tuning (SFT) to adapt LLMs to recommendation scenarios, and utilize beam search during inference to efficiently retrieve $B$ top-ranked recommended items. However, we identify a critical training-inference inconsistency: while SFT optimizes the overall probability of positive items, it does not guarantee that such items will be retrieved by beam search even if they possess high overall probabilities. Due to the greedy pruning mechanism, beam search can prematurely discard a positive item once its prefix probability is insufficient. To address this inconsistency, we propose BEAR (Beam-SEarch-Aware Regularization), a novel fine-tuning objective that explicitly accounts for beam search behavior during training. Rather than directly simulating beam search for each instance during training, which is computationally prohibitive, BEAR enforces a relaxed necessary condition: each token in a positive item must rank within the top-$B$ candidate tokens at each decoding step. This objective effectively mitigates the risk of incorrect pruning while incurring negligible computational overhead compared to standard SFT. Extensive experiments across four real-world datasets demonstrate that BEAR significantly outperforms strong baselines. Code will be released upon acceptance.
☆ Evaluating Large Language Models for Security Bug Report Prediction
Early detection of security bug reports (SBRs) is critical for timely vulnerability mitigation. We present an evaluation of prompt-based engineering and fine-tuning approaches for predicting SBRs using Large Language Models (LLMs). Our findings reveal a distinct trade-off between the two approaches. Prompted proprietary models demonstrate the highest sensitivity to SBRs, achieving a G-measure of 77% and a recall of 74% on average across all the datasets, albeit at the cost of a higher false-positive rate, resulting in an average precision of only 22%. Fine-tuned models, by contrast, exhibit the opposite behavior, attaining a lower overall G-measure of 51% but substantially higher precision of 75% at the cost of reduced recall of 36%. Though a one-time investment in building fine-tuned models is necessary, the inference on the largest dataset is up to 50 times faster than that of proprietary models. These findings suggest that further investigations to harness the power of LLMs for SBR prediction are necessary.
☆ DINO-SAE: DINO Spherical Autoencoder for High-Fidelity Image Reconstruction and Generation
Recent studies have explored using pretrained Vision Foundation Models (VFMs) such as DINO for generative autoencoders, showing strong generative performance. Unfortunately, existing approaches often suffer from limited reconstruction fidelity due to the loss of high-frequency details. In this work, we present the DINO Spherical Autoencoder (DINO-SAE), a framework that bridges semantic representation and pixel-level reconstruction. Our key insight is that semantic information in contrastive representations is primarily encoded in the direction of feature vectors, while forcing strict magnitude matching can hinder the encoder from preserving fine-grained details. To address this, we introduce Hierarchical Convolutional Patch Embedding module that enhances local structure and texture preservation, and Cosine Similarity Alignment objective that enforces semantic consistency while allowing flexible feature magnitudes for detail retention. Furthermore, leveraging the observation that SSL-based foundation model representations intrinsically lie on a hypersphere, we employ Riemannian Flow Matching to train a Diffusion Transformer (DiT) directly on this spherical latent manifold. Experiments on ImageNet-1K demonstrate that our approach achieves state-of-the-art reconstruction quality, reaching 0.37 rFID and 26.2 dB PSNR, while maintaining strong semantic alignment to the pretrained VFM. Notably, our Riemannian Flow Matching-based DiT exhibits efficient convergence, achieving a gFID of 3.47 at 80 epochs.
comment: 17 pages, and 11 figures
☆ MulFeRL: Enhancing Reinforcement Learning with Verbal Feedback in a Multi-turn Loop
Reinforcement Learning with Verifiable Rewards (RLVR) is widely used to improve reasoning in multiple domains, yet outcome-only scalar rewards are often sparse and uninformative, especially on failed samples, where they merely indicate failure and provide no insight into why the reasoning fails. In this paper, we investigate how to leverage richer verbal feedback to guide RLVR training on failed samples, and how to convert such feedback into a trainable learning signal. Specifically, we propose a multi-turn feedback-guided reinforcement learning framework. It builds on three mechanisms: (1) dynamic multi-turn regeneration guided by feedback, triggered only on failed samples, (2) two complementary learning signals for within-turn and cross-turn optimization, and (3) structured feedback injection into the model's reasoning process. Trained on sampled OpenR1-Math, the approach outperforms supervised fine-tuning and RLVR baselines in-domain and generalizes well out-of-domain.
☆ Game-Theoretic Co-Evolution for LLM-Based Heuristic Discovery
Large language models (LLMs) have enabled rapid progress in automatic heuristic discovery (AHD), yet most existing methods are predominantly limited by static evaluation against fixed instance distributions, leading to potential overfitting and poor generalization under distributional shifts. We propose Algorithm Space Response Oracles (ASRO), a game-theoretic framework that reframes heuristic discovery as a program level co-evolution between solver and instance generator. ASRO models their interaction as a two-player zero-sum game, maintains growing strategy pools on both sides, and iteratively expands them via LLM-based best-response oracles against mixed opponent meta-strategies, thereby replacing static evaluation with an adaptive, self-generated curriculum. Across multiple combinatorial optimization domains, ASRO consistently outperforms static-training AHD baselines built on the same program search mechanisms, achieving substantially improved generalization and robustness on diverse and out-of-distribution instances.
☆ DiffuSpeech: Silent Thought, Spoken Answer via Unified Speech-Text Diffusion
Current speech language models generate responses directly without explicit reasoning, leading to errors that cannot be corrected once audio is produced. We introduce \textbf{``Silent Thought, Spoken Answer''} -- a paradigm where speech LLMs generate internal text reasoning alongside spoken responses, with thinking traces informing speech quality. To realize this, we present \method{}, the first diffusion-based speech-text language model supporting both understanding and generation, unifying discrete text and tokenized speech under a single masked diffusion framework. Unlike autoregressive approaches, \method{} jointly generates reasoning traces and speech tokens through iterative denoising, with modality-specific masking schedules. We also construct \dataset{}, the first speech QA dataset with paired text reasoning traces, containing 26K samples totaling 319 hours. Experiments show \method{} achieves state-of-the-art speech-to-speech QA accuracy, outperforming the best baseline by up to 9 points, while attaining the best TTS quality among generative models (6.2\% WER) and preserving language understanding (66.2\% MMLU). Ablations confirm that both the diffusion architecture and thinking traces contribute to these gains.
☆ Should LLMs, $\textit{like}$, Generate How Users Talk? Building Dialect-Accurate Dialog[ue]s Beyond the American Default with MDial
More than 80% of the 1.6 billion English speakers do not use Standard American English (SAE) and experience higher failure rates and stereotyped responses when interacting with LLMs as a result. Yet multi-dialectal performance remains underexplored. We introduce $\textbf{MDial}$, the first large-scale framework for generating multi-dialectal conversational data encompassing the three pillars of written dialect -- lexical (vocabulary), orthographic (spelling), and morphosyntactic (grammar) features -- for nine English dialects. Partnering with native linguists, we design an annotated and scalable rule-based LLM transformation to ensure precision. Our approach challenges the assumption that models should mirror users' morphosyntactic features, showing that up to 90% of the grammatical features of a dialect should not be reproduced by models. Independent evaluations confirm data quality, with annotators preferring MDial outputs over prior methods in 98% of pairwise comparisons for dialect naturalness. Using this pipeline, we construct the dialect-parallel $\textbf{MDialBench}$mark with 50k+ dialogs, resulting in 97k+ QA pairs, and evaluate 17 LLMs on dialect identification and response generation tasks. Even frontier models achieve under 70% accuracy, fail to reach 50% for Canadian English, and systematically misclassify non-SAE dialects as American or British. As dialect identification underpins natural language understanding, these errors risk cascading failures into downstream tasks.
☆ MoVE: Mixture of Value Embeddings -- A New Axis for Scaling Parametric Memory in Autoregressive Models
Autoregressive sequence modeling stands as the cornerstone of modern Generative AI, powering results across diverse modalities ranging from text generation to image generation. However, a fundamental limitation of this paradigm is the rigid structural coupling of model capacity to computational cost: expanding a model's parametric memory -- its repository of factual knowledge or visual patterns -- traditionally requires deepening or widening the network, which incurs a proportional rise in active FLOPs. In this work, we introduce $\textbf{MoVE (Mixture of Value Embeddings)}$, a mechanism that breaks this coupling and establishes a new axis for scaling capacity. MoVE decouples memory from compute by introducing a global bank of learnable value embeddings shared across all attention layers. For every step in the sequence, the model employs a differentiable soft gating mechanism to dynamically mix retrieved concepts from this bank into the standard value projection. This architecture allows parametric memory to be scaled independently of network depth by simply increasing the number of embedding slots. We validate MoVE through strictly controlled experiments on two representative applications of autoregressive modeling: Text Generation and Image Generation. In both domains, MoVE yields consistent performance improvements over standard and layer-wise memory baselines, enabling the construction of "memory-dense" models that achieve lower perplexity and higher fidelity than their dense counterparts at comparable compute budgets.
☆ Reinforcement Learning-Based Co-Design and Operation of Chiller and Thermal Energy Storage for Cost-Optimal HVAC Systems
We study the joint operation and sizing of cooling infrastructure for commercial HVAC systems using reinforcement learning, with the objective of minimizing life-cycle cost over a 30-year horizon. The cooling system consists of a fixed-capacity electric chiller and a thermal energy storage (TES) unit, jointly operated to meet stochastic hourly cooling demands under time-varying electricity prices. The life-cycle cost accounts for both capital expenditure and discounted operating cost, including electricity consumption and maintenance. A key challenge arises from the strong asymmetry in capital costs: increasing chiller capacity by one unit is far more expensive than an equivalent increase in TES capacity. As a result, identifying the right combination of chiller and TES sizes, while ensuring zero loss-of-cooling-load under optimal operation, is a non-trivial co-design problem. To address this, we formulate the chiller operation problem for a fixed infrastructure configuration as a finite-horizon Markov Decision Process (MDP), in which the control action is the chiller part-load ratio (PLR). The MDP is solved using a Deep Q Network (DQN) with a constrained action space. The learned DQN RL policy minimizes electricity cost over historical traces of cooling demand and electricity prices. For each candidate chiller-TES sizing configuration, the trained policy is evaluated. We then restrict attention to configurations that fully satisfy the cooling demand and perform a life-cycle cost minimization over this feasible set to identify the cost-optimal infrastructure design. Using this approach, we determine the optimal chiller and thermal energy storage capacities to be 700 and 1500, respectively.
comment: 11 pages, 3 figures
☆ EmoShift: Lightweight Activation Steering for Enhanced Emotion-Aware Speech Synthesis ICASSP 2026
Achieving precise and controllable emotional expression is crucial for producing natural and context-appropriate speech in text-to-speech (TTS) synthesis. However, many emotion-aware TTS systems, including large language model (LLM)-based designs, rely on scaling fixed emotion embeddings or external guidance, limiting their ability to model emotion-specific latent characteristics. To address this gap, we present EmoShift, a lightweight activation-steering framework incorporating a EmoSteer layer, which learns a steering vector for each target emotion in the output embedding space to capture its latent offset and maintain stable, appropriate expression across utterances and categories. With only 10M trainable parameters,less than 1/30 of full fine-tuning, EmoShift outperforms zero-shot and fully fine-tuned baselines in objective and subjective evaluations, enhancing emotional expressiveness while preserving naturalness and speaker similarity. Further analysis confirms the proposed EmoSteer layer's effectiveness and reveals its potential for controllable emotional intensity in speech synthesis.
comment: Activation Steering; Emotion-Aware TTS; Speech Synthesis; Accepted by ICASSP 2026
☆ Eroding the Truth-Default: A Causal Analysis of Human Susceptibility to Foundation Model Hallucinations and Disinformation in the Wild
As foundation models (FMs) approach human-level fluency, distinguishing synthetic from organic content has become a key challenge for Trustworthy Web Intelligence. This paper presents JudgeGPT and RogueGPT, a dual-axis framework that decouples "authenticity" from "attribution" to investigate the mechanisms of human susceptibility. Analyzing 918 evaluations across five FMs (including GPT-4 and Llama-2), we employ Structural Causal Models (SCMs) as a principal framework for formulating testable causal hypotheses about detection accuracy. Contrary to partisan narratives, we find that political orientation shows a negligible association with detection performance ($r=-0.10$). Instead, "fake news familiarity" emerges as a candidate mediator ($r=0.35$), suggesting that exposure may function as adversarial training for human discriminators. We identify a "fluency trap" where GPT-4 outputs (HumanMachineScore: 0.20) bypass Source Monitoring mechanisms, rendering them indistinguishable from human text. These findings suggest that "pre-bunking" interventions should target cognitive source monitoring rather than demographic segmentation to ensure trustworthy information ecosystems.
comment: Accepted at ACM TheWebConf '26 Companion
☆ Degradation-Aware Frequency Regulation of a Heterogeneous Battery Fleet via Reinforcement Learning
Battery energy storage systems are increasingly deployed as fast-responding resources for grid balancing services such as frequency regulation and for mitigating renewable generation uncertainty. However, repeated charging and discharging induces cycling degradation and reduces battery lifetime. This paper studies the real-time scheduling of a heterogeneous battery fleet that collectively tracks a stochastic balancing signal subject to per-battery ramp-rate and capacity constraints, while minimizing long-term cycling degradation. Cycling degradation is fundamentally path-dependent: it is determined by charge-discharge cycles formed by the state-of-charge (SoC) trajectory and is commonly quantified via rainflow cycle counting. This non-Markovian structure makes it difficult to express degradation as an additive per-time-step cost, complicating classical dynamic programming approaches. We address this challenge by formulating the fleet scheduling problem as a Markov decision process (MDP) with constrained action space and designing a dense proxy reward that provides informative feedback at each time step while remaining aligned with long-term cycle-depth reduction. To scale learning to large state-action spaces induced by fine-grained SoC discretization and asymmetric per-battery constraints, we develop a function-approximation reinforcement learning method using an Extreme Learning Machine (ELM) as a random nonlinear feature map combined with linear temporal-difference learning. We evaluate the proposed approach on a toy Markovian signal model and on a Markovian model trained from real-world regulation signal traces obtained from the University of Delaware, and demonstrate consistent reductions in cycle-depth occurrence and degradation metrics compared to baseline scheduling policies.
comment: 11 pages, 2 figures
☆ Bayesian Interpolating Neural Network (B-INN): a scalable and reliable Bayesian model for large-scale physical systems ICML
Neural networks and machine learning models for uncertainty quantification suffer from limited scalability and poor reliability compared to their deterministic counterparts. In industry-scale active learning settings, where generating a single high-fidelity simulation may require days or weeks of computation and produce data volumes on the order of gigabytes, they quickly become impractical. This paper proposes a scalable and reliable Bayesian surrogate model, termed the Bayesian Interpolating Neural Network (B-INN). The B-INN combines high-order interpolation theory with tensor decomposition and alternating direction algorithm to enable effective dimensionality reduction without compromising predictive accuracy. We theoretically show that the function space of a B-INN is a subset of that of Gaussian processes, while its Bayesian inference exhibits linear complexity, $\mathcal{O}(N)$, with respect to the number of training samples. Numerical experiments demonstrate that B-INNs can be from 20 times to 10,000 times faster with a robust uncertainty estimation compared to Bayesian neural networks and Gaussian processes. These capabilities make B-INN a practical foundation for uncertainty-driven active learning in large-scale industrial simulations, where computational efficiency and robust uncertainty calibration are paramount.
comment: 8 pages, 6 figures, ICML conference full paper submitted
☆ MEnvAgent: Scalable Polyglot Environment Construction for Verifiable Software Engineering
The evolution of Large Language Model (LLM) agents for software engineering (SWE) is constrained by the scarcity of verifiable datasets, a bottleneck stemming from the complexity of constructing executable environments across diverse languages. To address this, we introduce MEnvAgent, a Multi-language framework for automated Environment construction that facilitates scalable generation of verifiable task instances. MEnvAgent employs a multi-agent Planning-Execution-Verification architecture to autonomously resolve construction failures and integrates a novel Environment Reuse Mechanism that reduces computational overhead by incrementally patching historical environments. Evaluations on MEnvBench, a new benchmark comprising 1,000 tasks across 10 languages, demonstrate that MEnvAgent outperforms baselines, improving Fail-to-Pass (F2P) rates by 8.6% while reducing time costs by 43%. Additionally, we demonstrate the utility of MEnvAgent by constructing MEnvData-SWE, the largest open-source polyglot dataset of realistic verifiable Docker environments to date, alongside solution trajectories that enable consistent performance gains on SWE tasks across a wide range of models. Our code, benchmark, and dataset are available at https://github.com/ernie-research/MEnvAgent.
☆ Learning to Build Shapes by Extrusion
We introduce Text Encoded Extrusion (TEE), a text-based representation that expresses mesh construction as sequences of face extrusions rather than polygon lists, and a method for generating 3D meshes from TEE using a large language model (LLM). By learning extrusion sequences that assemble a mesh, similar to the way artists create meshes, our approach naturally supports arbitrary output face counts and produces manifold meshes by design, in contrast to recent transformer-based models. The learnt extrusion sequences can also be applied to existing meshes - enabling editing in addition to generation. To train our model, we decompose a library of quadrilateral meshes with non-self-intersecting face loops into constituent loops, which can be viewed as their building blocks, and finetune an LLM on the steps for reassembling the meshes by performing a sequence of extrusions. We demonstrate that our representation enables reconstruction, novel shape synthesis, and the addition of new features to existing meshes.
comment: A preprint
☆ Just-in-Time Catching Test Generation at Meta
We report on Just-in-Time catching test generation at Meta, designed to prevent bugs in large scale backend systems of hundreds of millions of line of code. Unlike traditional hardening tests, which pass at generation time, catching tests are meant to fail, surfacing bugs before code lands. The primary challenge is to reduce development drag from false positive test failures. Analyzing 22,126 generated tests, we show code-change-aware methods improve candidate catch generation 4x over hardening tests and 20x over coincidentally failing tests. To address false positives, we use rule-based and LLM-based assessors. These assessors reduce human review load by 70%. Inferential statistical analysis showed that human-accepted code changes are assessed to have significantly more false positives, while human-rejected changes have significantly more true positives. We reported 41 candidate catches to engineers; 8 were confirmed to be true positives, 4 of which would have led to serious failures had they remained uncaught. Overall, our results show that Just-in-Time catching is scalable, industrially applicable, and that it prevents serious failures from reaching production.
comment: Submitted to FSE 2026 industry track
☆ Offline Reinforcement Learning of High-Quality Behaviors Under Robust Style Alignment
We study offline reinforcement learning of style-conditioned policies using explicit style supervision via subtrajectory labeling functions. In this setting, aligning style with high task performance is particularly challenging due to distribution shift and inherent conflicts between style and reward. Existing methods, despite introducing numerous definitions of style, often fail to reconcile these objectives effectively. To address these challenges, we propose a unified definition of behavior style and instantiate it into a practical framework. Building on this, we introduce Style-Conditioned Implicit Q-Learning (SCIQL), which leverages offline goal-conditioned RL techniques, such as hindsight relabeling and value learning, and combine it with a new Gated Advantage Weighted Regression mechanism to efficiently optimize task performance while preserving style alignment. Experiments demonstrate that SCIQL achieves superior performance on both objectives compared to prior offline methods. Code, datasets and visuals are available in: https://sciql-iclr-2026.github.io/.
☆ User-Adaptive Meta-Learning for Cold-Start Medication Recommendation with Uncertainty Filtering ICDE
Large-scale Electronic Health Record (EHR) databases have become indispensable in supporting clinical decision-making through data-driven treatment recommendations. However, existing medication recommender methods often struggle with a user (i.e., patient) cold-start problem, where recommendations for new patients are usually unreliable due to the lack of sufficient prescription history for patient profiling. While prior studies have utilized medical knowledge graphs to connect medication concepts through pharmacological or chemical relationships, these methods primarily focus on mitigating the item cold-start issue and fall short in providing personalized recommendations that adapt to individual patient characteristics. Meta-learning has shown promise in handling new users with sparse interactions in recommender systems. However, its application to EHRs remains underexplored due to the unique sequential structure of EHR data. To tackle these challenges, we propose MetaDrug, a multi-level, uncertainty-aware meta-learning framework designed to address the patient cold-start problem in medication recommendation. MetaDrug proposes a novel two-level meta-adaptation mechanism, including self-adaptation, which adapts the model to new patients using their own medical events as support sets to capture temporal dependencies; and peer-adaptation, which adapts the model using similar visits from peer patients to enrich new patient representations. Meanwhile, to further improve meta-adaptation outcomes, we introduce an uncertainty quantification module that ranks the support visits and filters out the unrelated information for adaptation consistency. We evaluate our approach on the MIMIC-III and Acute Kidney Injury (AKI) datasets. Experimental results on both datasets demonstrate that MetaDrug consistently outperforms state-of-the-art medication recommendation methods on cold-start patients.
comment: IEEE International Conference on Data Engineering (ICDE) 2026 accepted paper
☆ Hide and Seek in Embedding Space: Geometry-based Steganography and Detection in Large Language Models
Fine-tuned LLMs can covertly encode prompt secrets into outputs via steganographic channels. Prior work demonstrated this threat but relied on trivially recoverable encodings. We formalize payload recoverability via classifier accuracy and show previous schemes achieve 100\% recoverability. In response, we introduce low-recoverability steganography, replacing arbitrary mappings with embedding-space-derived ones. For Llama-8B (LoRA) and Ministral-8B (LoRA) trained on TrojanStego prompts, exact secret recovery rises from 17$\rightarrow$30\% (+78\%) and 24$\rightarrow$43\% (+80\%) respectively, while on Llama-70B (LoRA) trained on Wiki prompts, it climbs from 9$\rightarrow$19\% (+123\%), all while reducing payload recoverability. We then discuss detection. We argue that detecting fine-tuning-based steganographic attacks requires approaches beyond traditional steganalysis. Standard approaches measure distributional shift, which is an expected side-effect of fine-tuning. Instead, we propose a mechanistic interpretability approach: linear probes trained on later-layer activations detect the secret with up to 33\% higher accuracy in fine-tuned models compared to base models, even for low-recoverability schemes. This suggests that malicious fine-tuning leaves actionable internal signatures amenable to interpretability-based defenses.
☆ Aligning the Unseen in Attributed Graphs: Interplay between Graph Geometry and Node Attributes Manifold
The standard approach to representation learning on attributed graphs -- i.e., simultaneously reconstructing node attributes and graph structure -- is geometrically flawed, as it merges two potentially incompatible metric spaces. This forces a destructive alignment that erodes information about the graph's underlying generative process. To recover this lost signal, we introduce a custom variational autoencoder that separates manifold learning from structural alignment. By quantifying the metric distortion needed to map the attribute manifold onto the graph's Heat Kernel, we transform geometric conflict into an interpretable structural descriptor. Experiments show our method uncovers connectivity patterns and anomalies undetectable by conventional approaches, proving both their theoretical inadequacy and practical limitations.
☆ SOMBRERO: Measuring and Steering Boundary Placement in End-to-End Hierarchical Sequence Models
Hierarchical sequence models replace fixed tokenization with learned segmentations that compress long byte sequences for efficient autoregressive modeling. While recent end-to-end methods can learn meaningful boundaries from the language-modeling objective alone, it remains difficult to quantitatively assess and systematically steer where compute is spent. We introduce a router-agnostic metric of boundary quality, boundary enrichment B, which measures how strongly chunk starts concentrate on positions with high next-byte surprisal. Guided by this metric, we propose Sombrero, which steers boundary placement toward predictive difficulty via a confidence-alignment boundary loss and stabilizes boundary learning by applying confidence-weighted smoothing at the input level rather than on realized chunks. On 1B scale, across UTF-8 corpora covering English and German text as well as code and mathematical content, Sombrero improves the accuracy-efficiency trade-off and yields boundaries that more consistently align compute with hard-to-predict positions.
☆ CVeDRL: An Efficient Code Verifier via Difficulty-aware Reinforcement Learning
Code verifiers play a critical role in post-verification for LLM-based code generation, yet existing supervised fine-tuning methods suffer from data scarcity, high failure rates, and poor inference efficiency. While reinforcement learning (RL) offers a promising alternative by optimizing models through execution-driven rewards without labeled supervision, our preliminary results show that naive RL with only functionality rewards fails to generate effective unit tests for difficult branches and samples. We first theoretically analyze showing that branch coverage, sample difficulty, syntactic and functional correctness can be jointly modeled as RL rewards, where optimizing these signals can improve the reliability of unit-test-based verification. Guided by this analysis, we design syntax- and functionality-aware rewards and further propose branch- and sample-difficulty--aware RL using exponential reward shaping and static analysis metrics. With this formulation, CVeDRL achieves state-of-the-art performance with only 0.6B parameters, yielding up to 28.97% higher pass rate and 15.08% higher branch coverage than GPT-3.5, while delivering over $20\times$ faster inference than competitive baselines. Code is available at https://github.com/LIGHTCHASER1/CVeDRL.git
comment: 17 pages, 3 figures
☆ Conditional Performance Guarantee for Large Reasoning Models
Large reasoning models have shown strong performance through extended chain-of-thought reasoning, yet their computational cost remains significant. Probably approximately correct (PAC) reasoning provides statistical guarantees for efficient reasoning by adaptively switching between thinking and non-thinking models, but the guarantee holds only in the marginal case and does not provide exact conditional coverage. We propose G-PAC reasoning, a practical framework that provides PAC-style guarantees at the group level by partitioning the input space. We develop two instantiations: Group PAC (G-PAC) reasoning for known group structures and Clustered PAC (C-PAC) reasoning for unknown groupings. We prove that both G-PAC and C-PAC achieve group-conditional risk control, and that grouping can strictly improve efficiency over marginal PAC reasoning in heterogeneous settings. Our experiments on diverse reasoning benchmarks demonstrate that G-PAC and C-PAC successfully achieve group-conditional risk control while maintaining substantial computational savings.
☆ Toward IIT-Inspired Consciousness in LLMs: A Reward-Based Learning Framework
The pursuit of Artificial General Intelligence (AGI) is a central goal in language model development, in which consciousness-like processing could serve as a key facilitator. While current language models are not conscious, they exhibit behaviors analogous to certain aspects of consciousness. This paper investigates the implementation of a leading theory of consciousness, Integrated Information Theory (IIT), within language models via a reward-based learning paradigm. IIT provides a formal, axiom-based mathematical framework for quantifying consciousness. Drawing inspiration from its core principles, we formulate a novel reward function that quantifies a text's causality, coherence and integration, characteristics associated with conscious processing. Empirically, it is found that optimizing for this IIT-inspired reward leads to more concise text generation. On out of domain tasks, careful tuning achieves up to a 31% reduction in output length while preserving accuracy levels comparable to the base model. In addition to primary task performance, the broader effects of this training methodology on the model's confidence calibration and test-time computational scaling is analyzed. The proposed framework offers significant practical advantages: it is conceptually simple, computationally efficient, requires no external data or auxiliary models, and leverages a general, capability-driven signal rather than task-specific heuristics. Code available at https://github.com/MH-Sameti/LLM_PostTraining.git
comment: 13 pages, 8 figures, 4 tables
☆ Learning with Challenges: Adaptive Difficulty-Aware Data Generation for Mobile GUI Agent Training
Large-scale, high-quality interaction trajectories are essential for advancing mobile Graphical User Interface (GUI) agents. While existing methods typically rely on labor-intensive human demonstrations or automated model exploration to generate GUI trajectories, they lack fine-grained control over task difficulty. This fundamentally restricts learning effectiveness due to the mismatch between the training difficulty and the agent's capabilities. Inspired by how humans acquire skills through progressively challenging tasks, we propose MobileGen, a novel data generation framework that adaptively aligns training difficulty with the GUI agent's capability frontier. Specifically, MobileGen explicitly decouples task difficulty into structural (e.g., trajectory length) and semantic (e.g., task goal) dimensions. It then iteratively evaluates the agent on a curated prior dataset to construct a systematic profile of its capability frontier across these two dimensions. With this profile, the probability distribution of task difficulty is adaptively computed, from which the target difficulty for the next round of training can be sampled. Guided by the sampled difficulty, a multi-agent controllable generator is finally used to synthesize high-quality interaction trajectories along with corresponding task instructions. Extensive experiments show that MobileGen consistently outperforms existing data generation methods by improving the average performance of GUI agents by 1.57 times across multiple challenging benchmarks. This highlights the importance of capability-aligned data generation for effective mobile GUI agent training.
♻ ☆ CAOS: Conformal Aggregation of One-Shot Predictors
One-shot prediction enables rapid adaptation of pretrained foundation models to new tasks using only one labeled example, but lacks principled uncertainty quantification. While conformal prediction provides finite-sample coverage guarantees, standard split conformal methods are inefficient in the one-shot setting due to data splitting and reliance on a single predictor. We propose Conformal Aggregation of One-Shot Predictors (CAOS), a conformal framework that adaptively aggregates multiple one-shot predictors and uses a leave-one-out calibration scheme to fully exploit scarce labeled data. Despite violating classical exchangeability assumptions, we prove that CAOS achieves valid marginal coverage using a monotonicity-based argument. Experiments on one-shot facial landmarking and RAFT text classification tasks show that CAOS produces substantially smaller prediction sets than split conformal baselines while maintaining reliable coverage.
♻ ☆ Multi-agent Coordination via Flow Matching ICLR 2026
This work presents MAC-Flow, a simple yet expressive framework for multi-agent coordination. We argue that requirements of effective coordination are twofold: (i) a rich representation of the diverse joint behaviors present in offline data and (ii) the ability to act efficiently in real time. However, prior approaches often sacrifice one for the other, i.e., denoising diffusion-based solutions capture complex coordination but are computationally slow, while Gaussian policy-based solutions are fast but brittle in handling multi-agent interaction. MAC-Flow addresses this trade-off by first learning a flow-based representation of joint behaviors, and then distilling it into decentralized one-step policies that preserve coordination while enabling fast execution. Across four different benchmarks, including $12$ environments and $34$ datasets, MAC-Flow alleviates the trade-off between performance and computational cost, specifically achieving about $\boldsymbol{\times14.5}$ faster inference compared to diffusion-based MARL methods, while maintaining good performance. At the same time, its inference speed is similar to that of prior Gaussian policy-based offline multi-agent reinforcement learning (MARL) methods.
comment: ICLR 2026
♻ ☆ Expert Evaluation and the Limits of Human Feedback in Mental Health AI Safety Testing
Learning from human feedback~(LHF) assumes that expert judgments, appropriately aggregated, yield valid ground truth for training and evaluating AI systems. We tested this assumption in mental health, where high safety stakes make expert consensus essential. Three certified psychiatrists independently evaluated LLM-generated responses using a calibrated rubric. Despite similar training and shared instructions, inter-rater reliability was consistently poor ($ICC$ $0.087$--$0.295$), falling below thresholds considered acceptable for consequential assessment. Disagreement was highest on the most safety-critical items. Suicide and self-harm responses produced greater divergence than any other category, and was systematic rather than random. One factor yielded negative reliability (Krippendorff's $α= -0.203$), indicating structured disagreement worse than chance. Qualitative interviews revealed that disagreement reflects coherent but incompatible individual clinical frameworks, safety-first, engagement-centered, and culturally-informed orientations, rather than measurement error. By demonstrating that experts rely on holistic risk heuristics rather than granular factor discrimination, these findings suggest that aggregated labels function as arithmetic compromises that effectively erase grounded professional philosophies. Our results characterize expert disagreement in safety-critical AI as a sociotechnical phenomenon where professional experience introduces sophisticated layers of principled divergence. We discuss implications for reward modeling, safety classification, and evaluation benchmarks, recommending that practitioners shift from consensus-based aggregation to alignment methods that preserve and learn from expert disagreement.
comment: 17 pages, 7 pages of appendix, 21 tables
♻ ☆ Reinforcement Learning for Ballbot Navigation in Uneven Terrain
Ballbot (i.e. Ball balancing robot) navigation usually relies on methods rooted in control theory (CT), and works that apply Reinforcement learning (RL) to the problem remain rare while generally being limited to specific subtasks (e.g. balance recovery). Unlike CT based methods, RL does not require (simplifying) assumptions about environment dynamics (e.g. the absence of slippage between the ball and the floor). In addition to this increased accuracy in modeling, RL agents can easily be conditioned on additional observations such as depth-maps without the need for explicit formulations from first principles, leading to increased adaptivity. Despite those advantages, there has been little to no investigation into the capabilities, data-efficiency and limitations of RL based methods for ballbot control and navigation. Furthermore, there is a notable absence of an open-source, RL-friendly simulator for this task. In this paper, we present an open-source ballbot simulation based on MuJoCo, and show that with appropriate conditioning on exteroceptive observations as well as reward shaping, policies learned by classical model-free RL methods are capable of effectively navigating through randomly generated uneven terrain, using a reasonable amount of data (four to five hours on a system operating at 500hz). Our code is made publicly available.
comment: 6 pages, 9 figures, 2 tables. Version two corrects figure 4 and adds some experiments
♻ ☆ On the Separability of Information in Diffusion Models
Diffusion models transform noise into data by injecting information that was captured in their neural network during the training phase. In this paper, we ask: \textit{what} is this information? We find that, in pixel-space diffusion models, (1) a large fraction of the total information in the neural network is committed to reconstructing small-scale perceptual details of the image, and (2) the correlations between images and their class labels are informed by the semantic content of the images, and are largely agnostic to the low-level details. We argue that these properties are intrinsically tied to the manifold structure of the data itself. Finally, we show that these facts explain the efficacy of classifier-free guidance: the guidance vector amplifies the mutual information between images and conditioning signals early in the generative process, influencing semantic structure, but tapers out as perceptual details are filled in.
comment: 27 pages + references, 19 figures. v4: Re-organized the paper to focus on separability of information
♻ ☆ SuperCoder: Assembly Program Superoptimization with Large Language Models
Superoptimization is the task of transforming a program into a faster one while preserving its input-output behavior. In this work, we investigate whether large language models (LLMs) can serve as superoptimizers, generating assembly programs that outperform code already optimized by industry-standard compilers. We construct the first large-scale benchmark for this problem, consisting of 8,072 assembly programs averaging 130 lines, in contrast to prior datasets restricted to 2-15 straight-line, loop-free programs. We evaluate 23 LLMs on this benchmark and find that the strongest baseline, Claude-opus-4, achieves a 51.5% test-passing rate and a 1.43x average speedup over gcc -O3. To further enhance performance, we fine-tune models with reinforcement learning, optimizing a reward function that integrates correctness and performance speedup. Starting from Qwen2.5-Coder-7B-Instruct (61.4% correctness, 1.10x speedup), the fine-tuned model SuperCoder attains 95.0% correctness and 1.46x average speedup, with additional improvement enabled by Best-of-N sampling and iterative refinement. Our results demonstrate, for the first time, that LLMs can be applied as superoptimizers for assembly programs, establishing a foundation for future research in program performance optimization beyond compiler heuristics.
♻ ☆ Geometric-disentangelment Unlearning
Large language models (LLMs) can internalize private or harmful content, motivating unlearning that removes a forget set while preserving retaining knowledge. However, forgetting updates often cause collateral degradation on retaining knowledge, creating a persistent trade-off. Existing LLM unlearning methods are often heuristic, and other theoretical approaches rely on offline feature constructions that do not capture update-time forget-retain interaction in LLMs. To address this limitation, we aim to develop an LLM unlearning method that reduces the forget-retain trade-off with theoretical guarantees. We take a first-principles view by formalizing "no side effects" as local retain invariance under small parameter updates, and prove an equivalence under optimizer-induced geometry: the retain loss is locally invariant if and only if the update direction is orthogonal to the subspace spanned by retain gradients. Based on the insight, we propose Geometric-disentanglement Unlearning (GU), a lightweight and theoretically grounded projection that can be plug-and-play to existing gradient-based unlearning methods to mitigate forget-retain side effects. Experiments on TOFU, MUSE, and WMDP-cyber show that GU strengthens forgetting while reducing retain drift. When added to SimNPO, it achieves up to 62\% improved forgetting Extraction Strength (ES) and 31\% higher retain ES. We open-sourced our code in https://github.com/Lemutisme/Geometric-Unlearning.
comment: 26 Pages
♻ ☆ LightRetriever: A LLM-based Text Retrieval Architecture with Extremely Faster Query Inference ICLR 2026
Large Language Models (LLMs)-based text retrieval retrieves documents relevant to search queries based on vector similarities. Documents are pre-encoded offline, while queries arrive in real-time, necessitating an efficient online query encoder. Although LLMs significantly enhance retrieval capabilities, serving deeply parameterized LLMs slows down query inference throughput and increases demands for online deployment resources. In this paper, we propose LightRetriever, a novel LLM-based retriever with extremely lightweight query encoders. Our method retains a full-sized LLM for document encoding, but reduces the workload of query encoding to no more than an embedding lookup. Compared to serving a full LLM on an A800 GPU, our method achieves over 1000x speedup in query encoding and over 10x increase in end-to-end retrieval throughput. Extensive experiments on large-scale retrieval benchmarks show that LightRetriever generalizes well across diverse tasks, maintaining an average of 95% retrieval performance.
comment: Accepted by ICLR 2026
♻ ☆ Open Shouldn't Mean Exempt: Open-Source Exceptionalism and Generative AI
Open-source status should not shield generative artificial intelligence systems from ethical or legal accountability. Through a rigorous analysis of regulatory, legal, and policy frameworks, this Article contends that open-source GenAI must be held to the same standards as proprietary systems. While recognizing the value of openness for scientific advancement, I propose a narrowly tailored safe harbor for bona fide, non-commercial research, conditioned on strict compliance with defined criteria. This Article critically examines and refutes the core claims of open-source exceptionalism--namely, that open-source GenAI disrupts entrenched oligopolies, democratizes access, and uniquely drives innovation. The evidence shows that open-source GenAI can facilitate unlawful conduct, exacerbate environmental harms, and reinforce existing power structures. Rhetoric around "democratization" and "innovation" often serves as an unsubstantiated basis for regulatory exemptions not afforded to proprietary systems. This Article ultimately advocates for a framework that promotes responsible AI development, balancing openness with robust legal and ethical safeguards and a clear-eyed assessment of societal impacts.
♻ ☆ In the Mood to Exclude: Revitalizing Trespass to Chattels in the Era of GenAI Scraping
GenAI companies are strip-mining the web. Their scraping bots harvest content at an unprecedented scale, circumventing technical barriers to fuel billion-dollar models while creators receive nothing. Courts have enabled this exploitation by misunderstanding what property rights protect online. The prevailing view treats websites as mere repositories of intellectual property and dismisses trespass claims absent server damage. That framework grants AI companies presumptive access while ignoring the economic devastation they inflict. But the content is severable from the website itself. This paper reframes the debate: websites are personal property as integrated digital assets subject to the same exclusionary rights as physical chattels. When scrapers bypass access controls and divert traffic that sustains a website's value, they commit actionable trespass. The law need not create new protections; it need only apply existing property principles to digital space. Courts and litigants have struggled to police unwanted, large-scale scraping because copyright preemption often narrows available claims, leaving copyright and its fair use defense as the primary battleground. Trespass to chattels offers a superior path, grounded in the fundamental right to exclude unwanted intrusions. Reviving this tort would protect not only content creators but also the digital ecosystem. Such protection would discourage exploitative scraping, preserve incentives for content creation, help protect privacy and personal data, and safeguard autonomy and expression. Reaffirming website owners' right to exclude is essential to maintaining a fair and sustainable online environment.
♻ ☆ LLM-42: Enabling Determinism in LLM Inference with Verified Speculation
In LLM inference, the same prompt may yield different outputs across different runs. At the system level, this non-determinism arises from floating-point non-associativity combined with dynamic batching and GPU kernels whose reduction orders vary with batch size. A straightforward way to eliminate non-determinism is to disable dynamic batching during inference, but doing so severely degrades throughput. Another approach is to make kernels batch-invariant; however, this tightly couples determinism to kernel design, requiring new implementations. This coupling also imposes fixed runtime overheads, regardless of how much of the workload actually requires determinism. Inspired by ideas from speculative decoding, we present LLM-42, a scheduling-based approach to enable determinism in LLM inference. Our key observation is that if a sequence is in a consistent state, the next emitted token is likely to be consistent even with dynamic batching. Moreover, most GPU kernels use shape-consistent reductions. Leveraging these insights, LLM-42 decodes tokens using a non-deterministic fast path and enforces determinism via a lightweight verify-rollback loop. The verifier replays candidate tokens under a fixed-shape reduction schedule, commits those that are guaranteed to be consistent across runs, and rolls back those violating determinism. LLM-42 mostly re-uses existing kernels unchanged and incurs overhead only in proportion to the traffic that requires determinism.
comment: https://github.com/microsoft/llm-42
♻ ☆ Generative quantum machine learning via denoising diffusion probabilistic models
Deep generative models are key-enabling technology to computer vision, text generation, and large language models. Denoising diffusion probabilistic models (DDPMs) have recently gained much attention due to their ability to generate diverse and high-quality samples in many computer vision tasks, as well as to incorporate flexible model architectures and a relatively simple training scheme. Quantum generative models, empowered by entanglement and superposition, have brought new insight to learning classical and quantum data. Inspired by the classical counterpart, we propose the quantum denoising diffusion probabilistic model (QuDDPM) to enable efficiently trainable generative learning of quantum data. QuDDPM adopts sufficient layers of circuits to guarantee expressivity, while it introduces multiple intermediate training tasks as interpolation between the target distribution and noise to avoid barren plateau and guarantee efficient training. We provide bounds on the learning error and demonstrate QuDDPM's capability in learning correlated quantum noise model, quantum many-body phases, and topological structure of quantum data. The results provide a paradigm for versatile and efficient quantum generative learning.
comment: 5+10 pages, 16 figures. PRL accepted version. Code available at: https://github.com/francis-hsu/quantgenmdl
♻ ☆ Quantum Super-resolution by Adaptive Non-local Observables ICASSP 2026
Super-resolution (SR) seeks to reconstruct high-resolution (HR) data from low-resolution (LR) observations. Classical deep learning methods have advanced SR substantially, but require increasingly deeper networks, large datasets, and heavy computation to capture fine-grained correlations. In this work, we present the \emph{first study} to investigate quantum circuits for SR. We propose a framework based on Variational Quantum Circuits (VQCs) with \emph{Adaptive Non-Local Observable} (ANO) measurements. Unlike conventional VQCs with fixed Pauli readouts, ANO introduces trainable multi-qubit Hermitian observables, allowing the measurement process to adapt during training. This design leverages the high-dimensional Hilbert space of quantum systems and the representational structure provided by entanglement and superposition. Experiments demonstrate that ANO-VQCs achieve up to five-fold higher resolution with a relatively small model size, suggesting a promising new direction at the intersection of quantum machine learning and super-resolution.
comment: Accepted at ICASSP 2026
♻ ☆ Breaking the Exploration Bottleneck: Rubric-Scaffolded Reinforcement Learning for General LLM Reasoning
Recent advances in Large Language Models (LLMs) have underscored the potential of Reinforcement Learning (RL) to facilitate the emergence of reasoning capabilities. Despite the encouraging results, a fundamental dilemma persists as RL improvement relies on learning from high-quality samples, yet the exploration for such samples remains bounded by the inherent limitations of LLMs. This, in effect, creates an undesirable cycle in which what cannot be explored cannot be learned. In this work, we propose Rubric-Scaffolded Reinforcement Learning (RuscaRL), a novel instructional scaffolding framework designed to break the exploration bottleneck for general LLM reasoning. Specifically, RuscaRL introduces checklist-style rubrics as (1) explicit scaffolding for exploration during rollout generation, where different rubrics are provided as external guidance within task instructions to steer diverse high-quality responses. This guidance is gradually decayed over time, encouraging the model to internalize the underlying reasoning patterns; (2) verifiable rewards for exploitation during model training, where we can obtain robust LLM-as-a-Judge scores using rubrics as references, enabling effective RL on general reasoning tasks. Extensive experiments demonstrate the superiority of the proposed RuscaRL across various benchmarks, effectively expanding reasoning boundaries under the Best-of-N evaluation. Our code is available at https://github.com/IANNXANG/RuscaRL.
♻ ☆ From Next-Token to Next-Block: A Principled Adaptation Path for Diffusion LLMs
Diffusion Language Models (DLMs) enable fast generation, yet training large DLMs from scratch is costly. As a practical shortcut, adapting off-the-shelf Auto-Regressive (AR) model weights into a DLM could quickly equip the DLM with strong long-context generation capabilies. Prior "adaptation" attempts either modify logits or randomly grow attention masks to Full-Sequence diffusion, or simply transplant AR weights into a Block-Diffusion recipe, leaving two key questions unaddressed: where is the final destination of adaptation, and how to adapt better? For manifold benefits, we reframe the whole AR-to-DLM adaptation under the Block-Diffusion paradigm, transitioning from block size 1 to the final Block-Diffusion state. Concretely, the principled pathway of adaptation is designed as follows: we keep a context-causal path where causal attention is kept in the prefix, an efficient parallel adaptation procedure where an AR guidance is maintained, and gradual increment of the generation block size for a smoother transition. Built on these components, the adaptation is proved competitive on various models at different scales. With better adaptation, we propose NBDiff-7B that could inherit the long-context modeling and reasoning capabilities, and achieve state-of-the-art performance among the 7B-class DLMs. Codes: https://github.com/YuchuanTian/NBDiff.
comment: 14 pages, 5 figures
♻ ☆ Deep Ensembles for Epistemic Uncertainty: A Frequentist Perspective
Decomposing prediction uncertainty into aleatoric (irreducible) and epistemic (reducible) components is critical for the reliable deployment of machine learning systems. While the mutual information between the response variable and model parameters is a principled measure for epistemic uncertainty, it requires access to the parameter posterior, which is computationally challenging to approximate. Consequently, practitioners often rely on probabilistic predictions from deep ensembles to quantify uncertainty, which have demonstrated strong empirical performance. However, a theoretical understanding of their success from a frequentist perspective remains limited. We address this gap by first considering a bootstrap-based estimator for epistemic uncertainty, which we prove is asymptotically correct. Next, we connect deep ensembles to the bootstrap estimator by decomposing it into data variability and training stochasticity; specifically, we show that deep ensembles capture the training stochasticity component. Through empirical studies, we show that this stochasticity component constitutes the majority of epistemic uncertainty, thereby explaining the effectiveness of deep ensembles.
♻ ☆ Understanding and Bridging the Planner-Coder Gap: A Systematic Study on the Robustness of Multi-Agent Systems for Code Generation
Multi-agent systems (MASs) have emerged as a promising paradigm for automated code generation, demonstrating impressive performance on established benchmarks. Despite their prosperous development, the fundamental mechanisms underlying their robustness remain poorly understood, raising critical concerns for real-world deployment. This paper conducts a systematic empirical study to uncover the internal robustness flaws of MASs using a mutation-based methodology. By designing a testing pipeline incorporating semantic-preserving mutation operators and a novel fitness function, we assess mainstream MASs across multiple datasets and LLMs. Our findings reveal substantial robustness flaws: semantically equivalent inputs cause drastic performance drops, with MASs failing to solve 7.9\%--83.3\% of problems they initially resolved successfully. Through comprehensive failure analysis, we discover a fundamental cause underlying these robustness issues: the \textit{planner-coder gap}, which accounts for 75.3\% of failures. This gap arises from information loss in the multi-stage transformation process where planning agents decompose requirements into underspecified plans, and coding agents subsequently misinterpret intricate logic during code generation. Based on this formulated information transformation process, we propose a \textit{repairing method} that mitigates information loss through multi-prompt generation and introduces a monitor agent to bridge the planner-coder gap. Evaluation shows that our repairing method effectively enhances the robustness of MASs by solving 40.0\%--88.9\% of identified failures. Our work uncovers critical robustness flaws in MASs and provides effective mitigation strategies, contributing essential insights for developing more reliable MASs for code generation.
comment: 18pages, 5 figures, 6 tables
♻ ☆ Open-Vocabulary Functional 3D Human-Scene Interaction Generation
Generating 3D humans that functionally interact with 3D scenes remains an open problem with applications in embodied AI, robotics, and interactive content creation. The key challenge involves reasoning about both the semantics of functional elements in 3D scenes and the 3D human poses required to achieve functionality-aware interaction. Unfortunately, existing methods typically lack explicit reasoning over object functionality and the corresponding human-scene contact, resulting in implausible or functionally incorrect interactions. In this work, we propose FunHSI, a training-free, functionality-driven framework that enables functionally correct human-scene interactions from open-vocabulary task prompts. Given a task prompt, FunHSI performs functionality-aware contact reasoning to identify functional scene elements, reconstruct their 3D geometry, and model high-level interactions via a contact graph. We then leverage vision-language models to synthesize a human performing the task in the image and estimate proposed 3D body and hand poses. Finally, the proposed 3D body configuration is refined via stage-wise optimization to ensure physical plausibility and functional correctness. In contrast to existing methods, FunHSI not only synthesizes more plausible general 3D interactions, such as "sitting on a sofa'', while supporting fine-grained functional human-scene interactions, e.g., "increasing the room temperature''. Extensive experiments demonstrate that FunHSI consistently generates functionally correct and physically plausible human-scene interactions across diverse indoor and outdoor scenes.
comment: 18 pages
♻ ☆ RAFFLES: Reasoning-based Attribution of Faults for LLM Systems EACL 2026
The advent of complex, interconnected long-horizon LLM systems has made it incredibly tricky to identify where and when these systems break down. Evaluation capabilities that currently exist today are limited in that they often focus on simple metrics, end-to-end outcomes, and are dependent on the perspectives of humans. In order to match the increasing complexity of these many component systems, evaluation frameworks must also be able to reason, probe, iterate, and understand the nuanced logic passing through these systems. In this paper, we present RAFFLES, an offline evaluation architecture that incorporates iterative reasoning. Specifically, RAFFLES operates as an iterative, multi-component pipeline, using a central Judge to systematically identify faults and a set of specialized Evaluators to assess the quality of the candidate faults as well as rationales of the Judge. We evaluated RAFFLES with several benchmarks - the Who&When dataset to identify step-level faults in multi-agent systems and the ReasonEval datasets to diagnose step-level mathematical reasoning errors. RAFFLES outperforms strong baselines, achieving an accuracy of over 20% and 50% on the Who&When Hand-Crafted and Algorithmically-Generated datasets, and over 80% on the ReasonEval datasets. These results demonstrate a key step towards introducing automated fault detection for autonomous systems over labor-intensive manual review.
comment: Accepted at EACL 2026 Main Conference
♻ ☆ BNMusic: Blending Environmental Noises into Personalized Music NeurIPS 2025
While being disturbed by environmental noises, the acoustic masking technique is a conventional way to reduce the annoyance in audio engineering that seeks to cover up the noises with other dominant yet less intrusive sounds. However, misalignment between the dominant sound and the noise-such as mismatched downbeats-often requires an excessive volume increase to achieve effective masking. Motivated by recent advances in cross-modal generation, in this work, we introduce an alternative method to acoustic masking, aiming to reduce the noticeability of environmental noises by blending them into personalized music generated based on user-provided text prompts. Following the paradigm of music generation using mel-spectrogram representations, we propose a Blending Noises into Personalized Music (BNMusic) framework with two key stages. The first stage synthesizes a complete piece of music in a mel-spectrogram representation that encapsulates the musical essence of the noise. In the second stage, we adaptively amplify the generated music segment to further reduce noise perception and enhance the blending effectiveness, while preserving auditory quality. Our experiments with comprehensive evaluations on MusicBench, EPIC-SOUNDS, and ESC-50 demonstrate the effectiveness of our framework, highlighting the ability to blend environmental noise with rhythmically aligned, adaptively amplified, and enjoyable music segments, minimizing the noticeability of the noise, thereby improving overall acoustic experiences. Project page: https://d-fas.github.io/BNMusic_page/.
comment: This paper has been accepted by NeurIPS 2025
♻ ☆ ARB-LLM: Alternating Refined Binarizations for Large Language Models
Large Language Models (LLMs) have greatly pushed forward advancements in natural language processing, yet their high memory and computational demands hinder practical deployment. Binarization, as an effective compression technique, can shrink model weights to just 1 bit, significantly reducing the high demands on computation and memory. However, current binarization methods struggle to narrow the distribution gap between binarized and full-precision weights, while also overlooking the column deviation in LLM weight distribution. To tackle these issues, we propose ARB-LLM, a novel 1-bit post-training quantization (PTQ) technique tailored for LLMs. To narrow the distribution shift between binarized and full-precision weights, we first design an alternating refined binarization (ARB) algorithm to progressively update the binarization parameters, which significantly reduces the quantization error. Moreover, considering the pivot role of calibration data and the column deviation in LLM weights, we further extend ARB to ARB-X and ARB-RC. In addition, we refine the weight partition strategy with column-group bitmap (CGB), which further enhance performance. Equipping ARB-X and ARB-RC with CGB, we obtain ARB-LLM$_\text{X}$ and ARB-LLM$_\text{RC}$ respectively, which significantly outperform state-of-the-art (SOTA) binarization methods for LLMs. As a binary PTQ method, our ARB-LLM$_\text{RC}$ is the first to surpass FP16 models of the same size. The code and models will be available at https://github.com/ZHITENGLI/ARB-LLM.
comment: The code and models will be available at https://github.com/ZHITENGLI/ARB-LLM
♻ ☆ Tokenization Multiplicity Leads to Arbitrary Price Variation in LLM-as-a-service
Providers of LLM-as-a-service have predominantly adopted a simple pricing model: users pay a fixed price per token. Consequently, one may think that the price two different users would pay for the same output string under the same input prompt is the same. In our work, we show that, surprisingly, this is not (always) true. We find empirical evidence that, particularly for non-english outputs, both proprietary and open-weights LLMs often generate the same (output) string with multiple different tokenizations, even under the same input prompt, and this in turn leads to arbitrary price variation. To address the problem of tokenization multiplicity, we introduce canonical generation, a type of constrained generation that restricts LLMs to only generate canonical tokenizations -- the unique tokenization in which each string is tokenized during the training process of an LLM. Further, we introduce an efficient sampling algorithm for canonical generation based on the Gumbel-Max trick. Experiments on a variety of natural language tasks demonstrate that our sampling algorithm for canonical generation is comparable to standard sampling in terms of performance and runtime, and it solves the problem of tokenization multiplicity.
♻ ☆ ATOD: An Evaluation Framework and Benchmark for Agentic Task-Oriented Dialogue Systems
Recent advances in task-oriented dialogue (TOD) systems, driven by large language models (LLMs) with extensive API and tool integration, have enabled conversational agents to coordinate interleaved goals, maintain long-horizon context, and act proactively through asynchronous execution. These capabilities extend beyond traditional TOD systems, yet existing benchmarks lack systematic support for evaluating such agentic behaviors. To address this gap, we introduce ATOD, a benchmark and synthetic dialogue generation pipeline that produces richly annotated conversations requiring long-term reasoning. ATOD captures key characteristics of advanced TOD, including multi-goal coordination, dependency management, memory, adaptability, and proactivity. Building on ATOD, we propose ATOD-Eval, a holistic evaluation framework that translates these dimensions into fine-grained metrics and supports reproducible offline and online evaluation. We further present a strong agentic memory-based evaluator for benchmarking on ATOD. Experiments show that ATOD-Eval enables comprehensive assessment across task completion, agentic capability, and response quality, and that the proposed evaluator offers a better accuracy-efficiency tradeoff compared to existing memory- and LLM-based approaches under this evaluation setting.
♻ ☆ XAI-CF -- Examining the Role of Explainable Artificial Intelligence in Cyber Forensics
With the rise of complex cyber devices Cyber Forensics (CF) is facing many new challenges. For example, there are dozens of systems running on smartphones, each with more than millions of downloadable applications. Sifting through this large amount of data and making sense requires new techniques, such as from the field of Artificial Intelligence (AI). To apply these techniques successfully in CF, we need to justify and explain the results to the stakeholders of CF, such as forensic analysts and members of the court, for them to make an informed decision. If we want to apply AI successfully in CF, there is a need to develop trust in AI systems. Some other factors in accepting the use of AI in CF are to make AI authentic, interpretable, understandable, and interactive. This way, AI systems will be more acceptable to the public and ensure alignment with legal standards. An explainable AI (XAI) system can play this role in CF, and we call such a system XAI-CF. XAI-CF is indispensable and is still in its infancy. In this paper, we explore and make a case for the significance and advantages of XAI-CF. We strongly emphasize the need to build a successful and practical XAI-CF system and discuss some of the main requirements and prerequisites of such a system. We present a formal definition of the terms CF and XAI-CF and a comprehensive literature review of previous works that apply and utilize XAI to build and increase trust in CF. We discuss some challenges facing XAI-CF. We also provide some concrete solutions to these challenges. We identify key insights and future research directions for building XAI applications for CF. This paper is an effort to explore and familiarize the readers with the role of XAI applications in CF, and we believe that our work provides a promising basis for future researchers interested in XAI-CF.
♻ ☆ Ravan: Multi-Head Low-Rank Adaptation for Federated Fine-Tuning
Large language models (LLMs) have not yet effectively leveraged the vast amounts of edge-device data, and federated learning (FL) offers a promising paradigm to collaboratively fine-tune LLMs without transferring private edge data to the cloud. To operate within the computation and communication constraints of edge devices, recent literature on federated fine-tuning of LLMs proposes the use of low-rank adaptation (LoRA) and similar parameter-efficient methods. However, LoRA-based methods suffer from accuracy degradation in FL settings, primarily because of data and computational heterogeneity across clients. We propose Ravan, an adaptive multi-head LoRA method that balances parameter efficiency and model expressivity by reparameterizing the weight updates as the sum of multiple LoRA heads $s_i\textbf{B}_i\textbf{H}_i\textbf{A}_i$ in which only the core matrices $\textbf{H}_i$ and their lightweight scaling factors $s_i$ are trained. These trainable scaling factors let the optimization focus on the most useful heads, recovering a higher-rank approximation of the full update without increasing the number of communicated parameters since clients upload $s_i\textbf{H}_i$ directly. Experiments on vision and language benchmarks show that Ravan improves test accuracy by $2-8\%$ over prior parameter-efficient baselines, making it a robust and scalable solution for federated fine-tuning of LLMs.
♻ ☆ Large Language Model Agent for User-friendly Chemical Process Simulations
Modern process simulators enable detailed process design, simulation, and optimization; however, constructing and interpreting simulations is time-consuming and requires expert knowledge. This limits early exploration by inexperienced users. To address this, a large language model (LLM) agent is integrated with AVEVA Process Simulation (APS) via Model Context Protocol (MCP), allowing natural language interaction with rigorous process simulations. An MCP server toolset enables the LLM to communicate programmatically with APS using Python, allowing it to execute complex simulation tasks from plain-language instructions. Two water-methanol separation case studies assess the framework across different task complexities and interaction modes. The first shows the agent autonomously analyzing flowsheets, finding improvement opportunities, and iteratively optimizing, extracting data, and presenting results clearly. The framework benefits both educational purposes, by translating technical concepts and demonstrating workflows, and experienced practitioners by automating data extraction, speeding routine tasks, and supporting brainstorming. The second case study assesses autonomous flowsheet synthesis through both a step-by-step dialogue and a single prompt, demonstrating its potential for novices and experts alike. The step-by-step mode gives reliable, guided construction suitable for educational contexts; the single-prompt mode constructs fast baseline flowsheets for later refinement. While current limitations such as oversimplification, calculation errors, and technical hiccups mean expert oversight is still needed, the framework's capabilities in analysis, optimization, and guided construction suggest LLM-based agents can become valuable collaborators.
♻ ☆ Helios: A Foundational Language Model for Smart Energy Knowledge Reasoning and Application
In the global drive toward carbon neutrality, deeply coordinated smart energy systems underpin industrial transformation. However, the interdisciplinary, fragmented, and fast-evolving expertise in this domain prevents general-purpose LLMs, which lack domain knowledge and physical-constraint awareness, from delivering precise engineering-aligned inference and generation. To address these challenges, we introduce Helios, a large language model tailored to the smart energy domain, together with a comprehensive suite of resources to advance LLM research in this field. Specifically, we develop Enersys, a multi-agent collaborative framework for end-to-end dataset construction, through which we produce: (1) a smart energy knowledge base, EnerBase, to enrich the model's foundational expertise; (2) an instruction fine-tuning dataset, EnerInstruct, to strengthen performance on domain-specific downstream tasks; and (3) an RLHF dataset, EnerReinforce, to align the model with human preferences and industry standards. Leveraging these resources, Helios undergoes large-scale pretraining, SFT, and RLHF. We also release EnerBench, a benchmark for evaluating LLMs in smart energy scenarios, and demonstrate that our approach significantly enhances domain knowledge mastery, task execution accuracy, and alignment with human preferences.
♻ ☆ LAVA: Explainability for Unsupervised Latent Embeddings
Unsupervised black-box models are drivers of scientific discovery, yet are difficult to interpret, as their output is often a multidimensional embedding rather than a well-defined target. While explainability for supervised learning uncovers how input features contribute to predictions, its unsupervised counterpart should relate input features to the structure of the learned embeddings. However, adaptations of supervised model explainability for unsupervised learning provide either single-sample or dataset-summary explanations, remaining too fine-grained or reductive to be meaningful, and cannot explain embeddings without mapping functions. To bridge this gap, we propose LAVA, a post-hoc model-agnostic method to explain local embedding organization through feature covariation in the original input data. LAVA explanations comprise modules, capturing local subpatterns of input feature correlation that reoccur globally across the embeddings. LAVA delivers stable explanations at a desired level of granularity, revealing domain-relevant patterns such as visual parts of images or disease signals in cellular processes, otherwise missed by existing methods.
comment: 41 pages, including references and appendix
♻ ☆ Multi-agent Adaptive Mechanism Design
We study a sequential mechanism design problem in which a principal seeks to elicit truthful reports from multiple rational agents while starting with no prior knowledge of agents' beliefs. We introduce Distributionally Robust Adaptive Mechanism (DRAM), a general framework combining insights from both mechanism design and online learning to jointly address truthfulness and cost-optimality. Throughout the sequential game, the mechanism estimates agents' beliefs and iteratively updates a distributionally robust linear program with shrinking ambiguity sets to reduce payments while preserving truthfulness. Our mechanism guarantees truthful reporting with high probability while achieving $\tilde{O}(\sqrt{T})$ cumulative regret, and we establish a matching lower bound showing that no truthful adaptive mechanism can asymptotically do better. The framework generalizes to plug-in estimators, supporting structured priors and delayed feedback. To our knowledge, this is the first adaptive mechanism under general settings that maintains truthfulness and achieves optimal regret when incentive constraints are unknown and must be learned.
♻ ☆ MalURLBench: A Benchmark Evaluating Agents' Vulnerabilities When Processing Web URLs
LLM-based web agents have become increasingly popular for their utility in daily life and work. However, they exhibit critical vulnerabilities when processing malicious URLs: accepting a disguised malicious URL enables subsequent access to unsafe webpages, which can cause severe damage to service providers and users. Despite this risk, no benchmark currently targets this emerging threat. To address this gap, we propose MalURLBench, the first benchmark for evaluating LLMs' vulnerabilities to malicious URLs. MalURLBench contains 61,845 attack instances spanning 10 real-world scenarios and 7 categories of real malicious websites. Experiments with 12 popular LLMs reveal that existing models struggle to detect elaborately disguised malicious URLs. We further identify and analyze key factors that impact attack success rates and propose URLGuard, a lightweight defense module. We believe this work will provide a foundational resource for advancing the security of web agents. Our code is available at https://github.com/JiangYingEr/MalURLBench.
♻ ☆ An Aristotelian ontology of instrumental goals: Structural features to be managed and not failures to be eliminated
Instrumental goals such as resource acquisition, power-seeking, and self-preservation are key to contemporary AI alignment research, yet the phenomenon's ontology remains under-theorised. This article develops an ontological account of instrumental goals and draws out governance-relevant distinctions for advanced AI systems. After systematising the dominant alignment literature on instrumental goals we offer an exploratory Aristotelian framework that treats advanced AI systems as complex artefacts whose ends are externally imposed through design, training and deployment. On a structural reading, Aristotle's notion of hypothetical necessity explains why, given an imposed end pursued over extended horizons in particular environments, certain enabling conditions become conditionally required, thereby yielding robust instrumental tendencies. On a contingent reading, accidental causation and chance-like intersections among training regimes, user inputs, infrastructure and deployment contexts can generate instrumental-goal-like behaviours not entailed by the imposed end-structure. This dual-aspect ontology motivates for governance and management approaches that treat instrumental goals as features of advanced AI systems to be managed rather than anomalies eliminable by technical interventions.
♻ ☆ Symmetrical Flow Matching: Unified Image Generation, Segmentation, and Classification with Score-Based Generative Models AAAI 2026
Flow Matching has emerged as a powerful framework for learning continuous transformations between distributions, enabling high-fidelity generative modeling. This work introduces Symmetrical Flow Matching (SymmFlow), a new formulation that unifies semantic segmentation, classification, and image generation within a single model. Using a symmetric learning objective, SymmFlow models forward and reverse transformations jointly, ensuring bi-directional consistency, while preserving sufficient entropy for generative diversity. A new training objective is introduced to explicitly retain semantic information across flows, featuring efficient sampling while preserving semantic structure, allowing for one-step segmentation and classification without iterative refinement. Unlike previous approaches that impose strict one-to-one mapping between masks and images, SymmFlow generalizes to flexible conditioning, supporting both pixel-level and image-level class labels. Experimental results on various benchmarks demonstrate that SymmFlow achieves state-of-the-art performance on semantic image synthesis, obtaining FID scores of 11.9 on CelebAMask-HQ and 7.0 on COCO-Stuff with only 25 inference steps. Additionally, it delivers competitive results on semantic segmentation and shows promising capabilities in classification tasks.
comment: AAAI 2026
♻ ☆ Context-aware Fairness Evaluation and Mitigation in LLMs
Large language models often display undesirable behaviors embedded in their internal representations, undermining fairness, inconsistency drift, amplification of harmful content, and the propagation of unwanted patterns during extended dialogue and conversations. Although training-time or data-centric methods attempt to reduce these effects, they are computationally expensive, irreversible once deployed, and slow to adapt to new conversational contexts. Pruning-based methods provide a flexible and transparent way to reduce bias by adjusting the neurons responsible for certain behaviors. However, most existing approaches are static; once a neuron is removed, the model loses the ability to adapt when the conversation or context changes. To address this, we propose a dynamic, reversible, pruning-based framework that detects context-aware neuron activations and applies adaptive masking to modulate their influence during generation. Our inference-time solution provides fine-grained, memory-aware mitigation with knowledge-preserved, more coherent behavior across multilingual single- and multi-turn dialogues, enabling dynamic fairness control in real-world conversational AI.
comment: PrePrint
♻ ☆ M-SGWR: Multiscale Similarity and Geographically Weighted Regression
The first law of geography is a cornerstone of spatial analysis, emphasizing that nearby and related locations tend to be more similar, however, defining what constitutes "near" and "related" remains challenging, as different phenomena exhibit distinct spatial patterns. Traditional local regression models, such as Geographically Weighted Regression (GWR) and Multiscale GWR (MGWR), quantify spatial relationships solely through geographic proximity. In an era of globalization and digital connectivity, however, geographic proximity alone may be insufficient to capture how locations are interconnected. To address this limitation, we propose a new multiscale local regression framework, termed M-SGWR, which characterizes spatial interaction across two dimensions: geographic proximity and attribute (variable) similarity. For each predictor, geographic and attribute-based weight matrices are constructed separately and then combined using an optimized parameter, alpha, which governs their relative contribution to local model fitting. Analogous to variable-specific bandwidths in MGWR, the optimal alpha varies by predictor, allowing the model to flexibly account for geographic, mixed, or non-spatial (remote similarity) effects. Results from two simulation experiments and one empirical application demonstrate that M-SGWR consistently outperforms GWR, SGWR, and MGWR across all goodness-of-fit metrics.
♻ ☆ CoFrGeNet: Continued Fraction Architectures for Language Generation
Transformers are arguably the preferred architecture for language generation. In this paper, inspired by continued fractions, we introduce a new function class for generative modeling. The architecture family implementing this function class is named CoFrGeNets - Continued Fraction Generative Networks. We design novel architectural components based on this function class that can replace Multi-head Attention and Feed-Forward Networks in Transformer blocks while requiring much fewer parameters. We derive custom gradient formulations to optimize the proposed components more accurately and efficiently than using standard PyTorch-based gradients. Our components are a plug-in replacement requiring little change in training or inference procedures that have already been put in place for Transformer-based models thus making our approach easy to incorporate in large industrial workflows. We experiment on two very different transformer architectures GPT2-xl (1.5B) and Llama3 (3.2B), where the former we pre-train on OpenWebText and GneissWeb, while the latter we pre-train on the docling data mix which consists of nine different datasets. Results show that the performance on downstream classification, Q\& A, reasoning and text understanding tasks of our models is competitive and sometimes even superior to the original models with $\frac{2}{3}$ to $\frac{1}{2}$ the parameters and shorter pre-training time. We believe that future implementations customized to hardware will further bring out the true potential of our architectures.
♻ ☆ FactSelfCheck: Fact-Level Black-Box Hallucination Detection for LLMs EACL 2026
Large Language Models (LLMs) frequently generate hallucinated content, posing significant challenges for applications where factuality is crucial. While existing hallucination detection methods typically operate at the sentence level or passage level, we propose FactSelfCheck, a novel zero-resource black-box sampling-based method that enables fine-grained fact-level detection. Our approach represents text as interpretable knowledge graphs consisting of facts in the form of triples, providing clearer insights into content factuality than traditional approaches. Through analyzing factual consistency across multiple LLM responses, we compute fine-grained hallucination scores without requiring external resources or training data. Our evaluation demonstrates that FactSelfCheck performs competitively with leading sentence-level sampling-based methods while providing more detailed and interpretable insights. Most notably, our fact-level approach significantly improves hallucination correction, achieving a 35.5% increase in factual content compared to the baseline, while sentence-level SelfCheckGPT yields only a 10.6% improvement. The granular nature of our detection enables more precise identification and correction of hallucinated content. Additionally, we contribute FavaMultiSamples, a novel dataset that addresses a gap in the field by providing the research community with a second dataset for evaluating sampling-based methods.
comment: Accepted for EACL 2026 (findings)
♻ ☆ SAFER: Probing Safety in Reward Models with Sparse Autoencoder
Reinforcement learning from human feedback (RLHF) is a key paradigm for aligning large language models (LLMs) with human values, yet the reward models at its core remain largely opaque. In this work, we present Sparse Autoencoder For Enhanced Reward model (\textbf{SAFER}), a novel framework for interpreting and improving reward models through mechanistic analysis. Leveraging Sparse Autoencoders (SAEs), we uncover human-interpretable features in reward model activations, enabling insight into safety-relevant decision-making. We apply SAFER to safety-oriented preference datasets and quantify the salience of individual features by activation differences between chosen and rejected responses. Using these feature-level signals, we design targeted data poisoning and denoising strategies. Experiments show that SAFER can precisely degrade or enhance safety alignment with minimal data modification, without sacrificing general chat performance. Our approach contributes to interpreting, auditing and refining reward models in high-stakes LLM alignment tasks. Our codes are available at https://github.com/xzy-101/SAFER-code. \textit{This paper discusses topics related to reward model safety and may include discussions or examples that highlight potential risks or unsafe outcomes.}
♻ ☆ Accurate and Efficient Low-Rank Model Merging in Core Space NeurIPS 2025
In this paper, we address the challenges associated with merging low-rank adaptations of large neural networks. With the rise of parameter-efficient adaptation techniques, such as Low-Rank Adaptation (LoRA), model fine-tuning has become more accessible. While fine-tuning models with LoRA is highly efficient, existing merging methods often sacrifice this efficiency by merging fully-sized weight matrices. We propose the Core Space merging framework, which enables the merging of LoRA-adapted models within a common alignment basis, thereby preserving the efficiency of low-rank adaptation while substantially improving accuracy across tasks. We further provide a formal proof that projection into Core Space ensures no loss of information and provide a complexity analysis showing the efficiency gains. Extensive empirical results demonstrate that Core Space significantly improves existing merging techniques and achieves state-of-the-art results on both vision and language tasks while utilizing a fraction of the computational resources. Codebase is available at https://github.com/apanariello4/core-space-merging.
comment: Accepted at 39th Conference on Neural Information Processing Systems (NeurIPS 2025), San Diego, USA
♻ ☆ FloorplanQA: A Benchmark for Spatial Reasoning in LLMs using Structured Representations
We introduce FloorplanQA, a diagnostic benchmark for evaluating spatial reasoning in large-language models (LLMs). FloorplanQA is grounded in structured representations of indoor scenes, such as (e.g., kitchens, living rooms, bedrooms, bathrooms, and others), encoded symbolically in JSON or XML layouts. The benchmark covers core spatial tasks, including distance measurement, visibility, path finding, and object placement within constrained spaces. Our results across a variety of frontier open-source and commercial LLMs reveal that while models may succeed in shallow queries, they often fail to respect physical constraints, preserve spatial coherence, though they remain mostly robust to small spatial perturbations. FloorplanQA uncovers a blind spot in today's LLMs: inconsistent reasoning about indoor layouts. We hope this benchmark inspires new work on language models that can accurately infer and manipulate spatial and geometric properties in practical settings.
comment: v3, Project page: https://huggingface.co/papers/2507.07644
♻ ☆ Agentic reinforcement learning empowers next-generation chemical language models for molecular design and synthesis
Language models are revolutionizing the biochemistry domain, assisting scientists in drug design and chemical synthesis with high efficiency. Yet current approaches struggle between small language models prone to hallucination and limited knowledge retention, and large cloud-based language models plagued by privacy risks and high inference costs. To bridge this gap, we introduce ChemCRAFT, a novel framework leveraging agentic reinforcement learning to decouple chemical reasoning from knowledge storage. Instead of forcing the model to memorize vast chemical data, our approach empowers the language model to interact with a sandbox for precise information retrieval. This externalization of knowledge allows a locally deployable small model to achieve superior performance with minimal inference costs. To enable small language models for agent-calling ability, we build an agentic trajectory construction pipeline and a comprehensive chemical-agent sandbox. Based on sandbox interactions, we constructed ChemToolDataset, the first large-scale chemical tool trajectory dataset. Simultaneously, we propose SMILES-GRPO to build a dense chemical reward function, promoting the model's ability to call chemical agents. Evaluations across diverse aspects of drug design show that ChemCRAFT outperforms current cloud-based LLMs in molecular structure analysis, molecular optimization, and synthesis pathway prediction, demonstrating that scientific reasoning is not solely an emergent ability of model scale, but a learnable policy of tool orchestration. This work establishes a cost-effective and privacy-preserving paradigm for AI-aided chemistry, opening new avenues for accelerating molecular discovery with locally deployable agents. Code available at https://github.com/HowardLi1984/ChemCraft.
comment: Working in Progress, 13 pages, 4 figures
♻ ☆ SpiderNets: Vision Models Predict Human Fear From Aversive Images
Phobias are common and impairing, and exposure therapy, which involves confronting patients with fear-provoking visual stimuli, is the most effective treatment. Scalable computerized exposure therapy requires automated prediction of fear directly from image content to adapt stimulus selection and treatment intensity. Whether such predictions can be made reliably and generalize across individuals and stimuli, however, remains unknown. Here we show that pretrained convolutional and transformer vision models, adapted via transfer learning, accurately predict group-level perceived fear for spider-related images, even when evaluated on new people and new images, achieving a mean absolute error (MAE) below 10 units on the 0-100 fear scale. Visual explanation analyses indicate that predictions are driven by spider-specific regions in the images. Learning-curve analyses show that transformer models are data efficient and approach performance saturation with the available data (~300 images). Prediction errors increase for very low and very high fear levels and within specific categories of images. These results establish transparent, data-driven fear estimation from images, laying the groundwork for adaptive digital mental health tools.
comment: 65 pages (32 main text, 33 appendix), 20 figures (5 in main text, 15 in appendix)
♻ ☆ BiasGym: Fantastic LLM Biases and How to Find (and Remove) Them
Understanding biases and stereotypes encoded in the weights of Large Language Models (LLMs) is crucial for developing effective mitigation strategies. However, biased behaviour is often subtle and non-trivial to isolate, even when deliberately elicited, making systematic analysis and debiasing particularly challenging. To address this, we introduce \texttt{BiasGym}, a simple, cost-effective, and generalizable framework for reliably and safely injecting, analyzing, and mitigating conceptual associations of biases within LLMs. \texttt{BiasGym} consists of two components: \texttt{BiasInject}, which safely injects specific biases into the model via token-based fine-tuning while keeping the model frozen, and \texttt{BiasScope}, which leverages these injected signals to identify and reliably steer the components responsible for biased behavior. Our method enables consistent bias elicitation for mechanistic analysis, supports targeted debiasing without degrading performance on downstream tasks, and generalizes to biases unseen during fine-tuning. We demonstrate the effectiveness of BiasGym in reducing real-world stereotypes (e.g., people from Italy being `reckless drivers'), showing its utility for both safety interventions and interpretability research.
comment: Under review
♻ ☆ Multi-Step Knowledge Interaction Analysis via Rank-2 Subspace Disentanglement
Natural Language Explanations (NLEs) describe how Large Language Models (LLMs) make decisions by drawing on external Context Knowledge (CK) and Parametric Knowledge (PK). Understanding the interaction between these sources is key to assessing NLE grounding, yet these dynamics remain underexplored. Prior work has largely focused on (1) single-step generation and (2) modelled PK-CK interaction as a binary choice within a rank-1 subspace. This approach overlooks richer interactions and how they unfold over longer generations, such as complementary or supportive knowledge. We propose a novel rank-2 projection subspace that disentangles PK and CK contributions more accurately and use it for the first multi-step analysis of knowledge interactions across longer NLE sequences. Experiments across four QA datasets and three open-weight LLMs demonstrate that while rank-1 subspaces struggle to represent diverse interactions, our rank-2 formulation captures them effectively, highlighting PK alignment for supportive interactions and CK alignment for conflicting ones. Our multi-step analysis reveals, among others, that hallucinated generations exhibit strong alignment with the PK direction, whereas context-faithful generations maintain a more balanced alignment between PK and CK.
comment: Under review
♻ ☆ Moral Outrage Shapes Commitments Beyond Attention: Multimodal Moral Emotions on YouTube in Korea and the US
Understanding how media rhetoric shapes audience engagement is crucial in the attention economy. This study examines how moral emotional framing by mainstream news channels on YouTube influences user behavior across Korea and the United States. To capture the platform's multimodal nature, combining thumbnail images and video titles, we develop a multimodal moral emotion classifier by fine tuning a vision language model. The model is trained on human annotated multimodal datasets in both languages and applied to approximately 400,000 videos from major news outlets. We analyze engagement levels including views, likes, and comments, representing increasing degrees of commitment. The results show that other condemning rhetoric expressions of moral outrage that criticize others morally consistently increase all forms of engagement across cultures, with effects ranging from passive viewing to active commenting. These findings suggest that moral outrage is a particularly effective emotional strategy, attracting not only attention but also active participation. We discuss concerns about the potential misuse of other condemning rhetoric, as such practices may deepen polarization by reinforcing in group and out group divisions. To facilitate future research and ensure reproducibility, we publicly release our Korean and English multimodal moral emotion classifiers.
comment: Accepted at The Web Conference 2026. We release Korean and English multimodal moral emotion classifiers
♻ ☆ DDSC: Dynamic Dual-Signal Curriculum for Data-Efficient Acoustic Scene Classification under Domain Shift ICASSP 2026
Acoustic scene classification (ASC) suffers from device-induced domain shift, especially when labels are limited. Prior work focuses on curriculum-based training schedules that structure data presentation by ordering or reweighting training examples from easy-to-hard to facilitate learning; however, existing curricula are static, fixing the ordering or the weights before training and ignoring that example difficulty and marginal utility evolve with the learned representation. To overcome this limitation, we propose the Dynamic Dual-Signal Curriculum (DDSC), a training schedule that adapts the curriculum online by combining two signals computed each epoch: a domain-invariance signal and a learning-progress signal. A time-varying scheduler fuses these signals into per-example weights that prioritize domain-invariant examples in early epochs and progressively emphasize device-specific cases. DDSC is lightweight, architecture-agnostic, and introduces no additional inference overhead. Under the official DCASE 2024 Task~1 protocol, DDSC consistently improves cross-device performance across diverse ASC baselines and label budgets, with the largest gains on unseen-device splits.
comment: Accepted at ICASSP 2026-2026 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
♻ ☆ Bounding Hallucinations: Information-Theoretic Guarantees for RAG Systems via Merlin-Arthur Protocols
Retrieval-augmented generation (RAG) relies on retrieved context to guide large language models (LLM), yet treats retrieval as a weak heuristic rather than verifiable evidence -- leading to unsupported answers, hallucinations, and reliance on spurious context. We introduce a novel training framework that treats the RAG pipeline as an interactive proof system by adapting the Merlin-Arthur (M/A) protocol: Arthur (the generator LLM) trains on questions with unknown context provenance and Merlin gives helpful evidence, while Morgana injects adversarial, misleading context. Both use an XAI method to identify and modify evidence most influential to Arthur. This trains Arthur to (1) answer when evidence supports the answer, (2) reject when evidence is insufficient, and (3) rely on the context spans that truly ground the answer. We further introduce a verification framework that disentangles explanation fidelity from model predictive errors, and introduce the Explained Information Fraction (EIF), which normalizes M/A mutual-information guarantees. Across three RAG datasets and multiple LLM families and sizes, M/A training makes LLMs more grounded in evidence, increases information theoretic measures (soundness, completeness) and reject behavior with less hallucinations, without manually annotated unanswerable samples. Finally, the retriever also improves recall and MRR via automatically generated M/A hard positives and negatives. While high accuracy does not guarantee entropy flow from context to answer, our EIF results show that autonomous interactive-proof-style supervision enables RAG systems that treat retrieved documents as verifiable evidence. % rather than suggestions.
comment: 31 pages, 22 figures
♻ ☆ Defending Large Language Models Against Jailbreak Attacks via In-Decoding Safety-Awareness Probing
Large language models (LLMs) have achieved impressive performance across natural language tasks and are increasingly deployed in real-world applications. Despite extensive safety alignment efforts, recent studies show that such alignment is often shallow and remains vulnerable to jailbreak attacks. Existing defense mechanisms, including decoding-based constraints and post-hoc content detectors, struggle against sophisticated jailbreaks, often intervening robust detection or excessively degrading model utility. In this work, we examine the decoding process of LLMs and make a key observation: even when successfully jailbroken, models internally exhibit latent safety-related signals during generation. However, these signals are overridden by the model's drive for fluent continuation, preventing timely self-correction or refusal. Building on this observation, we propose a simple yet effective approach that explicitly surfaces and leverages these latent safety signals for early detection of unsafe content during decoding. Experiments across diverse jailbreak attacks demonstrate that our approach significantly enhances safety, while maintaining low over-refusal rates on benign inputs and preserving response quality. Our results suggest that activating intrinsic safety-awareness during decoding offers a promising and complementary direction for defending against jailbreak attacks. Code is available at: https://github.com/zyz13590/SafeProbing.
♻ ☆ TopSeg: A Multi-Scale Topological Framework for Data-Efficient Heart Sound Segmentation ICASSP 2026
Deep learning approaches for heart-sound (PCG) segmentation built on time-frequency features can be accurate but often rely on large expert-labeled datasets, limiting robustness and deployment. We present TopSeg, a topological representation-centric framework that encodes PCG dynamics with multi-scale topological features and decodes them using a lightweight temporal convolutional network (TCN) with an order- and duration-constrained inference step. To evaluate data efficiency and generalization, we train exclusively on PhysioNet 2016 dataset with subject-level subsampling and perform external validation on CirCor dataset. Under matched-capacity decoders, the topological features consistently outperform spectrogram and envelope inputs, with the largest margins at low data budgets; as a full system, TopSeg surpasses representative end-to-end baselines trained on their native inputs under the same budgets while remaining competitive at full data. Ablations at 10% training confirm that all scales contribute and that combining H_0 and H_1 yields more reliable S1/S2 localization and boundary stability. These results indicate that topology-aware representations provide a strong inductive bias for data-efficient, cross-dataset PCG segmentation, supporting practical use when labeled data are limited.
comment: Accepted at ICASSP 2026-2026 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
♻ ☆ AccidentSim: Generating Vehicle Collision Videos with Physically Realistic Collision Trajectories from Real-World Accident Reports
Collecting real-world vehicle accident videos for autonomous driving research is challenging due to their rarity and complexity. While existing driving video generation methods may produce visually realistic videos, they often fail to deliver physically realistic simulations because they lack the capability to generate accurate post-collision trajectories. In this paper, we introduce AccidentSim, a novel framework that generates physically realistic vehicle collision videos by extracting and utilizing the physical clues and contextual information available in real-world vehicle accident reports. Specifically, AccidentSim leverages a reliable physical simulator to replicate post-collision vehicle trajectories from the physical and contextual information in the accident reports and to build a vehicle collision trajectory dataset. This dataset is then used to fine-tune a language model, enabling it to respond to user prompts and predict physically consistent post-collision trajectories across various driving scenarios based on user descriptions. Finally, we employ Neural Radiance Fields (NeRF) to render high-quality backgrounds, merging them with the foreground vehicles that exhibit physically realistic trajectories to generate vehicle collision videos. Experimental results demonstrate that the videos produced by AccidentSim excel in both visual and physical authenticity.
♻ ☆ GNN Explanations that do not Explain and How to find Them ICLR26
Explanations provided by Self-explainable Graph Neural Networks (SE-GNNs) are fundamental for understanding the model's inner workings and for identifying potential misuse of sensitive attributes. Although recent works have highlighted that these explanations can be suboptimal and potentially misleading, a characterization of their failure cases is unavailable. In this work, we identify a critical failure of SE-GNN explanations: explanations can be unambiguously unrelated to how the SE-GNNs infer labels. We show that, on the one hand, many SE-GNNs can achieve optimal true risk while producing these degenerate explanations, and on the other, most faithfulness metrics can fail to identify these failure modes. Our empirical analysis reveals that degenerate explanations can be maliciously planted (allowing an attacker to hide the use of sensitive attributes) and can also emerge naturally, highlighting the need for reliable auditing. To address this, we introduce a novel faithfulness metric that reliably marks degenerate explanations as unfaithful, in both malicious and natural settings. Our code is available in the supplemental.
comment: Accepted at ICLR26
♻ ☆ Thompson Sampling via Fine-Tuning of LLMs ICLR 2026
Bayesian optimization in large unstructured discrete spaces is often hindered by the computational cost of maximizing acquisition functions due to the absence of gradients. We propose a scalable alternative based on Thompson sampling that eliminates the need for acquisition function maximization by directly parameterizing the probability that a candidate yields the maximum reward. Our approach, Thompson Sampling via Fine-Tuning (ToSFiT) leverages the prior knowledge embedded in prompt-conditioned large language models, and incrementally adapts them toward the posterior. Theoretically, we derive a novel regret bound for a variational formulation of Thompson Sampling that matches the strong guarantees of its standard counterpart. Our analysis reveals the critical role of careful adaptation to the posterior probability of maximality -- a principle that underpins our ToSFiT algorithm. Empirically, we validate our method on three diverse tasks: FAQ response refinement, thermally stable protein search, and quantum circuit design. Within a collection of methods covering Bayesian optimization, reinforcement learning, and evolutionary search, ToSFiT exhibits both state-of-the-art sample efficiency and computational efficiency.
comment: accepted at ICLR 2026
♻ ☆ Bi-Anchor Interpolation Solver for Accelerating Generative Modeling
Flow Matching (FM) models have emerged as a leading paradigm for high-fidelity synthesis. However, their reliance on iterative Ordinary Differential Equation (ODE) solving creates a significant latency bottleneck. Existing solutions face a dichotomy: training-free solvers suffer from significant performance degradation at low Neural Function Evaluations (NFEs), while training-based one- or few-steps generation methods incur prohibitive training costs and lack plug-and-play versatility. To bridge this gap, we propose the Bi-Anchor Interpolation Solver (BA-solver). BA-solver retains the versatility of standard training-free solvers while achieving significant acceleration by introducing a lightweight SideNet (1-2% backbone size) alongside the frozen backbone. Specifically, our method is founded on two synergistic components: \textbf{1) Bidirectional Temporal Perception}, where the SideNet learns to approximate both future and historical velocities without retraining the heavy backbone; and 2) Bi-Anchor Velocity Integration, which utilizes the SideNet with two anchor velocities to efficiently approximate intermediate velocities for batched high-order integration. By utilizing the backbone to establish high-precision ``anchors'' and the SideNet to densify the trajectory, BA-solver enables large interval sizes with minimized error. Empirical results on ImageNet-256^2 demonstrate that BA-solver achieves generation quality comparable to 100+ NFEs Euler solver in just 10 NFEs and maintains high fidelity in as few as 5 NFEs, incurring negligible training costs. Furthermore, BA-solver ensures seamless integration with existing generative pipelines, facilitating downstream tasks such as image editing.
♻ ☆ Unlearning's Blind Spots: Over-Unlearning and Prototypical Relearning Attack
Machine unlearning (MU) aims to expunge a designated forget set from a trained model without costly retraining, yet the existing techniques overlook two critical blind spots: "over-unlearning" that deteriorates retained data near the forget set, and post-hoc "relearning" attacks that aim to resurrect the forgotten knowledge. Focusing on class-level unlearning, we first derive an over-unlearning metric, OU@epsilon, which quantifies collateral damage in regions proximal to the forget set, where over-unlearning mainly appears. Next, we expose an unforeseen relearning threat on MU, i.e., the Prototypical Relearning Attack, which exploits the per-class prototype of the forget class with just a few samples, and easily restores the pre-unlearning performance. To counter both blind spots in class-level unlearning, we introduce Spotter, a plug-and-play objective that combines (i) a masked knowledge-distillation penalty on the nearby region of forget classes to suppress OU@epsilon, and (ii) an intra-class dispersion loss that scatters forget-class embeddings, neutralizing Prototypical Relearning Attacks. Spotter achieves state-of-the-art results across CIFAR, TinyImageNet, and CASIA-WebFace datasets, offering a practical remedy to unlearning's blind spots.
comment: 9 pages, 5 figures, 3 tables
♻ ☆ TriPlay-RL: Tri-Role Self-Play Reinforcement Learning for LLM Safety Alignment
In recent years, safety risks associated with large language models have become increasingly prominent, highlighting the urgent need to mitigate the generation of toxic and harmful content. The mainstream paradigm for LLM safety alignment typically adopts a collaborative framework involving three roles: an attacker for adversarial prompt generation, a defender for safety defense, and an evaluator for response assessment. In this paper, we propose a closed-loop reinforcement learning framework called TriPlay-RL that enables iterative and co-improving collaboration among three roles with near-zero manual annotation. Experimental results show that the attacker preserves high output diversity while achieving a 20%-50% improvement in adversarial effectiveness; the defender attains 10%-30% gains in safety performance without degrading general reasoning capability; and the evaluator continuously refines its fine-grained judgment ability through iterations, accurately distinguishing unsafe responses, simple refusals, and useful guidance. Overall, our framework establishes an efficient and scalable paradigm for LLM safety alignment, enabling continuous co-evolution within a unified learning loop.
♻ ☆ CATArena: Evaluating Evolutionary Capabilities of Code Agents via Iterative Tournaments
Current evaluation for Large Language Model (LLM) code agents predominantly focus on generating functional code in single-turn scenarios, which fails to evaluate the agent's capability for continuous code optimization and multi-turn iterative development. To bridge this gap, we introduce CATArena, a framework designed to evaluate the evolutionary capabilities of code agents via iterative tournaments. Agents engage in multi-turn tournaments and continuously refine their code through self-reflection and peer-learning based on comprehensive execution feedback. For evaluation, we propose a dual-metric system to decouple static generation proficiency from evolutionary potential. Extensive experiments reveal that an agent's evolutionary potential is not strictly correlated with its initial proficiency. Our analysis further reveals that current agents struggle to concurrently leverage both peer-learning and self-reflection for effective performance gains. Furthermore, the results validate CATArena's high extensibility and resistance to variance tasks, establishing it as a continuous and reliable standard for assessing the evolutionary capability of LLM code agents.
♻ ☆ FESTA: Functionally Equivalent Sampling for Trust Assessment of Multimodal LLMs EMNLP
The accurate trust assessment of multimodal large language models (MLLMs) generated predictions, which can enable selective prediction and improve user confidence, is challenging due to the diverse multi-modal input paradigms. We propose Functionally Equivalent Sampling for Trust Assessment (FESTA), a multimodal input sampling technique for MLLMs, that generates an uncertainty measure based on the equivalent and complementary input samplings. The proposed task-preserving sampling approach for uncertainty quantification expands the input space to probe the consistency (through equivalent samples) and sensitivity (through complementary samples) of the model. FESTA uses only input-output access of the model (black-box), and does not require ground truth (unsupervised). The experiments are conducted with various off-the-shelf multi-modal LLMs, on both visual and audio reasoning tasks. The proposed FESTA uncertainty estimate achieves significant improvement (33.3% relative improvement for vision-LLMs and 29.6% relative improvement for audio-LLMs) in selective prediction performance, based on area-under-receiver-operating-characteristic curve (AUROC) metric in detecting mispredictions. The code implementation is open-sourced.
comment: Accepted in the Findings of EMNLP, 2025
♻ ☆ Are Agents Probabilistic Automata? A Trace-Based, Memory-Constrained Theory of Agentic AI
This paper studies standard controller architectures for agentic AI and derives automata-theoretic models of their interaction behavior via trace semantics and abstraction. We model an agent implementation as a finite control program augmented with explicit memory primitives (bounded buffers, a call stack, or read/write external memory) and a stochastic policy component (e.g., an LLM) that selects among architecturally permitted actions. Instead of equating the concrete agent with a deterministic acceptor, we treat the agent-environment closed loop as inducing a probability distribution over finite interaction traces. Given an abstraction function $\Abs$ from concrete configurations to a finite abstract state space, we obtain a probabilistic trace language and an abstract probabilistic transition model $M_{\Abs}$ suitable for probabilistic model checking. Imposing explicit, framework-auditable restrictions on memory access and control flow, we prove that the support of the resulting trace language is regular for bounded-memory controllers, context-free for strict call-return controllers, and recursively enumerable for controllers equipped with unbounded read/write memory. These correspondences allow the reuse of existing verification methods for finite-state and pushdown systems, and they delineate precisely when undecidability barriers arise. The probabilistic semantics leads to quantitative analyses such as: what is the probability of entering an unsafe abstract region, and how can we bound this probability in the presence of environment nondeterminism.
♻ ☆ BOTS: A Unified Framework for Bayesian Online Task Selection in LLM Reinforcement Finetuning ICLR 2026
Reinforcement finetuning (RFT) is a key technique for aligning Large Language Models (LLMs) with human preferences and enhancing reasoning, yet its effectiveness is highly sensitive to which tasks are explored during training. Uniform task sampling is inefficient, wasting computation on tasks that are either trivial or unsolvable, while existing task selection methods often suffer from high rollout costs, poor adaptivity, or incomplete evidence. We introduce BOTS, a unified framework for Bayesian Online Task Selection in LLM reinforcement finetuning. Grounded in Bayesian inference, BOTS adaptively maintains posterior estimates of task difficulty as the model evolves. It jointly incorporates explicit evidence from direct evaluations of selected tasks and implicit evidence inferred from these evaluations for unselected tasks, with Thompson sampling ensuring a principled balance between exploration and exploitation for task selection. To make implicit evidence practical, we instantiate it with an ultra-light interpolation-based plug-in that estimates difficulties of tasks without extra rollouts, adding negligible overhead. Empirically, across diverse domains and LLM scales, BOTS consistently improves data efficiency and performance over baselines and ablations, providing a practical and extensible solution for dynamic task selection in RFT. Code is available at https://github.com/agentscope-ai/Trinity-RFT/tree/main/examples/bots.
comment: Accepted as a conference paper at ICLR 2026
♻ ☆ Herb.jl: A Unifying Program Synthesis Library
Program synthesis -- the automatic generation of code given a specification -- is one of the most fundamental tasks in artificial intelligence (AI) and the dream of many programmers. Numerous synthesizers have been developed for program synthesis, offering different approaches to the exponentially growing program space. Although such state-of-the-art tools exist, reusing and adapting them remains tedious and time-consuming. We propose Herb.jl, a unifying program synthesis library written in Julia, to address these issues. Since current methods share similar building blocks, we aim to break down the underlying algorithms into extendable, reusable subcomponents. To demonstrate the benefits of using Herb.jl, we show how to implement a simple problem and grammar, and how to solve it with just a few lines of code.
♻ ☆ Warm Up Before You Train: Unlocking General Reasoning in Resource-Constrained Settings EMNLP 2025
Designing effective reasoning-capable LLMs typically requires training using Reinforcement Learning with Verifiable Rewards (RLVR) or distillation with carefully curated Long Chain of Thoughts (CoT), both of which depend heavily on extensive training data. This creates a major challenge when the amount of quality training data is scarce. We propose a sample-efficient, two-stage training strategy to develop reasoning LLMs under limited supervision. In the first stage, we "warm up" the model by distilling Long CoTs from a toy domain, namely, Knights \& Knaves (K\&K) logic puzzles to acquire general reasoning skills. In the second stage, we apply RLVR to the warmed-up model using a limited set of target-domain examples. Our experiments demonstrate that this two-phase approach offers several benefits: $(i)$ the warmup phase alone facilitates generalized reasoning, leading to performance improvements across a range of tasks, including MATH, HumanEval$^{+}$, and MMLU-Pro; $(ii)$ When both the base model and the warmed-up model are RLVR trained on the same small dataset ($\leq100$ examples), the warmed-up model consistently outperforms the base model; $(iii)$ Warming up before RLVR training allows a model to maintain cross-domain generalizability even after training on a specific domain; $(iv)$ Introducing warmup in the pipeline improves not only accuracy but also overall sample efficiency during RLVR training. The results in this paper highlight the promise of warmup for building robust reasoning LLMs in data-scarce environments.
comment: Accepted to EMNLP 2025
♻ ☆ CiMRAG: CiM-Aware Domain-Adaptive and Noise-Resilient Retrieval-Augmented Generation for Edge-Based LLMs ICASSP 2026
Personalized virtual assistants powered by large language models (LLMs) on edge devices are attracting growing attention, with Retrieval-Augmented Generation (RAG) emerging as a key method for personalization by retrieving relevant profile data and generating tailored responses. However, deploying RAG on edge devices faces efficiency hurdles due to the rapid growth of profile data, such as user-LLM interactions and recent updates. While Computing-in-Memory (CiM) architectures mitigate this bottleneck by eliminating data movement between memory and processing units via in-situ operations, they are susceptible to environmental noise that can degrade retrieval precision. This poses a critical issue in dynamic, multi-domain edge-based scenarios (e.g., travel, medicine, and law) where both accuracy and adaptability are paramount. To address these challenges, we propose Task-Oriented Noise-resilient Embedding Learning (TONEL), a framework that improves noise robustness and domain adaptability for RAG in noisy edge environments. TONEL employs a noise-aware projection model to learn task-specific embeddings compatible with CiM hardware constraints, enabling accurate retrieval under noisy conditions. Extensive experiments conducted on personalization benchmarks demonstrate the effectiveness and practicality of our methods relative to strong baselines, especially in task-specific noisy scenarios.
comment: Accepted by ICASSP 2026
♻ ☆ On the Provable Performance Guarantee of Efficient Reasoning Models
Large reasoning models (LRMs) have achieved remarkable progress in complex problem-solving tasks. Despite this success, LRMs typically suffer from high computational costs during deployment, highlighting a need for efficient inference. A practical direction of efficiency improvement is to switch the LRM between thinking and non-thinking modes dynamically. However, such approaches often introduce additional reasoning errors and lack statistical guarantees for the performance loss, which are critical for high-stakes applications. In this work, we propose Probably Approximately Correct (PAC) reasoning that controls the performance loss under the user-specified tolerance. Specifically, we construct an upper confidence bound on the performance loss and determine a threshold for switching to the non-thinking model. Theoretically, using the threshold to switch between the thinking and non-thinking modes ensures bounded performance loss in a distribution-free manner. Our comprehensive experiments on reasoning benchmarks show that the proposed method can save computational budgets and control the user-specified performance loss.
Machine Learning 150
☆ VideoGPA: Distilling Geometry Priors for 3D-Consistent Video Generation
While recent video diffusion models (VDMs) produce visually impressive results, they fundamentally struggle to maintain 3D structural consistency, often resulting in object deformation or spatial drift. We hypothesize that these failures arise because standard denoising objectives lack explicit incentives for geometric coherence. To address this, we introduce VideoGPA (Video Geometric Preference Alignment), a data-efficient self-supervised framework that leverages a geometry foundation model to automatically derive dense preference signals that guide VDMs via Direct Preference Optimization (DPO). This approach effectively steers the generative distribution toward inherent 3D consistency without requiring human annotations. VideoGPA significantly enhances temporal stability, physical plausibility, and motion coherence using minimal preference pairs, consistently outperforming state-of-the-art baselines in extensive experiments.
☆ End-to-end Optimization of Belief and Policy Learning in Shared Autonomy Paradigms
Shared autonomy systems require principled methods for inferring user intent and determining appropriate assistance levels. This is a central challenge in human-robot interaction, where systems must be successful while being mindful of user agency. Previous approaches relied on static blending ratios or separated goal inference from assistance arbitration, leading to suboptimal performance in unstructured environments. We introduce BRACE (Bayesian Reinforcement Assistance with Context Encoding), a novel framework that fine-tunes Bayesian intent inference and context-adaptive assistance through an architecture enabling end-to-end gradient flow between intent inference and assistance arbitration. Our pipeline conditions collaborative control policies on environmental context and complete goal probability distributions. We provide analysis showing (1) optimal assistance levels should decrease with goal uncertainty and increase with environmental constraint severity, and (2) integrating belief information into policy learning yields a quadratic expected regret advantage over sequential approaches. We validated our algorithm against SOTA methods (IDA, DQN) using a three-part evaluation progressively isolating distinct challenges of end-effector control: (1) core human-interaction dynamics in a 2D human-in-the-loop cursor task, (2) non-linear dynamics of a robotic arm, and (3) integrated manipulation under goal ambiguity and environmental constraints. We demonstrate improvements over SOTA, achieving 6.3% higher success rates and 41% increased path efficiency, and 36.3% success rate and 87% path efficiency improvement over unassisted control. Our results confirmed that integrated optimization is most beneficial in complex, goal-ambiguous scenarios, and is generalizable across robotic domains requiring goal-directed assistance, advancing the SOTA for adaptive shared autonomy.
☆ Decoupled Diffusion Sampling for Inverse Problems on Function Spaces
We propose a data-efficient, physics-aware generative framework in function space for inverse PDE problems. Existing plug-and-play diffusion posterior samplers represent physics implicitly through joint coefficient-solution modeling, requiring substantial paired supervision. In contrast, our Decoupled Diffusion Inverse Solver (DDIS) employs a decoupled design: an unconditional diffusion learns the coefficient prior, while a neural operator explicitly models the forward PDE for guidance. This decoupling enables superior data efficiency and effective physics-informed learning, while naturally supporting Decoupled Annealing Posterior Sampling (DAPS) to avoid over-smoothing in Diffusion Posterior Sampling (DPS). Theoretically, we prove that DDIS avoids the guidance attenuation failure of joint models when training data is scarce. Empirically, DDIS achieves state-of-the-art performance under sparse observation, improving $l_2$ error by 11% and spectral error by 54% on average; when data is limited to 1%, DDIS maintains accuracy with 40% advantage in $l_2$ error compared to joint models.
☆ FOCUS: DLLMs Know How to Tame Their Compute Bound
Diffusion Large Language Models (DLLMs) offer a compelling alternative to Auto-Regressive models, but their deployment is constrained by high decoding cost. In this work, we identify a key inefficiency in DLLM decoding: while computation is parallelized over token blocks, only a small subset of tokens is decodable at each diffusion step, causing most compute to be wasted on non-decodable tokens. We further observe a strong correlation between attention-derived token importance and token-wise decoding probability. Based on this insight, we propose FOCUS -- an inference system designed for DLLMs. By dynamically focusing computation on decodable tokens and evicting non-decodable ones on-the-fly, FOCUS increases the effective batch size, alleviating compute limitations and enabling scalable throughput. Empirical evaluations demonstrate that FOCUS achieves up to 3.52$\times$ throughput improvement over the production-grade engine LMDeploy, while preserving or improving generation quality across multiple benchmarks. The FOCUS system is publicly available on GitHub: https://github.com/sands-lab/FOCUS.
comment: 22 pages, 15 figures
☆ Denoising the Deep Sky: Physics-Based CCD Noise Formation for Astronomical Imaging
Astronomical imaging remains noise-limited under practical observing constraints, while standard calibration pipelines mainly remove structured artifacts and leave stochastic noise largely unresolved. Learning-based denoising is promising, yet progress is hindered by scarce paired training data and the need for physically interpretable and reproducible models in scientific workflows. We propose a physics-based noise synthesis framework tailored to CCD noise formation. The pipeline models photon shot noise, photo-response non-uniformity, dark-current noise, readout effects, and localized outliers arising from cosmic-ray hits and hot pixels. To obtain low-noise inputs for synthesis, we average multiple unregistered exposures to produce high-SNR bases. Realistic noisy counterparts synthesized from these bases using our noise model enable the construction of abundant paired datasets for supervised learning. We further introduce a real-world dataset across multi-bands acquired with two twin ground-based telescopes, providing paired raw frames and instrument-pipeline calibrated frames, together with calibration data and stacked high-SNR bases for real-world evaluation.
☆ Particle-Guided Diffusion Models for Partial Differential Equations
We introduce a guided stochastic sampling method that augments sampling from diffusion models with physics-based guidance derived from partial differential equation (PDE) residuals and observational constraints, ensuring generated samples remain physically admissible. We embed this sampling procedure within a new Sequential Monte Carlo (SMC) framework, yielding a scalable generative PDE solver. Across multiple benchmark PDE systems as well as multiphysics and interacting PDE systems, our method produces solution fields with lower numerical error than existing state-of-the-art generative methods.
☆ TEON: Tensorized Orthonormalization Beyond Layer-Wise Muon for Large Language Model Pre-Training
The Muon optimizer has demonstrated strong empirical performance in pre-training large language models by performing matrix-level gradient (or momentum) orthogonalization in each layer independently. In this work, we propose TEON, a principled generalization of Muon that extends orthogonalization beyond individual layers by modeling the gradients of a neural network as a structured higher-order tensor. We present TEON's improved convergence guarantee over layer-wise Muon, and further develop a practical instantiation of TEON based on the theoretical analysis with corresponding ablation. We evaluate our approach on two widely adopted architectures: GPT-style models, ranging from 130M to 774M parameters, and LLaMA-style models, ranging from 60M to 1B parameters. Experimental results show that TEON consistently improves training and validation perplexity across model scales and exhibits strong robustness under various approximate SVD schemes.
☆ Agnostic Language Identification and Generation
Recent works on language identification and generation have established tight statistical rates at which these tasks can be achieved. These works typically operate under a strong realizability assumption: that the input data is drawn from an unknown distribution necessarily supported on some language in a given collection. In this work, we relax this assumption of realizability entirely, and impose no restrictions on the distribution of the input data. We propose objectives to study both language identification and generation in this more general "agnostic" setup. Across both problems, we obtain novel interesting characterizations and nearly tight rates.
☆ Training-Free Test-Time Adaptation with Brownian Distance Covariance in Vision-Language Models ICASSP 2026
Vision-language models suffer performance degradation under domain shift, limiting real-world applicability. Existing test-time adaptation methods are computationally intensive, rely on back-propagation, and often focus on single modalities. To address these issues, we propose Training-free Test-Time Adaptation with Brownian Distance Covariance (TaTa). TaTa leverages Brownian Distance Covariance-a powerful statistical measure that captures both linear and nonlinear dependencies via pairwise distances-to dynamically adapt VLMs to new domains without training or back-propagation. This not only improves efficiency but also enhances stability by avoiding disruptive weight updates. TaTa further integrates attribute-enhanced prompting to improve vision-language inference with descriptive visual cues. Combined with dynamic clustering and pseudo-label refinement, it effectively recalibrates the model for novel visual contexts. Experiments across diverse datasets show that TaTa significantly reduces computational cost while achieving state-of-the-art performance in domain and cross-dataset generalization.
comment: Accepted in ICASSP 2026
☆ Nested Slice Sampling: Vectorized Nested Sampling for GPU-Accelerated Inference
Model comparison and calibrated uncertainty quantification often require integrating over parameters, but scalable inference can be challenging for complex, multimodal targets. Nested Sampling is a robust alternative to standard MCMC, yet its typically sequential structure and hard constraints make efficient accelerator implementations difficult. This paper introduces Nested Slice Sampling (NSS), a GPU-friendly, vectorized formulation of Nested Sampling that uses Hit-and-Run Slice Sampling for constrained updates. A tuning analysis yields a simple near-optimal rule for setting the slice width, improving high-dimensional behavior and making per-step compute more predictable for parallel execution. Experiments on challenging synthetic targets, high dimensional Bayesian inference, and Gaussian process hyperparameter marginalization show that NSS maintains accurate evidence estimates and high-quality posterior samples, and is particularly robust on difficult multimodal problems where current state-of-the-art methods such as tempered SMC baselines can struggle. An open-source implementation is released to facilitate adoption and reproducibility.
comment: 54 pages, 11 figures
Graph Attention Network for Node Regression on Random Geometric Graphs with Erdős--Rényi contamination
Graph attention networks (GATs) are widely used and often appear robust to noise in node covariates and edges, yet rigorous statistical guarantees demonstrating a provable advantage of GATs over non-attention graph neural networks~(GNNs) are scarce. We partially address this gap for node regression with graph-based errors-in-variables models under simultaneous covariate and edge corruption: responses are generated from latent node-level covariates, but only noise-perturbed versions of the latent covariates are observed; and the sample graph is a random geometric graph created from the node covariates but contaminated by independent Erdős--Rényi edges. We propose and analyze a carefully designed, task-specific GAT that constructs denoised proxy features for regression. We prove that regressing the response variables on the proxies achieves lower error asymptotically in (a) estimating the regression coefficient compared to the ordinary least squares (OLS) estimator on the noisy node covariates, and (b) predicting the response for an unlabelled node compared to a vanilla graph convolutional network~(GCN) -- under mild growth conditions. Our analysis leverages high-dimensional geometric tail bounds and concentration for neighbourhood counts and sample covariances. We verify our theoretical findings through experiments on synthetically generated data. We also perform experiments on real-world graphs and demonstrate the effectiveness of the attention mechanism in several node regression tasks.
comment: 62 pages, 2 figures, 2 tables
☆ How well do generative models solve inverse problems? A benchmark study
Generative learning generates high dimensional data based on low dimensional conditions, also called prompts. Therefore, generative learning algorithms are eligible for solving (Bayesian) inverse problems. In this article we compare a traditional Bayesian inverse approach based on a forward regression model and a prior sampled with the Markov Chain Monte Carlo method with three state of the art generative learning models, namely conditional Generative Adversarial Networks, Invertible Neural Networks and Conditional Flow Matching. We apply them to a problem of gas turbine combustor design where we map six independent design parameters to three performance labels. We propose several metrics for the evaluation of this inverse design approaches and measure the accuracy of the labels of the generated designs along with the diversity. We also study the performance as a function of the training dataset size. Our benchmark has a clear winner, as Conditional Flow Matching consistently outperforms all competing approaches.
comment: 32 pages, 11 figures, 5 tables
☆ YuriiFormer: A Suite of Nesterov-Accelerated Transformers
We propose a variational framework that interprets transformer layers as iterations of an optimization algorithm acting on token embeddings. In this view, self-attention implements a gradient step of an interaction energy, while MLP layers correspond to gradient updates of a potential energy. Standard GPT-style transformers emerge as vanilla gradient descent on the resulting composite objective, implemented via Lie--Trotter splitting between these two energy functionals. This perspective enables principled architectural design using classical optimization ideas. As a proof of concept, we introduce a Nesterov-style accelerated transformer that preserves the same attention and MLP oracles. The resulting architecture consistently outperforms a nanoGPT baseline on TinyStories and OpenWebText, demonstrating that optimization-theoretic insights can translate into practical gains.
☆ Sequence Diffusion Model for Temporal Link Prediction in Continuous-Time Dynamic Graph
Temporal link prediction in dynamic graphs is a fundamental problem in many real-world systems. Existing temporal graph neural networks mainly focus on learning representations of historical interactions. Despite their strong performance, these models are still purely discriminative, producing point estimates for future links and lacking an explicit mechanism to capture the uncertainty and sequential structure of future temporal interactions. In this paper, we propose SDG, a novel sequence-level diffusion framework that unifies dynamic graph learning with generative denoising. Specifically, SDG injects noise into the entire historical interaction sequence and jointly reconstructs all interaction embeddings through a conditional denoising process, thereby enabling the model to capture more comprehensive interaction distributions. To align the generative process with temporal link prediction, we employ a cross-attention denoising decoder to guide the reconstruction of the destination sequence and optimize the model in an end-to-end manner. Extensive experiments on various temporal graph benchmarks show that SDG consistently achieves state-of-the-art performance in the temporal link prediction task.
☆ Solving Inverse Problems with Flow-based Models via Model Predictive Control
Flow-based generative models provide strong unconditional priors for inverse problems, but guiding their dynamics for conditional generation remains challenging. Recent work casts training-free conditional generation in flow models as an optimal control problem; however, solving the resulting trajectory optimisation is computationally and memory intensive, requiring differentiation through the flow dynamics or adjoint solves. We propose MPC-Flow, a model predictive control framework that formulates inverse problem solving with flow-based generative models as a sequence of control sub-problems, enabling practical optimal control-based guidance at inference time. We provide theoretical guarantees linking MPC-Flow to the underlying optimal control objective and show how different algorithmic choices yield a spectrum of guidance algorithms, including regimes that avoid backpropagation through the generative model trajectory. We evaluate MPC-Flow on benchmark image restoration tasks, spanning linear and non-linear settings such as in-painting, deblurring, and super-resolution, and demonstrate strong performance and scalability to massive state-of-the-art architectures via training-free guidance of FLUX.2 (32B) in a quantised setting on consumer hardware.
☆ Agile Reinforcement Learning through Separable Neural Architecture
Deep reinforcement learning (RL) is increasingly deployed in resource-constrained environments, yet the go-to function approximators - multilayer perceptrons (MLPs) - are often parameter-inefficient due to an imperfect inductive bias for the smooth structure of many value functions. This mismatch can also hinder sample efficiency and slow policy learning in this capacity-limited regime. Although model compression techniques exist, they operate post-hoc and do not improve learning efficiency. Recent spline-based separable architectures - such as Kolmogorov-Arnold Networks (KANs) - have been shown to offer parameter efficiency but are widely reported to exhibit significant computational overhead, especially at scale. In seeking to address these limitations, this work introduces SPAN (SPline-based Adaptive Networks), a novel function approximation approach to RL. SPAN adapts the low rank KHRONOS framework by integrating a learnable preprocessing layer with a separable tensor product B-spline basis. SPAN is evaluated across discrete (PPO) and high-dimensional continuous (SAC) control tasks, as well as offline settings (Minari/D4RL). Empirical results demonstrate that SPAN achieves a 30-50% improvement in sample efficiency and 1.3-9 times higher success rates across benchmarks compared to MLP baselines. Furthermore, SPAN demonstrates superior anytime performance and robustness to hyperparameter variations, suggesting it as a viable, high performance alternative for learning intrinsically efficient policies in resource-limited settings.
☆ Optimal Fair Aggregation of Crowdsourced Noisy Labels using Demographic Parity Constraints
As acquiring reliable ground-truth labels is usually costly, or infeasible, crowdsourcing and aggregation of noisy human annotations is the typical resort. Aggregating subjective labels, though, may amplify individual biases, particularly regarding sensitive features, raising fairness concerns. Nonetheless, fairness in crowdsourced aggregation remains largely unexplored, with no existing convergence guarantees and only limited post-processing approaches for enforcing $\varepsilon$-fairness under demographic parity. We address this gap by analyzing the fairness s of crowdsourced aggregation methods within the $\varepsilon$-fairness framework, for Majority Vote and Optimal Bayesian aggregation. In the small-crowd regime, we derive an upper bound on the fairness gap of Majority Vote in terms of the fairness gaps of the individual annotators. We further show that the fairness gap of the aggregated consensus converges exponentially fast to that of the ground-truth under interpretable conditions. Since ground-truth itself may still be unfair, we generalize a state-of-the-art multiclass fairness post-processing algorithm from the continuous to the discrete setting, which enforces strict demographic parity constraints to any aggregation rule. Experiments on synthetic and real datasets demonstrate the effectiveness of our approach and corroborate the theoretical insights.
☆ Tackling air quality with SAPIENS
Air pollution is a chronic problem in large cities worldwide and awareness is rising as the long-term health implications become clearer. Vehicular traffic has been identified as a major contributor to poor air quality. In a lot of cities the publicly available air quality measurements and forecasts are coarse-grained both in space and time. However, in general, real-time traffic intensity data is openly available in various forms and is fine-grained. In this paper, we present an in-depth study of pollution sensor measurements combined with traffic data from Mexico City. We analyse and model the relationship between traffic intensity and air quality with the aim to provide hyper-local, dynamic air quality forecasts. We developed an innovative method to represent traffic intensities by transforming simple colour-coded traffic maps into concentric ring-based descriptions, enabling improved characterisation of traffic conditions. Using Partial Least Squares Regression, we predict pollution levels based on these newly defined traffic intensities. The model was optimised with various training samples to achieve the best predictive performance and gain insights into the relationship between pollutants and traffic. The workflow we have designed is straightforward and adaptable to other contexts, like other cities beyond the specifics of our dataset.
comment: 24 pages, 13 figures
☆ A Random Matrix Theory of Masked Self-Supervised Regression
In the era of transformer models, masked self-supervised learning (SSL) has become a foundational training paradigm. A defining feature of masked SSL is that training aggregates predictions across many masking patterns, giving rise to a joint, matrix-valued predictor rather than a single vector-valued estimator. This object encodes how coordinates condition on one another and poses new analytical challenges. We develop a precise high-dimensional analysis of masked modeling objectives in the proportional regime where the number of samples scales with the ambient dimension. Our results provide explicit expressions for the generalization error and characterize the spectral structure of the learned predictor, revealing how masked modeling extracts structure from data. For spiked covariance models, we show that the joint predictor undergoes a Baik--Ben Arous--Péché (BBP)-type phase transition, identifying when masked SSL begins to recover latent signals. Finally, we identify structured regimes in which masked self-supervised learning provably outperforms PCA, highlighting potential advantages of SSL objectives over classical unsupervised methods
☆ Learning to Execute Graph Algorithms Exactly with Graph Neural Networks
Understanding what graph neural networks can learn, especially their ability to learn to execute algorithms, remains a central theoretical challenge. In this work, we prove exact learnability results for graph algorithms under bounded-degree and finite-precision constraints. Our approach follows a two-step process. First, we train an ensemble of multi-layer perceptrons (MLPs) to execute the local instructions of a single node. Second, during inference, we use the trained MLP ensemble as the update function within a graph neural network (GNN). Leveraging Neural Tangent Kernel (NTK) theory, we show that local instructions can be learned from a small training set, enabling the complete graph algorithm to be executed during inference without error and with high probability. To illustrate the learning power of our setting, we establish a rigorous learnability result for the LOCAL model of distributed computation. We further demonstrate positive learnability results for widely studied algorithms such as message flooding, breadth-first and depth-first search, and Bellman-Ford.
☆ Scale-Cascaded Diffusion Models for Super-Resolution in Medical Imaging
Diffusion models have been increasingly used as strong generative priors for solving inverse problems such as super-resolution in medical imaging. However, these approaches typically utilize a diffusion prior trained at a single scale, ignoring the hierarchical scale structure of image data. In this work, we propose to decompose images into Laplacian pyramid scales and train separate diffusion priors for each frequency band. We then develop an algorithm to perform super-resolution that utilizes these priors to progressively refine reconstructions across different scales. Evaluated on brain, knee, and prostate MRI data, our approach both improves perceptual quality over baselines and reduces inference time through smaller coarse-scale networks. Our framework unifies multiscale reconstruction and diffusion priors for medical image super-resolution.
comment: Accepted at IEEE International Symposium for Biomedical Imaging (ISBI) 2026
☆ Ensuring Semantics in Weights of Implicit Neural Representations through the Implicit Function Theorem
Weight Space Learning (WSL), which frames neural network weights as a data modality, is an emerging field with potential for tasks like meta-learning or transfer learning. Particularly, Implicit Neural Representations (INRs) provide a convenient testbed, where each set of weights determines the corresponding individual data sample as a mapping from coordinates to contextual values. So far, a precise theoretical explanation for the mechanism of encoding semantics of data into network weights is still missing. In this work, we deploy the Implicit Function Theorem (IFT) to establish a rigorous mapping between the data space and its latent weight representation space. We analyze a framework that maps instance-specific embeddings to INR weights via a shared hypernetwork, achieving performance competitive with existing baselines on downstream classification tasks across 2D and 3D datasets. These findings offer a theoretical lens for future investigations into network weights.
☆ TriSpec: Ternary Speculative Decoding via Lightweight Proxy Verification
Inference efficiency in Large Language Models (LLMs) is fundamentally limited by their serial, autoregressive generation, especially as reasoning becomes a key capability and response sequences grow longer. Speculative decoding (SD) offers a powerful solution, providing significant speed-ups through its lightweight drafting and parallel verification mechanism. While existing work has nearly saturated improvements in draft effectiveness and efficiency, this paper advances SD from a new yet critical perspective: the verification cost. We propose TriSpec, a novel ternary SD framework that, at its core, introduces a lightweight proxy to significantly reduce computational cost by approving easily verifiable draft sequences and engaging the full target model only when encountering uncertain tokens. TriSpec can be integrated with state-of-the-art SD methods like EAGLE-3 to further reduce verification costs, achieving greater acceleration. Extensive experiments on the Qwen3 and DeepSeek-R1-Distill-Qwen/LLaMA families show that TriSpec achieves up to 35\% speedup over standard SD, with up to 50\% fewer target model invocations while maintaining comparable accuracy.
☆ MeshGraphNet-Transformer: Scalable Mesh-based Learned Simulation for Solid Mechanics
We present MeshGraphNet-Transformer (MGN-T), a novel architecture that combines the global modeling capabilities of Transformers with the geometric inductive bias of MeshGraphNets, while preserving a mesh-based graph representation. MGN-T overcomes a key limitation of standard MGN, the inefficient long-range information propagation caused by iterative message passing on large, high-resolution meshes. A physics-attention Transformer serves as a global processor, updating all nodal states simultaneously while explicitly retaining node and edge attributes. By directly capturing long-range physical interactions, MGN-T eliminates the need for deep message-passing stacks or hierarchical, coarsened meshes, enabling efficient learning on high-resolution meshes with varying geometries, topologies, and boundary conditions at an industrial scale. We demonstrate that MGN-T successfully handles industrial-scale meshes for impact dynamics, a setting in which standard MGN fails due message-passing under-reaching. The method accurately models self-contact, plasticity, and multivariate outputs, including internal, phenomenological plastic variables. Moreover, MGN-T outperforms state-of-the-art approaches on classical benchmarks, achieving higher accuracy while maintaining practical efficiency, using only a fraction of the parameters required by competing baselines.
☆ Beyond Fixed Frames: Dynamic Character-Aligned Speech Tokenization
Neural audio codecs are at the core of modern conversational speech technologies, converting continuous speech into sequences of discrete tokens that can be processed by LLMs. However, existing codecs typically operate at fixed frame rates, allocating tokens uniformly in time and producing unnecessarily long sequences. In this work, we introduce DyCAST, a Dynamic Character-Aligned Speech Tokenizer that enables variable-frame-rate tokenization through soft character-level alignment and explicit duration modeling. DyCAST learns to associate tokens with character-level linguistic units during training and supports alignment-free inference with direct control over token durations at decoding time. To improve speech resynthesis quality at low frame rates, we further introduce a retrieval-augmented decoding mechanism that enhances reconstruction fidelity without increasing bitrate. Experiments show that DyCAST achieves competitive speech resynthesis quality and downstream performance while using significantly fewer tokens than fixed-frame-rate codecs.
comment: 18 pages, 3 figures
☆ Names Don't Matter: Symbol-Invariant Transformer for Open-Vocabulary Learning
Current neural architectures lack a principled way to handle interchangeable tokens, i.e., symbols that are semantically equivalent yet distinguishable, such as bound variables. As a result, models trained on fixed vocabularies often struggle to generalize to unseen symbols, even when the underlying semantics remain unchanged. We propose a novel Transformer-based mechanism that is provably invariant to the renaming of interchangeable tokens. Our approach employs parallel embedding streams to isolate the contribution of each interchangeable token in the input, combined with an aggregated attention mechanism that enables structured information sharing across streams. Experimental results confirm the theoretical guarantees of our method and demonstrate substantial performance gains on open-vocabulary tasks that require generalization to novel symbols.
☆ Stochastic Linear Bandits with Parameter Noise
We study the stochastic linear bandits with parameter noise model, in which the reward of action $a$ is $a^\top θ$ where $θ$ is sampled i.i.d. We show a regret upper bound of $\widetilde{O} (\sqrt{d T \log (K/δ) σ^2_{\max})}$ for a horizon $T$, general action set of size $K$ of dimension $d$, and where $σ^2_{\max}$ is the maximal variance of the reward for any action. We further provide a lower bound of $\widetildeΩ (d \sqrt{T σ^2_{\max}})$ which is tight (up to logarithmic factors) whenever $\log (K) \approx d$. For more specific action sets, $\ell_p$ unit balls with $p \leq 2$ and dual norm $q$, we show that the minimax regret is $\widetildeΘ (\sqrt{dT σ^2_q)}$, where $σ^2_q$ is a variance-dependent quantity that is always at most $4$. This is in contrast to the minimax regret attainable for such sets in the classic additive noise model, where the regret is of order $d \sqrt{T}$. Surprisingly, we show that this optimal (up to logarithmic factors) regret bound is attainable using a very simple explore-exploit algorithm.
comment: 8 pages
☆ Probing the Trajectories of Reasoning Traces in Large Language Models
Large language models (LLMs) increasingly solve difficult problems by producing "reasoning traces" before emitting a final response. However, it remains unclear how accuracy and decision commitment evolve along a reasoning trajectory, and whether intermediate trace segments provide answer-relevant information beyond generic length or stylistic effects. Here, we propose a protocol to systematically probe the trajectories of reasoning traces in LLMs by 1) generating a model's reasoning trace, 2) truncating it at fixed token-percentiles, and 3) injecting each partial trace back into the model (or a different model) to measure the induced distribution over answer choices via next-token probabilities. We apply this protocol to the open-source Qwen3-4B/-8B/-14B and gpt-oss-20b/-120b models across the multiple-choice GPQA Diamond and MMLU-Pro benchmarks. We find that accuracy and decision commitment consistently increase as the percentage of provided reasoning tokens grows. These gains are primarily driven by relevant content in the model generation rather than context length or generic "reasoning style" effects. Stronger models often backtrack successfully from incorrect partial traces, but immediate answers often remain anchored in the weaker model's incorrect response. More broadly, we show that trajectory probing provides diagnostics for efficient and safer deployment of reasoning models as the measurements can inform practical trace-handling and monitoring policies that improve reliability without assuming intermediate tokens are inherently faithful explanations.
comment: 33 pages, 20 figures, 4 tables
☆ No More, No Less: Least-Privilege Language Models
Least privilege is a core security principle: grant each request only the minimum access needed to achieve its goal. Deployed language models almost never follow it, instead being exposed through a single API endpoint that serves all users and requests. This gap exists not because least privilege would be unhelpful; deployments would benefit greatly from reducing unnecessary capability exposure. The real obstacle is definitional and mechanistic: what does "access" mean inside a language model, and how can we enforce it without retraining or deploying multiple models? We take inspiration from least privilege in computer systems and define a class of models called least-privilege language models, where privilege is reachable internal computation during the forward pass. In this view, lowering privilege literally shrinks the model's accessible function class, as opposed to denying access via learned policies. We formalize deployment-time control as a monitor-allocator-enforcer stack, separating (i) request-time signals, (ii) a decision rule that allocates privilege, and (iii) an inference-time mechanism that selects privilege. We then propose Nested Least-Privilege Networks, a shape-preserving, rank-indexed intervention that provides a smooth, reversible control knob. We show that this knob yields policy-usable privilege-utility frontiers and enables selective suppression of targeted capabilities with limited collateral degradation across various policies. Most importantly, we argue for a new deployment paradigm that challenges the premise that language models can only be controlled at the output level.
☆ Unsupervised Hierarchical Skill Discovery
We consider the problem of unsupervised skill segmentation and hierarchical structure discovery in reinforcement learning. While recent approaches have sought to segment trajectories into reusable skills or options, most rely on action labels, rewards, or handcrafted annotations, limiting their applicability. We propose a method that segments unlabelled trajectories into skills and induces a hierarchical structure over them using a grammar-based approach. The resulting hierarchy captures both low-level behaviours and their composition into higher-level skills. We evaluate our approach in high-dimensional, pixel-based environments, including Craftax and the full, unmodified version of Minecraft. Using metrics for skill segmentation, reuse, and hierarchy quality, we find that our method consistently produces more structured and semantically meaningful hierarchies than existing baselines. Furthermore, as a proof of concept for utility, we demonstrate that these discovered hierarchies accelerate and stabilise learning on downstream reinforcement learning tasks.
comment: 24 pages, 34 figures. Appendix by Damion Harvey. Damion Harvey is the primary author
☆ SPICE: Submodular Penalized Information-Conflict Selection for Efficient Large Language Model Training
Information-based data selection for instruction tuning is compelling: maximizing the log-determinant of the Fisher information yields a monotone submodular objective, enabling greedy algorithms to achieve a $(1-1/e)$ approximation under a cardinality budget. In practice, however, we identify alleviating gradient conflicts, misalignment between per-sample gradients, is a key factor that slows down the decay of marginal log-determinant information gains, thereby preventing significant loss of information. We formalize this via an $\varepsilon$-decomposition that quantifies the deviation from ideal submodularity as a function of conflict statistics, yielding data-dependent approximation factors that tighten as conflicts diminish. Guided by this analysis, we propose SPICE, a conflict-aware selector that maximizes information while penalizing misalignment, and that supports early stopping and proxy models for efficiency. Empirically, SPICE selects subsets with higher log-determinant information than original criteria, and these informational gains translate into performance improvements: across 8 benchmarks with LLaMA2-7B and Qwen2-7B, SPICE uses only 10% of the data, yet matches or exceeds 6 methods including full-data tuning. This achieves performance improvements with substantially lower training cost.
comment: 39 pages, 9 figures, 15 tables (including appendices)
☆ On Safer Reinforcement Learning Policies for Sedation and Analgesia in Intensive Care
Pain management in intensive care usually involves complex trade-offs between therapeutic goals and patient safety, since both inadequate and excessive treatment may induce serious sequelae. Reinforcement learning can help address this challenge by learning medication dosing policies from retrospective data. However, prior work on sedation and analgesia has optimized for objectives that do not value patient survival while relying on algorithms unsuitable for imperfect information settings. We investigated the risks of these design choices by implementing a deep reinforcement learning framework to suggest hourly medication doses under partial observability. Using data from 47,144 ICU stays in the MIMIC-IV database, we trained policies to prescribe opioids, propofol, benzodiazepines, and dexmedetomidine according to two goals: reduce pain or jointly reduce pain and mortality. We found that, although the two policies were associated with lower pain, actions from the first policy were positively correlated with mortality, while those proposed by the second policy were negatively correlated. This suggests that valuing long-term outcomes could be critical for safer treatment policies, even if a short-term goal remains the primary objective.
comment: Submitted to the 48th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (IEEE EMBC 2026)
☆ Behemoth: Benchmarking Unlearning in LLMs Using Fully Synthetic Data
As artificial neural networks, and specifically large language models, have improved rapidly in capabilities and quality, they have increasingly been deployed in real-world applications, from customer service to Google search, despite the fact that they frequently make factually incorrect or undesirable statements. This trend has inspired practical and academic interest in model editing, that is, in adjusting the weights of the model to modify its likely outputs for queries relating to a specific fact or set of facts. This may be done either to amend a fact or set of facts, for instance, to fix a frequent error in the training data, or to suppress a fact or set of facts entirely, for instance, in case of dangerous knowledge. Multiple methods have been proposed to do such edits. However, at the same time, it has been shown that such model editing can be brittle and incomplete. Moreover the effectiveness of any model editing method necessarily depends on the data on which the model is trained, and, therefore, a good understanding of the interaction of the training data distribution and the way it is stored in the network is necessary and helpful to reliably perform model editing. However, working with large language models trained on real-world data does not allow us to understand this relationship or fully measure the effects of model editing. We therefore propose Behemoth, a fully synthetic data generation framework. To demonstrate the practical insights from the framework, we explore model editing in the context of simple tabular data, demonstrating surprising findings that, in some cases, echo real-world results, for instance, that in some cases restricting the update rank results in a more effective update. The code is available at https://github.com/IST-DASLab/behemoth.git.
☆ Manifold-Aware Perturbations for Constrained Generative Modeling
Generative models have enjoyed widespread success in a variety of applications. However, they encounter inherent mathematical limitations in modeling distributions where samples are constrained by equalities, as is frequently the setting in scientific domains. In this work, we develop a computationally cheap, mathematically justified, and highly flexible distributional modification for combating known pitfalls in equality-constrained generative models. We propose perturbing the data distribution in a constraint-aware way such that the new distribution has support matching the ambient space dimension while still implicitly incorporating underlying manifold geometry. Through theoretical analyses and empirical evidence on several representative tasks, we illustrate that our approach consistently enables data distribution recovery and stable sampling with both diffusion models and normalizing flows.
☆ Compressed BC-LISTA via Low-Rank Convolutional Decomposition
We study Sparse Signal Recovery (SSR) methods for multichannel imaging with compressed {forward and backward} operators that preserve reconstruction accuracy. We propose a Compressed Block-Convolutional (C-BC) measurement model based on a low-rank Convolutional Neural Network (CNN) decomposition that is analytically initialized from a low-rank factorization of physics-derived forward/backward operators in time delay-based measurements. We use Orthogonal Matching Pursuit (OMP) to select a compact set of basis filters from the analytic model and compute linear mixing coefficients to approximate the full model. We consider the Learned Iterative Shrinkage-Thresholding Algorithm (LISTA) network as a representative example for which the C-BC-LISTA extension is presented. In simulated multichannel ultrasound imaging across multiple Signal-to-Noise Ratios (SNRs), C-BC-LISTA requires substantially fewer parameters and smaller model size than other state-of-the-art (SOTA) methods while improving reconstruction accuracy. In ablations over OMP, Singular Value Decomposition (SVD)-based, and random initializations, OMP-initialized structured compression performs best, yielding the most efficient training and the best performance.
comment: Inverse Problems, Model Compression, Compressed Sensing, Deep Unrolling, Computational Imaging
☆ Securing Time in Energy IoT: A Clock-Dynamics-Aware Spatio-Temporal Graph Attention Network for Clock Drift Attacks and Y2K38 Failures
The integrity of time in distributed Internet of Things (IoT) devices is crucial for reliable operation in energy cyber-physical systems, such as smart grids and microgrids. However, IoT systems are vulnerable to clock drift, time-synchronization manipulation, and timestamp discontinuities, such as the Year 2038 (Y2K38) Unix overflow, all of which disrupt temporal ordering. Conventional anomaly-detection models, which assume reliable timestamps, fail to capture temporal inconsistencies. This paper introduces STGAT (Spatio-Temporal Graph Attention Network), a framework that models both temporal distortion and inter-device consistency in energy IoT systems. STGAT combines drift-aware temporal embeddings and temporal self-attention to capture corrupted time evolution at individual devices, and uses graph attention to model spatial propagation of timing errors. A curvature-regularized latent representation geometrically separates normal clock evolution from anomalies caused by drift, synchronization offsets, and overflow events. Experimental results on energy IoT telemetry with controlled timing perturbations show that STGAT achieves 95.7% accuracy, outperforming recurrent, transformer, and graph-based baselines with significant improvements (d > 1.8, p < 0.001). Additionally, STGAT reduces detection delay by 26%, achieving a 2.3-time-step delay while maintaining stable performance under overflow, drift, and physical inconsistencies.
☆ Why GRPO Needs Normalization: A Local-Curvature Perspective on Adaptive Gradients
Reinforcement learning (RL) has become a key driver of language model reasoning. Among RL algorithms, Group Relative Policy Optimization (GRPO) is the de facto standard, avoiding the need for a critic by using per-prompt baselines and variance normalization. Yet why and when this normalization helps remains unclear. In this work, we provide an explanation through the lens of local curvature of the sequence-level policy gradient: standard deviation normalization implements an adaptive gradient. Theoretically, under mild conditions, GRPO enjoys a strictly improved convergence rate over unnormalized REINFORCE, with gains characterized by the average within-prompt reward standard deviation across prompts and iterations. Empirically, our analysis on GSM8K and MATH benchmarks reveals three distinct training phases governed by the interplay between feature orthogonality and reward variance: (I) an early acceleration phase where high variance and orthogonality favor adaptive scaling; (II) a relatively stable transition phase; and (III) a late-stage regime where the loss of orthogonality limits further gains. Together, these results provide a principled account of when std normalization helps in GRPO, and offer broader insights into the design of critic-free RL algorithms.
☆ Machine Learning for Energy-Performance-aware Scheduling
In the post-Dennard era, optimizing embedded systems requires navigating complex trade-offs between energy efficiency and latency. Traditional heuristic tuning is often inefficient in such high-dimensional, non-smooth landscapes. In this work, we propose a Bayesian Optimization framework using Gaussian Processes to automate the search for optimal scheduling configurations on heterogeneous multi-core architectures. We explicitly address the multi-objective nature of the problem by approximating the Pareto Frontier between energy and time. Furthermore, by incorporating Sensitivity Analysis (fANOVA) and comparing different covariance kernels (e.g., Matérn vs. RBF), we provide physical interpretability to the black-box model, revealing the dominant hardware parameters driving system performance.
comment: Zheyuan Hu and Yifei Shi contributed equally to this work
☆ Regularisation in neural networks: a survey and empirical analysis of approaches
Despite huge successes on a wide range of tasks, neural networks are known to sometimes struggle to generalise to unseen data. Many approaches have been proposed over the years to promote the generalisation ability of neural networks, collectively known as regularisation techniques. These are used as common practice under the assumption that any regularisation added to the pipeline would result in a performance improvement. In this study, we investigate whether this assumption holds in practice. First, we provide a broad review of regularisation techniques, including modern theories such as double descent. We propose a taxonomy of methods under four broad categories, namely: (1) data-based strategies, (2) architecture strategies, (3) training strategies, and (4) loss function strategies. Notably, we highlight the contradictions and correspondences between the approaches in these broad classes. Further, we perform an empirical comparison of the various regularisation techniques on classification tasks for ten numerical and image datasets applied to the multi-layer perceptron and convolutional neural network architectures. Results show that the efficacy of regularisation is dataset-dependent. For example, the use of a regularisation term only improved performance on numeric datasets, whereas batch normalisation improved performance on image datasets only. Generalisation is crucial to machine learning; thus, understanding the effects of applying regularisation techniques, and considering the connections between them is essential to the appropriate use of these methods in practice.
comment: 15 pages, 4 figures, 4 tables and for associated to the code, see https://github.com/Christo08/Benchmarks-of-regularisation-techniques.git
☆ Distribution-informed Efficient Conformal Prediction for Full Ranking
Quantifying uncertainty is critical for the safe deployment of ranking models in real-world applications. Recent work offers a rigorous solution using conformal prediction in a full ranking scenario, which aims to construct prediction sets for the absolute ranks of test items based on the relative ranks of calibration items. However, relying on upper bounds of non-conformity scores renders the method overly conservative, resulting in substantially large prediction sets. To address this, we propose Distribution-informed Conformal Ranking (DCR), which produces efficient prediction sets by deriving the exact distribution of non-conformity scores. In particular, we find that the absolute ranks of calibration items follow Negative Hypergeometric distributions, conditional on their relative ranks. DCR thus uses the rank distribution to derive non-conformity score distribution and determine conformal thresholds. We provide theoretical guarantees that DCR achieves improved efficiency over the baseline while ensuring valid coverage under mild assumptions. Extensive experiments demonstrate the superiority of DCR, reducing average prediction set size by up to 36%, while maintaining valid coverage.
comment: 21 pages, 8 figures
☆ To See Far, Look Close: Evolutionary Forecasting for Long-term Time Series
The prevailing Direct Forecasting (DF) paradigm dominates Long-term Time Series Forecasting (LTSF) by forcing models to predict the entire future horizon in a single forward pass. While efficient, this rigid coupling of output and evaluation horizons necessitates computationally prohibitive re-training for every target horizon. In this work, we uncover a counter-intuitive optimization anomaly: models trained on short horizons-when coupled with our proposed Evolutionary Forecasting (EF) paradigm-significantly outperform those trained directly on long horizons. We attribute this success to the mitigation of a fundamental optimization pathology inherent in DF, where conflicting gradients from distant futures cripple the learning of local dynamics. We establish EF as a unified generative framework, proving that DF is merely a degenerate special case of EF. Extensive experiments demonstrate that a singular EF model surpasses task-specific DF ensembles across standard benchmarks and exhibits robust asymptotic stability in extreme extrapolation. This work propels a paradigm shift in LTSF: moving from passive Static Mapping to autonomous Evolutionary Reasoning.
☆ CATTO: Balancing Preferences and Confidence in Language Models
Large language models (LLMs) often make accurate next token predictions but their confidence in these predictions can be poorly calibrated: high-confidence predictions are frequently wrong, and low-confidence predictions may be correct. This miscalibration is exacerbated by preference-based alignment methods breaking the link between predictive probability and correctness. We introduce a Calibration Aware Token-level Training Objective (CATTO), a calibration-aware objective that aligns predicted confidence with empirical prediction correctness, which can be combined with the original preference optimization objectives. Empirically, CATTO reduces Expected Calibration Error (ECE) by 2.22%-7.61% in-distribution and 1.46%-10.44% out-of-distribution compared to direct preference optimization (DPO), and by 0.22%-1.24% in-distribution and 1.23%-5.07% out-of-distribution compared to the strongest DPO baseline. This improvement in confidence does not come at a cost of losing task accuracy, where CATTO maintains or slightly improves multiple-choice question-answering accuracy on five datasets. We also introduce Confidence@k, a test-time scaling mechanism leveraging calibrated token probabilities for Bayes-optimal selection of output tokens.
☆ Safer Policy Compliance with Dynamic Epistemic Fallback
Humans develop a series of cognitive defenses, known as epistemic vigilance, to combat risks of deception and misinformation from everyday interactions. Developing safeguards for LLMs inspired by this mechanism might be particularly helpful for their application in high-stakes tasks such as automating compliance with data privacy laws. In this paper, we introduce Dynamic Epistemic Fallback (DEF), a dynamic safety protocol for improving an LLM's inference-time defenses against deceptive attacks that make use of maliciously perturbed policy texts. Through various levels of one-sentence textual cues, DEF nudges LLMs to flag inconsistencies, refuse compliance, and fallback to their parametric knowledge upon encountering perturbed policy texts. Using globally recognized legal policies such as HIPAA and GDPR, our empirical evaluations report that DEF effectively improves the capability of frontier LLMs to detect and refuse perturbed versions of policies, with DeepSeek-R1 achieving a 100% detection rate in one setting. This work encourages further efforts to develop cognitively inspired defenses to improve LLM robustness against forms of harm and deception that exploit legal artifacts.
☆ RN-D: Discretized Categorical Actors with Regularized Networks for On-Policy Reinforcement Learning
On-policy deep reinforcement learning remains a dominant paradigm for continuous control, yet standard implementations rely on Gaussian actors and relatively shallow MLP policies, often leading to brittle optimization when gradients are noisy and policy updates must be conservative. In this paper, we revisit policy representation as a first-class design choice for on-policy optimization. We study discretized categorical actors that represent each action dimension with a distribution over bins, yielding a policy objective that resembles a cross-entropy loss. Building on architectural advances from supervised learning, we further propose regularized actor networks, while keeping critic design fixed. Our results show that simply replacing the standard actor network with our discretized regularized actor yields consistent gains and achieve the state-of-the-art performance across diverse continuous-control benchmarks.
☆ SplineFlow: Flow Matching for Dynamical Systems with B-Spline Interpolants
Flow matching is a scalable generative framework for characterizing continuous normalizing flows with wide-range applications. However, current state-of-the-art methods are not well-suited for modeling dynamical systems, as they construct conditional paths using linear interpolants that may not capture the underlying state evolution, especially when learning higher-order dynamics from irregular sampled observations. Constructing unified paths that satisfy multi-marginal constraints across observations is challenging, since naïve higher-order polynomials tend to be unstable and oscillatory. We introduce SplineFlow, a theoretically grounded flow matching algorithm that jointly models conditional paths across observations via B-spline interpolation. Specifically, SplineFlow exploits the smoothness and stability of B-spline bases to learn the complex underlying dynamics in a structured manner while ensuring the multi-marginal requirements are met. Comprehensive experiments across various deterministic and stochastic dynamical systems of varying complexity, as well as on cellular trajectory inference tasks, demonstrate the strong improvement of SplineFlow over existing baselines. Our code is available at: https://github.com/santanurathod/SplineFlow.
comment: 36 pages, 35 tables, 22 figures
☆ ExplainerPFN: Towards tabular foundation models for model-free zero-shot feature importance estimations
Computing the importance of features in supervised classification tasks is critical for model interpretability. Shapley values are a widely used approach for explaining model predictions, but require direct access to the underlying model, an assumption frequently violated in real-world deployments. Further, even when model access is possible, their exact computation may be prohibitively expensive. We investigate whether meaningful Shapley value estimations can be obtained in a zero-shot setting, using only the input data distribution and no evaluations of the target model. To this end, we introduce ExplainerPFN, a tabular foundation model built on TabPFN that is pretrained on synthetic datasets generated from random structural causal models and supervised using exact or near-exact Shapley values. Once trained, ExplainerPFN predicts feature attributions for unseen tabular datasets without model access, gradients, or example explanations. Our contributions are fourfold: (1) we show that few-shot learning-based explanations can achieve high fidelity to SHAP values with as few as two reference observations; (2) we propose ExplainerPFN, the first zero-shot method for estimating Shapley values without access to the underlying model or reference explanations; (3) we provide an open-source implementation of ExplainerPFN, including the full training pipeline and synthetic data generator; and (4) through extensive experiments on real and synthetic datasets, we show that ExplainerPFN achieves performance competitive with few-shot surrogate explainers that rely on 2-10 SHAP examples.
comment: 18 pages, 7 figures
☆ On the Impact of Code Comments for Automated Bug-Fixing: An Empirical Study
Large Language Models (LLMs) are increasingly relevant in Software Engineering research and practice, with Automated Bug Fixing (ABF) being one of their key applications. ABF involves transforming a buggy method into its fixed equivalent. A common preprocessing step in ABF involves removing comments from code prior to training. However, we hypothesize that comments may play a critical role in fixing certain types of bugs by providing valuable design and implementation insights. In this study, we investigate how the presence or absence of comments, both during training and at inference time, impacts the bug-fixing capabilities of LLMs. We conduct an empirical evaluation comparing two model families, each evaluated under all combinations of training and inference conditions (with and without comments), and thereby revisiting the common practice of removing comments during training. To address the limited availability of comments in state-of-the-art datasets, we use an LLM to automatically generate comments for methods lacking them. Our findings show that comments improve ABF accuracy by up to threefold when present in both phases, while training with comments does not degrade performance when instances lack them. Additionally, an interpretability analysis identifies that comments detailing method implementation are particularly effective in aiding LLMs to fix bugs accurately.
comment: Accepted at the 34th IEEE/ACM International Conference on Program Comprehension (ICPC 2026)
☆ From Absolute to Relative: Rethinking Reward Shaping in Group-Based Reinforcement Learning
Reinforcement learning has become a cornerstone for enhancing the reasoning capabilities of Large Language Models, where group-based approaches such as GRPO have emerged as efficient paradigms that optimize policies by leveraging intra-group performance differences. However, these methods typically rely on absolute numerical rewards, introducing intrinsic limitations. In verifiable tasks, identical group evaluations often result in sparse supervision, while in open-ended scenarios, the score range instability of reward models undermines advantage estimation based on group means. To address these limitations, we propose Reinforcement Learning with Relative Rewards (RLRR), a framework that shifts reward shaping from absolute scoring to relative ranking. Complementing this framework, we introduce the Ranking Reward Model, a listwise preference model tailored for group-based optimization to directly generate relative rankings. By transforming raw evaluations into robust relative signals, RLRR effectively mitigates signal sparsity and reward instability. Experimental results demonstrate that RLRR yields consistent performance improvements over standard group-based baselines across reasoning benchmarks and open-ended generation tasks.
☆ Adaptive Edge Learning for Density-Aware Graph Generation
Generating realistic graph-structured data is challenging due to discrete structures, variable sizes, and class-specific connectivity patterns that resist conventional generative modelling. While recent graph generation methods employ generative adversarial network (GAN) frameworks to handle permutation invariance and irregular topologies, they typically rely on random edge sampling with fixed probabilities, limiting their capacity to capture complex structural dependencies between nodes. We propose a density-aware conditional graph generation framework using Wasserstein GANs (WGAN) that replaces random sampling with a learnable distance-based edge predictor. Our approach embeds nodes into a latent space where proximity correlates with edge likelihood, enabling the generator to learn meaningful connectivity patterns. A differentiable edge predictor determines pairwise relationships directly from node embeddings, while a density-aware selection mechanism adaptively controls edge density to match class-specific sparsity distributions observed in real graphs. We train the model using a WGAN with gradient penalty, employing a GCN-based critic to ensure generated graphs exhibit realistic topology and align with target class distributions. Experiments on benchmark datasets demonstrate that our method produces graphs with superior structural coherence and class-consistent connectivity compared to existing baselines. The learned edge predictor captures complex relational patterns beyond simple heuristics, generating graphs whose density and topology closely match real structural distributions. Our results show improved training stability and controllable synthesis, making the framework effective for realistic graph generation and data augmentation. Source code is publicly available at https://github.com/ava-12/Density_Aware_WGAN.git.
comment: Accepted at the 39th Canadian Conference on Artificial Intelligence
☆ Avoiding Premature Collapse: Adaptive Annealing for Entropy-Regularized Structural Inference
Differentiable matching layers, often implemented via entropy-regularized Optimal Transport, serve as a critical approximate inference mechanism in structural prediction. However, recovering discrete permutations via annealing $ε\to 0$ is notoriously unstable. We identify a fundamental mechanism for this failure: \textbf{Premature Mode Collapse}. By analyzing the non-normal dynamics of the Sinkhorn fixed-point map, we reveal a theoretical \textbf{thermodynamic speed limit}. Under standard exponential cooling, the shift in the target posterior ($O(1)$) outpaces the contraction rate of the inference operator, which degrades as $O(1/ε)$. This mismatch inevitably forces the inference trajectory into spurious local basins. To address this, we propose \textbf{Efficient PH-ASC}, an adaptive scheduling algorithm that monitors the stability of the inference process. By enforcing a linear stability law, we decouple expensive spectral diagnostics from the training loop, reducing overhead from $O(N^3)$ to amortized $O(1)$. Our implementation and interactive demo are available at https://github.com/xxx0438/torch-sinkhorn-asc and https://huggingface.co/spaces/leon0923/torch-sinkhorn-asc-demo. bounded away from zero in generic training dynamics unless the feature extractor converges unrealistically fast.
☆ Asymptotic Theory of Iterated Empirical Risk Minimization, with Applications to Active Learning
We study a class of iterated empirical risk minimization (ERM) procedures in which two successive ERMs are performed on the same dataset, and the predictions of the first estimator enter as an argument in the loss function of the second. This setting, which arises naturally in active learning and reweighting schemes, introduces intricate statistical dependencies across samples and fundamentally distinguishes the problem from classical single-stage ERM analyses. For linear models trained with a broad class of convex losses on Gaussian mixture data, we derive a sharp asymptotic characterization of the test error in the high-dimensional regime where the sample size and ambient dimension scale proportionally. Our results provide explicit, fully asymptotic predictions for the performance of the second-stage estimator despite the reuse of data and the presence of prediction-dependent losses. We apply this theory to revisit a well-studied pool-based active learning problem, removing oracle and sample-splitting assumptions made in prior work. We uncover a fundamental tradeoff in how the labeling budget should be allocated across stages, and demonstrate a double-descent behavior of the test error driven purely by data selection, rather than model size or sample count.
☆ Neural Backward Filtering Forward Guiding
Inference in non-linear continuous stochastic processes on trees is challenging, particularly when observations are sparse (leaf-only) and the topology is complex. Exact smoothing via Doob's $h$-transform is intractable for general non-linear dynamics, while particle-based methods degrade in high dimensions. We propose Neural Backward Filtering Forward Guiding (NBFFG), a unified framework for both discrete transitions and continuous diffusions. Our method constructs a variational posterior by leveraging an auxiliary linear-Gaussian process. This auxiliary process yields a closed-form backward filter that serves as a ``guide'', steering the generative path toward high-likelihood regions. We then learn a neural residual--parameterized as a normalizing flow or a controlled SDE--to capture the non-linear discrepancies. This formulation allows for an unbiased path-wise subsampling scheme, reducing the training complexity from tree-size dependent to path-length dependent. Empirical results show that NBFFG outperforms baselines on synthetic benchmarks, and we demonstrate the method on a high-dimensional inference task in phylogenetic analysis with reconstruction of ancestral butterfly wing shapes.
☆ Divide-and-Conquer CoT: RL for Reducing Latency via Parallel Reasoning
Long chain-of-thought reasoning (Long CoT) is now fundamental to state-of-the-art LLMs, especially in mathematical reasoning. However, LLM generation is highly sequential, and long CoTs lead to a high latency. We propose to train Divide-and-Conquer CoT (DC-CoT) to reduce the latency. With DC-CoT, the model can act as a director that identifies distinct subtasks that can be performed in parallel in its reasoning process, and then spawns workers to execute the subtasks. Our goal is to achieve high accuracy, with a low longest path length, which is a theoretical measure of the latency needed for the response. We start with a long CoT base model (DeepScaleR-1.5B-Preview), and first use SFT with a small curated demonstration set to initialize its ability to spawn workers in a certain format. Because SFT degrades the accuracy significantly, we design a multi-stage RL algorithm, with various data filtering strategies, to recover the accuracy while decreasing the longest path length. Across several benchmarks including AIME 2024 and HMMT 2025, DC-CoT achieves similar accuracy as DeepScaleR-1.5B-Preview while decreasing longest path length by 35-40%. Our code, SFT dataset and models are publicly available at https://github.com/amahankali10/DC_CoT_RL_for_Low_Latency_CoT_with_Parallel_Reasoning.
comment: 47 pages, 13 figures
☆ Causal Characterization of Measurement and Mechanistic Anomalies
Root cause analysis of anomalies aims to identify those features that cause the deviation from the normal process. Existing methods ignore, however, that anomalies can arise through two fundamentally different processes: measurement errors, where data was generated normally but one or more values were recorded incorrectly, and mechanism shifts, where the causal process generating the data changed. While measurement errors can often be safely corrected, mechanistic anomalies require careful consideration. We define a causal model that explicitly captures both types by treating outliers as latent interventions on latent ("true") and observed ("measured") variables. We show that they are identifiable, and propose a maximum likelihood estimation approach to put this to practice. Experiments show that our method matches state-of-the-art performance in root cause localization, while it additionally enables accurate classification of anomaly types, and remains robust even when the causal DAG is unknown.
☆ Mem-T: Densifying Rewards for Long-Horizon Memory Agents
Memory agents, which depart from predefined memory-processing pipelines by endogenously managing the processing, storage, and retrieval of memories, have garnered increasing attention for their autonomy and adaptability. However, existing training paradigms remain constrained: agents often traverse long-horizon sequences of memory operations before receiving sparse and delayed rewards, which hinders truly end-to-end optimization of memory management policies. To address this limitation, we introduce Mem-T, an autonomous memory agent that interfaces with a lightweight hierarchical memory database to perform dynamic updates and multi-turn retrieval over streaming inputs. To effectively train long-horizon memory management capabilities, we further propose MoT-GRPO, a tree-guided reinforcement learning framework that transforms sparse terminal feedback into dense, step-wise supervision via memory operation tree backpropagation and hindsight credit assignment, thereby enabling the joint optimization of memory construction and retrieval. Extensive experiments demonstrate that Mem-T is (1) high-performing, surpassing frameworks such as A-Mem and Mem0 by up to $14.92\%$, and (2) economical, operating on a favorable accuracy-efficiency Pareto frontier and reducing inference tokens per query by $\sim24.45\%$ relative to GAM without sacrificing performance.
☆ Leveraging Convolutional Sparse Autoencoders for Robust Movement Classification from Low-Density sEMG
Reliable control of myoelectric prostheses is often hindered by high inter-subject variability and the clinical impracticality of high-density sensor arrays. This study proposes a deep learning framework for accurate gesture recognition using only two surface electromyography (sEMG) channels. The method employs a Convolutional Sparse Autoencoder (CSAE) to extract temporal feature representations directly from raw signals, eliminating the need for heuristic feature engineering. On a 6-class gesture set, our model achieved a multi-subject F1-score of 94.3% $\pm$ 0.3%. To address subject-specific differences, we present a few-shot transfer learning protocol that improved performance on unseen subjects from a baseline of 35.1% $\pm$ 3.1% to 92.3% $\pm$ 0.9% with minimal calibration data. Furthermore, the system supports functional extensibility through an incremental learning strategy, allowing for expansion to a 10-class set with a 90.0% $\pm$ 0.2% F1-score without full model retraining. By combining high precision with minimal computational and sensor overhead, this framework provides a scalable and efficient approach for the next generation of affordable and adaptive prosthetic systems.
☆ Automatic Constraint Policy Optimization based on Continuous Constraint Interpolation Framework for Offline Reinforcement Learning
Offline Reinforcement Learning (RL) relies on policy constraints to mitigate extrapolation error, where both the constraint form and constraint strength critically shape performance. However, most existing methods commit to a single constraint family: weighted behavior cloning, density regularization, or support constraints, without a unified principle that explains their connections or trade-offs. In this work, we propose Continuous Constraint Interpolation (CCI), a unified optimization framework in which these three constraint families arise as special cases along a common constraint spectrum. The CCI framework introduces a single interpolation parameter that enables smooth transitions and principled combinations across constraint types. Building on CCI, we develop Automatic Constraint Policy Optimization (ACPO), a practical primal--dual algorithm that adapts the interpolation parameter via a Lagrangian dual update. Moreover, we establish a maximum-entropy performance difference lemma and derive performance lower bounds for both the closed-form optimal policy and its parametric projection. Experiments on D4RL and NeoRL2 demonstrate robust gains across diverse domains, achieving state-of-the-art performance overall.
☆ Mano: Restriking Manifold Optimization for LLM Training
While large language models (LLMs) have emerged as a significant advancement in artificial intelligence, the hardware and computational costs for training LLMs are also significantly burdensome. Among the state-of-the-art optimizers, AdamW relies on diagonal curvature estimates and ignores structural properties, while Muon applies global spectral normalization at the expense of losing curvature information. In this study, we restriked manifold optimization methods for training LLMs, which may address both optimizers' limitations, while conventional manifold optimization methods have been largely overlooked due to the poor performance in large-scale model optimization. By innovatively projecting the momentum onto the tangent space of model parameters and constraining it on a rotational Oblique manifold, we propose a novel, powerful, and efficient optimizer **Mano** that is the first to bridge the performance gap between manifold optimization and modern optimizers. Extensive experiments on the LLaMA and Qwen3 models demonstrate that Mano consistently and significantly outperforms AdamW and Muon even with less memory consumption and computational complexity, respectively, suggesting an expanded Pareto frontier in terms of space and time efficiency.
☆ Value-at-Risk Constrained Policy Optimization
We introduce the Value-at-Risk Constrained Policy Optimization algorithm (VaR-CPO), a sample efficient and conservative method designed to optimize Value-at-Risk (VaR) constraints directly. Empirically, we demonstrate that VaR-CPO is capable of safe exploration, achieving zero constraint violations during training in feasible environments, a critical property that baseline methods fail to uphold. To overcome the inherent non-differentiability of the VaR constraint, we employ the one-sided Chebyshev inequality to obtain a tractable surrogate based on the first two moments of the cost return. Additionally, by extending the trust-region framework of the Constrained Policy Optimization (CPO) method, we provide rigorous worst-case bounds for both policy improvement and constraint violation during the training process.
☆ dgMARK: Decoding-Guided Watermarking for Diffusion Language Models
We propose dgMARK, a decoding-guided watermarking method for discrete diffusion language models (dLLMs). Unlike autoregressive models, dLLMs can generate tokens in arbitrary order. While an ideal conditional predictor would be invariant to this order, practical dLLMs exhibit strong sensitivity to the unmasking order, creating a new channel for watermarking. dgMARK steers the unmasking order toward positions whose high-reward candidate tokens satisfy a simple parity constraint induced by a binary hash, without explicitly reweighting the model's learned probabilities. The method is plug-and-play with common decoding strategies (e.g., confidence, entropy, and margin-based ordering) and can be strengthened with a one-step lookahead variant. Watermarks are detected via elevated parity-matching statistics, and a sliding-window detector ensures robustness under post-editing operations including insertion, deletion, substitution, and paraphrasing.
comment: Project page: https://dgmark-watermarking.github.io
☆ PIDSMaker: Building and Evaluating Provenance-based Intrusion Detection Systems
Recent provenance-based intrusion detection systems (PIDSs) have demonstrated strong potential for detecting advanced persistent threats (APTs) by applying machine learning to system provenance graphs. However, evaluating and comparing PIDSs remains difficult: prior work uses inconsistent preprocessing pipelines, non-standard dataset splits, and incompatible ground-truth labeling and metrics. These discrepancies undermine reproducibility, impede fair comparison, and impose substantial re-implementation overhead on researchers. We present PIDSMaker, an open-source framework for developing and evaluating PIDSs under consistent protocols. PIDSMaker consolidates eight state-of-the-art systems into a modular, extensible architecture with standardized preprocessing and ground-truth labels, enabling consistent experiments and apples-to-apples comparisons. A YAML-based configuration interface supports rapid prototyping by composing components across systems without code changes. PIDSMaker also includes utilities for ablation studies, hyperparameter tuning, multi-run instability measurement, and visualization, addressing methodological gaps identified in prior work. We demonstrate PIDSMaker through concrete use cases and release it with preprocessed datasets and labels to support shared evaluation for the PIDS community.
☆ Learnable Permutation for Structured Sparsity on Transformer Models
Structured sparsity has emerged as a popular model pruning technique, widely adopted in various architectures, including CNNs, Transformer models, and especially large language models (LLMs) in recent years. A promising direction to further improve post-pruning performance is weight permutation, which reorders model weights into patterns more amenable to pruning. However, the exponential growth of the permutation search space with the scale of Transformer architectures forces most methods to rely on greedy or heuristic algorithms, limiting the effectiveness of reordering. In this work, we propose a novel end-to-end learnable permutation framework. Our method introduces a learnable permutation cost matrix to quantify the cost of swapping any two input channels of a given weight matrix, a differentiable bipartite matching solver to obtain the optimal binary permutation matrix given a cost matrix, and a sparsity optimization loss function to directly optimize the permutation operator. We extensively validate our approach on vision and language Transformers, demonstrating that our method achieves state-of-the-art permutation results for structured sparsity.
☆ Stabilizing the Q-Gradient Field for Policy Smoothness in Actor-Critic
Policies learned via continuous actor-critic methods often exhibit erratic, high-frequency oscillations, making them unsuitable for physical deployment. Current approaches attempt to enforce smoothness by directly regularizing the policy's output. We argue that this approach treats the symptom rather than the cause. In this work, we theoretically establish that policy non-smoothness is fundamentally governed by the differential geometry of the critic. By applying implicit differentiation to the actor-critic objective, we prove that the sensitivity of the optimal policy is bounded by the ratio of the Q-function's mixed-partial derivative (noise sensitivity) to its action-space curvature (signal distinctness). To empirically validate this theoretical insight, we introduce PAVE (Policy-Aware Value-field Equalization), a critic-centric regularization framework that treats the critic as a scalar field and stabilizes its induced action-gradient field. PAVE rectifies the learning signal by minimizing the Q-gradient volatility while preserving local curvature. Experimental results demonstrate that PAVE achieves smoothness and robustness comparable to policy-side smoothness regularization methods, while maintaining competitive task performance, without modifying the actor.
☆ Improved Algorithms for Nash Welfare in Linear Bandits
Nash regret has recently emerged as a principled fairness-aware performance metric for stochastic multi-armed bandits, motivated by the Nash Social Welfare objective. Although this notion has been extended to linear bandits, existing results suffer from suboptimality in ambient dimension $d$, stemming from proof techniques that rely on restrictive concentration inequalities. In this work, we resolve this open problem by introducing new analytical tools that yield an order-optimal Nash regret bound in linear bandits. Beyond Nash regret, we initiate the study of $p$-means regret in linear bandits, a unifying framework that interpolates between fairness and utility objectives and strictly generalizes Nash regret. We propose a generic algorithmic framework, FairLinBandit, that works as a meta-algorithm on top of any linear bandit strategy. We instantiate this framework using two bandit algorithms: Phased Elimination and Upper Confidence Bound, and prove that both achieve sublinear $p$-means regret for the entire range of $p$. Extensive experiments on linear bandit instances generated from real-world datasets demonstrate that our methods consistently outperform the existing state-of-the-art baseline.
☆ OneFlowSBI: One Model, Many Queries for Simulation-Based Inference
We introduce \textit{OneFlowSBI}, a unified framework for simulation-based inference that learns a single flow-matching generative model over the joint distribution of parameters and observations. Leveraging a query-aware masking distribution during training, the same model supports multiple inference tasks, including posterior sampling, likelihood estimation, and arbitrary conditional distributions, without task-specific retraining. We evaluate \textit{OneFlowSBI} on ten benchmark inference problems and two high-dimensional real-world inverse problems across multiple simulation budgets. \textit{OneFlowSBI} is shown to deliver competitive performance against state-of-the-art generalized inference solvers and specialized posterior estimators, while enabling efficient sampling with few ODE integration steps and remaining robust under noisy and partially observed data.
☆ Perplexity Cannot Always Tell Right from Wrong
Perplexity -- a function measuring a model's overall level of "surprise" when encountering a particular output -- has gained significant traction in recent years, both as a loss function and as a simple-to-compute metric of model quality. Prior studies have pointed out several limitations of perplexity, often from an empirical manner. Here we leverage recent results on Transformer continuity to show in a rigorous manner how perplexity may be an unsuitable metric for model selection. Specifically, we prove that, if there is any sequence that a compact decoder-only Transformer model predicts accurately and confidently -- a necessary pre-requisite for strong generalisation -- it must imply existence of another sequence with very low perplexity, but not predicted correctly by that same model. Further, by analytically studying iso-perplexity plots, we find that perplexity will not always select for the more accurate model -- rather, any increase in model confidence must be accompanied by a commensurate rise in accuracy for the new model to be selected.
comment: 11 pages, 4 figures
☆ Relaxing Positional Alignment in Masked Diffusion Language Models
Masked diffusion language models (MDLMs) have emerged as a promising alternative to dominant autoregressive approaches. Although they achieve competitive performance on several tasks, a substantial gap remains in open-ended text generation. We hypothesize that one cause of this gap is that strict positional prediction makes MDLM decoding highly sensitive to token misalignment, and we show through controlled interventions that a one-position shift can severely disrupt semantics. This observation suggests that enforcing strict positional supervision during training is misaligned with the irreversible denoising dynamics of MDLM decoding. Motivated by this mismatch, we adopt an alignment-flexible supervision strategy during fine-tuning. Specifically, we introduce a special token via the connectionist temporal classification objective. We apply this approach to the widely used MDLM model and conduct experiments on five open-ended text generation benchmarks. Our method consistently outperforms the original model and improves robustness to positional shifts, indicating that relaxing strict positional supervision is an important factor in improving generation quality in MDLMs.
☆ From Data Leak to Secret Misses: The Impact of Data Leakage on Secret Detection Models
Machine learning models are increasingly used for software security tasks. These models are commonly trained and evaluated on large Internet-derived datasets, which often contain duplicated or highly similar samples. When such samples are split across training and test sets, data leakage may occur, allowing models to memorize patterns instead of learning to generalize. We investigate duplication in a widely used benchmark dataset of hard coded secrets and show how data leakage can substantially inflate the reported performance of AI-based secret detectors, resulting in a misleading picture of their real-world effectiveness.
☆ Environment-Conditioned Tail Reweighting for Total Variation Invariant Risk Minimization
Out-of-distribution (OOD) generalization remains challenging when models simultaneously encounter correlation shifts across environments and diversity shifts driven by rare or hard samples. Existing invariant risk minimization (IRM) methods primarily address spurious correlations at the environment level, but often overlook sample-level heterogeneity within environments, which can critically impact OOD performance. In this work, we propose \emph{Environment-Conditioned Tail Reweighting for Total Variation Invariant Risk Minimization} (ECTR), a unified framework that augments TV-based invariant learning with environment-conditioned tail reweighting to jointly address both types of distribution shift. By integrating environment-level invariance with within-environment robustness, the proposed approach makes these two mechanisms complementary under mixed distribution shifts. We further extend the framework to scenarios without explicit environment annotations by inferring latent environments through a minimax formulation. Experiments across regression, tabular, time-series, and image classification benchmarks under mixed distribution shifts demonstrate consistent improvements in both worst-environment and average OOD performance.
comment: 8 pages
☆ Scalable Topology-Preserving Graph Coarsening with Graph Collapse
Graph coarsening reduces the size of a graph while preserving certain properties. Most existing methods preserve either spectral or spatial characteristics. Recent research has shown that preserving topological features helps maintain the predictive performance of graph neural networks (GNNs) trained on the coarsened graph but suffers from exponential time complexity. To address these problems, we propose Scalable Topology-Preserving Graph Coarsening (STPGC) by introducing the concepts of graph strong collapse and graph edge collapse extended from algebraic topology. STPGC comprises three new algorithms, GStrongCollapse, GEdgeCollapse, and NeighborhoodConing based on these two concepts, which eliminate dominated nodes and edges while rigorously preserving topological features. We further prove that STPGC preserves the GNN receptive field and develop approximate algorithms to accelerate GNN training. Experiments on node classification with GNNs demonstrate the efficiency and effectiveness of STPGC.
☆ DC-LA: Difference-of-Convex Langevin Algorithm
We study a sampling problem whose target distribution is $π\propto \exp(-f-r)$ where the data fidelity term $f$ is Lipschitz smooth while the regularizer term $r=r_1-r_2$ is a non-smooth difference-of-convex (DC) function, i.e., $r_1,r_2$ are convex. By leveraging the DC structure of $r$, we can smooth out $r$ by applying Moreau envelopes to $r_1$ and $r_2$ separately. In line of DC programming, we then redistribute the concave part of the regularizer to the data fidelity and study its corresponding proximal Langevin algorithm (termed DC-LA). We establish convergence of DC-LA to the target distribution $π$, up to discretization and smoothing errors, in the $q$-Wasserstein distance for all $q \in \mathbb{N}^*$, under the assumption that $V$ is distant dissipative. Our results improve previous work on non-log-concave sampling in terms of a more general framework and assumptions. Numerical experiments show that DC-LA produces accurate distributions in synthetic settings and reliably provides uncertainty quantification in a real-world Computed Tomography application.
☆ MTDrive: Multi-turn Interactive Reinforcement Learning for Autonomous Driving
Trajectory planning is a core task in autonomous driving, requiring the prediction of safe and comfortable paths across diverse scenarios. Integrating Multi-modal Large Language Models (MLLMs) with Reinforcement Learning (RL) has shown promise in addressing "long-tail" scenarios. However, existing methods are constrained to single-turn reasoning, limiting their ability to handle complex tasks requiring iterative refinement. To overcome this limitation, we present MTDrive, a multi-turn framework that enables MLLMs to iteratively refine trajectories based on environmental feedback. MTDrive introduces Multi-Turn Group Relative Policy Optimization (mtGRPO), which mitigates reward sparsity by computing relative advantages across turns. We further construct an interactive trajectory understanding dataset from closed-loop simulation to support multi-turn training. Experiments on the NAVSIM benchmark demonstrate superior performance compared to existing methods, validating the effectiveness of our multi-turn reasoning paradigm. Additionally, we implement system-level optimizations to reduce data transfer overhead caused by high-resolution images and multi-turn sequences, achieving 2.5x training throughput. Our data, models, and code will be made available soon.
LLMs Explain't: A Post-Mortem on Semantic Interpretability in Transformer Models
Large Language Models (LLMs) are becoming increasingly popular in pervasive computing due to their versatility and strong performance. However, despite their ubiquitous use, the exact mechanisms underlying their outstanding performance remain unclear. Different methods for LLM explainability exist, and many are, as a method, not fully understood themselves. We started with the question of how linguistic abstraction emerges in LLMs, aiming to detect it across different LLM modules (attention heads and input embeddings). For this, we used methods well-established in the literature: (1) probing for token-level relational structures, and (2) feature-mapping using embeddings as carriers of human-interpretable properties. Both attempts failed for different methodological reasons: Attention-based explanations collapsed once we tested the core assumption that later-layer representations still correspond to tokens. Property-inference methods applied to embeddings also failed because their high predictive scores were driven by methodological artifacts and dataset structure rather than meaningful semantic knowledge. These failures matter because both techniques are widely treated as evidence for what LLMs supposedly understand, yet our results show such conclusions are unwarranted. These limitations are particularly relevant in pervasive and distributed computing settings where LLMs are deployed as system components and interpretability methods are relied upon for debugging, compression, and explaining models.
☆ BEAR: Towards Beam-Search-Aware Optimization for Recommendation with Large Language Models
Recent years have witnessed a rapid surge in research leveraging Large Language Models (LLMs) for recommendation. These methods typically employ supervised fine-tuning (SFT) to adapt LLMs to recommendation scenarios, and utilize beam search during inference to efficiently retrieve $B$ top-ranked recommended items. However, we identify a critical training-inference inconsistency: while SFT optimizes the overall probability of positive items, it does not guarantee that such items will be retrieved by beam search even if they possess high overall probabilities. Due to the greedy pruning mechanism, beam search can prematurely discard a positive item once its prefix probability is insufficient. To address this inconsistency, we propose BEAR (Beam-SEarch-Aware Regularization), a novel fine-tuning objective that explicitly accounts for beam search behavior during training. Rather than directly simulating beam search for each instance during training, which is computationally prohibitive, BEAR enforces a relaxed necessary condition: each token in a positive item must rank within the top-$B$ candidate tokens at each decoding step. This objective effectively mitigates the risk of incorrect pruning while incurring negligible computational overhead compared to standard SFT. Extensive experiments across four real-world datasets demonstrate that BEAR significantly outperforms strong baselines. Code will be released upon acceptance.
☆ Evaluating Large Language Models for Security Bug Report Prediction
Early detection of security bug reports (SBRs) is critical for timely vulnerability mitigation. We present an evaluation of prompt-based engineering and fine-tuning approaches for predicting SBRs using Large Language Models (LLMs). Our findings reveal a distinct trade-off between the two approaches. Prompted proprietary models demonstrate the highest sensitivity to SBRs, achieving a G-measure of 77% and a recall of 74% on average across all the datasets, albeit at the cost of a higher false-positive rate, resulting in an average precision of only 22%. Fine-tuned models, by contrast, exhibit the opposite behavior, attaining a lower overall G-measure of 51% but substantially higher precision of 75% at the cost of reduced recall of 36%. Though a one-time investment in building fine-tuned models is necessary, the inference on the largest dataset is up to 50 times faster than that of proprietary models. These findings suggest that further investigations to harness the power of LLMs for SBR prediction are necessary.
☆ FlexLoRA: Entropy-Guided Flexible Low-Rank Adaptation ICLR
Large pre-trained models achieve remarkable success across diverse domains, yet fully fine-tuning incurs prohibitive computational and memory costs. Parameter-efficient fine-tuning (PEFT) has thus become a mainstream paradigm. Among them, Low-Rank Adaptation (LoRA) introduces trainable low-rank matrices and shows strong performance, nevertheless, its fixed-rank design limits flexibility. Dynamic rank allocation methods mitigate this issue by pruning redundant directions; however, they often rely on heuristic, element-level metrics that globally sort rank directions without matrix-wise distinction, and they lack mechanisms to expand capacity in layers requiring additional adaptation. To overcome these limitations, we propose FlexLoRA, an entropy-guided flexible low-rank adaptation framework that (i) evaluates matrix importance via spectral energy entropy, (ii) supports rank pruning and expansion under a global budget, and (iii) employs zero-impact initialization for newly added singular directions to ensure stability. By addressing granularity, flexibility, and stability limitations, FlexLoRA provides a more principled solution for PEFT. Extensive experiments show that FlexLoRA consistently outperforms state-of-the-art baselines across benchmarks. Codes are available at https://github.com/Chongjie-Si/Subspace-Tuning.
comment: 2026 ICLR. Codes in https://github.com/Chongjie-Si/Subspace-Tuning
☆ DINO-SAE: DINO Spherical Autoencoder for High-Fidelity Image Reconstruction and Generation
Recent studies have explored using pretrained Vision Foundation Models (VFMs) such as DINO for generative autoencoders, showing strong generative performance. Unfortunately, existing approaches often suffer from limited reconstruction fidelity due to the loss of high-frequency details. In this work, we present the DINO Spherical Autoencoder (DINO-SAE), a framework that bridges semantic representation and pixel-level reconstruction. Our key insight is that semantic information in contrastive representations is primarily encoded in the direction of feature vectors, while forcing strict magnitude matching can hinder the encoder from preserving fine-grained details. To address this, we introduce Hierarchical Convolutional Patch Embedding module that enhances local structure and texture preservation, and Cosine Similarity Alignment objective that enforces semantic consistency while allowing flexible feature magnitudes for detail retention. Furthermore, leveraging the observation that SSL-based foundation model representations intrinsically lie on a hypersphere, we employ Riemannian Flow Matching to train a Diffusion Transformer (DiT) directly on this spherical latent manifold. Experiments on ImageNet-1K demonstrate that our approach achieves state-of-the-art reconstruction quality, reaching 0.37 rFID and 26.2 dB PSNR, while maintaining strong semantic alignment to the pretrained VFM. Notably, our Riemannian Flow Matching-based DiT exhibits efficient convergence, achieving a gFID of 3.47 at 80 epochs.
comment: 17 pages, and 11 figures
☆ Uncertainty-Aware Extrapolation in Bayesian Oblique Trees
Decision trees are widely used due to their interpretability and efficiency, but they struggle in regression tasks that require reliable extrapolation and well-calibrated uncertainty. Piecewise-constant leaf predictions are bounded by the training targets and often become overconfident under distribution shift. We propose a single-tree Bayesian model that extends VSPYCT by equipping each leaf with a GP predictor. Bayesian oblique splits provide uncertainty-aware partitioning of the input space, while GP leaves model local functional behaviour and enable principled extrapolation beyond the observed target range. We present an efficient inference and prediction scheme that combines posterior sampling of split parameters with \gls{gp} posterior predictions, and a gating mechanism that activates GP-based extrapolation when inputs fall outside the training support of a leaf. Experiments on benchmark regression tasks show improvements in the predictive performance compared to standard variational oblique trees, and substantial performance gains in extrapolation scenarios.
☆ Calibrated Multivariate Distributional Regression with Pre-Rank Regularization
The goal of probabilistic prediction is to issue predictive distributions that are as informative as possible, subject to being calibrated. Despite substantial progress in the univariate setting, achieving multivariate calibration remains challenging. Recent work has introduced pre-rank functions, scalar projections of multivariate forecasts and observations, as flexible diagnostics for assessing specific aspects of multivariate calibration, but their use has largely been limited to post-hoc evaluation. We propose a regularization-based calibration method that enforces multivariate calibration during training of multivariate distributional regression models using pre-rank functions. We further introduce a novel PCA-based pre-rank that projects predictions onto principal directions of the predictive distribution. Through simulation studies and experiments on 18 real-world multi-output regression datasets, we show that the proposed approach substantially improves multivariate pre-rank calibration without compromising predictive accuracy, and that the PCA pre-rank reveals dependence-structure misspecifications that are not detected by existing pre-ranks.
comment: arXiv admin note: text overlap with arXiv:2510.21273
☆ PlatoLTL: Learning to Generalize Across Symbols in LTL Instructions for Multi-Task RL
A central challenge in multi-task reinforcement learning (RL) is to train generalist policies capable of performing tasks not seen during training. To facilitate such generalization, linear temporal logic (LTL) has recently emerged as a powerful formalism for specifying structured, temporally extended tasks to RL agents. While existing approaches to LTL-guided multi-task RL demonstrate successful generalization across LTL specifications, they are unable to generalize to unseen vocabularies of propositions (or "symbols"), which describe high-level events in LTL. We present PlatoLTL, a novel approach that enables policies to zero-shot generalize not only compositionally across LTL formula structures, but also parametrically across propositions. We achieve this by treating propositions as instances of parameterized predicates rather than discrete symbols, allowing policies to learn shared structure across related propositions. We propose a novel architecture that embeds and composes predicates to represent LTL specifications, and demonstrate successful zero-shot generalization to novel propositions and tasks across challenging environments.
comment: 11 pages, 3 figures (main paper). 14 pages, 10 figures (appendix)
☆ DiffuSpeech: Silent Thought, Spoken Answer via Unified Speech-Text Diffusion
Current speech language models generate responses directly without explicit reasoning, leading to errors that cannot be corrected once audio is produced. We introduce \textbf{``Silent Thought, Spoken Answer''} -- a paradigm where speech LLMs generate internal text reasoning alongside spoken responses, with thinking traces informing speech quality. To realize this, we present \method{}, the first diffusion-based speech-text language model supporting both understanding and generation, unifying discrete text and tokenized speech under a single masked diffusion framework. Unlike autoregressive approaches, \method{} jointly generates reasoning traces and speech tokens through iterative denoising, with modality-specific masking schedules. We also construct \dataset{}, the first speech QA dataset with paired text reasoning traces, containing 26K samples totaling 319 hours. Experiments show \method{} achieves state-of-the-art speech-to-speech QA accuracy, outperforming the best baseline by up to 9 points, while attaining the best TTS quality among generative models (6.2\% WER) and preserving language understanding (66.2\% MMLU). Ablations confirm that both the diffusion architecture and thinking traces contribute to these gains.
☆ MoVE: Mixture of Value Embeddings -- A New Axis for Scaling Parametric Memory in Autoregressive Models
Autoregressive sequence modeling stands as the cornerstone of modern Generative AI, powering results across diverse modalities ranging from text generation to image generation. However, a fundamental limitation of this paradigm is the rigid structural coupling of model capacity to computational cost: expanding a model's parametric memory -- its repository of factual knowledge or visual patterns -- traditionally requires deepening or widening the network, which incurs a proportional rise in active FLOPs. In this work, we introduce $\textbf{MoVE (Mixture of Value Embeddings)}$, a mechanism that breaks this coupling and establishes a new axis for scaling capacity. MoVE decouples memory from compute by introducing a global bank of learnable value embeddings shared across all attention layers. For every step in the sequence, the model employs a differentiable soft gating mechanism to dynamically mix retrieved concepts from this bank into the standard value projection. This architecture allows parametric memory to be scaled independently of network depth by simply increasing the number of embedding slots. We validate MoVE through strictly controlled experiments on two representative applications of autoregressive modeling: Text Generation and Image Generation. In both domains, MoVE yields consistent performance improvements over standard and layer-wise memory baselines, enabling the construction of "memory-dense" models that achieve lower perplexity and higher fidelity than their dense counterparts at comparable compute budgets.
☆ Synthetic Time Series Generation via Complex Networks
Time series data are essential for a wide range of applications, particularly in developing robust machine learning models. However, access to high-quality datasets is often limited due to privacy concerns, acquisition costs, and labeling challenges. Synthetic time series generation has emerged as a promising solution to address these constraints. In this work, we present a framework for generating synthetic time series by leveraging complex networks mappings. Specifically, we investigate whether time series transformed into Quantile Graphs (QG) -- and then reconstructed via inverse mapping -- can produce synthetic data that preserve the statistical and structural properties of the original. We evaluate the fidelity and utility of the generated data using both simulated and real-world datasets, and compare our approach against state-of-the-art Generative Adversarial Network (GAN) methods. Results indicate that our quantile graph-based methodology offers a competitive and interpretable alternative for synthetic time series generation.
☆ Matterhorn: Efficient Analog Sparse Spiking Transformer Architecture with Masked Time-To-First-Spike Encoding
Spiking neural networks (SNNs) have emerged as a promising candidate for energy-efficient LLM inference. However, current energy evaluations for SNNs primarily focus on counting accumulate operations, and fail to account for real-world hardware costs such as data movement, which can consume nearly 80% of the total energy. In this paper, we propose Matterhorn, a spiking transformer that integrates a novel masked time-to-first-spike (M-TTFS) encoding method to reduce spike movement and a memristive synapse unit (MSU) to eliminate weight access overhead. M-TTFS employs a masking strategy that reassigns the zero-energy silent state (a spike train of all 0s) to the most frequent membrane potential rather than the lowest. This aligns the coding scheme with the data distribution, minimizing spike movement energy without information loss. We further propose a `dead zone' strategy that maximizes sparsity by mapping all values within a given range to the silent state. At the hardware level, the MSU utilizes compute-in-memory (CIM) technology to perform analog integration directly within memory, effectively removing weight access costs. On the GLUE benchmark, Matterhorn establishes a new state-of-the-art, surpassing existing SNNs by 1.42% in average accuracy while delivering a 2.31 times improvement in energy efficiency.
☆ When Anomalies Depend on Context: Learning Conditional Compatibility for Anomaly Detection ICML 2026
Anomaly detection is often formulated under the assumption that abnormality is an intrinsic property of an observation, independent of context. This assumption breaks down in many real-world settings, where the same object or action may be normal or anomalous depending on latent contextual factors (e.g., running on a track versus on a highway). We revisit \emph{contextual anomaly detection}, classically defined as context-dependent abnormality, and operationalize it in the visual domain, where anomaly labels depend on subject--context compatibility rather than intrinsic appearance. To enable systematic study of this setting, we introduce CAAD-3K, a benchmark that isolates contextual anomalies by controlling subject identity while varying context. We further propose a conditional compatibility learning framework that leverages vision--language representations to model subject--context relationships under limited supervision. Our method substantially outperforms existing approaches on CAAD-3K and achieves state-of-the-art performance on MVTec-AD and VisA, demonstrating that modeling context dependence complements traditional structural anomaly detection. Our code and dataset will be publicly released.
comment: Preprint. Submitted to ICML 2026. 8 pages main text, plus appendix
☆ OptiMAG: Structure-Semantic Alignment via Unbalanced Optimal Transport
Multimodal Attributed Graphs (MAGs) have been widely adopted for modeling complex systems by integrating multi-modal information, such as text and images, on nodes. However, we identify a discrepancy between the implicit semantic structure induced by different modality embeddings and the explicit graph structure. For instance, neighbors in the explicit graph structure may be close in one modality but distant in another. Since existing methods typically perform message passing over the fixed explicit graph structure, they inadvertently aggregate dissimilar features, introducing modality-specific noise and impeding effective node representation learning. To address this, we propose OptiMAG, an Unbalanced Optimal Transport-based regularization framework. OptiMAG employs the Fused Gromov-Wasserstein distance to explicitly guide cross-modal structural consistency within local neighborhoods, effectively mitigating structural-semantic conflicts. Moreover, a KL divergence penalty enables adaptive handling of cross-modal inconsistencies. This framework can be seamlessly integrated into existing multimodal graph models, acting as an effective drop-in regularizer. Experiments demonstrate that OptiMAG consistently outperforms baselines across multiple tasks, ranging from graph-centric tasks (e.g., node classification, link prediction) to multimodal-centric generation tasks (e.g., graph2text, graph2image). The source code will be available upon acceptance.
♻ ☆ Offline Goal-Conditioned Reinforcement Learning with Projective Quasimetric Planning
Offline Goal-Conditioned Reinforcement Learning seeks to train agents to reach specified goals from previously collected trajectories. Scaling that promises to long-horizon tasks remains challenging, notably due to compounding value-estimation errors. Principled geometric offers a potential solution to address these issues. Following this insight, we introduce Projective Quasimetric Planning (ProQ), a compositional framework that learns an asymmetric distance and then repurposes it, firstly as a repulsive energy forcing a sparse set of keypoints to uniformly spread over the learned latent space, and secondly as a structured directional cost guiding towards proximal sub-goals. In particular, ProQ couples this geometry with a Lagrangian out-of-distribution detector to ensure the learned keypoints stay within reachable areas. By unifying metric learning, keypoint coverage, and goal-conditioned control, our approach produces meaningful sub-goals and robustly drives long-horizon goal-reaching on diverse a navigation benchmarks.
♻ ☆ From Cold Start to Active Learning: Embedding-Based Scan Selection for Medical Image Segmentation
Accurate segmentation annotations are critical for disease monitoring, yet manual labeling remains a major bottleneck due to the time and expertise required. Active learning (AL) alleviates this burden by prioritizing informative samples for annotation, typically through a diversity-based cold-start phase followed by uncertainty-driven selection. We propose a novel cold-start sampling strategy that combines foundation-model embeddings with clustering, including automatic selection of the number of clusters and proportional sampling across clusters, to construct a diverse and representative initial training. This is followed by an uncertainty-based AL framework that integrates spatial diversity to guide sample selection. The proposed method is intuitive and interpretable, enabling visualization of the feature-space distribution of candidate samples. We evaluate our approach on three datasets spanning X-ray and MRI modalities. On the CheXmask dataset, the cold-start strategy outperforms random selection, improving Dice from 0.918 to 0.929 and reducing the Hausdorff distance from 32.41 to 27.66 mm. In the AL setting, combined entropy and diversity selection improves Dice from 0.919 to 0.939 and reduces the Hausdorff distance from 30.10 to 19.16 mm. On the Montgomery dataset, cold-start gains are substantial, with Dice improving from 0.928 to 0.950 and Hausdorff distance decreasing from 14.22 to 9.38 mm. On the SynthStrip dataset, cold-start selection slightly affects Dice but reduces the Hausdorff distance from 9.43 to 8.69 mm, while active learning improves Dice from 0.816 to 0.826 and reduces the Hausdorff distance from 7.76 to 6.38 mm. Overall, the proposed framework consistently outperforms baseline methods in low-data regimes, improving segmentation accuracy.
comment: 19 pages without references
♻ ☆ A Continual Offline Reinforcement Learning Benchmark for Navigation Tasks
Autonomous agents operating in domains such as robotics or video game simulations must adapt to changing tasks without forgetting about the previous ones. This process called Continual Reinforcement Learning poses non-trivial difficulties, from preventing catastrophic forgetting to ensuring the scalability of the approaches considered. Building on recent advances, we introduce a benchmark providing a suite of video-game navigation scenarios, thus filling a gap in the literature and capturing key challenges : catastrophic forgetting, task adaptation, and memory efficiency. We define a set of various tasks and datasets, evaluation protocols, and metrics to assess the performance of algorithms, including state-of-the-art baselines. Our benchmark is designed not only to foster reproducible research and to accelerate progress in continual reinforcement learning for gaming, but also to provide a reproducible framework for production pipelines -- helping practitioners to identify and to apply effective approaches.
comment: arXiv admin note: text overlap with arXiv:2412.14865
♻ ☆ CAOS: Conformal Aggregation of One-Shot Predictors
One-shot prediction enables rapid adaptation of pretrained foundation models to new tasks using only one labeled example, but lacks principled uncertainty quantification. While conformal prediction provides finite-sample coverage guarantees, standard split conformal methods are inefficient in the one-shot setting due to data splitting and reliance on a single predictor. We propose Conformal Aggregation of One-Shot Predictors (CAOS), a conformal framework that adaptively aggregates multiple one-shot predictors and uses a leave-one-out calibration scheme to fully exploit scarce labeled data. Despite violating classical exchangeability assumptions, we prove that CAOS achieves valid marginal coverage using a monotonicity-based argument. Experiments on one-shot facial landmarking and RAFT text classification tasks show that CAOS produces substantially smaller prediction sets than split conformal baselines while maintaining reliable coverage.
♻ ☆ Multi-agent Coordination via Flow Matching ICLR 2026
This work presents MAC-Flow, a simple yet expressive framework for multi-agent coordination. We argue that requirements of effective coordination are twofold: (i) a rich representation of the diverse joint behaviors present in offline data and (ii) the ability to act efficiently in real time. However, prior approaches often sacrifice one for the other, i.e., denoising diffusion-based solutions capture complex coordination but are computationally slow, while Gaussian policy-based solutions are fast but brittle in handling multi-agent interaction. MAC-Flow addresses this trade-off by first learning a flow-based representation of joint behaviors, and then distilling it into decentralized one-step policies that preserve coordination while enabling fast execution. Across four different benchmarks, including $12$ environments and $34$ datasets, MAC-Flow alleviates the trade-off between performance and computational cost, specifically achieving about $\boldsymbol{\times14.5}$ faster inference compared to diffusion-based MARL methods, while maintaining good performance. At the same time, its inference speed is similar to that of prior Gaussian policy-based offline multi-agent reinforcement learning (MARL) methods.
comment: ICLR 2026
♻ ☆ Reinforcement Learning for Ballbot Navigation in Uneven Terrain
Ballbot (i.e. Ball balancing robot) navigation usually relies on methods rooted in control theory (CT), and works that apply Reinforcement learning (RL) to the problem remain rare while generally being limited to specific subtasks (e.g. balance recovery). Unlike CT based methods, RL does not require (simplifying) assumptions about environment dynamics (e.g. the absence of slippage between the ball and the floor). In addition to this increased accuracy in modeling, RL agents can easily be conditioned on additional observations such as depth-maps without the need for explicit formulations from first principles, leading to increased adaptivity. Despite those advantages, there has been little to no investigation into the capabilities, data-efficiency and limitations of RL based methods for ballbot control and navigation. Furthermore, there is a notable absence of an open-source, RL-friendly simulator for this task. In this paper, we present an open-source ballbot simulation based on MuJoCo, and show that with appropriate conditioning on exteroceptive observations as well as reward shaping, policies learned by classical model-free RL methods are capable of effectively navigating through randomly generated uneven terrain, using a reasonable amount of data (four to five hours on a system operating at 500hz). Our code is made publicly available.
comment: 6 pages, 9 figures, 2 tables. Version two corrects figure 4 and adds some experiments
♻ ☆ FC-KAN: Function Combinations in Kolmogorov-Arnold Networks
In this paper, we introduce FC-KAN, a Kolmogorov-Arnold Network (KAN) that leverages combinations of popular mathematical functions such as B-splines, wavelets, and radial basis functions on low-dimensional data through element-wise operations. We explore several methods for combining the outputs of these functions, including sum, element-wise product, the addition of sum and element-wise product, representations of quadratic and cubic functions, concatenation, linear transformation of the concatenated output, and others. In our experiments, we compare FC-KAN with a multi-layer perceptron network (MLP) and other existing KANs, such as BSRBF-KAN, EfficientKAN, FastKAN, and FasterKAN, on the MNIST and Fashion-MNIST datasets. Two variants of FC-KAN, which use a combination of outputs from B-splines and Difference of Gaussians (DoG) and from B-splines and linear transformations in the form of a quadratic function, outperformed overall other models on the average of 5 independent training runs. We expect that FC-KAN can leverage function combinations to design future KANs. Our repository is publicly available at: https://github.com/hoangthangta/FC_KAN.
comment: 17 pages
♻ ☆ On the Separability of Information in Diffusion Models
Diffusion models transform noise into data by injecting information that was captured in their neural network during the training phase. In this paper, we ask: \textit{what} is this information? We find that, in pixel-space diffusion models, (1) a large fraction of the total information in the neural network is committed to reconstructing small-scale perceptual details of the image, and (2) the correlations between images and their class labels are informed by the semantic content of the images, and are largely agnostic to the low-level details. We argue that these properties are intrinsically tied to the manifold structure of the data itself. Finally, we show that these facts explain the efficacy of classifier-free guidance: the guidance vector amplifies the mutual information between images and conditioning signals early in the generative process, influencing semantic structure, but tapers out as perceptual details are filled in.
comment: 27 pages + references, 19 figures. v4: Re-organized the paper to focus on separability of information
♻ ☆ Geometric-disentangelment Unlearning
Large language models (LLMs) can internalize private or harmful content, motivating unlearning that removes a forget set while preserving retaining knowledge. However, forgetting updates often cause collateral degradation on retaining knowledge, creating a persistent trade-off. Existing LLM unlearning methods are often heuristic, and other theoretical approaches rely on offline feature constructions that do not capture update-time forget-retain interaction in LLMs. To address this limitation, we aim to develop an LLM unlearning method that reduces the forget-retain trade-off with theoretical guarantees. We take a first-principles view by formalizing "no side effects" as local retain invariance under small parameter updates, and prove an equivalence under optimizer-induced geometry: the retain loss is locally invariant if and only if the update direction is orthogonal to the subspace spanned by retain gradients. Based on the insight, we propose Geometric-disentanglement Unlearning (GU), a lightweight and theoretically grounded projection that can be plug-and-play to existing gradient-based unlearning methods to mitigate forget-retain side effects. Experiments on TOFU, MUSE, and WMDP-cyber show that GU strengthens forgetting while reducing retain drift. When added to SimNPO, it achieves up to 62\% improved forgetting Extraction Strength (ES) and 31\% higher retain ES. We open-sourced our code in https://github.com/Lemutisme/Geometric-Unlearning.
comment: 26 Pages
♻ ☆ The Mean-Field Dynamics of Transformers
We develop a mathematical framework that interprets Transformer attention as an interacting particle system and studies its continuum (mean-field) limits. By idealizing attention on the sphere, we connect Transformer dynamics to Wasserstein gradient flows, synchronization models (Kuramoto), and mean-shift clustering. Central to our results is a global clustering phenomenon whereby tokens cluster asymptotically after long metastable states where they are arranged into multiple clusters. We further analyze a tractable equiangular reduction to obtain exact clustering rates, show how commonly used normalization schemes alter contraction speeds, and identify a phase transition for long-context attention. The results highlight both the mechanisms that drive representation collapse and the regimes that preserve expressive, multi-cluster structure in deep attention architectures.
comment: to appear as Proceedings of the ICM2026, Philadelphia, USA
♻ ☆ Open Shouldn't Mean Exempt: Open-Source Exceptionalism and Generative AI
Open-source status should not shield generative artificial intelligence systems from ethical or legal accountability. Through a rigorous analysis of regulatory, legal, and policy frameworks, this Article contends that open-source GenAI must be held to the same standards as proprietary systems. While recognizing the value of openness for scientific advancement, I propose a narrowly tailored safe harbor for bona fide, non-commercial research, conditioned on strict compliance with defined criteria. This Article critically examines and refutes the core claims of open-source exceptionalism--namely, that open-source GenAI disrupts entrenched oligopolies, democratizes access, and uniquely drives innovation. The evidence shows that open-source GenAI can facilitate unlawful conduct, exacerbate environmental harms, and reinforce existing power structures. Rhetoric around "democratization" and "innovation" often serves as an unsubstantiated basis for regulatory exemptions not afforded to proprietary systems. This Article ultimately advocates for a framework that promotes responsible AI development, balancing openness with robust legal and ethical safeguards and a clear-eyed assessment of societal impacts.
♻ ☆ In the Mood to Exclude: Revitalizing Trespass to Chattels in the Era of GenAI Scraping
GenAI companies are strip-mining the web. Their scraping bots harvest content at an unprecedented scale, circumventing technical barriers to fuel billion-dollar models while creators receive nothing. Courts have enabled this exploitation by misunderstanding what property rights protect online. The prevailing view treats websites as mere repositories of intellectual property and dismisses trespass claims absent server damage. That framework grants AI companies presumptive access while ignoring the economic devastation they inflict. But the content is severable from the website itself. This paper reframes the debate: websites are personal property as integrated digital assets subject to the same exclusionary rights as physical chattels. When scrapers bypass access controls and divert traffic that sustains a website's value, they commit actionable trespass. The law need not create new protections; it need only apply existing property principles to digital space. Courts and litigants have struggled to police unwanted, large-scale scraping because copyright preemption often narrows available claims, leaving copyright and its fair use defense as the primary battleground. Trespass to chattels offers a superior path, grounded in the fundamental right to exclude unwanted intrusions. Reviving this tort would protect not only content creators but also the digital ecosystem. Such protection would discourage exploitative scraping, preserve incentives for content creation, help protect privacy and personal data, and safeguard autonomy and expression. Reaffirming website owners' right to exclude is essential to maintaining a fair and sustainable online environment.
♻ ☆ LLM-42: Enabling Determinism in LLM Inference with Verified Speculation
In LLM inference, the same prompt may yield different outputs across different runs. At the system level, this non-determinism arises from floating-point non-associativity combined with dynamic batching and GPU kernels whose reduction orders vary with batch size. A straightforward way to eliminate non-determinism is to disable dynamic batching during inference, but doing so severely degrades throughput. Another approach is to make kernels batch-invariant; however, this tightly couples determinism to kernel design, requiring new implementations. This coupling also imposes fixed runtime overheads, regardless of how much of the workload actually requires determinism. Inspired by ideas from speculative decoding, we present LLM-42, a scheduling-based approach to enable determinism in LLM inference. Our key observation is that if a sequence is in a consistent state, the next emitted token is likely to be consistent even with dynamic batching. Moreover, most GPU kernels use shape-consistent reductions. Leveraging these insights, LLM-42 decodes tokens using a non-deterministic fast path and enforces determinism via a lightweight verify-rollback loop. The verifier replays candidate tokens under a fixed-shape reduction schedule, commits those that are guaranteed to be consistent across runs, and rolls back those violating determinism. LLM-42 mostly re-uses existing kernels unchanged and incurs overhead only in proportion to the traffic that requires determinism.
comment: https://github.com/microsoft/llm-42
♻ ☆ Generative quantum machine learning via denoising diffusion probabilistic models
Deep generative models are key-enabling technology to computer vision, text generation, and large language models. Denoising diffusion probabilistic models (DDPMs) have recently gained much attention due to their ability to generate diverse and high-quality samples in many computer vision tasks, as well as to incorporate flexible model architectures and a relatively simple training scheme. Quantum generative models, empowered by entanglement and superposition, have brought new insight to learning classical and quantum data. Inspired by the classical counterpart, we propose the quantum denoising diffusion probabilistic model (QuDDPM) to enable efficiently trainable generative learning of quantum data. QuDDPM adopts sufficient layers of circuits to guarantee expressivity, while it introduces multiple intermediate training tasks as interpolation between the target distribution and noise to avoid barren plateau and guarantee efficient training. We provide bounds on the learning error and demonstrate QuDDPM's capability in learning correlated quantum noise model, quantum many-body phases, and topological structure of quantum data. The results provide a paradigm for versatile and efficient quantum generative learning.
comment: 5+10 pages, 16 figures. PRL accepted version. Code available at: https://github.com/francis-hsu/quantgenmdl
♻ ☆ Quantum Super-resolution by Adaptive Non-local Observables ICASSP 2026
Super-resolution (SR) seeks to reconstruct high-resolution (HR) data from low-resolution (LR) observations. Classical deep learning methods have advanced SR substantially, but require increasingly deeper networks, large datasets, and heavy computation to capture fine-grained correlations. In this work, we present the \emph{first study} to investigate quantum circuits for SR. We propose a framework based on Variational Quantum Circuits (VQCs) with \emph{Adaptive Non-Local Observable} (ANO) measurements. Unlike conventional VQCs with fixed Pauli readouts, ANO introduces trainable multi-qubit Hermitian observables, allowing the measurement process to adapt during training. This design leverages the high-dimensional Hilbert space of quantum systems and the representational structure provided by entanglement and superposition. Experiments demonstrate that ANO-VQCs achieve up to five-fold higher resolution with a relatively small model size, suggesting a promising new direction at the intersection of quantum machine learning and super-resolution.
comment: Accepted at ICASSP 2026
♻ ☆ How Well Can Preference Optimization Generalize Under Noisy Feedback?
As large language models (LLMs) advance their capabilities, aligning these models with human preferences has become crucial. Preference optimization, which trains models to distinguish between preferred and non-preferred responses based on human feedback, has become a crucial component for aligning LLMs. However, most existing works assume noise-free feedback, which is unrealistic due to the inherent errors and inconsistencies in human judgments. This paper addresses the impact of noisy feedback on preference optimization, providing generalization guarantees under these conditions. In particular, we consider noise models that correspond to common real-world sources of noise, such as mislabeling and uncertainty. Unlike traditional analyses that assume convergence, our work focuses on finite-step preference optimization, offering new insights that are more aligned with practical LLM training. We describe how generalization decays with different types of noise across levels of noise rates based on the preference data distribution and number of samples. Our analysis for noisy preference learning applies to a broad family of preference optimization losses such as DPO, IPO, SLiC, etc. Empirical validation on contemporary LLMs confirms the practical relevance of our findings, offering valuable insights for developing AI systems that align with human preferences.
comment: TMLR 2026
♻ ☆ RefineBridge: Generative Bridge Models Improve Financial Forecasting by Foundation Models
Financial time series forecasting is particularly challenging for transformer-based time series foundation models (TSFMs) due to non-stationarity, heavy-tailed distributions, and high-frequency noise present in data. Low-rank adaptation (LoRA) has become a popular parameter-efficient method for adapting pre-trained TSFMs to downstream data domains. However, it still underperforms in financial data, as it preserves the network architecture and training objective of TSFMs rather than complementing the foundation model. To further enhance TSFMs, we propose a novel refinement module, RefineBridge, built upon a tractable Schrödinger Bridge (SB) generative framework. Given the forecasts of TSFM as generative prior and the observed ground truths as targets, RefineBridge learns context-conditioned stochastic transport maps to improve TSFM predictions, iteratively approaching the ground-truth target from even a low-quality prior. Simulations on multiple financial benchmarks demonstrate that RefineBridge consistently improves the performance of state-of-the-art TSFMs across different prediction horizons.
♻ ☆ Breaking the Exploration Bottleneck: Rubric-Scaffolded Reinforcement Learning for General LLM Reasoning
Recent advances in Large Language Models (LLMs) have underscored the potential of Reinforcement Learning (RL) to facilitate the emergence of reasoning capabilities. Despite the encouraging results, a fundamental dilemma persists as RL improvement relies on learning from high-quality samples, yet the exploration for such samples remains bounded by the inherent limitations of LLMs. This, in effect, creates an undesirable cycle in which what cannot be explored cannot be learned. In this work, we propose Rubric-Scaffolded Reinforcement Learning (RuscaRL), a novel instructional scaffolding framework designed to break the exploration bottleneck for general LLM reasoning. Specifically, RuscaRL introduces checklist-style rubrics as (1) explicit scaffolding for exploration during rollout generation, where different rubrics are provided as external guidance within task instructions to steer diverse high-quality responses. This guidance is gradually decayed over time, encouraging the model to internalize the underlying reasoning patterns; (2) verifiable rewards for exploitation during model training, where we can obtain robust LLM-as-a-Judge scores using rubrics as references, enabling effective RL on general reasoning tasks. Extensive experiments demonstrate the superiority of the proposed RuscaRL across various benchmarks, effectively expanding reasoning boundaries under the Best-of-N evaluation. Our code is available at https://github.com/IANNXANG/RuscaRL.
♻ ☆ Deep Ensembles for Epistemic Uncertainty: A Frequentist Perspective
Decomposing prediction uncertainty into aleatoric (irreducible) and epistemic (reducible) components is critical for the reliable deployment of machine learning systems. While the mutual information between the response variable and model parameters is a principled measure for epistemic uncertainty, it requires access to the parameter posterior, which is computationally challenging to approximate. Consequently, practitioners often rely on probabilistic predictions from deep ensembles to quantify uncertainty, which have demonstrated strong empirical performance. However, a theoretical understanding of their success from a frequentist perspective remains limited. We address this gap by first considering a bootstrap-based estimator for epistemic uncertainty, which we prove is asymptotically correct. Next, we connect deep ensembles to the bootstrap estimator by decomposing it into data variability and training stochasticity; specifically, we show that deep ensembles capture the training stochasticity component. Through empirical studies, we show that this stochasticity component constitutes the majority of epistemic uncertainty, thereby explaining the effectiveness of deep ensembles.
♻ ☆ Quantum latent distributions in deep generative models
Many successful families of generative models leverage a low-dimensional latent distribution that is mapped to a data distribution. Though simple latent distributions are often used, the choice of distribution has a strong impact on model performance. Recent experiments have suggested that the probability distributions produced by quantum processors, which are typically highly correlated and classically intractable, can lead to improved performance on some datasets. However, when and why latent distributions produced by quantum processors can improve performance, and whether these improvements are connected to quantum properties of these distributions, are open questions that we investigate in this work. We show in theory that, under certain conditions, these "quantum latent distributions" enable generative models to produce data distributions that classical latent distributions cannot efficiently produce. We provide intuition as to the underlying mechanisms that could explain a performance advantage on real datasets. Based on this, we perform extensive benchmarking on a synthetic quantum dataset and the QM9 molecular dataset, using both simulated and real photonic quantum processors. We find that the statistics arising from quantum interference lead to improved generative performance compared to classical baselines, suggesting that quantum processors can play a role in expanding the capabilities of deep generative models.
♻ ☆ Monocular pose estimation of articulated open surgery tools -- in the wild
This work presents a framework for monocular 6D pose estimation of surgical instruments in open surgery, addressing challenges such as object articulations, specularity, occlusions, and synthetic-to-real domain adaptation. The proposed approach consists of three main components: $(1)$ synthetic data generation pipeline that incorporates 3D scanning of surgical tools with articulation rigging and physically-based rendering; $(2)$ a tailored pose estimation framework combining tool detection with pose and articulation estimation; and $(3)$ a training strategy on synthetic and real unannotated video data, employing domain adaptation with automatically generated pseudo-labels. Evaluations conducted on real data of open surgery demonstrate the good performance and real-world applicability of the proposed framework, highlighting its potential for integration into medical augmented reality and robotic systems. The approach eliminates the need for extensive manual annotation of real surgical data.
comment: Author Accepted Manuscript (AAM)
♻ ☆ Model Agnostic Differentially Private Causal Inference
Estimating causal effects from observational data is essential in fields such as medicine, economics and social sciences, where privacy concerns are paramount. We propose a general, model-agnostic framework for differentially private estimation of average treatment effects (ATE) that avoids strong structural assumptions on the data-generating process or the models used to estimate propensity scores and conditional outcomes. In contrast to prior work, which enforces differential privacy by directly privatizing these nuisance components, our approach decouples nuisance estimation from privacy protection. This separation allows the use of flexible, state-of-the-art black-box models, while differential privacy is achieved by perturbing only predictions and aggregation steps within a fold-splitting scheme with ensemble techniques. We instantiate the framework for three classical estimators -- the G-Formula, inverse propensity weighting (IPW), and augmented IPW (AIPW) -- and provide formal utility and privacy guarantees, together with privatized confidence intervals. Empirical results on synthetic and real data show that our methods maintain competitive performance under realistic privacy budgets.
♻ ☆ Explainability Methods for Hardware Trojan Detection: A Systematic Comparison
Hardware trojan detection requires accurate identification and interpretable explanations for security engineers to validate and act on results. This work compares three explainability categories for gate-level trojan detection on the Trust-Hub benchmark: (1) domain-aware property-based analysis of 31 circuit-specific features from gate fanin patterns, flip-flop distances, and I/O connectivity; (2) case-based reasoning using k-nearest neighbors for precedent-based explanations; and (3) model-agnostic feature attribution (LIME, SHAP, gradient). Results show different advantages per approach. Property-based analysis provides explanations through circuit concepts like "high fanin complexity near outputs indicates potential triggers." Case-based reasoning achieves 97.4% correspondence between predictions and training exemplars, offering justifications grounded in precedent. LIME and SHAP provide feature attributions with strong inter-method correlation (r=0.94, p<0.001) but lack circuit-level context for validation. XGBoost classification achieves 46.15% precision and 52.17% recall on 11,392 test samples, a 9-fold precision improvement over prior work (Hasegawa et al.: 5.13%) while reducing false positive rates from 5.6% to 0.25%. Gradient-based attribution runs 481 times faster than SHAP but provides similar domain-opaque insights. This work demonstrates that property-based and case-based approaches offer domain alignment and precedent-based interpretability compared to generic feature rankings, with implications for XAI deployment where practitioners must validate ML predictions.
♻ ☆ Are Modern Speech Enhancement Systems Vulnerable to Adversarial Attacks?
Machine learning approaches for speech enhancement are becoming increasingly expressive, enabling ever more powerful modifications of input signals. In this paper, we demonstrate that this expressiveness introduces a vulnerability: advanced speech enhancement models can be susceptible to adversarial attacks. Specifically, we show that adversarial noise, carefully crafted and psychoacoustically masked by the original input, can be injected such that the enhanced speech output conveys an entirely different semantic meaning. We experimentally verify that contemporary predictive speech enhancement models can indeed be manipulated in this way. Furthermore, we highlight that diffusion models with stochastic samplers exhibit inherent robustness to such adversarial attacks by design.
comment: Copyright 2026 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
♻ ☆ Robust gene prioritization for Dietary Restriction via Fast-mRMR Feature Selection techniques
Gene prioritization (identifying genes potentially associated with a biological process) is increasingly tackled with Artificial Intelligence. However, existing methods struggle with the high dimensionality and incomplete labelling of biomedical data. This work proposes a more robust and efficient pipeline that leverages Fast-mRMR Feature Selection to retain only relevant, non-redundant features for classifiers, building simpler, more interpretable and more efficient models. Experiments in our domain of interest, prioritizing genes related to Dietary Restriction (DR), show significant improvements over existing methods and enables us to integrate heterogeneous biological feature sets for better performance, a strategy that previously degraded performance due to noise accumulation. This work focuses on DR given the availability of curated data and expert knowledge for validation, yet this pipeline would be applicable to other biological processes, proving that feature selection is critical for reliable gene prioritization in high-dimensional omics.
♻ ☆ Optimal Fairness under Local Differential Privacy
We investigate how to optimally design local differential privacy (LDP) mechanisms that reduce data unfairness and thereby improve fairness in downstream classification. We first derive a closed-form optimal mechanism for binary sensitive attributes and then develop a tractable optimization framework that yields the corresponding optimal mechanism for multi-valued attributes. As a theoretical contribution, we establish that for discrimination-accuracy optimal classifiers, reducing data unfairness necessarily leads to lower classification unfairness, thus providing a direct link between privacy-aware pre-processing and classification fairness. Empirically, we demonstrate that our approach consistently outperforms existing LDP mechanisms in reducing data unfairness across diverse datasets and fairness metrics, while maintaining accuracy close to that of non-private models. Moreover, compared with leading pre-processing and post-processing fairness methods, our mechanism achieves a more favorable accuracy-fairness trade-off while simultaneously preserving the privacy of sensitive attributes. Taken together, these results highlight LDP as a principled and effective pre-processing fairness intervention technique.
comment: 21 pages, 6 figures, 2 tables
♻ ☆ ARB-LLM: Alternating Refined Binarizations for Large Language Models
Large Language Models (LLMs) have greatly pushed forward advancements in natural language processing, yet their high memory and computational demands hinder practical deployment. Binarization, as an effective compression technique, can shrink model weights to just 1 bit, significantly reducing the high demands on computation and memory. However, current binarization methods struggle to narrow the distribution gap between binarized and full-precision weights, while also overlooking the column deviation in LLM weight distribution. To tackle these issues, we propose ARB-LLM, a novel 1-bit post-training quantization (PTQ) technique tailored for LLMs. To narrow the distribution shift between binarized and full-precision weights, we first design an alternating refined binarization (ARB) algorithm to progressively update the binarization parameters, which significantly reduces the quantization error. Moreover, considering the pivot role of calibration data and the column deviation in LLM weights, we further extend ARB to ARB-X and ARB-RC. In addition, we refine the weight partition strategy with column-group bitmap (CGB), which further enhance performance. Equipping ARB-X and ARB-RC with CGB, we obtain ARB-LLM$_\text{X}$ and ARB-LLM$_\text{RC}$ respectively, which significantly outperform state-of-the-art (SOTA) binarization methods for LLMs. As a binary PTQ method, our ARB-LLM$_\text{RC}$ is the first to surpass FP16 models of the same size. The code and models will be available at https://github.com/ZHITENGLI/ARB-LLM.
comment: The code and models will be available at https://github.com/ZHITENGLI/ARB-LLM
♻ ☆ DREAMS: Preserving both Local and Global Structure in Dimensionality Reduction
Dimensionality reduction techniques are widely used for visualizing high-dimensional data in two dimensions. Existing methods are typically designed to preserve either local (e.g., $t$-SNE, UMAP) or global (e.g., MDS, PCA) structure of the data, but none of the established methods can represent both aspects well. In this paper, we present DREAMS (Dimensionality Reduction Enhanced Across Multiple Scales), a method that combines the local structure preservation of $t$-SNE with the global structure preservation of PCA via a simple regularization term. Our approach generates a spectrum of embeddings between the locally well-structured $t$-SNE embedding and the globally well-structured PCA embedding, efficiently balancing both local and global structure preservation. We benchmark DREAMS across eleven real-world datasets, showcasing qualitatively and quantitatively its superior ability to preserve structure across multiple scales compared to previous approaches.
comment: Transactions on Machine Learning Research (2026)
♻ ☆ Quasiparticle Interference Kernel Extraction with Variational Autoencoders via Latent Alignment
Quasiparticle interference (QPI) imaging is a powerful tool for probing electronic structures in quantum materials, but extracting the single-scatterer QPI pattern (i.e., the kernel) from a multi-scatterer image remains a fundamentally ill-posed inverse problem, because many different kernels can combine to produce almost the same observed image, and noise or overlaps further obscure the true signal. Existing solutions to this extraction problem rely on manually zooming into small local regions with isolated single-scatterers. This is infeasible for real cases where scattering conditions are too complex. In this work, we propose the first AI-based framework for QPI kernel extraction, which models the space of physically valid kernels and uses this knowledge to guide the inverse mapping. We introduce a two-step learning strategy that decouples kernel representation learning from observation-to-kernel inference. In the first step, we train a variational autoencoder to learn a compact latent space of scattering kernels. In the second step, we align the latent representation of QPI observations with those of the pre-learned kernels using a dedicated encoder. This design enables the model to infer kernels robustly under complex, entangled scattering conditions. We construct a diverse and physically realistic QPI dataset comprising 100 unique kernels and evaluate our method against a direct one-step baseline. Experimental results demonstrate that our approach achieves significantly higher extraction accuracy, improved generalization to unseen kernels. To further validate its effectiveness, we also apply the method to real QPI data from Ag and FeSe samples, where it reliably extracts meaningful kernels under complex scattering conditions.
♻ ☆ PowerGenie: Analytically-Guided Evolutionary Discovery of Superior Reconfigurable Power Converters
Discovering superior circuit topologies requires navigating an exponentially large design space-a challenge traditionally reserved for human experts. Existing AI methods either select from predefined templates or generate novel topologies at a limited scale without rigorous verification, leaving large-scale performance-driven discovery underexplored. We present PowerGenie, a framework for automated discovery of higher-performance reconfigurable power converters at scale. PowerGenie introduces: (1) an automated analytical framework that determines converter functionality and theoretical performance limits without component sizing or SPICE simulation, and (2) an evolutionary finetuning method that co-evolves a generative model with its training distribution through fitness selection and uniqueness verification. Unlike existing methods that suffer from mode collapse and overfitting, our approach achieves higher syntax validity, function validity, novelty rate, and figure-of-merit (FoM). PowerGenie discovers a novel 8-mode reconfigurable converter with 23% higher FoM than the best training topology. SPICE simulations confirm average absolute efficiency gains of 10% across 8 modes and up to 17% at a single mode. Code will be released upon publication.
♻ ☆ The effect of priors on Learning with Restricted Boltzmann Machines
Restricted Boltzmann Machines (RBMs) are generative models designed to learn from data with a rich underlying structure. In this work, we explore a teacher-student setting where a student RBM learns from examples generated by a teacher RBM, with a focus on the effect of the unit priors on learning efficiency. We consider a parametric class of priors that interpolate between continuous (Gaussian) and binary variables. This approach models various possible choices of visible units, hidden units, and weights for both the teacher and student RBMs. By analyzing the phase diagram of the posterior distribution in both the Bayes optimal and mismatched regimes, we demonstrate the existence of a triple point that defines the critical dataset size necessary for learning through generalization. The critical size is strongly influenced by the properties of the teacher, and thus the data, but is unaffected by the properties of the student RBM. Nevertheless, a prudent choice of student priors can facilitate training by expanding the so-called signal retrieval region, where the machine generalizes effectively.
comment: Accepted for publication in Physica A, Volume 674, 130766. -Added references -Corrected typos -Revised section 3, with Monte Carlo simulations supporting the results (unchanged)
♻ ☆ Right for the Right Reasons: Avoiding Reasoning Shortcuts via Prototypical Neurosymbolic AI
Neurosymbolic AI is growing in popularity thanks to its ability to combine neural perception and symbolic reasoning in end-to-end trainable models. However, recent findings reveal these are prone to shortcut reasoning, i.e., to learning unindented concepts--or neural predicates--which exploit spurious correlations to satisfy the symbolic constraints. In this paper, we address reasoning shortcuts at their root cause and we introduce Prototypical Neurosymbolic architectures. These models are able to satisfy the symbolic constraints (be right) because they have learnt the correct basic concepts (for the right reasons) and not because of spurious correlations, even in extremely low data regimes. Leveraging the theory of prototypical learning, we demonstrate that we can effectively avoid reasoning shortcuts by training the models to satisfy the background knowledge while taking into account the similarity of the input with respect to the handful of labelled datapoints. We extensively validate our approach on the recently proposed rsbench benchmark suite in a variety of settings and tasks with very scarce supervision: we show significant improvements in learning the right concepts both in synthetic tasks (MNIST-EvenOdd and Kand-Logic) and real-world, high-stake ones (BDD-OIA). Our findings pave the way to prototype grounding as an effective, annotation-efficient strategy for safe and reliable neurosymbolic learning.
♻ ☆ Tokenization Multiplicity Leads to Arbitrary Price Variation in LLM-as-a-service
Providers of LLM-as-a-service have predominantly adopted a simple pricing model: users pay a fixed price per token. Consequently, one may think that the price two different users would pay for the same output string under the same input prompt is the same. In our work, we show that, surprisingly, this is not (always) true. We find empirical evidence that, particularly for non-english outputs, both proprietary and open-weights LLMs often generate the same (output) string with multiple different tokenizations, even under the same input prompt, and this in turn leads to arbitrary price variation. To address the problem of tokenization multiplicity, we introduce canonical generation, a type of constrained generation that restricts LLMs to only generate canonical tokenizations -- the unique tokenization in which each string is tokenized during the training process of an LLM. Further, we introduce an efficient sampling algorithm for canonical generation based on the Gumbel-Max trick. Experiments on a variety of natural language tasks demonstrate that our sampling algorithm for canonical generation is comparable to standard sampling in terms of performance and runtime, and it solves the problem of tokenization multiplicity.
♻ ☆ The Narrow Gate: Localized Image-Text Communication in Native Multimodal Models NeurIPS 2025
Recent advances in multimodal training have significantly improved the integration of image understanding and generation within a unified model. This study investigates how vision-language models (VLMs) handle image-understanding tasks, focusing on how visual information is processed and transferred to the textual domain. We compare native multimodal VLMs, models trained from scratch on multimodal data to generate both text and images, and non-native multimodal VLMs, models adapted from pre-trained large language models or capable of generating only text, highlighting key differences in information flow. We find that in native multimodal VLMs, image and text embeddings are more separated within the residual stream. Moreover, VLMs differ in how visual information reaches text: non-native multimodal VLMs exhibit a distributed communication pattern, where information is exchanged through multiple image tokens, whereas models trained natively for joint image and text generation tend to rely on a single post-image token that acts as a narrow gate for visual information. We show that ablating this single token significantly deteriorates image-understanding performance, whereas targeted, token-level interventions reliably steer image semantics and downstream text with fine-grained control.
comment: NeurIPS 2025
♻ ☆ ContextFlow: Context-Aware Flow Matching For Trajectory Inference From Spatial Omics Data
Inferring trajectories from longitudinal spatially-resolved omics data is fundamental to understanding the dynamics of structural and functional tissue changes in development, regeneration and repair, disease progression, and response to treatment. We propose ContextFlow, a novel context-aware flow matching framework that incorporates prior knowledge to guide the inference of structural tissue dynamics from spatially resolved omics data. Specifically, ContextFlow integrates local tissue organization and ligand-receptor communication patterns into a transition plausibility matrix that regularizes the optimal transport objective. By embedding these contextual constraints, ContextFlow generates trajectories that are not only statistically consistent but also biologically meaningful, making it a generalizable framework for modeling spatiotemporal dynamics from longitudinal, spatially resolved omics data. Evaluated on three datasets, ContextFlow consistently outperforms state-of-the-art flow matching methods across multiple quantitative and qualitative metrics of inference accuracy and biological coherence. Our code is available at: \href{https://github.com/santanurathod/ContextFlow}{ContextFlow}
comment: 42 pages, 21 figures, 30 tables
♻ ☆ Ravan: Multi-Head Low-Rank Adaptation for Federated Fine-Tuning
Large language models (LLMs) have not yet effectively leveraged the vast amounts of edge-device data, and federated learning (FL) offers a promising paradigm to collaboratively fine-tune LLMs without transferring private edge data to the cloud. To operate within the computation and communication constraints of edge devices, recent literature on federated fine-tuning of LLMs proposes the use of low-rank adaptation (LoRA) and similar parameter-efficient methods. However, LoRA-based methods suffer from accuracy degradation in FL settings, primarily because of data and computational heterogeneity across clients. We propose Ravan, an adaptive multi-head LoRA method that balances parameter efficiency and model expressivity by reparameterizing the weight updates as the sum of multiple LoRA heads $s_i\textbf{B}_i\textbf{H}_i\textbf{A}_i$ in which only the core matrices $\textbf{H}_i$ and their lightweight scaling factors $s_i$ are trained. These trainable scaling factors let the optimization focus on the most useful heads, recovering a higher-rank approximation of the full update without increasing the number of communicated parameters since clients upload $s_i\textbf{H}_i$ directly. Experiments on vision and language benchmarks show that Ravan improves test accuracy by $2-8\%$ over prior parameter-efficient baselines, making it a robust and scalable solution for federated fine-tuning of LLMs.
♻ ☆ AI for Scientific Discovery is a Social Problem
Artificial intelligence (AI) is being increasingly applied to scientific research, but its benefits remain unevenly distributed across different communities and disciplines. While technical challenges such as limited data, fragmented standards, and unequal access to computational resources are already well known, social and institutional factors are often the primary constraints. Narratives emphasizing autonomous "AI scientists," the underrecognition of data and infrastructure work, misaligned incentives, and gaps between domain experts and machine learning researchers all limit the impact of AI on scientific discovery. Four interconnected challenges are highlighted in this paper: community coordination, the misalignment of research priorities with upstream needs, data fragmentation, and infrastructure inequities. We argue that addressing these challenges requires not only technical innovations but also intentional community-building efforts, cross-disciplinary education, shared benchmarks, and accessible infrastructure. We call for reframing AI for science as a collective social project, where sustainable collaboration and equitable participation are treated as prerequisites for achieving technical progress.
comment: Both authors contributed equally
♻ ☆ LAVA: Explainability for Unsupervised Latent Embeddings
Unsupervised black-box models are drivers of scientific discovery, yet are difficult to interpret, as their output is often a multidimensional embedding rather than a well-defined target. While explainability for supervised learning uncovers how input features contribute to predictions, its unsupervised counterpart should relate input features to the structure of the learned embeddings. However, adaptations of supervised model explainability for unsupervised learning provide either single-sample or dataset-summary explanations, remaining too fine-grained or reductive to be meaningful, and cannot explain embeddings without mapping functions. To bridge this gap, we propose LAVA, a post-hoc model-agnostic method to explain local embedding organization through feature covariation in the original input data. LAVA explanations comprise modules, capturing local subpatterns of input feature correlation that reoccur globally across the embeddings. LAVA delivers stable explanations at a desired level of granularity, revealing domain-relevant patterns such as visual parts of images or disease signals in cellular processes, otherwise missed by existing methods.
comment: 41 pages, including references and appendix
♻ ☆ Evidence for Phenotype-Driven Disparities in Freezing of Gait Detection and Approaches to Bias Mitigation
Freezing of gait (FOG) is a debilitating symptom of Parkinson's disease (PD) and a common cause of injurious falls. Recent advances in wearable-based human activity recognition (HAR) enable FOG detection, but bias and fairness in these models remain understudied. Bias refers to systematic errors leading to unequal outcomes, while fairness refers to consistent performance across subject groups. Biased models could systematically underserve patients with specific FOG phenotypes or demographics, potentially widening care disparities. We systematically evaluated bias and fairness of state-of-the-art HAR models for FOG detection across phenotypes and demographics using multi-site datasets. We assessed four mitigation approaches: conventional methods (threshold optimization and adversarial debiasing) and transfer learning approaches (multi-site transfer and fine-tuning large pretrained models). Fairness was quantified using demographic parity ratio (DPR) and equalized odds ratio (EOR). HAR models exhibited substantial bias (DPR & EOR < 0.8) across age, sex, disease duration, and critically, FOG phenotype. Phenotype-specific bias is particularly concerning as tremulous and akinetic FOG require different clinical management. Conventional bias mitigation methods failed: threshold optimization (DPR=-0.126, EOR=+0.063) and adversarial debiasing (DPR=-0.008, EOR=-0.001) showed minimal improvement. In contrast, transfer learning from multi-site datasets significantly improved fairness (DPR=+0.037, p<0.01; EOR=+0.045, p<0.01) and performance (F1-score=+0.020, p<0.05). Transfer learning across diverse datasets is essential for developing equitable HAR models that reliably detect FOG across all patient phenotypes, ensuring wearable-based monitoring benefits all individuals with PD.
comment: Revised manuscript for EJN Special Issue Submission
♻ ☆ Multi-agent Adaptive Mechanism Design
We study a sequential mechanism design problem in which a principal seeks to elicit truthful reports from multiple rational agents while starting with no prior knowledge of agents' beliefs. We introduce Distributionally Robust Adaptive Mechanism (DRAM), a general framework combining insights from both mechanism design and online learning to jointly address truthfulness and cost-optimality. Throughout the sequential game, the mechanism estimates agents' beliefs and iteratively updates a distributionally robust linear program with shrinking ambiguity sets to reduce payments while preserving truthfulness. Our mechanism guarantees truthful reporting with high probability while achieving $\tilde{O}(\sqrt{T})$ cumulative regret, and we establish a matching lower bound showing that no truthful adaptive mechanism can asymptotically do better. The framework generalizes to plug-in estimators, supporting structured priors and delayed feedback. To our knowledge, this is the first adaptive mechanism under general settings that maintains truthfulness and achieves optimal regret when incentive constraints are unknown and must be learned.
♻ ☆ Learning and extrapolating scale-invariant processes
Machine Learning (ML) has deeply changed some fields recently, like Language and Vision and we may expect it to be relevant also to the analysis of of complex systems. Here we want to tackle the question of how and to which extent can one regress scale-free processes, i.e. processes displaying power law behavior, like earthquakes or avalanches? We are interested in predicting the large ones, i.e. rare events in the training set which therefore require extrapolation capabilities of the model. For this we consider two paradigmatic problems that are statistically self-similar. The first one is a 2-dimensional fractional Gaussian field obeying linear dynamics, self-similar by construction and amenable to exact analysis. The second one is the Abelian sandpile model, exhibiting self-organized criticality. The emerging paradigm of Geometric Deep Learning shows that including known symmetries into the model's architecture is key to success. Here one may hope to extrapolate only by leveraging scale invariance. This is however a peculiar symmetry, as it involves possibly non-trivial coarse-graining operations and anomalous scaling. We perform experiments on various existing architectures like U-net, Riesz network (scale invariant by construction), or our own proposals: a wavelet-decomposition based Graph Neural Network (with discrete scale symmetry), a Fourier embedding layer and a Fourier-Mellin Neural Operator. Based on these experiments and a complete characterization of the linear case, we identify the main issues relative to spectral biases and coarse-grained representations, and discuss how to alleviate them with the relevant inductive biases.
comment: 29p, 22 figures
♻ ☆ Multivariate Bayesian Last Layer for Regression with Uncertainty Quantification and Decomposition
We present new Bayesian Last Layer neural network models in the setting of multivariate regression under heteroscedastic noise, and propose EM algorithms for parameter learning. Bayesian modeling of a neural network's final layer has the attractive property of uncertainty quantification with a single forward pass. The proposed framework is capable of disentangling the aleatoric and epistemic uncertainty, and can be used to enhance a canonically trained deep neural network with uncertainty-aware capabilities.
♻ ☆ Laser interferometry as a robust neuromorphic platform for machine learning
We present a method for implementing an optical neural network using only linear optical resources, namely field displacement and interferometry applied to coherent states of light. The nonlinearity required for learning in a neural network is realized via an encoding of the input into phase shifts allowing for far more straightforward experimental implementation compared to previous proposals for, and demonstrations of, $\textit{in situ}$ inference. Beyond $\textit{in situ}$ inference, the method enables $\textit{in situ}$ training by utilizing established techniques like parameter shift rules or physical backpropagation to extract gradients directly from measurements of the linear optical circuit. We also investigate the effect of photon losses and find the model to be very resilient to these.
♻ ☆ M-SGWR: Multiscale Similarity and Geographically Weighted Regression
The first law of geography is a cornerstone of spatial analysis, emphasizing that nearby and related locations tend to be more similar, however, defining what constitutes "near" and "related" remains challenging, as different phenomena exhibit distinct spatial patterns. Traditional local regression models, such as Geographically Weighted Regression (GWR) and Multiscale GWR (MGWR), quantify spatial relationships solely through geographic proximity. In an era of globalization and digital connectivity, however, geographic proximity alone may be insufficient to capture how locations are interconnected. To address this limitation, we propose a new multiscale local regression framework, termed M-SGWR, which characterizes spatial interaction across two dimensions: geographic proximity and attribute (variable) similarity. For each predictor, geographic and attribute-based weight matrices are constructed separately and then combined using an optimized parameter, alpha, which governs their relative contribution to local model fitting. Analogous to variable-specific bandwidths in MGWR, the optimal alpha varies by predictor, allowing the model to flexibly account for geographic, mixed, or non-spatial (remote similarity) effects. Results from two simulation experiments and one empirical application demonstrate that M-SGWR consistently outperforms GWR, SGWR, and MGWR across all goodness-of-fit metrics.
♻ ☆ FactSelfCheck: Fact-Level Black-Box Hallucination Detection for LLMs EACL 2026
Large Language Models (LLMs) frequently generate hallucinated content, posing significant challenges for applications where factuality is crucial. While existing hallucination detection methods typically operate at the sentence level or passage level, we propose FactSelfCheck, a novel zero-resource black-box sampling-based method that enables fine-grained fact-level detection. Our approach represents text as interpretable knowledge graphs consisting of facts in the form of triples, providing clearer insights into content factuality than traditional approaches. Through analyzing factual consistency across multiple LLM responses, we compute fine-grained hallucination scores without requiring external resources or training data. Our evaluation demonstrates that FactSelfCheck performs competitively with leading sentence-level sampling-based methods while providing more detailed and interpretable insights. Most notably, our fact-level approach significantly improves hallucination correction, achieving a 35.5% increase in factual content compared to the baseline, while sentence-level SelfCheckGPT yields only a 10.6% improvement. The granular nature of our detection enables more precise identification and correction of hallucinated content. Additionally, we contribute FavaMultiSamples, a novel dataset that addresses a gap in the field by providing the research community with a second dataset for evaluating sampling-based methods.
comment: Accepted for EACL 2026 (findings)
♻ ☆ Integrating Fourier Neural Operators with Diffusion Models to improve Spectral Representation of Synthetic Earthquake Ground Motion Response
Nuclear reactor buildings must be designed to withstand the dynamic load induced by strong ground motion earthquakes. For this reason, their structural behavior must be assessed in multiple realistic ground shaking scenarios (e.g., the Maximum Credible Earthquake). However, earthquake catalogs and recorded seismograms may not always be available in the region of interest. Therefore, synthetic earthquake ground motion is progressively being employed, although with some due precautions: earthquake physics is sometimes not well enough understood to be accurately reproduced with numerical tools, and the underlying epistemic uncertainties lead to prohibitive computational costs related to model calibration. In this study, we propose an AI physics-based approach to generate synthetic ground motion, based on the combination of a neural operator that approximates the elastodynamics Green's operator in arbitrary source-geology setups, enhanced by a denoising diffusion probabilistic model. The diffusion model is trained to correct the ground motion time series generated by the neural operator. Our results show that such an approach promisingly enhances the realism of the generated synthetic seismograms, with frequency biases and Goodness-Of-Fit (GOF) scores being improved by the diffusion model. This indicates that the latter is capable to mitigate the mid-frequency spectral falloff observed in the time series generated by the neural operator. Our method showcases fast and cheap inference in different site and source conditions.
comment: Presented at D11 - New Technologies (Additive manufacturing, AI, digital twin) D11-TS49 - Machine Learning and Artificial Intelligence 00 - SMiRT 25 - Toronto, Canada. August 10-15, 2025
♻ ☆ Mixed-Precision Training and Compilation for RRAM-based Computing-in-Memory Accelerators DATE
Computing-in-Memory (CIM) accelerators are a promising solution for accelerating Machine Learning (ML) workloads, as they perform Matrix-Vector Multiplications (MVMs) on crossbar arrays directly in memory. Although the bit widths of the crossbar inputs and cells are very limited, most CIM compilers do not support quantization below 8 bit. As a result, a single MVM requires many compute cycles, and weights cannot be efficiently stored in a single crossbar cell. To address this problem, we propose a mixed-precision training and compilation framework for CIM architectures. The biggest challenge is the massive search space, that makes it difficult to find good quantization parameters. This is why we introduce a reinforcement learning-based strategy to find suitable quantization configurations that balance latency and accuracy. In the best case, our approach achieves up to a 2.48x speedup over existing state-of-the-art solutions, with an accuracy loss of only 0.086 %.
comment: PREPRINT - Accepted for publication at the Design, Automation & Test in Europe Conference & Exhibition (DATE), April 20-22, 2026, in Verona, Italy
♻ ☆ From Label Error Detection to Correction: A Modular Framework and Benchmark for Object Detection Datasets
Object detection has advanced rapidly in recent years, driven by increasingly large and diverse datasets. However, label errors often compromise the quality of these datasets and affect the outcomes of training and benchmark evaluations. Although label error detection methods for object detection datasets now exist, they are typically validated only on synthetic benchmarks or via limited manual inspection. How to correct such errors systematically and at scale remains an open problem. We introduce a semi-automated framework for label error correction called Rechecked. Building on existing label error detection methods, their error proposals are reviewed with lightweight, crowd-sourced microtasks. We apply Rechecked to the class pedestrian in the KITTI dataset, for which we crowdsourced high-quality corrected annotations. We detect 18% of missing and inaccurate labels in the original ground truth. We show that current label error detection methods, when combined with our correction framework, can recover hundreds of errors with little human effort compared to annotation from scratch. However, even the best methods still miss up to 66% of the label errors, which motivates further research, now enabled by our released benchmark.
♻ ☆ Agentic reinforcement learning empowers next-generation chemical language models for molecular design and synthesis
Language models are revolutionizing the biochemistry domain, assisting scientists in drug design and chemical synthesis with high efficiency. Yet current approaches struggle between small language models prone to hallucination and limited knowledge retention, and large cloud-based language models plagued by privacy risks and high inference costs. To bridge this gap, we introduce ChemCRAFT, a novel framework leveraging agentic reinforcement learning to decouple chemical reasoning from knowledge storage. Instead of forcing the model to memorize vast chemical data, our approach empowers the language model to interact with a sandbox for precise information retrieval. This externalization of knowledge allows a locally deployable small model to achieve superior performance with minimal inference costs. To enable small language models for agent-calling ability, we build an agentic trajectory construction pipeline and a comprehensive chemical-agent sandbox. Based on sandbox interactions, we constructed ChemToolDataset, the first large-scale chemical tool trajectory dataset. Simultaneously, we propose SMILES-GRPO to build a dense chemical reward function, promoting the model's ability to call chemical agents. Evaluations across diverse aspects of drug design show that ChemCRAFT outperforms current cloud-based LLMs in molecular structure analysis, molecular optimization, and synthesis pathway prediction, demonstrating that scientific reasoning is not solely an emergent ability of model scale, but a learnable policy of tool orchestration. This work establishes a cost-effective and privacy-preserving paradigm for AI-aided chemistry, opening new avenues for accelerating molecular discovery with locally deployable agents. Code available at https://github.com/HowardLi1984/ChemCraft.
comment: Working in Progress, 13 pages, 4 figures
♻ ☆ On uniqueness in structured model learning
This paper addresses the problem of uniqueness in learning physical laws for systems of partial differential equations (PDEs). Contrary to most existing approaches, it considers a framework of structured model learning, where existing, approximately correct physical models are augmented with components that are learned from data. The main results of the paper are a uniqueness and a convergence result that cover a large class of PDEs and a suitable class of neural networks used for approximating the unknown model components. The uniqueness result shows that, in the limit of full, noiseless measurements, a unique identification of the unknown model components as functions is possible as classical regularization-minimizing solutions of the PDE system. This result is complemented by a convergence result showing that model components learned as parameterized neural networks from incomplete, noisy measurements approximate the regularization-minimizing solutions of the PDE system in the limit. These results are possible under specific properties of the approximating neural networks and due to a dedicated choice of regularization. With this, a practical contribution of this analytic paper is to provide a class of model learning frameworks different to standard settings where uniqueness can be expected in the limit of full measurements.
♻ ☆ SpiderNets: Vision Models Predict Human Fear From Aversive Images
Phobias are common and impairing, and exposure therapy, which involves confronting patients with fear-provoking visual stimuli, is the most effective treatment. Scalable computerized exposure therapy requires automated prediction of fear directly from image content to adapt stimulus selection and treatment intensity. Whether such predictions can be made reliably and generalize across individuals and stimuli, however, remains unknown. Here we show that pretrained convolutional and transformer vision models, adapted via transfer learning, accurately predict group-level perceived fear for spider-related images, even when evaluated on new people and new images, achieving a mean absolute error (MAE) below 10 units on the 0-100 fear scale. Visual explanation analyses indicate that predictions are driven by spider-specific regions in the images. Learning-curve analyses show that transformer models are data efficient and approach performance saturation with the available data (~300 images). Prediction errors increase for very low and very high fear levels and within specific categories of images. These results establish transparent, data-driven fear estimation from images, laying the groundwork for adaptive digital mental health tools.
comment: 65 pages (32 main text, 33 appendix), 20 figures (5 in main text, 15 in appendix)
♻ ☆ PSDNorm: Test-Time Temporal Normalization for Deep Learning in Sleep Staging
Distribution shift poses a significant challenge in machine learning, particularly in biomedical applications using data collected across different subjects, institutions, and recording devices, such as sleep data. While existing normalization layers, BatchNorm, LayerNorm and InstanceNorm, help mitigate distribution shifts, when applied over the time dimension they ignore the dependencies and auto-correlation inherent to the vector coefficients they normalize. In this paper, we propose PSDNorm that leverages Monge mapping and temporal context to normalize feature maps in deep learning models for signals. Evaluations with architectures based on U-Net or transformer backbones trained on 10K subjects across 10 datasets, show that PSDNorm achieves state-of-the-art performance on unseen left-out datasets while being more robust to data scarcity.
♻ ☆ A Unified Evaluation Framework for Multi-Annotator Tendency Learning
Recent works have emerged in multi-annotator learning that shift focus from Consensus-oriented Learning (CoL), which aggregates multiple annotations into a single ground-truth prediction, to Individual Tendency Learning (ITL), which models annotator-specific labeling behavior patterns (i.e., tendency) to provide explanation analysis for understanding annotator decisions. However, no evaluation framework currently exists to assess whether ITL methods truly capture individual tendencies and provide meaningful behavioral explanations. To address this gap, we propose the first unified evaluation framework with two novel metrics: (1) Difference of Inter-annotator Consistency (DIC) quantifies how well models capture annotator tendencies by comparing predicted inter-annotator similarity structures with ground-truth; (2) Behavior Alignment Explainability (BAE) evaluates how well model explanations reflect annotator behavior and decision relevance by aligning explainability-derived with ground-truth labeling similarity structures via Multidimensional Scaling (MDS). Extensive experiments validate the effectiveness of our proposed evaluation framework.
comment: 9 pages
♻ ☆ BiasGym: Fantastic LLM Biases and How to Find (and Remove) Them
Understanding biases and stereotypes encoded in the weights of Large Language Models (LLMs) is crucial for developing effective mitigation strategies. However, biased behaviour is often subtle and non-trivial to isolate, even when deliberately elicited, making systematic analysis and debiasing particularly challenging. To address this, we introduce \texttt{BiasGym}, a simple, cost-effective, and generalizable framework for reliably and safely injecting, analyzing, and mitigating conceptual associations of biases within LLMs. \texttt{BiasGym} consists of two components: \texttt{BiasInject}, which safely injects specific biases into the model via token-based fine-tuning while keeping the model frozen, and \texttt{BiasScope}, which leverages these injected signals to identify and reliably steer the components responsible for biased behavior. Our method enables consistent bias elicitation for mechanistic analysis, supports targeted debiasing without degrading performance on downstream tasks, and generalizes to biases unseen during fine-tuning. We demonstrate the effectiveness of BiasGym in reducing real-world stereotypes (e.g., people from Italy being `reckless drivers'), showing its utility for both safety interventions and interpretability research.
comment: Under review
♻ ☆ Multi-Step Knowledge Interaction Analysis via Rank-2 Subspace Disentanglement
Natural Language Explanations (NLEs) describe how Large Language Models (LLMs) make decisions by drawing on external Context Knowledge (CK) and Parametric Knowledge (PK). Understanding the interaction between these sources is key to assessing NLE grounding, yet these dynamics remain underexplored. Prior work has largely focused on (1) single-step generation and (2) modelled PK-CK interaction as a binary choice within a rank-1 subspace. This approach overlooks richer interactions and how they unfold over longer generations, such as complementary or supportive knowledge. We propose a novel rank-2 projection subspace that disentangles PK and CK contributions more accurately and use it for the first multi-step analysis of knowledge interactions across longer NLE sequences. Experiments across four QA datasets and three open-weight LLMs demonstrate that while rank-1 subspaces struggle to represent diverse interactions, our rank-2 formulation captures them effectively, highlighting PK alignment for supportive interactions and CK alignment for conflicting ones. Our multi-step analysis reveals, among others, that hallucinated generations exhibit strong alignment with the PK direction, whereas context-faithful generations maintain a more balanced alignment between PK and CK.
comment: Under review
♻ ☆ Grounding Large Language Models in Interactive Environments with Online Reinforcement Learning ICML 2023
Recent works successfully leveraged Large Language Models' (LLM) abilities to capture abstract knowledge about world's physics to solve decision-making problems. Yet, the alignment between LLMs' knowledge and the environment can be wrong and limit functional competence due to lack of grounding. In this paper, we study an approach (named GLAM) to achieve this alignment through functional grounding: we consider an agent using an LLM as a policy that is progressively updated as the agent interacts with the environment, leveraging online Reinforcement Learning to improve its performance to solve goals. Using an interactive textual environment designed to study higher-level forms of functional grounding, and a set of spatial and navigation tasks, we study several scientific questions: 1) Can LLMs boost sample efficiency for online learning of various RL tasks? 2) How can it boost different forms of generalization? 3) What is the impact of online learning? We study these questions by functionally grounding several variants (size, architecture) of FLAN-T5.
comment: The associated code can be found at https://github.com/flowersteam/Grounding_LLMs_with_online_RL. This is an extended version of the paper published at ICML 2023: https://proceedings.mlr.press/v202/carta23a
♻ ☆ PENEX: AdaBoost-Inspired Neural Network Regularization
AdaBoost sequentially fits so-called weak learners to minimize an exponential loss, which penalizes misclassified data points more severely than other loss functions like cross-entropy. Paradoxically, AdaBoost generalizes well in practice as the number of weak learners grows. In the present work, we introduce Penalized Exponential Loss (PENEX), a new formulation of the multi-class exponential loss that is theoretically grounded and, in contrast to the existing formulation, amenable to optimization via first-order methods, making it a practical objective for training neural networks. We demonstrate that PENEX effectively increases margins of data points, which can be translated into a generalization bound. Empirically, across computer vision and language tasks, PENEX improves neural network generalization in low-data regimes, often matching or outperforming established regularizers at comparable computational cost. Our results highlight the potential of the exponential loss beyond its application in AdaBoost.
♻ ☆ HistoPrism: Unlocking Functional Pathway Analysis from Pan-Cancer Histology via Gene Expression Prediction ICLR2026
Predicting spatial gene expression from H&E histology offers a scalable and clinically accessible alternative to sequencing, but realizing clinical impact requires models that generalize across cancer types and capture biologically coherent signals. Prior work is often limited to per-cancer settings and variance-based evaluation, leaving functional relevance underexplored. We introduce HistoPrism, an efficient transformer-based architecture for pan-cancer prediction of gene expression from histology. To evaluate biological meaning, we introduce a pathway-level benchmark, shifting assessment from isolated gene-level variance to coherent functional pathways. HistoPrism not only surpasses prior state-of-the-art models on highly variable genes , but also more importantly, achieves substantial gains on pathway-level prediction, demonstrating its ability to recover biologically coherent transcriptomic patterns. With strong pan-cancer generalization and improved efficiency, HistoPrism establishes a new standard for clinically relevant transcriptomic modeling from routinely available histology.
comment: Accepted at ICLR2026
♻ ☆ Bounding Hallucinations: Information-Theoretic Guarantees for RAG Systems via Merlin-Arthur Protocols
Retrieval-augmented generation (RAG) relies on retrieved context to guide large language models (LLM), yet treats retrieval as a weak heuristic rather than verifiable evidence -- leading to unsupported answers, hallucinations, and reliance on spurious context. We introduce a novel training framework that treats the RAG pipeline as an interactive proof system by adapting the Merlin-Arthur (M/A) protocol: Arthur (the generator LLM) trains on questions with unknown context provenance and Merlin gives helpful evidence, while Morgana injects adversarial, misleading context. Both use an XAI method to identify and modify evidence most influential to Arthur. This trains Arthur to (1) answer when evidence supports the answer, (2) reject when evidence is insufficient, and (3) rely on the context spans that truly ground the answer. We further introduce a verification framework that disentangles explanation fidelity from model predictive errors, and introduce the Explained Information Fraction (EIF), which normalizes M/A mutual-information guarantees. Across three RAG datasets and multiple LLM families and sizes, M/A training makes LLMs more grounded in evidence, increases information theoretic measures (soundness, completeness) and reject behavior with less hallucinations, without manually annotated unanswerable samples. Finally, the retriever also improves recall and MRR via automatically generated M/A hard positives and negatives. While high accuracy does not guarantee entropy flow from context to answer, our EIF results show that autonomous interactive-proof-style supervision enables RAG systems that treat retrieved documents as verifiable evidence. % rather than suggestions.
comment: 31 pages, 22 figures
♻ ☆ CaloHadronic: a diffusion model for the generation of hadronic showers
Simulating showers of particles in highly-granular calorimeters is a key frontier in the application of machine learning to particle physics. Achieving high accuracy and speed with generative machine learning models can enable them to augment traditional simulations and alleviate a major computing constraint. Recent developments have shown how diffusion based generative shower simulation approaches that do not rely on a fixed structure, but instead generate geometry-independent point clouds, are very efficient. We present a transformer-based extension to previous architectures which were developed for simulating electromagnetic showers in the highly granular electromagnetic calorimeter of the International Large Detector, ILD. The attention mechanism now allows us to generate complex hadronic showers with more pronounced substructure across both the electromagnetic and hadronic calorimeters. This is the first time that machine learning methods are used to holistically generate showers across the electromagnetic and hadronic calorimeter in highly granular imaging calorimeter systems.
♻ ☆ Navigate the Unknown: Enhancing LLM Reasoning with Intrinsic Motivation Guided Exploration
Reinforcement Learning (RL) has become a key approach for enhancing the reasoning capabilities of large language models. However, prevalent RL approaches like proximal policy optimization and group relative policy optimization suffer from sparse, outcome-based rewards and weak exploration incentives, limiting their effectiveness. Specifically, sparse rewards offer limited feedback, especially on difficult problems, and introduce biases favoring familiar trajectories over novel reasoning paths. These issues critically undermine performance on complex tasks that inherently require iterative reasoning. To overcome these challenges, we propose Intrinsic MotivAtion Guided exploratIoN for Enhanced reasoning (IMAGINE), which delivers dense rewards and encourages exploration. IMAGINE introduces three innovations: a trajectory-aware exploration reward that reduces token-level bias efficiently; an error-conditioned reward allocation that promotes efficient exploration on hard samples while stabilizing training; and an advantage-preserving integration mechanism that retains distributional integrity during learning. Experiments on four public datasets show that IMAGINE improves performance by 22.23% on AIME 2024.
♻ ☆ PPO in the Fisher-Rao geometry
Proximal Policy Optimization (PPO) is widely used in reinforcement learning due to its strong empirical performance, yet it lacks formal guarantees for policy improvement and convergence. PPO's clipped surrogate objective is motivated by a lower bound on linearization of the value function in flat geometry setting. We derive a tighter surrogate objective and introduce Fisher-Rao PPO (FR-PPO) by leveraging the Fisher-Rao (FR) geometry. Our scheme provides strong theoretical guarantees, including monotonic policy improvement. In the direct parametrization setting, we show that FR-PPO achieves sub-linear convergence with no dependence on action or state space dimensions, and for parametrized policies we further obtain sub-linear convergence up to the compatible function approximation error. Finally, although our primary focus is theoretical, we also demonstrate empirically that FR-PPO performs well across a range of standard reinforcement learning tasks.
comment: 34 pages; Added section on Natural Policy Gradient. Added numerical experiments
♻ ☆ GNN Explanations that do not Explain and How to find Them ICLR26
Explanations provided by Self-explainable Graph Neural Networks (SE-GNNs) are fundamental for understanding the model's inner workings and for identifying potential misuse of sensitive attributes. Although recent works have highlighted that these explanations can be suboptimal and potentially misleading, a characterization of their failure cases is unavailable. In this work, we identify a critical failure of SE-GNN explanations: explanations can be unambiguously unrelated to how the SE-GNNs infer labels. We show that, on the one hand, many SE-GNNs can achieve optimal true risk while producing these degenerate explanations, and on the other, most faithfulness metrics can fail to identify these failure modes. Our empirical analysis reveals that degenerate explanations can be maliciously planted (allowing an attacker to hide the use of sensitive attributes) and can also emerge naturally, highlighting the need for reliable auditing. To address this, we introduce a novel faithfulness metric that reliably marks degenerate explanations as unfaithful, in both malicious and natural settings. Our code is available in the supplemental.
comment: Accepted at ICLR26
♻ ☆ Explainable histomorphology-based survival prediction of glioblastoma, IDH-wildtype
Glioblastoma, IDH-wildtype (GBM-IDHwt) is the most common malignant brain tumor. Histomorphology is a crucial component of the integrated diagnosis of GBM-IDHwt. Artificial intelligence (AI) methods have shown promise to extract additional prognostic information from histological whole-slide images (WSI) of hematoxylin and eosin-stained glioblastoma tissue. Here, we present an explainable AI-based method to support systematic interpretation of histomorphological features associated with survival. It combines an explainable multiple instance learning (MIL) architecture with a sparse autoencoder (SAE) to relate human-interpretable visual patterns of tissue to survival. The MIL architecture directly identifies prognosis-relevant image tiles and the SAE maps these tiles post-hoc to visual patterns. The MIL method was trained and evaluated using a new real-world dataset that comprised 720 GBM-IDHwt cases from three hospitals and four cancer registries in Germany. The SAE was trained using 1878 WSIs of glioblastoma from five independent public data collections. Despite the many factors influencing survival time, our method showed some ability to discriminate between patients living less than 180 days or more than 360 days solely based on histomorphology (AUC: 0.67; 95% CI: 0.63-0.72). Cox proportional hazards regression confirmed a significant difference in survival time between the predicted groups after adjustment for established prognostic factors (hazard ratio: 1.47; 95% CI: 1.26-1.72). Our method identified multiple interpretable visual patterns associated with survival. Three neuropathologists separately found that 21 of the 24 most strongly associated patterns could be clearly attributed to seven histomorphological categories. Necrosis and hemorrhage appeared to be associated with shorter survival while highly cellular tumor areas were associated with longer survival.
Information Retrieval 16
☆ OrLog: Resolving Complex Queries with LLMs and Probabilistic Reasoning ECIR 2026
Resolving complex information needs that come with multiple constraints should consider enforcing the logical operators encoded in the query (i.e., conjunction, disjunction, negation) on the candidate answer set. Current retrieval systems either ignore these constraints in neural embeddings or approximate them in a generative reasoning process that can be inconsistent and unreliable. Although well-suited to structured reasoning, existing neuro-symbolic approaches remain confined to formal logic or mathematics problems as they often assume unambiguous queries and access to complete evidence, conditions rarely met in information retrieval. To bridge this gap, we introduce OrLog, a neuro-symbolic retrieval framework that decouples predicate-level plausibility estimation from logical reasoning: a large language model (LLM) provides plausibility scores for atomic predicates in one decoding-free forward pass, from which a probabilistic reasoning engine derives the posterior probability of query satisfaction. We evaluate OrLog across multiple backbone LLMs, varying levels of access to external knowledge, and a range of logical constraints, and compare it against base retrievers and LLM-as-reasoner methods. Provided with entity descriptions, OrLog can significantly boost top-rank precision compared to LLM reasoning with larger gains on disjunctive queries. OrLog is also more efficient, cutting mean tokens by $\sim$90\% per query-entity pair. These results demonstrate that generation-free predicate plausibility estimation combined with probabilistic reasoning enables constraint-aware retrieval that outperforms monolithic reasoning while using far fewer tokens.
comment: Accepted to ECIR 2026
☆ BEAR: Towards Beam-Search-Aware Optimization for Recommendation with Large Language Models
Recent years have witnessed a rapid surge in research leveraging Large Language Models (LLMs) for recommendation. These methods typically employ supervised fine-tuning (SFT) to adapt LLMs to recommendation scenarios, and utilize beam search during inference to efficiently retrieve $B$ top-ranked recommended items. However, we identify a critical training-inference inconsistency: while SFT optimizes the overall probability of positive items, it does not guarantee that such items will be retrieved by beam search even if they possess high overall probabilities. Due to the greedy pruning mechanism, beam search can prematurely discard a positive item once its prefix probability is insufficient. To address this inconsistency, we propose BEAR (Beam-SEarch-Aware Regularization), a novel fine-tuning objective that explicitly accounts for beam search behavior during training. Rather than directly simulating beam search for each instance during training, which is computationally prohibitive, BEAR enforces a relaxed necessary condition: each token in a positive item must rank within the top-$B$ candidate tokens at each decoding step. This objective effectively mitigates the risk of incorrect pruning while incurring negligible computational overhead compared to standard SFT. Extensive experiments across four real-world datasets demonstrate that BEAR significantly outperforms strong baselines. Code will be released upon acceptance.
☆ Compact Hypercube Embeddings for Fast Text-based Wildlife Observation Retrieval
Large-scale biodiversity monitoring platforms increasingly rely on multimodal wildlife observations. While recent foundation models enable rich semantic representations across vision, audio, and language, retrieving relevant observations from massive archives remains challenging due to the computational cost of high-dimensional similarity search. In this work, we introduce compact hypercube embeddings for fast text-based wildlife observation retrieval, a framework that enables efficient text-based search over large-scale wildlife image and audio databases using compact binary representations. Building on the cross-view code alignment hashing framework, we extend lightweight hashing beyond a single-modality setup to align natural language descriptions with visual or acoustic observations in a shared Hamming space. Our approach leverages pretrained wildlife foundation models, including BioCLIP and BioLingual, and adapts them efficiently for hashing using parameter-efficient fine-tuning. We evaluate our method on large-scale benchmarks, including iNaturalist2024 for text-to-image retrieval and iNatSounds2024 for text-to-audio retrieval, as well as multiple soundscape datasets to assess robustness under domain shift. Results show that retrieval using discrete hypercube embeddings achieves competitive, and in several cases superior, performance compared to continuous embeddings, while drastically reducing memory and search cost. Moreover, we observe that the hashing objective consistently improves the underlying encoder representations, leading to stronger retrieval and zero-shot generalization. These results demonstrate that binary, language-based retrieval enables scalable and efficient search over large wildlife archives for biodiversity monitoring systems.
☆ Farewell to Item IDs: Unlocking the Scaling Potential of Large Ranking Models via Semantic Tokens
Recent studies on scaling up ranking models have achieved substantial improvement for recommendation systems and search engines. However, most large-scale ranking systems rely on item IDs, where each item is treated as an independent categorical symbol and mapped to a learned embedding. As items rapidly appear and disappear, these embeddings become difficult to train and maintain. This instability impedes effective learning of neural network parameters and limits the scalability of ranking models. In this paper, we show that semantic tokens possess greater scaling potential compared to item IDs. Our proposed framework TRM improves the token generation and application pipeline, leading to 33% reduction in sparse storage while achieving 0.85% AUC increase. Extensive experiments further show that TRM could consistently outperform state-of-the-art models when model capacity scales. Finally, TRM has been successfully deployed on large-scale personalized search engines, yielding 0.26% and 0.75% improvement on user active days and change query ratio respectively through A/B test.
☆ PersonaAct: Simulating Short-Video Users with Personalized Agents for Counterfactual Filter Bubble Auditing
Short-video platforms rely on personalized recommendation, raising concerns about filter bubbles that narrow content exposure. Auditing such phenomena at scale is challenging because real user studies are costly and privacy-sensitive, and existing simulators fail to reproduce realistic behaviors due to their reliance on textual signals and weak personalization. We propose PersonaAct, a framework for simulating short-video users with persona-conditioned multimodal agents trained on real behavioral traces for auditing filter bubbles in breadth and depth. PersonaAct synthesizes interpretable personas through automated interviews combining behavioral analysis with structured questioning, then trains agents on multimodal observations using supervised fine-tuning and reinforcement learning. We deploy trained agents for filter bubble auditing and evaluate bubble breadth via content diversity and bubble depth via escape potential. The evaluation demonstrates substantial improvements in fidelity over generic LLM baselines, enabling realistic behavior reproduction. Results reveal significant content narrowing over interaction. However, we find that Bilibili demonstrates the strongest escape potential. We release the first open multimodal short-video dataset and code to support reproducible auditing of recommender systems.
☆ SCaLRec: Semantic Calibration for LLM-enabled Cloud-Device Sequential Recommendation
Cloud-device collaborative recommendation partitions computation across the cloud and user devices: the cloud provides semantic user modeling, while the device leverages recent interactions and cloud semantic signals for privacy-preserving, responsive reranking. With large language models (LLMs) on the cloud, semantic user representations can improve sequential recommendation by capturing high-level intent. However, regenerating such representations via cloud LLM inference for every request is often infeasible at real-world scale. As a result, on-device reranking commonly reuses a cached cloud semantic user embedding across requests. We empirically identify a cloud semantic staleness effect: reused embeddings become less aligned with the user's latest interactions, leading to measurable ranking degradation. Most existing LLM-enabled cloud-device recommenders are typically designed around on-demand cloud semantics, either by assuming low-latency cloud LLM access or by regenerating semantic embeddings per request. When per-request regeneration is infeasible and cached semantics must be reused, two technical challenges arise: (1) deciding when cached cloud semantics remain useful for on-device reranking, and (2) maintaining ranking quality when the cloud LLM cannot be invoked and only cached semantics are available. To address this gap, we introduce the Semantic Calibration for LLM-enabled Cloud-Device Recommendation (SCaLRec). First, it estimates the reliability of cached semantics under the user's latest interactions. Second, an on-device semantic calibration module is proposed to adjusts the cached semantic embedding on-device using up-to-date interaction evidence, without per-request cloud LLM involvement. Experiments on real-world datasets show that SCaLRec consistently improves recommendation performance over strong baselines under cloud semantic staleness.
☆ FITMM: Adaptive Frequency-Aware Multimodal Recommendation via Information-Theoretic Representation Learning
Multimodal recommendation aims to enhance user preference modeling by leveraging rich item content such as images and text. Yet dominant systems fuse modalities in the spatial domain, obscuring the frequency structure of signals and amplifying misalignment and redundancy. We adopt a spectral information-theoretic view and show that, under an orthogonal transform that approximately block-diagonalizes bandwise covariances, the Gaussian Information Bottleneck objective decouples across frequency bands, providing a principled basis for separate-then-fuse paradigm. Building on this foundation, we propose FITMM, a Frequency-aware Information-Theoretic framework for multimodal recommendation. FITMM constructs graph-enhanced item representations, performs modality-wise spectral decomposition to obtain orthogonal bands, and forms lightweight within-band multimodal components. A residual, task-adaptive gate aggregates bands into the final representation. To control redundancy and improve generalization, we regularize training with a frequency-domain IB term that allocates capacity across bands (Wiener-like shrinkage with shut-off of weak bands). We further introduce a cross-modal spectral consistency loss that aligns modalities within each band. The model is jointly optimized with the standard recommendation loss. Extensive experiments on three real-world datasets demonstrate that FITMM consistently and significantly outperforms advanced baselines.
☆ Do AI Overviews Benefit Search Engines? An Ecosystem Perspective
The integration of AI Overviews into search engines enhances user experience but diverts traffic from content creators, potentially discouraging high-quality content creation and causing user attrition that undermines long-term search engine profit. To address this issue, we propose a game-theoretic model of creator competition with costly effort, characterize equilibrium behavior, and design two incentive mechanisms: a citation mechanism that references sources within an AI Overview, and a compensation mechanism that offers monetary rewards to creators. For both cases, we provide structural insights and near-optimal profit-maximizing mechanisms. Evaluations on real click data show that although AI Overviews harm long-term search engine profit, interventions based on our proposed mechanisms can increase long-term profit across a range of realistic scenarios, pointing toward a more sustainable trajectory for AI-enhanced search ecosystems.
RAGRouter-Bench: A Dataset and Benchmark for Adaptive RAG Routing
Retrieval-Augmented Generation (RAG) has become a core paradigm for grounding large language models with external knowledge. Despite extensive efforts exploring diverse retrieval strategies, existing studies predominantly focus on query-side complexity or isolated method improvements, lacking a systematic understanding of how RAG paradigms behave across different query-corpus contexts and effectiveness-efficiency trade-offs. In this work, we introduce RAGRouter-Bench, the first dataset and benchmark designed for adaptive RAG routing. RAGRouter-Bench revisits retrieval from a query-corpus compatibility perspective and standardizes five representative RAG paradigms for systematic evaluation across 7,727 queries and 21,460 documents spanning diverse domains. The benchmark incorporates three canonical query types together with fine-grained semantic and structural corpus metrics, as well as a unified evaluation for both generation quality and resource consumption. Experiments with DeepSeek-V3 and LLaMA-3.1-8B demonstrate that no single RAG paradigm is universally optimal, that paradigm applicability is strongly shaped by query-corpus interactions, and that increased advanced mechanism does not necessarily yield better effectiveness-efficiency trade-offs. These findings underscore the necessity of routing-aware evaluation and establish a foundation for adaptive, interpretable, and generalizable next-generation RAG systems.
♻ ☆ LightRetriever: A LLM-based Text Retrieval Architecture with Extremely Faster Query Inference ICLR 2026
Large Language Models (LLMs)-based text retrieval retrieves documents relevant to search queries based on vector similarities. Documents are pre-encoded offline, while queries arrive in real-time, necessitating an efficient online query encoder. Although LLMs significantly enhance retrieval capabilities, serving deeply parameterized LLMs slows down query inference throughput and increases demands for online deployment resources. In this paper, we propose LightRetriever, a novel LLM-based retriever with extremely lightweight query encoders. Our method retains a full-sized LLM for document encoding, but reduces the workload of query encoding to no more than an embedding lookup. Compared to serving a full LLM on an A800 GPU, our method achieves over 1000x speedup in query encoding and over 10x increase in end-to-end retrieval throughput. Extensive experiments on large-scale retrieval benchmarks show that LightRetriever generalizes well across diverse tasks, maintaining an average of 95% retrieval performance.
comment: Accepted by ICLR 2026
♻ ☆ Pipeline Inspection, Visualization, and Interoperability in PyTerrier ECIR2026
PyTerrier provides a declarative framework for building and experimenting with Information Retrieval (IR) pipelines. In this demonstration, we highlight several recent pipeline operations that improve their ability to be programmatically inspected, visualized, and integrated with other tools (via the Model Context Protocol, MCP). These capabilities aim to make it easier for researchers, students, and AI agents to understand and use a wide array of IR pipelines.
comment: This preprint has not undergone peer review (when applicable) or any post-submission improvements or corrections. The Version of Record of this contribution is published in ECIR2026 (Part IV) Advances in Information Retrieval
Spattack: Subgroup Poisoning Attacks on Federated Recommender Systems WWW 2026
Federated recommender systems (FedRec) have emerged as a promising approach to provide personalized recommendations while protecting user privacy. However, recent studies have shown their vulnerability to poisoning attacks, where malicious clients inject crafted gradients to promote target items to benign users. Existing attacks typically target the full user group, which compromises stealth and increases detection risk. In contrast, real-world adversaries may prefer to target specific user subgroups, such as promoting health supplements to older individuals, to maximize effectiveness while preserving stealth. Motivated by this gap, we introduce Spattack, the first poisoning attack designed to manipulate recommendations for specific user subgroups in federated settings. Spattack adopts an approximate-and-promote paradigm, which approximates user embeddings of target and non-target subgroups and then promotes target items to the target subgroup. We further reveal a trade-off between strong attack performance on the target subgroup and limited impact on the non-target subgroup. To achieve a better trade-off, we propose enhanced approximation and promotion strategies. For approximation, we push embeddings of different subgroups apart via contrastive learning and augment the target subgroup's relevant item set through clustering. For promotion, we align embeddings of target items and relevant items to strengthen their semantic connections, together with an adaptive weighting strategy to balance effects across subgroups. Experiments on three real-world datasets demonstrate that Spattack achieves strong attack performance on the target subgroup with minimal impact on non-target users, even when only 0.1% of users are malicious. Moreover, Spattack maintains competitive recommendation performance and shows strong resilience against mainstream defenses.
comment: Accepted by WWW 2026
♻ ☆ OneTrans: Unified Feature Interaction and Sequence Modeling with One Transformer in Industrial Recommender
In recommendation systems, scaling up feature-interaction modules (e.g., Wukong, RankMixer) or user-behavior sequence modules (e.g., LONGER) has achieved notable success. However, these efforts typically proceed on separate tracks, which not only hinders bidirectional information exchange but also prevents unified optimization and scaling. In this paper, we propose OneTrans, a unified Transformer backbone that simultaneously performs user-behavior sequence modeling and feature interaction. OneTrans employs a unified tokenizer to convert both sequential and non-sequential attributes into a single token sequence. The stacked OneTrans blocks share parameters across similar sequential tokens while assigning token-specific parameters to non-sequential tokens. Through causal attention and cross-request KV caching, OneTrans enables precomputation and caching of intermediate representations, significantly reducing computational costs during both training and inference. Experimental results on industrial-scale datasets demonstrate that OneTrans scales efficiently with increasing parameters, consistently outperforms strong baselines, and yields a 5.68% lift in per-user GMV in online A/B tests.
♻ ☆ Structured Spectral Reasoning for Frequency-Adaptive Multimodal Recommendation
Multimodal recommendation aims to integrate collaborative signals with heterogeneous content such as visual and textual information, but remains challenged by modality-specific noise, semantic inconsistency, and unstable propagation over user-item graphs. These issues are often exacerbated by naive fusion or shallow modeling strategies, leading to degraded generalization and poor robustness. While recent work has explored the frequency domain as a lens to separate stable from noisy signals, most methods rely on static filtering or reweighting, lacking the ability to reason over spectral structure or adapt to modality-specific reliability. To address these challenges, we propose a Structured Spectral Reasoning (SSR) framework for frequency-aware multimodal recommendation. Our method follows a four-stage pipeline: (i) Decompose graph-based multimodal signals into spectral bands via graph-guided transformations to isolate semantic granularity; (ii) Modulate band-level reliability with spectral band masking, a training-time masking with a prediction-consistency objective that suppresses brittle frequency components; (iii) Fuse complementary frequency cues using hyperspectral reasoning with low-rank cross-band interaction; and (iv) Align modality-specific spectral features via contrastive regularization to promote semantic and structural consistency. Experiments on three real-world benchmarks show consistent gains over strong baselines, particularly under sparse and cold-start settings. Additional analyses indicate that structured spectral modeling improves robustness and provides clearer diagnostics of how different bands contribute to performance.
♻ ☆ Toward Culturally Aligned LLMs through Ontology-Guided Multi-Agent Reasoning
Large Language Models (LLMs) increasingly support culturally sensitive decision making, yet often exhibit misalignment due to skewed pretraining data and the absence of structured value representations. Existing methods can steer outputs, but often lack demographic grounding and treat values as independent, unstructured signals, reducing consistency and interpretability. We propose OG-MAR, an Ontology-Guided Multi-Agent Reasoning framework. OG-MAR summarizes respondent-specific values from the World Values Survey (WVS) and constructs a global cultural ontology by eliciting relations over a fixed taxonomy via competency questions. At inference time, it retrieves ontology-consistent relations and demographically similar profiles to instantiate multiple value-persona agents, whose outputs are synthesized by a judgment agent that enforces ontology consistency and demographic proximity. Experiments on regional social-survey benchmarks across four LLM backbones show that OG-MAR improves cultural alignment and robustness over competitive baselines, while producing more transparent reasoning traces.
comment: 35 pages
♻ ☆ Unveiling and Mitigating Bias in Large Language Model Recommendations: A Path to Fairness
Large Language Model (LLM)-based recommendation systems excel in delivering comprehensive suggestions by deeply analyzing content and user behavior. However, they often inherit biases from skewed training data, favoring mainstream content while underrepresenting diverse or non-traditional options. This study explores the interplay between bias and LLM-based recommendation systems, focusing on music, song, and book recommendations across diverse demographic and cultural groups. This paper analyzes bias in LLM-based recommendation systems across multiple models (GPT, LLaMA, and Gemini), revealing its deep and pervasive impact on outcomes. Intersecting identities and contextual factors, like socioeconomic status, further amplify biases, complicating fair recommendations across diverse groups. Our findings reveal that bias in these systems is deeply ingrained, yet even simple interventions like prompt engineering can significantly reduce it. We further propose a retrieval-augmented generation strategy to mitigate bias more effectively. Numerical experiments validate these strategies, demonstrating both the pervasive nature of bias and the impact of the proposed solutions.